1
|
Feske S, Colucci F, Coetzee WA. Do K ATP channels have a role in immunity? Front Immunol 2024; 15:1484971. [PMID: 39669557 PMCID: PMC11634800 DOI: 10.3389/fimmu.2024.1484971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/30/2024] [Indexed: 12/14/2024] Open
Abstract
Ion channels, exchangers and pumps are expressed ubiquitously in cells from all phyla of life. In mammals, their role is best described in excitable cells, where they regulate the initiation and propagation of action potentials. There are over 70 different types of K+ channels subunits that contribute to these processes. In non-excitable cells, K+ channels set the resting membrane potential, which in turn drives the activity of other translocators. K+ channels also help maintain cell volume, influence cell proliferation and apoptosis and regulate Ca2+ signaling, which in turn is crucial for many cellular processes, including metabolism, secretion, and gene expression. K+ channels play crucial roles in the activation, proliferation and a variety of other functions in cells of the innate and adaptive immune system. The ATP-sensitive K+ (KATP) channel has an established role in diverse cells, but its presence and function in immunity is scantly described. Public gene expression databases show that KATP channel subunits are highly expressed in NKT and NK cells, and that they are significantly upregulated after infection in CD8+ T cells and macrophages. We discuss these findings in the light of the available literature and propose a role for KATP channels in cytotoxicity of cells that are primed for a rapid immune response. Possible underlying molecular mechanisms are discussed.
Collapse
Affiliation(s)
- Stefan Feske
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States
| | - Francesco Colucci
- Department of Obstetrics and Gynecology, University of Cambridge, Cambridge, United Kingdom
| | - William A. Coetzee
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Physiology & Neuroscience, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
2
|
Xie C, Kessi M, Yin F, Peng J. Roles of KCNA2 in Neurological Diseases: from Physiology to Pathology. Mol Neurobiol 2024; 61:8491-8517. [PMID: 38517617 DOI: 10.1007/s12035-024-04120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Potassium voltage-gated channel subfamily a member 2 (Kv1.2, encoded by KCNA2) is highly expressed in the central and peripheral nervous systems. Based on the patch clamp studies, gain-of function (GOF), loss-of-function (LOF), and a mixed type (GOF/LOF) variants can cause different conditions/disorders. KCNA2-related neurological diseases include epilepsy, intellectual disability (ID), attention deficit/hyperactive disorder (ADHD), autism spectrum disorder (ASD), pain as well as autoimmune and movement disorders. Currently, the molecular mechanisms for the reported variants in causing diverse disorders are unknown. Consequently, this review brings up to date the related information regarding the structure and function of Kv1.2 channel, expression patterns, neuronal localizations, and tetramerization as well as important cell and animal models. In addition, it provides updates on human genetic variants, genotype-phenotype correlations especially highlighting the deep insight into clinical prognosis of KCNA2-related developmental and epileptic encephalopathy, mechanisms, and the potential treatment targets for all KCNA2-related neurological disorders.
Collapse
Affiliation(s)
- Changning Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China
| | - Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China.
- Hunan Intellectual and Development Disabilities Research Center, Hunan, Changsha, 410008, China.
| |
Collapse
|
3
|
Fahanik-Babaei J, Bagheri M, Salari S. Characterization of a novel Ca 2+-Activated potassium channel in rat brain rough endoplasmic reticulum. Arch Biochem Biophys 2024; 759:110105. [PMID: 39059600 DOI: 10.1016/j.abb.2024.110105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES Potassium channels in the endoplasmic reticulum (ER) are crucial for maintaining calcium balance during calcium fluxes. Disruption in ER calcium balance leads to ER stress, implicated in diseases like diabetes and Alzheimer's disease (AD). However, limited data exists on ER potassium channels in excitable tissues such as the brain. To fill this gap, we aimed to evaluate potassium currents in rat brain rough endoplasmic reticulum (RER). METHODS Rats were euthanized under deep anesthesia and their brains were immediately removed. The brains were then homogenized in ice-cold sucrose buffer, followed by the extraction of RER microsomes through a series of centrifugation processes. Purity of sample was evaluated using western blotting technique. Single channel recordings were done in voltage steps from +50 to -60 mV following incorporation of rat brain RER vesicles into planar bilayers. RESULTS We observed a voltage-dependent potassium channel with an approximate conductance of 188 pS. Channel open probability was low at negative voltages, increasing at positive voltages. The channel was blocked by Charybdotoxin but not by Iberiotoxin. Additionally, TRAM-34, a specific KCa3.1 channel blocker, suppressed channel current amplitude and open probability. Western blot analysis revealed specific bands for anti-KCa3.1 antibody, approximately 50 kDa in brain homogenate and RER fraction. CONCLUSION Our study provides strong evidence for the presence of an KCa3.1 channel on the RER membrane in rat brain, exhibiting distinct electro-pharmacological profile compared to plasma membrane and other organelles.
Collapse
Affiliation(s)
- Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Bagheri
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Sajjad Salari
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
4
|
Cho H, Huh KM, Shim MS, Cho YY, Lee JY, Lee HS, Kwon YJ, Kang HC. Selective delivery of imaging probes and therapeutics to the endoplasmic reticulum or Golgi apparatus: Current strategies and beyond. Adv Drug Deliv Rev 2024; 212:115386. [PMID: 38971180 DOI: 10.1016/j.addr.2024.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
To maximize therapeutic effects and minimize unwanted effects, the interest in drug targeting to the endoplasmic reticulum (ER) or Golgi apparatus (GA) has been recently growing because two organelles are distributing hubs of cellular building/signaling components (e.g., proteins, lipids, Ca2+) to other organelles and the plasma membrane. Their structural or functional damages induce organelle stress (i.e., ER or GA stress), and their aggravation is strongly related to diseases (e.g., cancers, liver diseases, brain diseases). Many efforts have been developed to image (patho)physiological functions (e.g., oxidative stress, protein/lipid-related processing) and characteristics (e.g., pH, temperature, biothiols, reactive oxygen species) in the target organelles and to deliver drugs for organelle disruption using organelle-targeting moieties. Therefore, this review will overview the structure, (patho)physiological functions/characteristics, and related diseases of the organelles of interest. Future direction on ER or GA targeting will be discussed by understanding current strategies and investigations on targeting, imaging/sensing, and therapeutic systems.
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Kang Moo Huh
- Departments of Polymer Science and Engineering & Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
| |
Collapse
|
5
|
Samper N, Harðardóttir L, Depierreux DM, Song SC, Nakazawa A, Gando I, Nakamura TY, Sharkey AM, Nowosad CR, Feske S, Colucci F, Coetzee WA. Kir6.1, a component of an ATP-sensitive potassium channel, regulates natural killer cell development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.608003. [PMID: 39211194 PMCID: PMC11361148 DOI: 10.1101/2024.08.14.608003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Involved in immunity and reproduction, natural killer (NK) cells offer opportunities to develop new immunotherapies to treat infections and cancer or to alleviate pregnancy complications. Most current strategies use cytokines or antibodies to enhance NK-cell function, but none use ion channel modulators, which are widely used in clinical practice to treat hypertension, diabetes, epilepsy, and other conditions. Little is known about ion channels in NK cells. We show that Kcnj8, which codes for the Kir6.1 subunit of a certain type of ATP-sensitive potassium (K ATP ) channel, is highly expressed in murine splenic and uterine NK cells compared to other K + channels previously identified in NK cells. Kcnj8 expression is highest in the most mature subset of splenic NK cells (CD27 - CD11b + ) and in NKG2A + or Ly49C/I + educated uterine NK cells. Using patch clamping, we show that a subset of NK cells expresses a current sensitive to the Kir6.1 blocker PNU-37883A. Kcnj8 does not participate in NK cell degranulation in response to tumor cells in vitro or rejection of tumor cells in vivo . Transcriptomics show that genes previously implicated in NK cell development are amongst those differentially expressed in CD27 - CD11b + NK cells deficient of Kcnj8 . Indeed, we found that mice with NK-cell specific Kcnj8 gene ablation have fewer CD11b + CD27 - and KLRG-1 + NK cells in the bone barrow and spleen. These results show that the K ATP subunit Kir6.1 has a key role in NK-cell development.
Collapse
|
6
|
Xiong FR, Lu J, Zhu JJ, Zhao RX, Zhang YC, Yang JK. KCNH6 is essential for insulin secretion by regulating intracellular ER Ca 2+ store. FASEB J 2024; 38:e23490. [PMID: 38363581 DOI: 10.1096/fj.202302194rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Appropriate Ca2+ concentration in the endoplasmic reticulum (ER), modulating cytosolic Ca2+ signal, serves significant roles in physiological function of pancreatic β cells. To maintaining ER homeostasis, Ca2+ movement across the ER membrane is always accompanied by a simultaneous K+ flux in the opposite direction. KCNH6 was proven to modulate insulin secretion by controlling plasma membrane action potential duration and intracellular Ca2+ influx. Meanwhile, the specific function of KCNH6 in pancreatic β-cells remains unclear. In this study, we found that KCNH6 exhibited mainly ER localization and Kcnh6 β-cell-specific knockout (βKO) mice suffered from abnormal glucose tolerance and impaired insulin secretion in adulthood. ER Ca2+ store was overloaded in islets of βKO mice, which contributed to ER stress and ER stress-induced apoptosis in β cells. Next, we verified that ethanol treatment induced increases in ER Ca2+ store and apoptosis in pancreatic β cells, whereas adenovirus-mediated KCNH6 overexpression in islets attenuated ethanol-induced ER stress and apoptosis. In addition, tail-vein injections of KCNH6 lentivirus rescued KCNH6 expression in βKO mice, restored ER Ca2+ overload and attenuated ER stress in β cells, which further confirms that KCNH6 protects islets from ER stress and apoptosis. These data suggest that KCNH6 on the ER membrane may help to stabilize intracellular ER Ca2+ stores and protect β cells from ER stress and apoptosis. In conclusion, our study reveals the protective potential of KCNH6-targeting drugs in ER stress-induced diabetes.
Collapse
Affiliation(s)
- Feng-Ran Xiong
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jing Lu
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Juan-Juan Zhu
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Ru-Xuan Zhao
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Ying-Chao Zhang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Eria-Oliveira AS, Folacci M, Chassot AA, Fedou S, Thézé N, Zabelskii D, Alekseev A, Bamberg E, Gordeliy V, Sandoz G, Vivaudou M. Hijacking of internal calcium dynamics by intracellularly residing viral rhodopsins. Nat Commun 2024; 15:65. [PMID: 38167346 PMCID: PMC10761956 DOI: 10.1038/s41467-023-44548-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Rhodopsins are ubiquitous light-driven membrane proteins with diverse functions, including ion transport. Widely distributed, they are also coded in the genomes of giant viruses infecting phytoplankton where their function is not settled. Here, we examine the properties of OLPVR1 (Organic Lake Phycodnavirus Rhodopsin) and two other type 1 viral channelrhodopsins (VCR1s), and demonstrate that VCR1s accumulate exclusively intracellularly, and, upon illumination, induce calcium release from intracellular IP3-dependent stores. In vivo, this light-induced calcium release is sufficient to remote control muscle contraction in VCR1-expressing tadpoles. VCR1s natively confer light-induced Ca2+ release, suggesting a distinct mechanism for reshaping the response to light of virus-infected algae. The ability of VCR1s to photorelease calcium without altering plasma membrane electrical properties marks them as potential precursors for optogenetics tools, with potential applications in basic research and medicine.
Collapse
Affiliation(s)
- Ana-Sofia Eria-Oliveira
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
- Fédération Hospitalo-Universitaire InovPain, Cote d'Azur University, University Hospital Center Nice, Nice, France
| | - Mathilde Folacci
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne Amandine Chassot
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
- Fédération Hospitalo-Universitaire InovPain, Cote d'Azur University, University Hospital Center Nice, Nice, France
| | - Sandrine Fedou
- Univ. Bordeaux, Inserm, BRIC, UMR, 1312, Bordeaux, France
| | - Nadine Thézé
- Univ. Bordeaux, Inserm, BRIC, UMR, 1312, Bordeaux, France
| | | | - Alexey Alekseev
- Advanced Optogenes Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Valentin Gordeliy
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Guillaume Sandoz
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France.
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France.
- Fédération Hospitalo-Universitaire InovPain, Cote d'Azur University, University Hospital Center Nice, Nice, France.
| | - Michel Vivaudou
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France.
| |
Collapse
|
8
|
Wu Y, Chen X, Zhu L, Wang D, Li X, Song J, Wang D, Yu X, Li Y, Tang BZ. Endoplasmic Reticulum-Targeted Aggregation-Induced Emission Luminogen for Synergetic Tumor Ablation with Glibenclamide. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37903083 DOI: 10.1021/acsami.3c10940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Photodynamic therapy based on fluorescence illumination of subcellular organelles and in situ bursts of reactive oxygen species (ROS) has been recognized as a promising strategy for cancer theranostics. However, the short life of ROS and unclarified anticancer mechanism seriously restrict the application. Herein, we rationally designed and facilely synthesized a 2,6-dimethylpyridine-based triphenylamine (TPA) derivative TPA-DMPy with aggregation-induced emission (AIE) features and production of type-I ROS. Except for its selective binding to the endoplasmic reticulum (ER), TPA-DMPy, in synergy with glibenclamide, a medicinal agent used against diabetes, induced significant apoptosis of cancer cells in vitro and in vivo. Additionally, TPA-DMPy greatly incited the release of calcium from ER upon light irradiation to further aggravate the depolarization of ER membrane potential caused by glibenclamide, thus inducing fatal ER stress and crosstalk between ER and mitochondria. Our study extends the biological design and application of AIE luminogens and provides new insights into discovering novel anticancer targets and agents.
Collapse
Affiliation(s)
- Yifan Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaohui Chen
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Liwei Zhu
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Xue Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jiayi Song
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiyong Yu
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Ying Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
9
|
Ion Channels of the Sarcolemma and Intracellular Organelles in Duchenne Muscular Dystrophy: A Role in the Dysregulation of Ion Homeostasis and a Possible Target for Therapy. Int J Mol Sci 2023; 24:ijms24032229. [PMID: 36768550 PMCID: PMC9917149 DOI: 10.3390/ijms24032229] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by the absence of the dystrophin protein and a properly functioning dystrophin-associated protein complex (DAPC) in muscle cells. DAPC components act as molecular scaffolds coordinating the assembly of various signaling molecules including ion channels. DMD shows a significant change in the functioning of the ion channels of the sarcolemma and intracellular organelles and, above all, the sarcoplasmic reticulum and mitochondria regulating ion homeostasis, which is necessary for the correct excitation and relaxation of muscles. This review is devoted to the analysis of current data on changes in the structure, functioning, and regulation of the activity of ion channels in striated muscles in DMD and their contribution to the disruption of muscle function and the development of pathology. We note the prospects of therapy based on targeting the channels of the sarcolemma and organelles for the correction and alleviation of pathology, and the problems that arise in the interpretation of data obtained on model dystrophin-deficient objects.
Collapse
|
10
|
Klier PEZ, Roo R, Miller EW. Fluorescent indicators for imaging membrane potential of organelles. Curr Opin Chem Biol 2022; 71:102203. [PMID: 36084425 PMCID: PMC10259174 DOI: 10.1016/j.cbpa.2022.102203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023]
Abstract
Plasma membrane potential is a key driver of the physiology of excitable cells like neurons and cardiomyocytes. Voltage-sensitive fluorescent indicators offer a powerful complement to traditional electrode-based approaches to measuring and monitoring membrane potential. Intracellular organelles can also generate membrane potential, yet the electrode- and fluorescent indicator-based approaches used for plasma membrane potential imaging are difficult to implement on intact organelles in their native environment. Here, we survey recent advances in developing and deploying voltage-sensitive fluorescent indicators to interrogate organelle membrane potential in intact cells.
Collapse
Affiliation(s)
- Pavel E Z Klier
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Ryan Roo
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA; Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
11
|
Matsuoka H, Harada K, Sugawara A, Kim D, Inoue M. Expression of p11 and heteromeric TASK channels in mouse adrenal cortical cells and H295R cells. Acta Histochem 2022; 124:151898. [PMID: 35526370 DOI: 10.1016/j.acthis.2022.151898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
Abstract
TWIK-related acid-sensitive K+ (TASK) channels are thought to contribute to the resting membrane potential in adrenal cortical (AC) cells. However, the molecular identity of TASK channels in AC cells have not yet been elucidated. Thus, immunocytochemical and molecular biological approaches were employed to investigate the expression and intracellular distribution of TASK1 and TASK3 in mouse AC cells and H295R cells derived from human adrenocortical carcinoma. Immunocytochemical study revealed that immunoreactive materials were mainly located in the cytoplasm for TASK1 and at the cell periphery for TASK3 in mouse AC cells. A similar pattern of localization was observed when GFP-TASK1 and GFP-TASK3 were exogenously expressed in H295R cells. In addition, p11 that is known to suppress the endoplasmic reticulum exit of TASK1 was localized in the cytoplasm in mouse AC and H295R cells, but not in adrenal medullary cells. Proximity ligation assay (PLA) suggested formation of heteromeric TASK1-3 channels that were found predominantly in the cytoplasm and weakly at the cell periphery. A similar distribution was observed following exogenous expression of tandem TASK1-3 channels in H295R cells. When stimulated by angiotensin II, however, tandem TASK1-3 channels were present mainly in the cytoplasm in all H295R cells. In contrast to that in H295R cells, tandem channels were exclusively located at the cell periphery in all non-stimulated and exclusively in the cytoplasm in stimulated PC12 cells, respectively. From these results, we conclude that TASK1 proteins are present mainly in the cytoplasm and minimally at the cell periphery as a heteromeric channel with TASK3, whereas the majority of TASK3 is at the cell periphery as homomeric and heteromeric channels.
Collapse
Affiliation(s)
- Hidetada Matsuoka
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | - Keita Harada
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medical Science, Sendai 980-8575, Japan
| | - Donghee Kim
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064-3095, USA
| | - Masumi Inoue
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan.
| |
Collapse
|
12
|
Lee D, Ha J, Ahn H, Jeong SD, Jeong M, Park JH, Yun CO, Kim YC. Polypeptide-Based K + Ionophore as a Strong Immunogenic Cell Death Inducer for Cancer Immunotherapy. ACS APPLIED BIO MATERIALS 2021; 4:8333-8342. [DOI: 10.1021/acsabm.1c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- DaeYong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - JongHoon Ha
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyomin Ahn
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Seong Dong Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - MoonKyoung Jeong
- Department of Bio and Brain Engineering, KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
13
|
Neonatal Diabetes in Patients Affected by Liang-Wang Syndrome Carrying KCNMA1 Variant p.(Gly375Arg) Suggest a Potential Role of Ca 2+ and Voltage-Activated K + Channel Activity in Human Insulin Secretion. Curr Issues Mol Biol 2021; 43:1036-1042. [PMID: 34563042 PMCID: PMC8928946 DOI: 10.3390/cimb43020073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022] Open
Abstract
Liang-Wang syndrome (LIWAS) is a polymalformative syndrome first described in 2019 caused by heterozygous mutation of the KCNMA1 gene encoding the Ca2+ and voltage-activated K+ channel (BKC). The KCNMA1 variant p.(Gly356Arg) abolishes the function of BKC and blocks the generation of K+ current. The phenotype of this variant includes developmental delay, and visceral and connective tissue malformations. So far, only three cases of LWAS have been described, one of which also had neonatal diabetes (ND). We present the case of a newborn affected by LIWAS carrying the p.(Gly375Arg) variant who manifested diabetes in the first week of life. The description of our case strongly increases the frequency of ND in LIWAS patients and suggests a role of BK inactivation in human insulin secretion. The knowledge on the role of BKC in insulin secretion is very poor. Analyzing the possible mechanisms that could explain the association of LIWAS with ND, we speculate that BK inactivation might impair insulin secretion through the alteration of ion-dependent membrane activities and mitochondrial functions in β-cells, as well as the impaired intra-islet vessel reactivity.
Collapse
|
14
|
Pays E. The function of apolipoproteins L (APOLs): relevance for kidney disease, neurotransmission disorders, cancer and viral infection. FEBS J 2021; 288:360-381. [PMID: 32530132 PMCID: PMC7891394 DOI: 10.1111/febs.15444] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
The discovery that apolipoprotein L1 (APOL1) is the trypanolytic factor of human serum raised interest about the function of APOLs, especially following the unexpected finding that in addition to their protective action against sleeping sickness, APOL1 C-terminal variants also cause kidney disease. Based on the analysis of the structure and trypanolytic activity of APOL1, it was proposed that APOLs could function as ion channels of intracellular membranes and be involved in mechanisms triggering programmed cell death. In this review, the recent finding that APOL1 and APOL3 inversely control the synthesis of phosphatidylinositol-4-phosphate (PI(4)P) by the Golgi PI(4)-kinase IIIB (PI4KB) is commented. APOL3 promotes Ca2+ -dependent activation of PI4KB, but due to their increased interaction with APOL3, APOL1 C-terminal variants can inactivate APOL3, leading to reduction of Golgi PI(4)P synthesis. The impact of APOLs on several pathological processes that depend on Golgi PI(4)P levels is discussed. I propose that through their effect on PI4KB activity, APOLs control not only actomyosin activities related to vesicular trafficking, but also the generation and elongation of autophagosomes induced by inflammation.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular ParasitologyIBMMUniversité Libre de BruxellesGosseliesBelgium
| |
Collapse
|
15
|
Uzureau S, Lecordier L, Uzureau P, Hennig D, Graversen JH, Homblé F, Mfutu PE, Oliveira Arcolino F, Ramos AR, La Rovere RM, Luyten T, Vermeersch M, Tebabi P, Dieu M, Cuypers B, Deborggraeve S, Rabant M, Legendre C, Moestrup SK, Levtchenko E, Bultynck G, Erneux C, Pérez-Morga D, Pays E. APOL1 C-Terminal Variants May Trigger Kidney Disease through Interference with APOL3 Control of Actomyosin. Cell Rep 2020; 30:3821-3836.e13. [PMID: 32187552 PMCID: PMC7090385 DOI: 10.1016/j.celrep.2020.02.064] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/17/2020] [Accepted: 02/14/2020] [Indexed: 11/18/2022] Open
Abstract
The C-terminal variants G1 and G2 of apolipoprotein L1 (APOL1) confer human resistance to the sleeping sickness parasite Trypanosoma rhodesiense, but they also increase the risk of kidney disease. APOL1 and APOL3 are death-promoting proteins that are partially associated with the endoplasmic reticulum and Golgi membranes. We report that in podocytes, either APOL1 C-terminal helix truncation (APOL1Δ) or APOL3 deletion (APOL3KO) induces similar actomyosin reorganization linked to the inhibition of phosphatidylinositol-4-phosphate [PI(4)P] synthesis by the Golgi PI(4)-kinase IIIB (PI4KB). Both APOL1 and APOL3 can form K+ channels, but only APOL3 exhibits Ca2+-dependent binding of high affinity to neuronal calcium sensor-1 (NCS-1), promoting NCS-1-PI4KB interaction and stimulating PI4KB activity. Alteration of the APOL1 C-terminal helix triggers APOL1 unfolding and increased binding to APOL3, affecting APOL3-NCS-1 interaction. Since the podocytes of G1 and G2 patients exhibit an APOL1Δ or APOL3KO-like phenotype, APOL1 C-terminal variants may induce kidney disease by preventing APOL3 from activating PI4KB, with consecutive actomyosin reorganization of podocytes.
Collapse
Affiliation(s)
- Sophie Uzureau
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Laurence Lecordier
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Pierrick Uzureau
- Laboratory of Experimental Medicine (ULB222), CHU Charleroi, Université Libre de Bruxelles, Montigny le Tilleul, Belgium
| | - Dorle Hennig
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Jonas H Graversen
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Fabrice Homblé
- Laboratory of Structure and Function of Biological Membranes, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Pepe Ekulu Mfutu
- Pediatric Nephrology, University Hospital Leuven, 3000 Leuven, Belgium
| | | | - Ana Raquel Ramos
- Institute of Interdisciplinary Research in Human and Molecular Biology, Campus Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Rita M La Rovere
- Laboratory of Molecular and Cellular Signalling, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Tomas Luyten
- Laboratory of Molecular and Cellular Signalling, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Patricia Tebabi
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Marc Dieu
- URBC-Narilis, University of Namur, 5000 Namur, Belgium
| | - Bart Cuypers
- Biomedical Sciences Department, Institute of Tropical Medicine, 2000 Antwerpen, Belgium; Adrem Data Lab, Department of Mathematics and Computer Science, University of Antwerp, 2000 Antwerpen, Belgium
| | - Stijn Deborggraeve
- Biomedical Sciences Department, Institute of Tropical Medicine, 2000 Antwerpen, Belgium
| | - Marion Rabant
- Adult Nephrology-Transplantation Department, Paris Hospitals and Paris Descartes University, 75006 Paris, France
| | - Christophe Legendre
- Pathology Department, Paris Hospitals and Paris Descartes University, 75006 Paris, France
| | - Søren K Moestrup
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense C, Denmark; Department of Biomedicine, University of Aarhus, 8000 Aarhus, Denmark
| | - Elena Levtchenko
- Pediatric Nephrology, University Hospital Leuven, 3000 Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signalling, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Christophe Erneux
- Institute of Interdisciplinary Research in Human and Molecular Biology, Campus Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - David Pérez-Morga
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium; Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium.
| |
Collapse
|
16
|
Zhang IX, Raghavan M, Satin LS. The Endoplasmic Reticulum and Calcium Homeostasis in Pancreatic Beta Cells. Endocrinology 2020; 161:bqz028. [PMID: 31796960 PMCID: PMC7028010 DOI: 10.1210/endocr/bqz028] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) mediates the first steps of protein assembly within the secretory pathway and is the site where protein folding and quality control are initiated. The storage and release of Ca2+ are critical physiological functions of the ER. Disrupted ER homeostasis activates the unfolded protein response (UPR), a pathway which attempts to restore cellular equilibrium in the face of ER stress. Unremitting ER stress, and insufficient compensation for it results in beta-cell apoptosis, a process that has been linked to both type 1 diabetes (T1D) and type 2 diabetes (T2D). Both types are characterized by progressive beta-cell failure and a loss of beta-cell mass, although the underlying causes are different. The reduction of mass occurs secondary to apoptosis in the case of T2D, while beta cells undergo autoimmune destruction in T1D. In this review, we examine recent findings that link the UPR pathway and ER Ca2+ to beta cell dysfunction. We also discuss how UPR activation in beta cells favors cell survival versus apoptosis and death, and how ER protein chaperones are involved in regulating ER Ca2+ levels. Abbreviations: BiP, Binding immunoglobulin Protein ER; endoplasmic reticulum; ERAD, ER-associated protein degradation; IFN, interferon; IL, interleukin; JNK, c-Jun N-terminal kinase; KHE, proton-K+ exchanger; MODY, maturity-onset diabetes of young; PERK, PRKR-like ER kinase; SERCA, Sarco/Endoplasmic Reticulum Ca2+-ATPases; T1D, type 1 diabetes; T2D, type 2 diabetes; TNF, tumor necrosis factor; UPR, unfolded protein response; WRS, Wolcott-Rallison syndrome.
Collapse
Affiliation(s)
- Irina X Zhang
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan, Ann Arbor, MI
| | - Malini Raghavan
- Department of Microbiology and Immunology Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Leslie S Satin
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
17
|
Jacobson DA, Shyng SL. Ion Channels of the Islets in Type 2 Diabetes. J Mol Biol 2019; 432:1326-1346. [PMID: 31473158 DOI: 10.1016/j.jmb.2019.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Ca2+ is an essential signal for pancreatic β-cell function. Ca2+ plays critical roles in numerous β-cell pathways such as insulin secretion, transcription, metabolism, endoplasmic reticulum function, and the stress response. Therefore, β-cell Ca2+ handling is tightly controlled. At the plasma membrane, Ca2+ entry primarily occurs through voltage-dependent Ca2+ channels. Voltage-dependent Ca2+ channel activity is dependent on orchestrated fluctuations in the plasma membrane potential or voltage, which are mediated via the activity of many ion channels. During the pathogenesis of type 2 diabetes the β-cell is exposed to stressful conditions, which result in alterations of Ca2+ handling. Some of the changes in β-cell Ca2+ handling that occur under stress result from perturbations in ion channel activity, expression or localization. Defective Ca2+ signaling in the diabetic β-cell alters function, limits insulin secretion and exacerbates hyperglycemia. In this review, we focus on the β-cell ion channels that control Ca2+ handling and how they impact β-cell dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7415 MRB4 (Langford), 2213 Garland Avenue, Nashville, TN 37232, USA.
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, L224, MRB 624, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
18
|
Leanza L, Checchetto V, Biasutto L, Rossa A, Costa R, Bachmann M, Zoratti M, Szabo I. Pharmacological modulation of mitochondrial ion channels. Br J Pharmacol 2019; 176:4258-4283. [PMID: 30440086 DOI: 10.1111/bph.14544] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mitochondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the difficulties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners. Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmacologically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
19
|
An S. The emerging role of extracellular Ca
2+
in osteo/odontogenic differentiation and the involvement of intracellular Ca
2+
signaling: From osteoblastic cells to dental pulp cells and odontoblasts. J Cell Physiol 2018; 234:2169-2193. [DOI: 10.1002/jcp.27068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and EndodonticsGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen UniversityGuangzhou China
- Guangdong Province Key Laboratory of StomatologySun Yat‐Sen UniversityGuangzhou China
| |
Collapse
|
20
|
Huang X, Borgström B, Stegmayr J, Abassi Y, Kruszyk M, Leffler H, Persson L, Albinsson S, Massoumi R, Scheblykin IG, Hegardt C, Oredsson S, Strand D. The Molecular Basis for Inhibition of Stemlike Cancer Cells by Salinomycin. ACS CENTRAL SCIENCE 2018; 4:760-767. [PMID: 29974072 PMCID: PMC6026786 DOI: 10.1021/acscentsci.8b00257] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 05/13/2023]
Abstract
Tumors are phenotypically heterogeneous and include subpopulations of cancer cells with stemlike properties. The natural product salinomycin, a K+-selective ionophore, was recently found to exert selectivity against such cancer stem cells. This selective effect is thought to be due to inhibition of the Wnt signaling pathway, but the mechanistic basis remains unclear. Here, we develop a functionally competent fluorescent conjugate of salinomycin to investigate the molecular mechanism of this compound. By subcellular imaging, we demonstrate a rapid cellular uptake of the conjugate and accumulation in the endoplasmic reticulum (ER). This localization is connected to induction of Ca2+ release from the ER into the cytosol. Depletion of Ca2+ from the ER induces the unfolded protein response as shown by global mRNA analysis and Western blot analysis of proteins in the pathway. In particular, salinomycin-induced ER Ca2+ depletion up-regulates C/EBP homologous protein (CHOP), which inhibits Wnt signaling by down-regulating β-catenin. The increased cytosolic Ca2+ also activates protein kinase C, which has been shown to inhibit Wnt signaling. These results reveal that salinomycin acts in the ER membrane of breast cancer cells to cause enhanced Ca2+ release into the cytosol, presumably by mediating a counter-flux of K+ ions. The clarified mechanistic picture highlights the importance of ion fluxes in the ER as an entry to inducing phenotypic effects and should facilitate rational development of cancer treatments.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Biology, Lund University, Sölvegatan 35C, 223 62 Lund, Sweden
| | - Björn Borgström
- Centre for Analysis and Synthesis, Lund University, Box 124, 221 00 Lund, Sweden
| | - John Stegmayr
- Department of Biology, Lund University, Sölvegatan 35C, 223 62 Lund, Sweden
- Department of Laboratory Medicine, Lund University, BMC C12, 221 84 Lund, Sweden
| | - Yasmin Abassi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Scheelevägen 8, 223 63 Lund, Sweden
| | - Monika Kruszyk
- Centre for Analysis and Synthesis, Lund University, Box 124, 221 00 Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, BMC C12, 221 84 Lund, Sweden
| | - Lo Persson
- Department of Experimental Medical Science, Lund University, BMC D12, 221 84 Lund, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical Science, Lund University, BMC D12, 221 84 Lund, Sweden
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Scheelevägen 8, 223 63 Lund, Sweden
| | - Ivan G Scheblykin
- Department of Chemical Physics and NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
| | - Cecilia Hegardt
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Medicon Village, 223 81 Lund, Sweden
| | - Stina Oredsson
- Department of Biology, Lund University, Sölvegatan 35C, 223 62 Lund, Sweden
| | - Daniel Strand
- Centre for Analysis and Synthesis, Lund University, Box 124, 221 00 Lund, Sweden
| |
Collapse
|
21
|
Wang Y, Tang M. Review of in vitro toxicological research of quantum dot and potentially involved mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:940-962. [PMID: 29996464 DOI: 10.1016/j.scitotenv.2017.12.334] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 06/08/2023]
Abstract
Quantum dots (QDs) are one of emerging engineering nanomaterials (NMs) with advantageous properties which can act as candidates for clinical imaging and diagnosis. Nevertheless, toxicological studies have proved that QDs for better or worse pose threats to diverse systems which are attributed to the release of metal ion and specific characteristics of nanoparticles (NPs), hampering the wide use of QDs to biomedical area. It has been postulated that mechanisms of toxicity evoked by QDs have implications in oxidative stress, reactive oxygen species (ROS), inflammation and release of metal ion. Meanwhile, DNA damage and disturbance of subcellular structures would occur during QDs treatment. This review is intended to conclude the cytotoxicity of QDs in multiple systems, as well as the potential mechanisms on the basis of recent literatures. Finally, toxicity-related factors are clarified, among which chirality seems to be a newly proposed influence factor that determines the destiny of cells in response to QDs. However, details of interaction between QDs and cells have not been well elucidated. Given that molecular mechanisms of QDs-induced toxicity are still not clearly elucidated, further research should be required for this meaningful topic.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
22
|
Wang Y, Tang M. Dysfunction of various organelles provokes multiple cell death after quantum dot exposure. Int J Nanomedicine 2018; 13:2729-2742. [PMID: 29765216 PMCID: PMC5944465 DOI: 10.2147/ijn.s157135] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Quantum dots (QDs) are different from the materials with the micrometer scale. Owing to the superiority in fluorescence and optical stability, QDs act as possible diagnostic and therapeutic tools for application in biomedical field. However, potential threats of QDs to human health hamper their wide utilization in life sciences. It has been reported that oxidative stress and inflammation are involved in toxicity caused by QDs. Recently, accumulating research unveiled that disturbance of subcellular structures plays a magnificent role in cytotoxicity of QDs. Diverse organelles would collapse during QD treatment, including DNA damage, endoplasmic reticulum stress, mitochondrial dysfunction and lysosomal rupture. Different forms of cellular end points on the basis of recent research have been concluded. Apart from apoptosis and autophagy, a new form of cell death termed pyroptosis, which is finely orchestrated by inflammasome complex and gasdermin family with secretion of interleukin-1 beta and interleukin-18, was also summarized. Finally, several potential cellular signaling pathways were also listed. Activation of Toll-like receptor-4/myeloid differentiation primary response 88, nuclear factor kappa-light-chain-enhancer of activated B cells and NACHT, LRR and PYD domains-containing protein 3 inflammasome pathways by QD exposure is associated with regulation of cellular processes. With the development of QDs, toxicity evaluation is far behind its development, where specific mechanisms of toxic effects are not clearly defined. Further studies concerned with this promising area are urgently required.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
23
|
Crystal structures of the TRIC trimeric intracellular cation channel orthologues. Cell Res 2017; 26:1288-1301. [PMID: 27909292 PMCID: PMC5143425 DOI: 10.1038/cr.2016.140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 10/23/2016] [Accepted: 10/27/2016] [Indexed: 12/30/2022] Open
Abstract
Ca2+ release from the sarcoplasmic reticulum (SR) and endoplasmic reticulum (ER) is crucial for muscle contraction, cell growth, apoptosis, learning and memory. The trimeric intracellular cation (TRIC) channels were recently identified as cation channels balancing the SR and ER membrane potentials, and are implicated in Ca2+ signaling and homeostasis. Here we present the crystal structures of prokaryotic TRIC channels in the closed state and structure-based functional analyses of prokaryotic and eukaryotic TRIC channels. Each trimer subunit consists of seven transmembrane (TM) helices with two inverted repeated regions. The electrophysiological, biochemical and biophysical analyses revealed that TRIC channels possess an ion-conducting pore within each subunit, and that the trimer formation contributes to the stability of the protein. The symmetrically related TM2 and TM5 helices are kinked at the conserved glycine clusters, and these kinks are important for the channel activity. Furthermore, the kinks of the TM2 and TM5 helices generate lateral fenestrations at each subunit interface. Unexpectedly, these lateral fenestrations are occupied with lipid molecules. This study provides the structural and functional framework for the molecular mechanism of this ion channel superfamily.
Collapse
|
24
|
Vierra NC, Dadi PK, Milian SC, Dickerson MT, Jordan KL, Gilon P, Jacobson DA. TALK-1 channels control β cell endoplasmic reticulum Ca 2+ homeostasis. Sci Signal 2017; 10:eaan2883. [PMID: 28928238 PMCID: PMC5672804 DOI: 10.1126/scisignal.aan2883] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ca2+ handling by the endoplasmic reticulum (ER) serves critical roles in controlling pancreatic β cell function and becomes perturbed during the pathogenesis of diabetes. ER Ca2+ homeostasis is determined by ion movements across the ER membrane, including K+ flux through K+ channels. We demonstrated that K+ flux through ER-localized TALK-1 channels facilitated Ca2+ release from the ER in mouse and human β cells. We found that β cells from mice lacking TALK-1 exhibited reduced basal cytosolic Ca2+ and increased ER Ca2+ concentrations, suggesting reduced ER Ca2+ leak. These changes in Ca2+ homeostasis were presumably due to TALK-1-mediated ER K+ flux, because we recorded K+ currents mediated by functional TALK-1 channels on the nuclear membrane, which is continuous with the ER. Moreover, overexpression of K+-impermeable TALK-1 channels in HEK293 cells did not reduce ER Ca2+ stores. Reduced ER Ca2+ content in β cells is associated with ER stress and islet dysfunction in diabetes, and islets from TALK-1-deficient mice fed a high-fat diet showed reduced signs of ER stress, suggesting that TALK-1 activity exacerbated ER stress. Our data establish TALK-1 channels as key regulators of β cell ER Ca2+ and suggest that TALK-1 may be a therapeutic target to reduce ER Ca2+ handling defects in β cells during the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Nicholas C Vierra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sarah C Milian
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Kelli L Jordan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Patrick Gilon
- Pôle d'endocrinologie, diabète et nutrition, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels 1200, Belgium
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
25
|
Bhat S, Hasenhuetl PS, Kasture A, El-Kasaby A, Baumann MH, Blough BE, Sucic S, Sandtner W, Freissmuth M. Conformational state interactions provide clues to the pharmacochaperone potential of serotonin transporter partial substrates. J Biol Chem 2017; 292:16773-16786. [PMID: 28842491 PMCID: PMC5633137 DOI: 10.1074/jbc.m117.794081] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/25/2017] [Indexed: 12/15/2022] Open
Abstract
Point mutations in SLC6 transporters cause misfolding, which can be remedied by pharmacochaperones. The serotonin transporter (SERT/SLC6A4) has a rich pharmacology including inhibitors, releasers (amphetamines, which promote the exchange mode), and more recently, discovered partial substrates. We hypothesized that partial substrates trapped the transporter in one or several states of the transport cycle. This conformational trapping may also be conducive to folding. We selected naphthylpropane-2-amines of the phenethylamine library (PAL) including the partial substrate PAL1045 and its congeners PAL287 and PAL1046. We analyzed their impact on the transport cycle of SERT by biochemical approaches and by electrophysiological recordings; substrate-induced peak currents and steady-state currents monitored the translocation of substrate and co-substrate Na+ across the lipid bilayer and the transport cycle, respectively. These experiments showed that PAL1045 and its congeners bound with different affinities (ranging from nm to μm) to various conformational intermediates of SERT during the transport cycle. Consistent with the working hypothesis, PAL1045 was the most efficacious compound in restoring surface expression and transport activity to the folding-deficient mutant SERT-601PG602-AA. These experiments provide a proof-of-principle for a rational search for pharmacochaperones, which may be useful to restore function to clinically relevant folding-deficient transporter mutants.
Collapse
Affiliation(s)
- Shreyas Bhat
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Peter S Hasenhuetl
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ameya Kasture
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael H Baumann
- the Translational Pharmacology Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224, and
| | - Bruce E Blough
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709-1294
| | - Sonja Sucic
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Walter Sandtner
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria,
| |
Collapse
|
26
|
Lim SC, Han SI. MDL-12330A potentiates TRAIL-induced apoptosis in gastric cancer cells through CHOP-mediated DR5 upregulation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:397-405. [PMID: 28706453 PMCID: PMC5507778 DOI: 10.4196/kjpp.2017.21.4.397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/20/2017] [Accepted: 04/04/2017] [Indexed: 02/07/2023]
Abstract
MDL-12330A is a widely used adenylyl cyclase (AC) inhibitor that blocks AC/cAMP signaling. In this study, we demonstrated a novel antitumor activity of this drug in gastric carcinoma (GC) cell lines. In these GC cells, MDL-12330A reduced cell viability and induced cell death in a concentration-dependent manner. At a moderate concentration (~20 µM), MDL-12330A mainly induced apoptotic death whereas at concentrations greater than 20 µM, it increased non-apoptotic cell death. The induction of apoptosis was at least partially regulated by CHOP-mediated DR5 upregulation, as detected by immunoblotting and gene interference assays. More importantly, low concentrations of MDL-12330A effectively enhanced recombinant human tumor necrosis factor (TNF)-related apoptosis-inducing ligand (rhTRAIL)-induced apoptosis and clonogenicity in these gastric cancer cells. This study demonstrates a possible role of MDL-12330A as a potential sensitizer to TRAIL, and suggests a novel therapeutic strategy targeting gastric cancer cells.
Collapse
Affiliation(s)
- Sung-Chul Lim
- Department of Pathology, College of Medicine, Chosun University, Gwangju 61501, Korea
| | - Song Iy Han
- Division of Premedical Science, College of Medicine, Chosun University, Gwangju 61501, Korea
| |
Collapse
|
27
|
Chen Y, Ma J, Miller AJ, Luo B, Wang M, Zhu Z, Ouwerkerk PBF. OsCHX14 is Involved in the K+ Homeostasis in Rice (Oryza sativa) Flowers. PLANT & CELL PHYSIOLOGY 2016; 57:1530-1543. [PMID: 27903806 DOI: 10.1093/pcp/pcw088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/26/2016] [Indexed: 05/22/2023]
Abstract
Previously we showed in the osjar1 mutants that the lodicule senescence which controls the closing of rice flowers was delayed. This resulted in florets staying open longer when compared with the wild type. The gene OsJAR1 is silenced in osjar1 mutants and is a key member of the jasmonic acid (JA) signaling pathway. We found that K concentrations in lodicules and flowers of osjar1-2 were significantly elevated compared with the wild type, indicating that K+ homeostasis may play a role in regulating the closure of rice flowers. The cation/H+ exchanger (CHX) family from rice was screened for potential K+ transporters involved as many members of this family in Arabidopsis were exclusively or preferentially expressed in flowers. Expression profiling confirmed that among 17 CHX genes in rice, OsCHX14 was the only member that showed an expression polymorphism, not only in osjar1 mutants but also in RNAi (RNA interference) lines of OsCOI1, another key member of the JA signaling pathway. This suggests that the expression of OsCHX14 is regulated by the JA signaling pathway. Green fluorescent protein (GFP)-tagged OsCHX14 protein was preferentially localized to the endoplasmic reticulum. Promoter-β-glucuronidase (GUS) analysis of transgenic rice revealed that OsCHX14 is mainly expressed in lodicules and the region close by throughout the flowering process. Characterization in yeast and Xenopus laevis oocytes verified that OsCHX14 is able to transport K+, Rb+ and Cs+ in vivo. Our data suggest that OsCHX14 may play an important role in K+ homeostasis during flowering in rice.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
- Department of Sustainable Soils and Grassland Systems, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Jingkun Ma
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Anthony J Miller
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Bingbing Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 219500, China
| | - Mei Wang
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
- TNO Quality of Life, Zernikedreef 9, 2333 CK Leiden, PO Box 2215, 2301 CE Leiden, The Netherlands
| | - Zhen Zhu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| | - Pieter B F Ouwerkerk
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|
28
|
Checchetto V, Teardo E, Carraretto L, Leanza L, Szabo I. Physiology of intracellular potassium channels: A unifying role as mediators of counterion fluxes? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1258-1266. [PMID: 26970213 DOI: 10.1016/j.bbabio.2016.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/28/2022]
Abstract
Plasma membrane potassium channels importantly contribute to maintain ion homeostasis across the cell membrane. The view is emerging that also those residing in intracellular membranes play pivotal roles for the coordination of correct cell function. In this review we critically discuss our current understanding of the nature and physiological tasks of potassium channels in organelle membranes in both animal and plant cells, with a special emphasis on their function in the regulation of photosynthesis and mitochondrial respiration. In addition, the emerging role of potassium channels in the nuclear membranes in regulating transcription will be discussed. The possible functions of endoplasmic reticulum-, lysosome- and plant vacuolar membrane-located channels are also referred to. Altogether, experimental evidence obtained with distinct channels in different membrane systems points to a possible unifying function of most intracellular potassium channels in counterbalancing the movement of other ions including protons and calcium and modulating membrane potential, thereby fine-tuning crucial cellular processes. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-7, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Vanessa Checchetto
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy; Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, Padova 35131 Italy
| | - Enrico Teardo
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy
| | - Luca Carraretto
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy; CNR Institute of Neuroscience, University of Padova, Viale G. Colombo 3, Padova 35131, Italy.
| |
Collapse
|
29
|
Richter M, Vidovic N, Honrath B, Mahavadi P, Dodel R, Dolga AM, Culmsee C. Activation of SK2 channels preserves ER Ca²⁺ homeostasis and protects against ER stress-induced cell death. Cell Death Differ 2015; 23:814-27. [PMID: 26586570 DOI: 10.1038/cdd.2015.146] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/03/2015] [Accepted: 09/21/2015] [Indexed: 01/24/2023] Open
Abstract
Alteration of endoplasmic reticulum (ER) Ca(2+) homeostasis leads to excessive cytosolic Ca(2+) accumulation and delayed neuronal cell death in acute and chronic neurodegenerative disorders. While our recent studies established a protective role for SK channels against excessive intracellular Ca(2+) accumulation, their functional role in the ER has not been elucidated yet. We show here that SK2 channels are present in ER membranes of neuronal HT-22 cells, and that positive pharmacological modulation of SK2 channels with CyPPA protects against cell death induced by the ER stressors brefeldin A and tunicamycin. Calcium imaging of HT-22 neurons revealed that elevated cytosolic Ca(2+) levels and decreased ER Ca(2+) load during sustained ER stress could be largely prevented by SK2 channel activation. Interestingly, SK2 channel activation reduced the amount of the unfolded protein response transcription factor ATF4, but further enhanced the induction of CHOP. Using siRNA approaches we confirmed a detrimental role for ATF4 in ER stress, whereas CHOP regulation was dispensable for both, brefeldin A toxicity and CyPPA-mediated protection. Cell death induced by blocking Ca(2+) influx into the ER with the SERCA inhibitor thapsigargin was not prevented by CyPPA. Blocking the K(+) efflux via K(+)/H(+) exchangers with quinine inhibited CyPPA-mediated neuroprotection, suggesting an essential role of proton uptake and K(+) release in the SK channel-mediated neuroprotection. Our data demonstrate that ER SK2 channel activation preserves ER Ca(2+) uptake and retention which determines cell survival in conditions where sustained ER stress contributes to progressive neuronal death.
Collapse
Affiliation(s)
- M Richter
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany.,Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - N Vidovic
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - B Honrath
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - P Mahavadi
- Department of Internal Medicine, Justus-Liebig-University, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - R Dodel
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - A M Dolga
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany.,Faculty of Mathematics and Natural Sciences, Molecular Pharmacology - Groningen Research Institute of Pharmacy, Groningen, The Netherlands
| | - C Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
30
|
Xu H, Martinoia E, Szabo I. Organellar channels and transporters. Cell Calcium 2015; 58:1-10. [PMID: 25795199 DOI: 10.1016/j.ceca.2015.02.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 12/22/2022]
Abstract
Decades of intensive research have led to the discovery of most plasma membrane ion channels and transporters and the characterization of their physiological functions. In contrast, although over 80% of transport processes occur inside the cells, the ion flux mechanisms across intracellular membranes (the endoplasmic reticulum, Golgi apparatus, endosomes, lysosomes, mitochondria, chloroplasts, and vacuoles) are difficult to investigate and remain poorly understood. Recent technical advances in super-resolution microscopy, organellar electrophysiology, organelle-targeted fluorescence imaging, and organelle proteomics have pushed a large step forward in the research of intracellular ion transport. Many new organellar channels are molecularly identified and electrophysiologically characterized. Additionally, molecular identification of many of these ion channels/transporters has made it possible to study their physiological functions by genetic and pharmacological means. For example, organellar channels have been shown to regulate important cellular processes such as programmed cell death and photosynthesis, and are involved in many different pathologies. This special issue (SI) on organellar channels and transporters aims to provide a forum to discuss the recent advances and to define the standard and open questions in this exciting and rapidly developing field. Along this line, a new Gordon Research Conference dedicated to the multidisciplinary study of intracellular membrane transport proteins will be launched this coming summer.
Collapse
Affiliation(s)
- Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University Avenue, Ann Arbor, MI 48109-1048, USA.
| | - Enrico Martinoia
- Institute of Plant Biology, University of Zürich, Zollikerstr. 107, CH-8008 Zürich, Switzerland.
| | - Ildiko Szabo
- Department of Biology, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy; CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|