1
|
Mihoc T, Latcu SC, Secasan CC, Dema V, Cumpanas AA, Selaru M, Pirvu CA, Valceanu AP, Zara F, Dumitru CS, Novacescu D, Pantea S. Pancreatic Morphology, Immunology, and the Pathogenesis of Acute Pancreatitis. Biomedicines 2024; 12:2627. [PMID: 39595191 PMCID: PMC11591934 DOI: 10.3390/biomedicines12112627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Acute pancreatitis is a complex inflammatory disorder with significant morbidity and mortality. This review aims to integrate the current knowledge of pancreatic morphology and immunology with the pathogenesis of acute pancreatitis, providing a comprehensive understanding of this critical condition. We conducted an extensive literature review, synthesizing data from recent studies and authoritative sources on pancreatic anatomy, histology, immunology, and the pathophysiology of acute pancreatitis. We also incorporated epidemiological data, clinical features, diagnostic criteria, and prognostic factors. The pancreas exhibits a complex morphology with intricate interactions between its exocrine and endocrine components. Its unique immunological landscape plays a crucial role in maintaining homeostasis and orchestrating responses to pathological conditions. In acute pancreatitis, the disruption of intracellular calcium signaling leads to premature enzyme activation, triggering a cascade of events including mitochondrial dysfunction, ATP depletion, and the release of proinflammatory mediators. This process can escalate from localized inflammation to systemic complications. The interplay between pancreatic morphology, immune responses, and pathophysiological mechanisms contributes to the varied clinical presentations and outcomes observed in acute pancreatitis. Understanding the intricate relationships between pancreatic morphology, immunology, and the pathogenesis of acute pancreatitis is crucial for developing more effective diagnostic and therapeutic strategies. This integrated approach provides new insights into the complex nature of acute pancreatitis and may guide future research directions in pancreatic disorders.
Collapse
Affiliation(s)
- Tudorel Mihoc
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (T.M.); (V.D.)
- Department X, General Surgery II, Discipline of Surgical Emergencies, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.S.); (C.A.P.); (A.P.V.); (S.P.)
| | - Silviu Constantin Latcu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (T.M.); (V.D.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (C.-C.S.); (A.A.C.)
| | - Cosmin-Ciprian Secasan
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (C.-C.S.); (A.A.C.)
| | - Vlad Dema
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (T.M.); (V.D.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (C.-C.S.); (A.A.C.)
| | - Alin Adrian Cumpanas
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (C.-C.S.); (A.A.C.)
| | - Mircea Selaru
- Department X, General Surgery II, Discipline of Surgical Emergencies, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.S.); (C.A.P.); (A.P.V.); (S.P.)
| | - Catalin Alexandru Pirvu
- Department X, General Surgery II, Discipline of Surgical Emergencies, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.S.); (C.A.P.); (A.P.V.); (S.P.)
| | - Andrei Paul Valceanu
- Department X, General Surgery II, Discipline of Surgical Emergencies, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.S.); (C.A.P.); (A.P.V.); (S.P.)
| | - Flavia Zara
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.Z.); (C.-S.D.); (D.N.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Cristina-Stefania Dumitru
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.Z.); (C.-S.D.); (D.N.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Dorin Novacescu
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.Z.); (C.-S.D.); (D.N.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Stelian Pantea
- Department X, General Surgery II, Discipline of Surgical Emergencies, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.S.); (C.A.P.); (A.P.V.); (S.P.)
| |
Collapse
|
2
|
Wang H, Gao J, Wen L, Huang K, Liu H, Zeng L, Zeng Z, Liu Y, Mo Z. Ion channels in acinar cells in acute pancreatitis: crosstalk of calcium, iron, and copper signals. Front Immunol 2024; 15:1444272. [PMID: 39606246 PMCID: PMC11599217 DOI: 10.3389/fimmu.2024.1444272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
The initial stages of acute pancreatitis (AP) are characterized by a significant event - acinar ductal metaplasia (ADM). This process is a crucial feature of both acute and chronic pancreatitis, serving as the first step in the development of pancreatic cancer. Ion channels are integral transmembrane proteins that play a pivotal role in numerous biological processes by modulating ion flux. In many diseases, the expression and activity of ion channels are often dysregulated. Metal ions, including calcium ions (Ca2+), ferrous ions (Fe2+), and Copper ions (Cu2+), assume a distinctive role in cellular metabolism. These ions possess specific biological properties relevant to cellular function. However, the interactions among these ions exacerbate the imbalance within the intracellular environment, resulting in cellular damage and influencing the progression of AP. A more in-depth investigation into the mechanisms by which these ions interact with acinar cells is essential for elucidating AP's pathogenesis and identifying novel therapeutic strategies. Currently, treatment for AP primarily focuses on pain relief, complications prevention, and prognosis improvement. There are limited specific treatments targeting acinous cell dedifferentiation or ion imbalance. This study aims to investigate potential therapeutic strategies by examining ion crosstalk within acinar cells in the context of acute pancreatitis.
Collapse
Affiliation(s)
- Hanli Wang
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Jianhua Gao
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Lingling Wen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kejun Huang
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Huixian Liu
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Linsheng Zeng
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Zhongyi Zeng
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Yuxiang Liu
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Zhizhun Mo
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Guo L. F-ATP synthase inhibitory factor 1 and mitochondria-organelle interactions: New insight and implications. Pharmacol Res 2024; 208:107393. [PMID: 39233058 DOI: 10.1016/j.phrs.2024.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitochondria are metabolic hub, and act as primary sites for reactive oxygen species (ROS) and metabolites generation. Mitochondrial Ca2+ uptake contributes to Ca2+ storage. Mitochondria-organelle interactions are important for cellular metabolic adaptation, biosynthesis, redox balance, cell fate. Organelle communications are mediated by Ca2+/ROS signals, vesicle transport and membrane contact sites. The permeability transition pore (PTP) is an unselective channel that provides a release pathway for Ca2+/ROS, mtDNA and metabolites. F-ATP synthase inhibitory factor 1 (IF1) participates in regulation of PTP opening and is required for the translocation of transcriptional factors c-Myc/PGC1α to mitochondria to stimulate metabolic switch. IF1, a mitochondrial specific protein, has been suggested to regulate other organelles including nucleus, endoplasmic reticulum and lysosomes. IF1 may be able to mediate mitochondria-organelle interactions and cellular physiology through regulation of PTP activity.
Collapse
Affiliation(s)
- Lishu Guo
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
4
|
Zhu L, Xu Y, Lei J. Molecular mechanism and potential role of mitophagy in acute pancreatitis. Mol Med 2024; 30:136. [PMID: 39227768 PMCID: PMC11373529 DOI: 10.1186/s10020-024-00903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Acute pancreatitis (AP) is a multifaceted inflammatory disorder stemming from the aberrant activation of trypsin within the pancreas. Despite the contribution of various factors to the pathogenesis of AP, such as trypsin activation, dysregulated increases in cytosolic Ca2+ levels, inflammatory cascade activation, and mitochondrial dysfunction, the precise molecular mechanisms underlying the disease are still not fully understood. Mitophagy, a cellular process that preserves mitochondrial homeostasis under stress, has emerged as a pivotal player in the context of AP. Research suggests that augmenting mitophagy can mitigate pancreatic injury by clearing away malfunctioning mitochondria. Elucidating the role of mitophagy in AP may pave the way for novel therapeutic strategies. This review article aims to synthesize the current research findings on mitophagy in AP and underscore its significance in the clinical management of the disorder.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yunfei Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- Postdoctoral Research Station of Biology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Jian Lei
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
5
|
Zhou Y, Huang X, Jin Y, Qiu M, Ambe PC, Basharat Z, Hong W. The role of mitochondrial damage-associated molecular patterns in acute pancreatitis. Biomed Pharmacother 2024; 175:116690. [PMID: 38718519 DOI: 10.1016/j.biopha.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024] Open
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal tract diseases with significant morbidity and mortality. Current treatments remain unspecific and supportive due to the severity and clinical course of AP, which can fluctuate rapidly and unpredictably. Mitochondria, cellular power plant to produce energy, are involved in a variety of physiological or pathological activities in human body. There is a growing evidence indicating that mitochondria damage-associated molecular patterns (mtDAMPs) play an important role in pathogenesis and progression of AP. With the pro-inflammatory properties, released mtDAMPs may damage pancreatic cells by binding with receptors, activating downstream molecules and releasing inflammatory factors. This review focuses on the possible interaction between AP and mtDAMPs, which include cytochrome c (Cyt c), mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), cardiolipin (CL), adenosine triphosphate (ATP) and succinate, with focus on experimental research and potential therapeutic targets in clinical practice. Preventing or diminishing the release of mtDAMPs or targeting the mtDAMPs receptors might have a role in AP progression.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyi Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinglu Jin
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Peter C Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20-24, Bensberg 51429, Germany
| | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
Gu X, Huang Z, Ying X, Liu X, Ruan K, Hua S, Zhang X, Jin H, Liu Q, Yang J. Ferroptosis exacerbates hyperlipidemic acute pancreatitis by enhancing lipid peroxidation and modulating the immune microenvironment. Cell Death Discov 2024; 10:242. [PMID: 38773098 PMCID: PMC11109150 DOI: 10.1038/s41420-024-02007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024] Open
Abstract
Abnormal activation of ferroptosis worsens the severity of acute pancreatitis and intensifies the inflammatory response and organ damage, but the detailed underlying mechanisms are unknown. Compared with other types of pancreatitis, hyperlipidemic acute pancreatitis (HLAP) is more likely to progress to necrotizing pancreatitis, possibly due to peripancreatic lipolysis and the production of unsaturated fatty acids. Moreover, high levels of unsaturated fatty acids undergo lipid peroxidation and trigger ferroptosis to further exacerbate inflammation and worsen HLAP. This paper focuses on the malignant development of hyperlipidemic pancreatitis with severe disease combined with the core features of ferroptosis to explore and describe the mechanism of this phenomenon and shows that the activation of lipid peroxidation and the aberrant intracellular release of many inflammatory mediators during ferroptosis are the key processes that regulate the degree of disease development in patients with HLAP. Inhibiting the activation of ferroptosis effectively reduces the intensity of the inflammatory response, thus reducing organ damage in patients and preventing the risk of HLAP exacerbation. Additionally, this paper summarizes the key targets and potential therapeutic agents of ferroptosis associated with HLAP deterioration to provide new ideas for future clinical applications.
Collapse
Affiliation(s)
- Xinyi Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhicheng Huang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuzhiye Ying
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaodie Liu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kaiyi Ruan
- Zhejiang University School of Medicine, Hangzhou, China
| | - Sijia Hua
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Hangzhou, China
| | - Hangbin Jin
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Hangzhou, China
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China.
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Hangzhou, China.
| | - Jianfeng Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China.
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Hangzhou, China.
| |
Collapse
|
7
|
Orján EM, Kormányos ES, Fűr GM, Dombi Á, Bálint ER, Balla Z, Balog BA, Dágó Á, Totonji A, Bátai ZI, Jurányi EP, Ditrói T, Al-Omari A, Pozsgai G, Kormos V, Nagy P, Pintér E, Rakonczay Z, Kiss L. The anti-inflammatory effect of dimethyl trisulfide in experimental acute pancreatitis. Sci Rep 2023; 13:16813. [PMID: 37798377 PMCID: PMC10556037 DOI: 10.1038/s41598-023-43692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Various organosulfur compounds, such as dimethyl trisulfide (DMTS), display anti-inflammatory properties. We aimed to examine the effects of DMTS on acute pancreatitis (AP) and its mechanism of action in both in vivo and in vitro studies. AP was induced in FVB/n mice or Wistar rats by caerulein, ethanol-palmitoleic acid, or L-ornithine-HCl. DMTS treatments were administered subcutaneously. AP severity was assessed by pancreatic histological scoring, pancreatic water content, and myeloperoxidase activity measurements. The behaviour of animals was followed. Pancreatic heat shock protein 72 (HSP72) expression, sulfide, and protein persulfidation were measured. In vitro acinar viability, intracellular Ca2+ concentration, and reactive oxygen species production were determined. DMTS dose-dependently decreased the severity of AP. It declined the pancreatic infiltration of leukocytes and cellular damage in mice. DMTS upregulated the HSP72 expression during AP and elevated serum sulfide and low molecular weight persulfide levels. DMTS exhibited cytoprotection against hydrogen peroxide and AP-inducing agents. It has antioxidant properties and modulates physiological but not pathophysiological Ca2+ signalling. Generally, DMTS ameliorated AP severity and protected pancreatic acinar cells. Our findings indicate that DMTS is a sulfur donor with anti-inflammatory and antioxidant effects, and organosulfur compounds require further investigation into this potentially lethal disease.
Collapse
Affiliation(s)
- Erik Márk Orján
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | - Eszter Sára Kormányos
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | | | - Ágnes Dombi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Emese Réka Bálint
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | - Zsolt Balla
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | - Beáta Adél Balog
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | - Ágnes Dágó
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | - Ahmad Totonji
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | - Zoárd István Bátai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Eszter Petra Jurányi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Doctoral School of Molecular Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Ditrói
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Ammar Al-Omari
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Pozsgai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Department of Anatomy and Histology, ELKH Laboratory of Redox Biology, University of Veterinary Medicine, Budapest, Hungary
- Chemistry Institute, University of Debrecen, Debrecen, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary.
| | - Lóránd Kiss
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary.
| |
Collapse
|
8
|
Li S, Gao L, Gong H, Cao L, Zhou J, Ke L, Liu Y, Tong Z, Li W. Recurrence rates and risk factors for recurrence after first episode of acute pancreatitis: A systematic review and meta-analysis. Eur J Intern Med 2023; 116:72-81. [PMID: 37330318 DOI: 10.1016/j.ejim.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND There are a certain number of acute pancreatitis (AP) patients who may suffer from multiple episodes and develop recurrent acute pancreatitis (RAP), but recurrence rates and associated risk factors for RAP vary significantly in the published literature. METHODS We searched PubMed, Web of Science, Scopus, and Embase databases to identify all publications reporting AP recurrence until October 20th, 2022. Meta-analysis and meta-regression were performed to calculate the pooled estimates using the random-effects model. RESULTS A total of 36 studies met the inclusion criteria and all were used in pooled analyses. The overall rate of recurrence after first-time AP was 21% (95% CI, 18%- 24%), and pooled rates in biliary, alcoholic, idiopathic, and hypertriglyceridemia etiology patients were 12%, 30%, 25%, and 30%, respectively. After managing underlying causes post-discharge, the recurrence rate decreased (14% versus 4% for biliary, 30% versus 6% for alcoholic, and 30% versus 22% for hypertriglyceridemia AP). An increased risk of recurrence was reported in patients with a smoking history (odds ratio [OR] = 1.99), alcoholic etiology (OR = 1.72), male sex (hazard ratio [HR] = 1.63), and local complications (HR = 3.40), while biliary etiology was associated with lower recurrence rates (OR = 0.38). CONCLUSION More than one-fifth of AP patients experienced recurrence after discharge, with the highest recurrence rate in alcoholic and hypertriglyceridemia etiologies, and managing underlying causes post-discharge was related to decreased incidence. In addition, smoking history, alcoholic etiology, male gender, and presence of local complications were independent risks for the recurrence.
Collapse
Affiliation(s)
- Shuai Li
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 Zhongshan East Road, Nanjing, Jiangsu 210002, China
| | - Lin Gao
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 Zhongshan East Road, Nanjing, Jiangsu 210002, China
| | - Haowen Gong
- Department of Medical Statistics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Longxiang Cao
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 Zhongshan East Road, Nanjing, Jiangsu 210002, China
| | - Jing Zhou
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 Zhongshan East Road, Nanjing, Jiangsu 210002, China; Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Jinling Hospital, Medical School of Nanjing Medical University, No. 305 Zhongshan East Road, Nanjing, Jiangsu 210002, China.
| | - Lu Ke
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 Zhongshan East Road, Nanjing, Jiangsu 210002, China; Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Jinling Hospital, Medical School of Nanjing Medical University, No. 305 Zhongshan East Road, Nanjing, Jiangsu 210002, China; National Institute of Healthcare Data Science, Nanjing University, Nanjing, Jiangsu 210010, China
| | - Yuxiu Liu
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 Zhongshan East Road, Nanjing, Jiangsu 210002, China; Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Jinling Hospital, Medical School of Nanjing Medical University, No. 305 Zhongshan East Road, Nanjing, Jiangsu 210002, China; Department of Medical Statistics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Zhihui Tong
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 Zhongshan East Road, Nanjing, Jiangsu 210002, China; Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Jinling Hospital, Medical School of Nanjing Medical University, No. 305 Zhongshan East Road, Nanjing, Jiangsu 210002, China
| | - Weiqin Li
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 Zhongshan East Road, Nanjing, Jiangsu 210002, China; Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Jinling Hospital, Medical School of Nanjing Medical University, No. 305 Zhongshan East Road, Nanjing, Jiangsu 210002, China; National Institute of Healthcare Data Science, Nanjing University, Nanjing, Jiangsu 210010, China.
| |
Collapse
|
9
|
β-carotene alleviates LPS-induced inflammation through regulating STIM1/ORAI1 expression in bovine mammary epithelial cells. Int Immunopharmacol 2022; 113:109377. [DOI: 10.1016/j.intimp.2022.109377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
10
|
OGG1 Inhibition Reduces Acinar Cell Injury in a Mouse Model of Acute Pancreatitis. Biomedicines 2022; 10:biomedicines10102543. [PMID: 36289805 PMCID: PMC9599718 DOI: 10.3390/biomedicines10102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Acute pancreatitis (AP) is a potentially life-threatening gastrointestinal disease with a complex pathology including oxidative stress. Oxidative stress triggers oxidative DNA lesions such as formation of 7,8-dihydro-8-oxo-2′-oxoguanine (8-oxoG) and also causes DNA strand breaks. DNA breaks can activate the nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) which contributes to AP pathology. 8-oxoG is recognized by 8-oxoG glycosylase 1 (OGG1) resulting in the removal of 8-oxoG from DNA as an initial step of base excision repair. Since OGG1 also possesses a DNA nicking activity, OGG1 activation may also trigger PARP1 activation. In the present study we investigated the role played by OGG1 in AP. We found that the OGG1 inhibitor compound TH5487 reduced edema formation, inflammatory cell migration and necrosis in a cerulein-induced AP model in mice. Moreover, TH5487 caused 8-oxoG accumulation and reduced tissue poly(ADP-ribose) levels. Consistent with the indirect PARP inhibitory effect, TH5487 shifted necrotic cell death (LDH release and Sytox green uptake) towards apoptosis (caspase activity) in isolated pancreatic acinar cells. In the in vivo AP model, TH5487 treatment suppressed the expression of various cytokine and chemokine mRNAs such as those of TNF, IL-1β, IL1ra, IL6, IL16, IL23, CSF, CCL2, CCL4, CCL12, IL10 and TREM as measured with a cytokine array and verified by RT-qPCR. As a potential mechanism underlying the transcriptional inhibitory effect of the OGG1 inhibitor we showed that while 8-oxoG accumulation in the DNA facilitates NF-κB binding to its consensus sequence, when OGG1 is inhibited, target site occupancy of NF-κB is impaired. In summary, OGG1 inhibition provides protection from tissue injury in AP and these effects are likely due to interference with the PARP1 and NF-κB activation pathways.
Collapse
|
11
|
Molecular mechanisms of reactive oxygen species in regulated cell deaths: Impact of ferroptosis in cancer therapy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Rodríguez-Castelán J, Delgado-González E, Varela-Floriano V, Anguiano B, Aceves C. Molecular Iodine Supplement Prevents Streptozotocin-Induced Pancreatic Alterations in Mice. Nutrients 2022; 14:nu14030715. [PMID: 35277074 PMCID: PMC8840345 DOI: 10.3390/nu14030715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatitis has been implicated in the development and progression of type 2 diabetes and cancer. The pancreas uptakes molecular iodine (I2), which has anti-inflammatory and antioxidant effects. The present work analyzes whether oral I2 supplementation prevents the pancreatic alterations promoted by low doses of streptozotocin (STZ). CD1 mice (12 weeks old) were divided into the following groups: control; STZ (20 mg/kg/day, i.p. for five days); I2 (0.2 mg/Kg/day in drinking water for 15 days); and combined (STZ + I2). Inflammation (Masson’s trichrome and periodic acid–Schiff stain), hyperglycemia, decreased β-cells and increased α-cells in pancreas were observed in male and female animals with STZ. These animals also showed pancreatic increases in immune cells and inflammation markers as tumor necrosis factor-alpha, transforming growth factor-beta and inducible nitric oxide synthase with a higher amount of activated pancreatic stellate cells (PSCs). The I2 supplement prevented the harmful effect of STZ, maintaining normal pancreatic morphometry and functions. The elevation of the nuclear factor erythroid-2 (Nrf2) and peroxisome proliferator-activated receptor type gamma (PPARγ) contents was associated with the preservation of normal glycemia and lipoperoxidation. In conclusion, a moderated supplement of I2 prevents the deleterious effects of STZ in the pancreas, possibly through antioxidant and antifibrotic mechanisms including Nrf2 and PPARγ activation.
Collapse
|
13
|
Chen R, Kang R, Tang D. The mechanism of HMGB1 secretion and release. Exp Mol Med 2022; 54:91-102. [PMID: 35217834 PMCID: PMC8894452 DOI: 10.1038/s12276-022-00736-w] [Citation(s) in RCA: 340] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/13/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nonhistone nuclear protein that has multiple functions according to its subcellular location. In the nucleus, HMGB1 is a DNA chaperone that maintains the structure and function of chromosomes. In the cytoplasm, HMGB1 can promote autophagy by binding to BECN1 protein. After its active secretion or passive release, extracellular HMGB1 usually acts as a damage-associated molecular pattern (DAMP) molecule, regulating inflammation and immune responses through different receptors or direct uptake. The secretion and release of HMGB1 is fine-tuned by a variety of factors, including its posttranslational modification (e.g., acetylation, ADP-ribosylation, phosphorylation, and methylation) and the molecular machinery of cell death (e.g., apoptosis, pyroptosis, necroptosis, alkaliptosis, and ferroptosis). In this minireview, we introduce the basic structure and function of HMGB1 and focus on the regulatory mechanism of HMGB1 secretion and release. Understanding these topics may help us develop new HMGB1-targeted drugs for various conditions, especially inflammatory diseases and tissue damage. A nuclear protein that gets released after cell death or is actively secreted by immune cells offers a promising therapeutic target for treating diseases linked to excessive inflammation. Daolin Tang from the University of Texas Southwestern Medical Center in Dallas, USA, and colleagues review how cellular stresses can trigger the accumulation of HMGB1, a type of alarm signal protein that promotes the recruitment and activation of inflammation-promoting immune cells. The researchers discuss various mechanisms that drive both passive and active release of HMGB1 into the space around cells. These processes, which include enzymatic modifications of the HMGB1 protein, cell–cell interactions and molecular pathways of cell death, could be targeted by drugs to lessen tissue damage and inflammatory disease caused by HMGB1-induced immune responses
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Zhang P, Zhou Y, Fang Q, Lin H, Xiao J. Proteomic analysis of early phosphorylated proteins in acute pancreatitis model. CURR PROTEOMICS 2021. [DOI: 10.2174/1570164618666211130144858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background and Objective:
The exact mechanism of acute pancreatitis (AP), which is an inflammation of the pancreas, still remains unclear. In this study, we examined the protein phosphorylation changes during the early stage of AP in mice using proteomic analysis.
Methods:
AP model in mice was constructed using an intraperitoneal injection of cerulein. Blood samples and pancreas were collected at 1, 3, 6, 9h after the final injection (n=3 at each time point). Samples collected 3h after the final injection were separately mixed and named S (saline group) and C1 (cerulein group); samples collected 6h after the final injection from the cerulein group were mixed and named C2. Proteins from S, C1, and C2 were extracted, digested by trypsin, and subjected to LC-MS/MS analysis, bioinformatics analysis, and Western blotting.
Results:
A total of 549 sites (426 proteins) were upregulated, and 501 sites (367 proteins) were downregulated in C1 compared to S; while 491 phosphorylation sites (377 proteins) were upregulated and 367 sites (274 proteins) were downregulated in C2 compared to S. Motif analysis showed that proline-directed kinase and basophilic kinase had a key role during early AP. During an early AP stage, the cellular distributions of proteins slightly changed. The types of domains changed with the development of AP. Phosphorylation proteins associated with calcium signaling, especially IP3R mediated calcium release, lysosome and autophagosome pathway, pancreatic digestive activation, and secretion, were found to be involved in the development of early AP independent of NF-kB activation. Moreover, the MAPK family was found to have a greater impact at the early stage of AP. We also found differentially expressed phosphorylations of amylase and trypsinogen and increased phosphorylation of MAPK6 S189 in early AP.
Conclusion:
IP3R mediated calcium release and activation of MAPK family are key events promoting the development of early AP.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Yuan Zhou
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Qiangqiang Fang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Houmin Lin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Juan Xiao
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| |
Collapse
|
15
|
Gao L, Chong E, Pendharkar S, Phillips A, Ke L, Li W, Windsor JA. The Challenges and Effects of Ascorbic Acid Treatment of Acute Pancreatitis: A Systematic Review and Meta-Analysis of Preclinical and Clinical Studies. Front Nutr 2021; 8:734558. [PMID: 34765629 PMCID: PMC8576576 DOI: 10.3389/fnut.2021.734558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Oxidative stress has been implicated in the pathogenesis of acute pancreatitis (AP), and ascorbic acid (AA), as an important endogenous antioxidant substance, has been shown to reduce AP severity in preclinical studies. However, the effects of AA supplementation in clinical settings remain controversial. Methods: PubMed, EMBASE, MEDLINE, and SCOPUS databases were searched, and both preclinical and clinical studies were included. For clinical trials, the primary outcome was incidence of organ failure, and for preclinical studies, the primary outcome was histopathological scores of pancreatic injuries. Results: Meta-analysis of clinical trials showed that compared with controls, AA administration did not reduce the incidence of organ failure or mortality during hospitalization but was associated with significantly reduced length of hospital stay. Meta-analysis of preclinical studies showed that AA supplementation reduced pancreatic injury, demonstrated as decreased histological scores and serum amylase, lipase levels. Conclusion: AA administration has no effect on survival or organ failure in patients with AP but may reduce the length of hospital stay. However, the evidence to date remains sparse, scattered, and of suboptimal quality, making it difficult to draw any firm conclusion on the clinical benefits of AA in AP.
Collapse
Affiliation(s)
- Lin Gao
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Eric Chong
- Faculty of Medical and Health Sciences, Surgical and Translational Research Centre, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Sayali Pendharkar
- Faculty of Medical and Health Sciences, Surgical and Translational Research Centre, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Anthony Phillips
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Faculty of Medical and Health Sciences, Surgical and Translational Research Centre, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Lu Ke
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiqin Li
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - John Albert Windsor
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Faculty of Medical and Health Sciences, Surgical and Translational Research Centre, School of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Romero‐Cordero S, Noguera‐Julian A, Cardellach F, Fortuny C, Morén C. Mitochondrial changes associated with viral infectious diseases in the paediatric population. Rev Med Virol 2021; 31:e2232. [PMID: 33792105 PMCID: PMC9286481 DOI: 10.1002/rmv.2232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022]
Abstract
Infectious diseases occur worldwide with great frequency in both adults and children, causing 350,000 deaths in 2017, according to the latest World Health Organization reports. Both infections and their treatments trigger mitochondrial interactions at multiple levels: (i) incorporation of damaged or mutated proteins into the complexes of the electron transport chain; (ii) impact on mitochondrial genome (depletion, deletions and point mutations) and mitochondrial dynamics (fusion and fission); (iii) membrane potential impairment; (iv) apoptotic regulation; and (v) generation of reactive oxygen species, among others. Such alterations may result in serious adverse clinical events with considerable impact on the quality of life of the children and could even cause death. Herein, we use a systematic review to explore the association between mitochondrial alterations in paediatric infections including human immunodeficiency virus, cytomegalovirus, herpes viruses, various forms of hepatitis, adenovirus, T-cell lymphotropic virus and influenza. We analyse how these paediatric viral infectious processes may cause mitochondrial deterioration in this especially vulnerable population, with consideration for the principal aspects of research and diagnosis leading to improved disease understanding, management and surveillance.
Collapse
Affiliation(s)
- Sonia Romero‐Cordero
- Faculty of MedicinePompeu Fabra UniversityBarcelonaSpain
- Faculty of MedicineUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Antoni Noguera‐Julian
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en PediatriaUnitat d´InfeccionsServei de PediatriaInstitut de Recerca Pediàtrica Hospital Sant Joan de DéuBarcelonaSpain
- Departament de PediatriaUniversitat de BarcelonaBarcelonaSpain
- CIBER de Epidemiología y Salud Pública, CIBERESP (ISCIII)MadridSpain
- Red de Investigación Translacional en Infectología PediátricaRITIPMadridSpain
| | - Francesc Cardellach
- Faculty of Medicine and Health SciencesMuscle Research and Mitochondrial Function LaboratoryCellex‐IDIBAPSUniversity of BarcelonaBarcelonaSpain
- CIBER de Enfermedades RarasCIBERER (ISCIII)MadridSpain
- Internal Medicine DepartmentHospital Clínic of Barcelona (HCB)BarcelonaSpain
| | - Clàudia Fortuny
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en PediatriaUnitat d´InfeccionsServei de PediatriaInstitut de Recerca Pediàtrica Hospital Sant Joan de DéuBarcelonaSpain
- Departament de PediatriaUniversitat de BarcelonaBarcelonaSpain
- CIBER de Epidemiología y Salud Pública, CIBERESP (ISCIII)MadridSpain
- Red de Investigación Translacional en Infectología PediátricaRITIPMadridSpain
| | - Constanza Morén
- Faculty of Medicine and Health SciencesMuscle Research and Mitochondrial Function LaboratoryCellex‐IDIBAPSUniversity of BarcelonaBarcelonaSpain
- CIBER de Enfermedades RarasCIBERER (ISCIII)MadridSpain
- Internal Medicine DepartmentHospital Clínic of Barcelona (HCB)BarcelonaSpain
| |
Collapse
|
17
|
Silva-Vaz P, Jarak I, Rato L, Oliveira PF, Morgado-Nunes S, Paulino A, Castelo-Branco M, Botelho MF, Tralhão JG, Alves MG, Abrantes AM. Plasmatic Oxidative and Metabonomic Profile of Patients with Different Degrees of Biliary Acute Pancreatitis Severity. Antioxidants (Basel) 2021; 10:antiox10060988. [PMID: 34205667 PMCID: PMC8234183 DOI: 10.3390/antiox10060988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/06/2023] Open
Abstract
Acute pancreatitis (AP) is an inflammatory process of the pancreas with variable involvement of the pancreatic and peripancreatic tissues and remote organ systems. The main goal of this study was to evaluate the inflammatory biomarkers, oxidative stress (OS), and plasma metabolome of patients with different degrees of biliary AP severity to improve its prognosis. Twenty-nine patients with biliary AP and 11 healthy controls were enrolled in this study. We analyzed several inflammatory biomarkers, multifactorial scores, reactive oxygen species (ROS), antioxidants defenses, and the plasma metabolome of biliary AP and healthy controls. Hepcidin (1.00), CRP (0.94), and SIRI (0.87) were the most accurate serological biomarkers of AP severity. OS played a pivotal role in the initial phase of AP, with significant changes in ROS and antioxidant defenses relating to AP severity. Phenylalanine (p < 0.05), threonine (p < 0.05), and lipids (p < 0.01) showed significant changes in AP severity. The role of hepcidin and SIRI were confirmed as new prognostic biomarkers of biliary AP. OS appears to have a role in the onset and progression of the AP process. Overall, this study identified several metabolites that may predict the onset and progression of biliary AP severity, constituting the first metabonomic study in the field of biliary AP.
Collapse
Affiliation(s)
- Pedro Silva-Vaz
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
- General Surgery Department, Hospital Amato Lusitano, Unidade Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal;
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
- Clinical Academic Centre of Beiras (CACB), 6200-506 Covilhã, Portugal;
- Correspondence: ; Tel.: +351-966-498-337
| | - Ivana Jarak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Luís Rato
- Health School of the Polytechnic of Guarda, 6300-559 Guarda, Portugal;
| | - Pedro F. Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Sara Morgado-Nunes
- Clinical Academic Centre of Beiras (CACB), 6200-506 Covilhã, Portugal;
- Polytechnic Institute of Castelo Branco, Escola Superior de Gestão, 6000-084 Castelo Branco, Portugal
| | - Aida Paulino
- General Surgery Department, Hospital Amato Lusitano, Unidade Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal;
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
- Clinical Academic Centre of Beiras (CACB), 6200-506 Covilhã, Portugal;
| | - Miguel Castelo-Branco
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
- Clinical Academic Centre of Beiras (CACB), 6200-506 Covilhã, Portugal;
| | - Maria Filomena Botelho
- Biophysics Institute, Faculty of Medicina, University of Coimbra, 3000-548 Coimbra, Portugal; (M.F.B.); (J.G.T.); (A.M.A.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicina, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Consortium/Center for Innovation Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-561 Coimbra, Portugal
| | - José Guilherme Tralhão
- Biophysics Institute, Faculty of Medicina, University of Coimbra, 3000-548 Coimbra, Portugal; (M.F.B.); (J.G.T.); (A.M.A.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicina, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Consortium/Center for Innovation Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-561 Coimbra, Portugal
- Surgery Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Faculty of Medicina, University Hospital, 3000-075 Coimbra, Portugal
| | - Marco G. Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal;
| | - Ana Margarida Abrantes
- Biophysics Institute, Faculty of Medicina, University of Coimbra, 3000-548 Coimbra, Portugal; (M.F.B.); (J.G.T.); (A.M.A.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicina, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Consortium/Center for Innovation Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-561 Coimbra, Portugal
| |
Collapse
|
18
|
He J, Ma M, Li D, Wang K, Wang Q, Li Q, He H, Zhou Y, Li Q, Hou X, Yang L. Sulfiredoxin-1 attenuates injury and inflammation in acute pancreatitis through the ROS/ER stress/Cathepsin B axis. Cell Death Dis 2021; 12:626. [PMID: 34140464 PMCID: PMC8211864 DOI: 10.1038/s41419-021-03923-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022]
Abstract
Acinar cell injury and the inflammatory response are critical bioprocesses of acute pancreatitis (AP). We investigated the role and underlying mechanism of sulfiredoxin-1 (Srxn1) in AP. Mild AP was induced by intraperitoneal injection of cerulein and severe AP was induced by partial duct ligation with cerulein stimulation or intraperitoneal injection of L-arginine in mice. Acinar cells, neutrophils, and macrophages were isolated. The pancreas was analyzed by histology, immunochemistry staining, and TUNEL assays, and the expression of certain proteins and RNAs, cytokine levels, trypsin activity, and reactive oxygen species (ROS) levels were determined. Srxn1 was inhibited by J14 or silenced by siRNA, and overexpression was introduced by a lentiviral vector. Transcriptomic analysis was used to explore the mechanism of Srxn1-mediated effects. We also evaluated the effect of adeno-associated virus (AAV)-mediated overexpression of Srxn1 by intraductal administration and the protection of AP. We found that Srxn1 expression was upregulated in mild AP but decreased in severe AP. Inhibition of Srxn1 increased ROS, histological score, the release of trypsin, and inflammatory responses in mice. Inhibition of Srxn1 expression promoted the production of ROS and induced apoptosis, while overexpression of Srxn1 led to the opposite results in acinar cells. Furthermore, inhibition of Srxn1 expression promoted the inflammatory response by accumulating and activating M1 phenotype macrophages and neutrophils in AP. Mechanistically, ROS-induced ER stress and activation of Cathepsin B, which converts trypsinogen to trypsin, were responsible for the Srxn1 inhibition-mediated effects on AP. Importantly, we demonstrated that AAV-mediated overexpression of Srxn1 attenuated AP in mice. Taken together, these results showed that Srxn1 is a protective target for AP by attenuating acinar injury and inflammation through the ROS/ER stress/Cathepsin B axis.
Collapse
Affiliation(s)
- Jun He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Miaomiao Ma
- Department of Rehabilitation, The First People's Hospital of Huaihua, University of South China, Hengyang, Hunan, China
| | - Daming Li
- Department of Laboratory Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, Zhejiang, 318000, China
| | - Qiuguo Wang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qiuguo Li
- Department of General Surgery, Hunan Chest Hospital, Changsha, 410006, Hunan, China
| | - Hongye He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yan Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qinglong Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xuyang Hou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Leping Yang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
19
|
Ouyang Y, Wen L, Armstrong JA, Chvanov M, Latawiec D, Cai W, Awais M, Mukherjee R, Huang W, Gough PJ, Bertin J, Tepikin AV, Sutton R, Criddle DN. Protective Effects of Necrostatin-1 in Acute Pancreatitis: Partial Involvement of Receptor Interacting Protein Kinase 1. Cells 2021; 10:1035. [PMID: 33925729 PMCID: PMC8145347 DOI: 10.3390/cells10051035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022] Open
Abstract
Acute pancreatitis (AP) is a severe and potentially fatal disease caused predominantly by alcohol excess and gallstones, which lacks a specific therapy. The role of Receptor-Interacting Protein Kinase 1 (RIPK1), a key component of programmed necrosis (Necroptosis), is unclear in AP. We assessed the effects of RIPK1 inhibitor Necrostatin-1 (Nec-1) and RIPK1 modification (RIPK1K45A: kinase dead) in bile acid (TLCS-AP), alcoholic (FAEE-AP) and caerulein hyperstimulation (CER-AP) mouse models. Involvement of collateral Nec-1 target indoleamine 2,3-dioxygenase (IDO) was probed with the inhibitor Epacadostat (EPA). Effects of Nec-1 and RIPK1K45A were also compared on pancreatic acinar cell (PAC) fate in vitro and underlying mechanisms explored. Nec-1 markedly ameliorated histological and biochemical changes in all models. However, these were only partially reduced or unchanged in RIPK1K45A mice. Inhibition of IDO with EPA was protective in TLCS-AP. Both Nec-1 and RIPK1K45A modification inhibited TLCS- and FAEE-induced PAC necrosis in vitro. Nec-1 did not affect TLCS-induced Ca2+ entry in PACs, however, it inhibited an associated ROS elevation. The results demonstrate protective actions of Nec-1 in multiple models. However, RIPK1-dependent necroptosis only partially contributed to beneficial effects, and actions on targets such as IDO are likely to be important.
Collapse
Affiliation(s)
- Yulin Ouyang
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (Y.O.); (M.C.); (A.V.T.)
- Brain Cognition and Brain Disease Institute, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Li Wen
- Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (L.W.); (J.A.A.); (D.L.); (W.C.); (M.A.); (R.M.); (W.H.); (R.S.)
| | - Jane A. Armstrong
- Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (L.W.); (J.A.A.); (D.L.); (W.C.); (M.A.); (R.M.); (W.H.); (R.S.)
| | - Michael Chvanov
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (Y.O.); (M.C.); (A.V.T.)
| | - Diane Latawiec
- Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (L.W.); (J.A.A.); (D.L.); (W.C.); (M.A.); (R.M.); (W.H.); (R.S.)
| | - Wenhao Cai
- Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (L.W.); (J.A.A.); (D.L.); (W.C.); (M.A.); (R.M.); (W.H.); (R.S.)
| | - Mohammad Awais
- Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (L.W.); (J.A.A.); (D.L.); (W.C.); (M.A.); (R.M.); (W.H.); (R.S.)
| | - Rajarshi Mukherjee
- Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (L.W.); (J.A.A.); (D.L.); (W.C.); (M.A.); (R.M.); (W.H.); (R.S.)
| | - Wei Huang
- Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (L.W.); (J.A.A.); (D.L.); (W.C.); (M.A.); (R.M.); (W.H.); (R.S.)
| | - Peter J. Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA; (P.J.G.); (J.B.)
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA; (P.J.G.); (J.B.)
| | - Alexei V. Tepikin
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (Y.O.); (M.C.); (A.V.T.)
| | - Robert Sutton
- Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (L.W.); (J.A.A.); (D.L.); (W.C.); (M.A.); (R.M.); (W.H.); (R.S.)
| | - David N. Criddle
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (Y.O.); (M.C.); (A.V.T.)
| |
Collapse
|
20
|
Guo L. Mitochondria and the permeability transition pore in cancer metabolic reprogramming. Biochem Pharmacol 2021; 188:114537. [PMID: 33811907 DOI: 10.1016/j.bcp.2021.114537] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are a major source of ATP provision as well as cellular suicidal weapon store. Accumulating evidences demonstrate that mitochondrial bioenergetics, biosynthesis and signaling are important mediators of tumorigenesis. Metabolic plasticity enables cancer cell reprogramming to cope with cellular and environmental alterations, a process requires mitochondria biology. Mitochondrial metabolism emerges to be a promising arena for cancer therapeutic targets. The permeability transition pore (PTP) participates in physiological Ca2+ and ROS homeostasis as well as cell death depending on the open state. The hypothesis that PTP forms from F-ATP synthase provides clues to the potential collaborative role of mitochondrial respiration and PTP in regulating cancer cell fate and metabolic reprogramming.
Collapse
Affiliation(s)
- Lishu Guo
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| |
Collapse
|
21
|
Ren Y, Liu W, zhang L, Zhang J, Bi J, Wang T, Wang M, Du Z, Wang Y, zhang L, Wu Z, Lv Y, Meng L, Wu R. Milk fat globule EGF factor 8 restores mitochondrial function via integrin-medicated activation of the FAK-STAT3 signaling pathway in acute pancreatitis. Clin Transl Med 2021; 11:e295. [PMID: 33634976 PMCID: PMC7828261 DOI: 10.1002/ctm2.295] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP) remains a significant clinical challenge. Mitochondrial dysfunction contributes significantly to the pathogenesis of AP. Milk fat globule EGF factor 8 (MFG-E8) is an opsonizing protein, which has many biological functions via binding to αvβ3/5 integrins. Ligand-dependent integrin-FAK activation of STAT3 was reported to be of great importance for maintaining a normal mitochondrial function. However, MFG-E8's role in AP has not been evaluated. METHODS Blood samples were acquired from 69 healthy controls and 134 AP patients. Serum MFG-E8 levels were measured by ELISA. The relationship between serum concentrations of MFG-E8 and disease severity were analyzed. The role of MFG-E8 was evaluated in experimental models of AP. RESULTS Serum concentrations of MFG-E8 were lower in AP patients than healthy controls. And serum MFG-E8 concentrations were negatively correlated with disease severity in AP patients. In mice, MFG-E8 administration decreased L-arginine-induced pancreatic injury and mortality. MFG-E8's protective effects in experimental AP were associated with improvement in mitochondrial function and reduction in oxidative stress. MFG-E8 knockout mice suffered more severe pancreatic injury and greater mitochondrial damage after l-arginine administration. Mechanistically, MFG-E8 activated the FAK-STAT3 pathway in AP mice. Cilengitide, a specific αvβ3/5 integrin inhibitor, abolished MFG-E8's beneficial effects in AP. PF00562271, a specific FAK inhibitor, blocked MFG-E8-induced STAT3 phosphorylation. APTSTAT3-9R, a specific STAT3 antagonist, also eliminated MFG-E8's beneficial effects under such a condition. CONCLUSIONS MFG-E8 acts as an endogenous protective mediator in the pathogenesis of AP. MFG-E8 administration protects against AP possibly by restoring mitochondrial function via activation of the integrin-FAK-STAT3 signaling pathway. Targeting the action of MFG-E8 may present a potential therapeutic option for AP.
Collapse
Affiliation(s)
- Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Lin zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Zhaoqing Du
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Yawen Wang
- BiobankFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Laboratory MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Lin zhang
- Department of Laboratory MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Zheng Wu
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Lingzhong Meng
- Department of AnesthesiologyYale University School of MedicineNew HavenConnecticutUSA
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| |
Collapse
|
22
|
Mesna Alleviates Cerulein-Induced Acute Pancreatitis by Inhibiting the Inflammatory Response and Oxidative Stress in Experimental Rats. Dig Dis Sci 2020; 65:3583-3591. [PMID: 32088797 DOI: 10.1007/s10620-020-06072-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/12/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Acute pancreatitis (AP) is a sudden inflammation of the pancreas that may be life-threatening disease with high mortality rates, particularly in the presence of systemic inflammatory response and multiple organ failure. Oxidative stress has been shown to be involved in the pathophysiology of acute pancreatitis. AIM This study is designed to investigate the possible effect of mesna on an experimental model of cerulein-induced acute pancreatitis. METHODS Animals were divided into five groups: Group 1 served as a control group given the saline; group II (mesna group) received mesna at a dose of (100 mg/kg per dose, i.p.) four times; group III (acute pancreatitis group) received cerulein at a dose of (20 µg/kg/dose, s.c.) four times with 1-h intervals; group VI, cerulein + mesna, was treated with mesna at a dose of (100 mg/kg, i.p.) 15 min before each cerulein injection. RESULTS Animals with acute pancreatitis showed elevated serum amylase and lipase levels. Biochemical parameters showed increased pancreatic tumor necrosis factors-α (TNF-α) and interleukin-1β (IL-1β) levels. A disturbance in oxidative stress markers was evident by elevated pancreatic lipid peroxides (TBARS) and decline in pancreatic antioxidants' concentrations including reduced glutathione (GSH); superoxide dismutase (SOD); and glutathione peroxidase (GSH-Px). Histological examination confirmed pancreatic injury. Pre-treatment with mesna was able to abolish the changes in pancreatic enzymes, oxidative stress markers (TBARS, SOD, GSH and GSH-Px), pancreatic inflammatory markers (TNF-α, IL-1β) as well as histological changes. CONCLUSIONS Mesna mitigates AP by alleviating pancreatic oxidative stress damage and inhibiting inflammation.
Collapse
|
23
|
Chen R, Hornemann T, Štefanić S, Schraner EM, Zuellig R, Reding T, Malagola E, Henstridge DC, Hills AP, Graf R, Sonda S. Serine administration as a novel prophylactic approach to reduce the severity of acute pancreatitis during diabetes in mice. Diabetologia 2020; 63:1885-1899. [PMID: 32385601 DOI: 10.1007/s00125-020-05156-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/13/2020] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Compared with the general population, individuals with diabetes have a higher risk of developing severe acute pancreatitis, a highly debilitating and potentially lethal inflammation of the exocrine pancreas. In this study, we investigated whether 1-deoxysphingolipids, atypical lipids that increase in the circulation following the development of diabetes, exacerbate the severity of pancreatitis in a diabetic setting. METHODS We analysed whether administration of an L-serine-enriched diet to mouse models of diabetes, an established method for decreasing the synthesis of 1-deoxysphingolipids in vivo, reduced the severity of acute pancreatitis. Furthermore, we elucidated the molecular mechanisms underlying the lipotoxicity exerted by 1-deoxysphingolipids towards rodent pancreatic acinar cells in vitro. RESULTS We demonstrated that L-serine supplementation reduced the damage of acinar tissue resulting from the induction of pancreatitis in diabetic mice (average histological damage score: 1.5 in L-serine-treated mice vs 2.7 in the control group). At the cellular level, we showed that L-serine decreased the production of reactive oxygen species, endoplasmic reticulum stress and cellular apoptosis in acinar tissue. Importantly, these parameters, together with DNA damage, were triggered in acinar cells upon treatment with 1-deoxysphingolipids in vitro, suggesting that these lipids are cytotoxic towards pancreatic acinar cells in a cell-autonomous manner. In search of the initiating events of the observed cytotoxicity, we discovered that 1-deoxysphingolipids induced early mitochondrial dysfunction in acinar cells, characterised by ultrastructural alterations, impaired oxygen consumption rate and reduced ATP synthesis. CONCLUSIONS/INTERPRETATION Our results suggest that 1-deoxysphingolipids directly damage the functionality of pancreatic acinar cells and highlight that an L-serine-enriched diet may be used as a promising prophylactic intervention to reduce the severity of pancreatitis in the context of diabetes.
Collapse
Affiliation(s)
- Rong Chen
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Saša Štefanić
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Elisabeth M Schraner
- Institute of Veterinary Anatomy and Virology, University of Zurich, Zurich, Switzerland
| | - Richard Zuellig
- Division of Endocrinology, Diabetes & Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | - Theresia Reding
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Ermanno Malagola
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Darren C Henstridge
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, 7250, Australia
| | - Andrew P Hills
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, 7250, Australia
| | - Rolf Graf
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Sabrina Sonda
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland.
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, 7250, Australia.
| |
Collapse
|
24
|
Pallagi P, Madácsy T, Varga Á, Maléth J. Intracellular Ca 2+ Signalling in the Pathogenesis of Acute Pancreatitis: Recent Advances and Translational Perspectives. Int J Mol Sci 2020; 21:ijms21114005. [PMID: 32503336 PMCID: PMC7312053 DOI: 10.3390/ijms21114005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Intracellular Ca2+ signalling is a major signal transductional pathway in non-excitable cells, responsible for the regulation of a variety of physiological functions. In the secretory epithelial cells of the exocrine pancreas, such as acinar and ductal cells, intracellular Ca2+ elevation regulates digestive enzyme secretion in acini or fluid and ion secretion in ductal cells. Although Ca2+ is a uniquely versatile orchestrator of epithelial physiology, unregulated global elevation of the intracellular Ca2+ concentration is an early trigger for the development of acute pancreatitis (AP). Regardless of the aetiology, different forms of AP all exhibit sustained intracellular Ca2+ elevation as a common hallmark. The release of endoplasmic reticulum (ER) Ca2+ stores by toxins (such as bile acids or fatty acid ethyl esters (FAEEs)) or increased intrapancreatic pressure activates the influx of extracellular Ca2+ via the Orai1 Ca2+ channel, a process known as store-operated Ca2+ entry (SOCE). Intracellular Ca2+ overload can lead to premature activation of trypsinogen in pancreatic acinar cells and impaired fluid and HCO3- secretion in ductal cells. Increased and unbalanced reactive oxygen species (ROS) production caused by sustained Ca2+ elevation further contributes to cell dysfunction, leading to mitochondrial damage and cell death. Translational studies of AP identified several potential target molecules that can be modified to prevent intracellular Ca2+ overload. One of the most promising drugs, a selective inhibitor of the Orai1 channel that has been shown to inhibit extracellular Ca2+ influx and protect cells from injury, is currently being tested in clinical trials. In this review, we will summarise the recent advances in the field, with a special focus on the translational aspects of the basic findings.
Collapse
Affiliation(s)
- Petra Pallagi
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - Tamara Madácsy
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - Árpád Varga
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
- Correspondence: or ; Tel.: +36-(62)-342-877 or +36-70-41-66500
| |
Collapse
|
25
|
Yang X, Zhang P, Zhang F, Ke Z, Chen Q, Liu C. Protective effect of hypoglycemic granule against diabetes‐induced liver injury by alleviating glycolipid metabolic disorder and oxidative stress. J Cell Biochem 2020; 121:3221-3234. [DOI: 10.1002/jcb.29588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaosong Yang
- Hubei Key Laboratory of Diabetes and AngiopathyHubei University of Science and TechnologyXianning China
| | - Pengjie Zhang
- Hubei Key Laboratory of Diabetes and AngiopathyHubei University of Science and TechnologyXianning China
| | - Feixue Zhang
- Hubei Key Laboratory of Diabetes and AngiopathyHubei University of Science and TechnologyXianning China
| | - Zhiqiang Ke
- Hubei Key Laboratory of Diabetes and AngiopathyHubei University of Science and TechnologyXianning China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and AngiopathyHubei University of Science and TechnologyXianning China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and AngiopathyHubei University of Science and TechnologyXianning China
| |
Collapse
|
26
|
Armstrong JA, Sutton R, Criddle DN. Pancreatic Acinar Cell Preparation for Oxygen Consumption and Lactate Production Analysis. Bio Protoc 2020; 10:e3627. [PMID: 33659300 DOI: 10.21769/bioprotoc.3627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 11/02/2022] Open
Abstract
Mitochondrial dysfunction is a principal feature of acute pancreatitis (AP) although the underlying mechanisms are still unclear. AP precipitants induce Ca2+-dependent formation of the mitochondrial permeability transition pore (MPTP) in pancreatic acinar cells (PACs), leading to ATP depletion and necrosis. Evaluations of mitochondrial bioenergetics have mainly been performed in isolated PACs using confocal microscopy, with assessment of mitochondrial membrane potential, NADH/FAD+ and ATP levels, coupled with patch-clamp electrophysiology. These studies are technically demanding and time-consuming. Application of Seahorse flux analysis now allows detailed investigations of bioenergetics changes to be performed in cell populations using a multi-well plate-reader format; rates of oxygen consumption (OCR) and extracellular acidification (ECAR) provide important information about cellular respiration and glycolysis, respectively. Parameters such as maximal respiration, ATP-linked capacity and proton leak can be derived from application of a respiratory function "stress" test that involves pharmacological manipulation of the electron transport chain. The use of Seahorse Flux analysis therefore provides a quick, and convenient means to measure detailed cellular bioenergetics and allows results to be coupled with other plate-reader based assays, providing a fuller understanding of the pathophysiological consequences of mitochondrial bioenergetics alterations.
Collapse
Affiliation(s)
- Jane A Armstrong
- Department of Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, UK
| | - Robert Sutton
- Department of Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, UK
| | - David N Criddle
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine, University of Liverpool, UK
| |
Collapse
|
27
|
Gonzalez A, Estaras M, Martinez-Morcillo S, Martinez R, García A, Estévez M, Santofimia-Castaño P, Tapia JA, Moreno N, Pérez-López M, Míguez MP, Blanco-Fernández G, Lopez-Guerra D, Fernandez-Bermejo M, Mateos JM, Vara D, Roncero V, Salido GM. Melatonin modulates red-ox state and decreases viability of rat pancreatic stellate cells. Sci Rep 2020; 10:6352. [PMID: 32286500 PMCID: PMC7156707 DOI: 10.1038/s41598-020-63433-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
In this work we have studied the effects of pharmacological concentrations of melatonin (1 µM-1 mM) on pancreatic stellate cells (PSC). Cell viability was analyzed by AlamarBlue test. Production of reactive oxygen species (ROS) was monitored following CM-H2DCFDA and MitoSOX Red-derived fluorescence. Total protein carbonyls and lipid peroxidation were analyzed by HPLC and spectrophotometric methods respectively. Mitochondrial membrane potential (ψm) was monitored by TMRM-derived fluorescence. Reduced (GSH) and oxidized (GSSG) levels of glutathione were determined by fluorescence techniques. Quantitative reverse transcription-polymerase chain reaction was employed to detect the expression of Nrf2-regulated antioxidant enzymes. Determination of SOD activity and total antioxidant capacity (TAC) were carried out by colorimetric methods, whereas expression of SOD was analyzed by Western blotting and RT-qPCR. The results show that melatonin decreased PSC viability in a concentration-dependent manner. Melatonin evoked a concentration-dependent increase in ROS production in the mitochondria and in the cytosol. Oxidation of proteins was detected in the presence of melatonin, whereas lipids oxidation was not observed. Depolarization of ψm was noted with 1 mM melatonin. A decrease in the GSH/GSSG ratio was observed, that depended on the concentration of melatonin used. A concentration-dependent increase in the expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1 was detected in cells incubated with melatonin. Finally, decreases in the expression and in the activity of superoxide dismutase were observed. We conclude that pharmacological concentrations melatonin modify the redox state of PSC, which might decrease cellular viability.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain.
| | - Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Remigio Martinez
- Department of Animal Health, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Alfredo García
- Department of Animal Production, CICYTEX-La Orden, Guadajira, Badajoz, Spain
| | - Mario Estévez
- IPROCAR Research Institute, Food Technology, University of Extremadura, 10003, Cáceres, Spain
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Jose A Tapia
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Noelia Moreno
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Marcos Pérez-López
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - María P Míguez
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gerardo Blanco-Fernández
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez-Guerra
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
28
|
Tanshinone IIA Protects against Acute Pancreatitis in Mice by Inhibiting Oxidative Stress via the Nrf2/ROS Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5390482. [PMID: 32322336 PMCID: PMC7168729 DOI: 10.1155/2020/5390482] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/20/2020] [Accepted: 03/13/2020] [Indexed: 02/05/2023]
Abstract
Background Danshen (Salvia miltiorrhiza Bunge) and its main active component Tanshinone IIA (TSA) are clinically used in China. However, the effects of TSA on acute pancreatitis (AP) and its potential mechanism have not been investigated. In this study, our objective was to investigate the protective effects of TSA against AP via three classic mouse models. Methods Mouse models of AP were established by caerulein, sodium taurocholate, and L-arginine, separately. Pancreatic and pulmonary histopathological characteristics and serum amylase and lipase levels were evaluated, and changes in oxidative stress injury and the ultrastructure of acinar cells were observed. The reactive oxygen species (ROS) inhibitor N-Acetylcysteine (NAC) and nuclear factor erythroid 2-related factor 2 (Nrf2) knockout mice were applied to clarify the protective mechanism of the drug. Results In the caerulein-induced AP model, TSA administration reduced serum amylase and lipase levels and ameliorated the histopathological manifestations of AP in pancreatic tissue. Additionally, TSA appreciably decreased ROS release, protected the structures of mitochondria and the endoplasmic reticulum, and increased the protein expression of Nrf2 and heme oxygenase 1 of pancreatic tissue. In addition, the protective effects of TSA against AP were counteracted by blocking the oxidative stress (NAC administration and Nrf2 knockout in mice). Furthermore, we found that TSA protects pancreatic tissue from damage and pancreatitis-associated lung injury in two additional mouse models induced by sodium taurocholate and by L-arginine. Conclusion Our data confirmed the protective effects of TSA against AP in mice by inhibiting oxidative stress via the Nrf2/ROS pathway.
Collapse
|
29
|
Takahashi T, Miao Y, Kang F, Dolai S, Gaisano HY. Susceptibility Factors and Cellular Mechanisms Underlying Alcoholic Pancreatitis. Alcohol Clin Exp Res 2020; 44:777-789. [PMID: 32056245 DOI: 10.1111/acer.14304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
Alcohol is a major cause of acute and chronic pancreatitis. There have been some recent advances in the understanding of the mechanisms underlying alcoholic pancreatitis, which include perturbation in mitochondrial function and autophagy and ectopic exocytosis, with some of these cellular events involving membrane fusion soluble N-ethylmaleimide-sensitive factor receptor protein receptor proteins. Although new insights have been unraveled recently, the precise mechanisms remain complex, and their finer details have yet to be established. The overall pathophysiology of pancreatitis involves not only the pancreatic acinar cells but also the stellate cells and duct cells. Why only some are more susceptible to pancreatitis and with increased severity, while others are not, would suggest that there may be undefined protective factors or mechanisms that enhance recovery and regeneration after injury. Furthermore, there are confounding influences of lifestyle factors such as smoking and diet, and genetic background. Whereas alcohol and smoking cessation and a generally healthy lifestyle are intuitively the advice given to these patients afflicted with alcoholic pancreatitis in order to reduce disease recurrence and progression, there is as yet no specific treatment. A more complete understanding of the pathogenesis of pancreatitis from which novel therapeutic targets could be identified will have a great impact, particularly with the stubbornly high fatality (>30%) of severe pancreatitis. This review focuses on the susceptibility factors and underlying cellular mechanisms of alcohol injury on the exocrine pancreas.
Collapse
Affiliation(s)
- Toshimasa Takahashi
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Yifan Miao
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Fei Kang
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Subhankar Dolai
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Herbert Y Gaisano
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Gentiluomo M, Katzke VA, Kaaks R, Tjønneland A, Severi G, Perduca V, Boutron-Ruault MC, Weiderpass E, Ferrari P, Johnson T, Schulze MB, Bergmann M, Trichopoulou A, Karakatsani A, La Vecchia C, Palli D, Grioni S, Panico S, Tumino R, Sacerdote C, Bueno-de-Mesquita B, Vermeulen R, Sandanger TM, Quirós JR, Rodriguez-Barranco M, Amiano P, Colorado-Yohar S, Ardanaz E, Sund M, Khaw KT, Wareham NJ, Schmidt JA, Jakszyn P, Morelli L, Canzian F, Campa D. Mitochondrial DNA Copy-Number Variation and Pancreatic Cancer Risk in the Prospective EPIC Cohort. Cancer Epidemiol Biomarkers Prev 2020; 29:681-686. [PMID: 31932413 PMCID: PMC7611119 DOI: 10.1158/1055-9965.epi-19-0868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/28/2019] [Accepted: 01/07/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) copy number in peripheral blood has been found to be associated with risk of developing several cancers. However, data on pancreatic ductal adenocarcinoma (PDAC) are very limited. METHODS To further our knowledge on this topic, we measured relative mtDNA copy number by a quantitative real-time PCR assay in peripheral leukocyte samples of 476 PDAC cases and 357 controls nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. RESULTS We observed lower mtDNA copy number with advancing age (P = 6.54 × 10-5) and with a high body mass index (BMI) level (P = 0.004) and no association with sex, smoking behavior, and alcohol consumption. We found an association between increased mtDNA copy number and decreased risk of developing PDAC with an odds ratios (OR) of 0.35 [95% confidence interval (CI), 0.16-0.79; P = 0.01] when comparing the fifth quintile with the first using an unconditional logistic regression and an OR of 0.19 (95% CI, 0.07-0.52; P = 0.001) with a conditional analysis. Analyses stratified by BMI showed an association between high mtDNA copy number and decreased risk in the stratum of normal weight, consistent with the main analyses. CONCLUSIONS Our results suggest a protective effect of a higher number of mitochondria, measured in peripheral blood leukocytes, on PDAC risk. IMPACT Our findings highlight the importance of understanding the mitochondrial biology in pancreatic cancer.
Collapse
Affiliation(s)
- Manuel Gentiluomo
- Department of Biology, University of Pisa, Pisa, Italy
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena A Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gianluca Severi
- CESP, Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Vittorio Perduca
- CESP, Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
- Laboratoire de Mathématiques Appliquées MAP5 (UMR CNRS 8145), Université Paris Descartes, Paris, France
| | - Marie-Christine Boutron-Ruault
- CESP, Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Pietro Ferrari
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Manuela Bergmann
- Human Study Center, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | | | - Anna Karakatsani
- Hellenic Health Foundation, Athens, Greece
- Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, Greece
| | - Carlo La Vecchia
- Hellenic Health Foundation, Athens, Greece
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milano, Italy
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Salvatore Panico
- Dipartimento di medicina clinica e chirurgia, Federico II University, Naples, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Azienda Sanitaria Provinciale Ragusa (ASP), Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Roel Vermeulen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- Environmental Epidemiology Division, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Torkjel M Sandanger
- Departement of Community Medicine, UiT-the Arctic University of Norway, Troms, Norway
| | | | - Miguel Rodriguez-Barranco
- Andalusian School of Public Health (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Pilar Amiano
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Public Health Division of Gipuzkoa, Biodonostia Research Institute, Health Department, San Sebastian, Spain
| | - Sandra Colorado-Yohar
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, MedellÌn, Colombia
| | - Eva Ardanaz
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Malin Sund
- Department of Surgical and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden
| | - Kay-Tee Khaw
- University of Cambridge, School of Clinical Medicine Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Paula Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Facultat Ciències Salut Blanquerna, Universitat Ramon Llull, Barcelona, Spain
| | - Luca Morelli
- General Surgery, Department of Surgery, Translational and New Technologies, University of Pisa, Pisa, Italy
- EndoCAS (Center for Computer Assisted Surgery), University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
31
|
Silva-Vaz P, Abrantes AM, Castelo-Branco M, Gouveia A, Botelho MF, Tralhão JG. Multifactorial Scores and Biomarkers of Prognosis of Acute Pancreatitis: Applications to Research and Practice. Int J Mol Sci 2020; 21:E338. [PMID: 31947993 PMCID: PMC6982212 DOI: 10.3390/ijms21010338] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Acute pancreatitis (AP) is a severe inflammation of the pancreas presented with sudden onset and severe abdominal pain with a high morbidity and mortality rate, if accompanied by severe local and systemic complications. Numerous studies have been published about the pathogenesis of AP; however, the precise mechanism behind this pathology remains unclear. Extensive research conducted over the last decades has demonstrated that the first 24 h after symptom onset are critical for the identification of patients who are at risk of developing complications or death. The identification of these subgroups of patients is crucial in order to start an aggressive approach to prevent mortality. In this sense and to avoid unnecessary overtreatment, thereby reducing the financial implications, the proper identification of mild disease is also important and necessary. A large number of multifactorial scoring systems and biochemical markers are described to predict the severity. Despite recent progress in understanding the pathophysiology of AP, more research is needed to enable a faster and more accurate prediction of severe AP. This review provides an overview of the available multifactorial scoring systems and biochemical markers for predicting severe AP with a special focus on their advantages and limitations.
Collapse
Affiliation(s)
- Pedro Silva-Vaz
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
- General Surgery Department, Hospital Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal;
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Ana Margarida Abrantes
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.M.A.); (M.F.B.); (J.G.T.)
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-348 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - António Gouveia
- General Surgery Department, Hospital Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal;
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Maria Filomena Botelho
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.M.A.); (M.F.B.); (J.G.T.)
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-348 Coimbra, Portugal
| | - José Guilherme Tralhão
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.M.A.); (M.F.B.); (J.G.T.)
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-348 Coimbra, Portugal
- Surgery Department, Centro Hospitalar e Universitário de Coimbra (CHUC), University Hospital, Faculty of Medicine, 3000-075 Coimbra, Portugal
| |
Collapse
|
32
|
Neutrophil Gelatinase-Associated Lipocalin Protects Acinar Cells From Cerulein-Induced Damage During Acute Pancreatitis. Pancreas 2020; 49:1297-1306. [PMID: 33122517 PMCID: PMC8056863 DOI: 10.1097/mpa.0000000000001690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Elevated neutrophil gelatinase-associated lipocalin (NGAL) is a promising marker for severe acute pancreatitis (SAP) and multiple organ failure, suggesting systemic and local contributions during pancreatitis. We investigated the role of NGAL locally on acinar cell biology. METHODS Western blot, reverse transcriptase-polymerase chain reaction, and immunohistochemistry analysis were performed to analyze the levels of NGAL receptors, apoptotic and regeneration markers, and 4-hydroxynonenal (4HNE) levels, 3-[4,5-Dimethylthiazole-2-yl]-2, 5-diphenyltetrazolium bromide assay, and annexin V/propidium iodide staining were used to evaluate cell viability, and effect on endothelial cells was accessed by endothelial permeability assay. RESULTS Cerulein treatment at 20 μM for 12 hours significantly reduced acinar cell viability by 40%, which was rescued by NGAL at 800 and 1600 ng/mL concentrations, observed during mild and SAP, respectively. Mechanistically, NGAL significantly reduced the levels of reactive oxygen species and 4HNE adduct formation in a 24p3R-dependent manner and upregulated the expression of acinar cell regeneration markers, like CDK-2, CDK-4, and C-myc. However, SAP levels of NGAL significantly increased endothelial permeability and downregulated the levels of ZO-1, and cerulein treatment in NGAL knockout mice showed increased levels of 4HNE adducts. CONCLUSIONS Neutrophil gelatinase-associated lipocalin rescues intracellular reactive oxygen species during pancreatitis and promotes survival and regeneration of acinar cells.
Collapse
|
33
|
Morton JC, Armstrong JA, Sud A, Tepikin AV, Sutton R, Criddle DN. Altered Bioenergetics of Blood Cell Sub-Populations in Acute Pancreatitis Patients. J Clin Med 2019; 8:jcm8122201. [PMID: 31847184 PMCID: PMC6947319 DOI: 10.3390/jcm8122201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 01/15/2023] Open
Abstract
Acute pancreatitis (AP) is a debilitating, sometimes fatal disease, marked by local injury and systemic inflammation. Mitochondrial dysfunction is a central feature of pancreatic damage in AP, however, its involvement in circulating blood cell subtypes is unknown. This study compared mitochondrial bioenergetics in circulating leukocytes from AP patients and healthy volunteers: 15 patients with mild to severe AP were compared to 10 healthy controls. Monocytes, lymphocytes and neutrophils were isolated using magnetic activated cell sorting and mitochondrial bioenergetics profiles of the cell populations determined using a Seahorse XF24 flux analyser. Rates of oxygen consumption (OCR) and extracellular acidification (ECAR) under conditions of electron transport chain (ETC) inhibition (“stress” test) informed respiratory and glycolytic parameters, respectively. Phorbol ester stimulation was used to trigger the oxidative burst. Basal OCR in all blood cell subtypes was similar in AP patients and controls. However, maximal respiration and spare respiratory capacity of AP patient lymphocytes were decreased, indicating impairment of functional capacity. A diminished oxidative burst occurred in neutrophils from AP patients, compared to controls, whereas this was enhanced in both monocytes and lymphocytes. The data demonstrate important early alterations of bioenergetics in blood cell sub-populations from AP patients, which imply functional alterations linked to clinical disease progression.
Collapse
Affiliation(s)
- Jack C. Morton
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (J.C.M.); (A.V.T.)
| | - Jane A. Armstrong
- Department of Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (J.A.A.); (A.S.); (R.S.)
| | - Ajay Sud
- Department of Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (J.A.A.); (A.S.); (R.S.)
| | - Alexei V. Tepikin
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (J.C.M.); (A.V.T.)
| | - Robert Sutton
- Department of Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (J.A.A.); (A.S.); (R.S.)
| | - David N. Criddle
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (J.C.M.); (A.V.T.)
- Correspondence: ; Tel.: +44-151-794-5304; Fax: +44-151-794-5327
| |
Collapse
|
34
|
CaMKII/proteasome/cytosolic calcium/cathepsin B axis was present in tryspin activation induced by nicardipine. Biosci Rep 2019; 39:BSR20190516. [PMID: 31221819 PMCID: PMC6603279 DOI: 10.1042/bsr20190516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/16/2022] Open
Abstract
Premature trypsinogen activation is the early event of acute pancreatitis. Therefore, the studies on the processes of trypsinogen activation induced by compounds are important to understand mechanism underly acute pancreatitis under various conditions. Calcium overload in the early stage of acute pancreatitis was previously found to cause intracellular trypsinogen activation; however, treatment of acute pancreatitis using calcium channel blockers did not produced consistent results. Proteasome activity that could be inhibited by some calcium channel blocker has recently been reported to affect the development of acute pancreatitis; however, the associated mechanism were not fully understood. Here, the roles of nicardipine were investigated in trypsinogen activation in pancreatic acinar cells. The results showed that nicardipine could increase cathepsin B activity that caused trypsinogen activation, but higher concentration of nicardipine or prolonged treatment had an opposite effect. The effects of short time treatment of nicardipine at low concentration were studied here. Proteasome inhibition was observed under nicardipine treatment that contributed to the up-regulation in cytosolic calcium. Increased cytosolic calcium from ER induced by nicardipine resulted in the release and activation of cathepsin B. Meanwhile, calcium chelator inhibited cathepsin B as well as trypsinogen activation. Consistently, proteasome activator protected acinar cells from injury induced by nicardipine. Moreover, proteasome inhibition caused by nicardipine depended on CaMKII. In conclusion, CaMKII down-regulation/proteasome inhibition/cytosolic calcium up-regulation/cathepsin B activation/trypsinogen activation axis was present in pancreatic acinar cells injury under nicardipine treatment.
Collapse
|
35
|
Effect of Docosahexaenoic Acid on Ca 2+ Signaling Pathways in Cerulein-Treated Pancreatic Acinar Cells, Determined by RNA-Sequencing Analysis. Nutrients 2019; 11:nu11071445. [PMID: 31248019 PMCID: PMC6682875 DOI: 10.3390/nu11071445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/06/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022] Open
Abstract
Intracellular Ca2+ homeostasis is commonly disrupted in acute pancreatitis. Sustained Ca2+ release from internal stores in pancreatic acinar cells (PACs), mediated by inositol triphosphate receptor (IP3R) and the ryanodine receptor (RyR), plays a key role in the initiation and propagation of acute pancreatitis. Pancreatitis induced by cerulein, an analogue of cholecystokinin, causes premature activation of digestive enzymes and enhanced accumulation of cytokines and Ca2+ in the pancreas and, as such, it is a good model of acute pancreatitis. High concentrations of the omega-3 fatty acid docosahexaenoic acid (DHA) inhibit inflammatory signaling pathways and cytokine expression in PACs treated with cerulein. In the present study, we determined the effect of DHA on key regulators of Ca2+ signaling in cerulein-treated pancreatic acinar AR42 J cells. The results of RNA-Sequencing (RNA-Seq) analysis showed that cerulein up-regulates the expression of IP3R1 and RyR2 genes, and that pretreatment with DHA blocks these effects. The results of real-time PCR confirmed that DHA inhibits cerulein-induced IP3R1 and RyR2 gene expression, and demonstrated that DHA pre-treatment decreases the expression of the Relb gene, which encodes a component of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcriptional activator complex, and the c-fos gene, which encodes a component of activator protein-1 (AP-1) transcriptional activator complex. Taken together, DHA inhibits mRNA expression of IP3R1, RyR2, Relb, and c-fos, which is related to Ca2+ network in cerulein-stimulated PACs.
Collapse
|
36
|
Liu H, Kabrah A, Ahuja M, Muallem S. CRAC channels in secretory epithelial cell function and disease. Cell Calcium 2018; 78:48-55. [PMID: 30641249 DOI: 10.1016/j.ceca.2018.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 02/08/2023]
Abstract
The receptor-evoked Ca2+ signal in secretory epithelia mediate many cellular functions essential for cell survival and their most fundamental functions of secretory granules exocytosis and fluid and electrolyte secretion. Ca2+ influx is a key component of the receptor-evoked Ca2+ signal in secretory cell and is mediated by both TRPC and the STIM1-activated Orai1 channels that mediates the Ca2+ release-activated current (CRAC) Icrac. The core components of the receptor-evoked Ca2+ signal are assembled at the ER/PM junctions where exchange of materials between the plasma membrane and internal organelles take place, including transfer of lipids and Ca2+. The Ca2+ signal generated at the confined space of the ER/PM junctions is necessary for activation of the Ca2+-regulated proteins and ion channels that mediate exocytosis with high fidelity and tight control. In this review we discuss the general properties of Ca2+ signaling, PI(4,5)P2 and other lipids at the ER/PM junctions with regard to secretory cells function and disease caused by uncontrolled Ca2+ influx.
Collapse
Affiliation(s)
- Haiping Liu
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Ahmed Kabrah
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, United States.
| |
Collapse
|
37
|
Norberg KJ, Nania S, Li X, Gao H, Szatmary P, Segersvärd R, Haas S, Wagman A, Arnelo U, Sutton R, Heuchel RL, Löhr JM. RCAN1 is a marker of oxidative stress, induced in acute pancreatitis. Pancreatology 2018; 18:734-741. [PMID: 30139658 DOI: 10.1016/j.pan.2018.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND To date, there still is a lack of specific acute pancreatitis markers and specifically an early marker that can reliably predict disease severity. The inflammatory response in acute pancreatitis is mediated in part through oxidative stress and calcineurin-NFAT (Nuclear Factor of Activated T-cells) signaling, which is inducing its own negative regulator, regulator of calcineurin 1 (RCAN1). Caerulein induction is a commonly used in vivo model of experimental acute pancreatitis. Caerulein induces CN-NFAT signaling, reactive oxygen species and inflammation. METHODS To screen for potential markers of acute pancreatitis, we used the caerulein model of experimental acute pancreatitis (AP) in C57Bl/6 J mice. Pancreata from treated and control mice were used for expression profiling. Promising gene candidates were validated in cell culture experiments using primary murine acinar cells and rat AR42J cells. These candidates were then further tested for their usefulness as biomarkers in mouse and human plasma. RESULTS We identified a number of novel genes, including Regulator of calcineurin 1 (Rcan1) and Sestrin 2 (Sesn2) and demonstrated that they are induced by oxidative stress, by stimulation with H2O2 and by inhibiting caerulein stimulated expression with the antioxidant N-acetylcysteine. We found Rcan1 protein to be significantly elevated in AP-induced mouse plasma as well as in plasma from AP patients. CONCLUSION We demonstrated that Rcan1 is regulated by oxidative stress and identified RCAN1 as a potential diagnostic marker of AP.
Collapse
Affiliation(s)
- K Jessica Norberg
- Pancreas Cancer Research Lab, Dept. of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Salvatore Nania
- Pancreas Cancer Research Lab, Dept. of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Xuan Li
- Pancreas Cancer Research Lab, Dept. of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Hui Gao
- Dept. of Biosciences and Nutrition (BioNut), Karolinska Institutet, Stockholm, Sweden
| | - Peter Szatmary
- Liverpool Pancreatitis Research Group, Institute of Translational Medicine, University of Liverpool, Liverpool, England, UK
| | - Ralf Segersvärd
- Centre for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Stephan Haas
- Centre for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Annika Wagman
- Pancreas Cancer Research Lab, Dept. of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Urban Arnelo
- Centre for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Institute of Translational Medicine, University of Liverpool, Liverpool, England, UK
| | - Rainer L Heuchel
- Pancreas Cancer Research Lab, Dept. of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - J Matthias Löhr
- Pancreas Cancer Research Lab, Dept. of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden; Centre for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
38
|
Palestino-Dominguez M, Pelaez-Luna M, Lazzarini-Lechuga R, Rodriguez-Ochoa I, Souza V, Miranda RU, Perez-Aguilar B, Bucio L, Marquardt JU, Gomez-Quiroz LE, Gutierrez-Ruiz MC. Recombinant human hepatocyte growth factor provides protective effects in cerulein-induced acute pancreatitis in mice. J Cell Physiol 2018; 233:9354-9364. [PMID: 29341114 DOI: 10.1002/jcp.26444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/20/2017] [Accepted: 01/05/2018] [Indexed: 12/26/2022]
Abstract
Acute pancreatitis is a multifactorial disease associated with profound changes of the pancreas induced by release of digestive enzymes that lead to increase in proinflammatory cytokine production, excessive tissue necrosis, edema, and bleeding. Elevated levels of hepatocyte growth factor (HGF) and its receptor c-Met have been observed in different chronic and acute pancreatic diseases including experimental models of acute pancreatitis. In the present study, we investigated the protective effects induced by the recombinant human HGF in a mouse model of cerulein-induced acute pancreatitis. Pancreatitis was induced by 8 hourly administrations of supramaximal cerulein injections (50 µg/kg, ip). HGF treatment (20 µg/kg, iv), significantly attenuated lipase content and amylase activity in serum as well as the degree inflammation and edema overall leading to less severe histologic changes such as necrosis, induced by cerulein. Protective effects of HGF were associated with activation of pro-survival pathways such as Akt, Erk1/2, and Nrf2 and increase in executor survival-related proteins and decrease in pro-apoptotic proteins. In addition, ROS content and lipid peroxidation were diminished, and glutathione synthesis increased in pancreas. Systemic protection was observed by lung histology. In conclusion, our data indicate that HGF exerts an Nrf2 and glutathione-mediated protective effect on acute pancreatitis reflected by a reduction in inflammation, edema, and oxidative stress.
Collapse
Affiliation(s)
- Mayrel Palestino-Dominguez
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Mario Pelaez-Luna
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Roberto Lazzarini-Lechuga
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Ignacio Rodriguez-Ochoa
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Veronica Souza
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas UNAM/ Instituto nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Roxana U Miranda
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas UNAM/ Instituto nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Benjamín Perez-Aguilar
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Leticia Bucio
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas UNAM/ Instituto nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Jens U Marquardt
- 1st Department of Medicine, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, Mainz, Germany
| | - Luis Enrique Gomez-Quiroz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas UNAM/ Instituto nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Maria Concepcion Gutierrez-Ruiz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas UNAM/ Instituto nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| |
Collapse
|
39
|
Li B, Yang N, Li C, Li C, Gao K, Xie X, Dong X, Yang J, Yang Q, Tong Z, Lu G, Li W. INT-777, a bile acid receptor agonist, extenuates pancreatic acinar cells necrosis in a mouse model of acute pancreatitis. Biochem Biophys Res Commun 2018; 503:38-44. [PMID: 29859191 DOI: 10.1016/j.bbrc.2018.05.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
Abstract
Bile acids receptor TGR5 and its agonist INT-777, which has been found to be involved in the NLRP3 inflammasome pathway, play an important role in inflammatory diseases. However, the role of INT-777 in acute pancreatitis (AP) has not been reported. In this present study, we found that TGR5 was expressed in pancreatic tissue and increased after AP onset induced by caerulein and further evaluated the impact of INT-777 on the severity of AP. The results showed that INT-777 could reduce the severity of AP in mice, which was manifested as decreased pancreatic tissue damage as well as the decrease of serum enzymes (amylase and lipase), pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and the expression of necrosis related proteins (RIP3 and p-MLKL). Furthermore, we found that INT-777 reduced the reactive oxygen species (ROS) production in pancreatic acinar cells and inhibited the activation of NLRP3 inflammasome pathway. In conclusion, our data showed that INT-777 could protect pancreatic acinar cell against necrosis and reduce the severity of AP, which may be mediated by inhibiting ROS/NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Baiqiang Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Na Yang
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chuling Li
- Department of Respiratory Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Chuwei Li
- College of Clinical Medicine Science, Chengdu Medical College, Chengdu, 610083, Sichuan, China
| | - Kun Gao
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Xiaochun Xie
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Xiaowu Dong
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Jing Yang
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qi Yang
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhihui Tong
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guotao Lu
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China; Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| | - Weiqin Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
40
|
Armstrong JA, Cash NJ, Ouyang Y, Morton JC, Chvanov M, Latawiec D, Awais M, Tepikin AV, Sutton R, Criddle DN. Oxidative stress alters mitochondrial bioenergetics and modifies pancreatic cell death independently of cyclophilin D, resulting in an apoptosis-to-necrosis shift. J Biol Chem 2018; 293:8032-8047. [PMID: 29626097 PMCID: PMC5971444 DOI: 10.1074/jbc.ra118.003200] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/05/2018] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial dysfunction lies at the core of acute pancreatitis (AP). Diverse AP stimuli induce Ca2+-dependent formation of the mitochondrial permeability transition pore (MPTP), a solute channel modulated by cyclophilin D (CypD), the formation of which causes ATP depletion and necrosis. Oxidative stress reportedly triggers MPTP formation and is elevated in clinical AP, but how reactive oxygen species influence cell death is unclear. Here, we assessed potential MPTP involvement in oxidant-induced effects on pancreatic acinar cell bioenergetics and fate. H2O2 application promoted acinar cell apoptosis at low concentrations (1-10 μm), whereas higher levels (0.5-1 mm) elicited rapid necrosis. H2O2 also decreased the mitochondrial NADH/FAD+ redox ratio and ΔΨm in a concentration-dependent manner (10 μm to 1 mm H2O2), with maximal effects at 500 μm H2O2 H2O2 decreased the basal O2 consumption rate of acinar cells, with no alteration of ATP turnover at <50 μm H2O2 However, higher H2O2 levels (≥50 μm) diminished spare respiratory capacity and ATP turnover, and bioenergetic collapse, ATP depletion, and cell death ensued. Menadione exerted detrimental bioenergetic effects similar to those of H2O2, which were inhibited by the antioxidant N-acetylcysteine. Oxidant-induced bioenergetic changes, loss of ΔΨm, and cell death were not ameliorated by genetic deletion of CypD or by its acute inhibition with cyclosporine A. These results indicate that oxidative stress alters mitochondrial bioenergetics and modifies pancreatic acinar cell death. A shift from apoptosis to necrosis appears to be associated with decreased mitochondrial spare respiratory capacity and ATP production, effects that are independent of CypD-sensitive MPTP formation.
Collapse
Affiliation(s)
- Jane A Armstrong
- Departments of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Nicole J Cash
- Departments of Cellular & Molecular Physiology, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Yulin Ouyang
- Departments of Cellular & Molecular Physiology, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Jack C Morton
- Departments of Cellular & Molecular Physiology, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Michael Chvanov
- Departments of Cellular & Molecular Physiology, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Diane Latawiec
- Departments of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Muhammad Awais
- Departments of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Alexei V Tepikin
- Departments of Cellular & Molecular Physiology, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Robert Sutton
- Departments of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - David N Criddle
- Departments of Cellular & Molecular Physiology, University of Liverpool, Liverpool L69 3BX, United Kingdom.
| |
Collapse
|
41
|
Sahin A, Turkoglu S, Tunc N, Duzenci D, Solmaz OA, Bahcecioglu IH, Yalniz M. Is ischemia-modified albumin a reliable tool for the assessment of acute pancreatitis? Ther Clin Risk Manag 2018; 14:627-635. [PMID: 29636618 PMCID: PMC5881528 DOI: 10.2147/tcrm.s162690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Oxidative stress has been implicated in several disorders, including acute pancreatitis (AP). Ischemia-modified albumin (IMA), which reflects the ability to bind cobalt, has been found to be elevated in conditions of oxidative stress and tissue hypoxia. This study examined IMA and adjusted IMA levels in patients with AP, and examined the associations of IMA and adjusted IMA levels to the severity of AP. PATIENTS AND METHODS A total of 42 consecutive patients with AP and 43 age- and sex-matched control subjects were enrolled. Serum samples were obtained from patients with AP on admission as well as 48-72 hours after hospitalization, and from the controls, at the time of enrollment. Adjusted IMA was calculated by multiplying the IMA value of each patient with the ratio of the patient's albumin value and the median albumin value of the study population. The severity of AP was assessed according to the modified Atlanta classification, and the patients were divided into 2 groups: mild AP and severe AP. RESULTS The serum IMA and adjusted IMA values of patients with AP on admission and those of the controls did not differ (p=0.86 and p=0.99, respectively). The second measurements of IMA and adjusted IMA in the AP group were higher than the first measurements of both the AP group and controls (for all, p<0.01). Among the IMA measurements, only adjusted IMA on admission had the ability to predict the severity of AP. Severe AP was correlated with albumin, and the area under the curve of adjusted IMA values on admission was 0.746 for differentiating patients with severe AP from mild AP with statistical significance (p=0.005). CONCLUSION It was shown that IMA and adjusted IMA levels rise with the progression of AP. Lower levels of adjusted IMA predict the severity of AP. Further studies with serial measurements of IMA are warranted to explore the indicative role of IMA in the course of AP.
Collapse
Affiliation(s)
- Abdurrahman Sahin
- Medicine Faculty, Department of Gastroenterology, Firat University, Elazig, Turkey
| | - Semra Turkoglu
- Department of Nutrition and Dietetics, Health Sciences Faculty, Firat University, Elazig, Turkey
| | - Nurettin Tunc
- Medicine Faculty, Department of Gastroenterology, Firat University, Elazig, Turkey
| | - Deccane Duzenci
- Department of Internal Medicine, Elazig Education and Training Hospital, Elazig, Turkey
| | - Ozgen Arslan Solmaz
- Department of Pathology, Elazig Education and Training Hospital, Elazig, Turkey
| | | | - Mehmet Yalniz
- Medicine Faculty, Department of Gastroenterology, Firat University, Elazig, Turkey
| |
Collapse
|
42
|
Trimetazidine Increases Cell Survival and Inhibits the Activation of Inflammatory Response in Sodium Taurocholate–Induced Acute Pancreatitis. Int Surg 2017. [DOI: 10.9738/intsurg-d-17-00122.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective:
To evaluate the therapeutic effects of trimetazidine (TMZ) in an experimental acute pancreatitis (AP) model induced with sodium taurocholate (STC).
Summary of Background Data:
At present, AP is considered a disease with no specific treatment. Preventing mitochondrial dysfunction in acinar cells may be an option for specific treatment of AP. TMZ is an anti-ischemic drug with anti-inflammatory, antioxidant, and mitochondrial modulatory effects.
Methods:
Rats were divided into 4 groups. AP was induced in the AP (n = 7) and AP + TMZ (n = 7) groups by an injection of 4% sodium taurocholate to the pancreatic duct. The sham (n = 6) and drug (n = 6) groups were designated as control groups. The AP + TMZ and drug groups were administered TMZ. Samples were taken at 72 hours, and histopathologic changes as well as biochemical parameters were analyzed.
Results:
Serum amylase, tissue myeloperoxidase activity, malondialdehyde levels, serum cytokine levels, and mast cell degranulation rates were elevated after induction of AP, whereas tissue antioxidant enzyme activities and cell viability rates [determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay] decreased. These parameters were found to be different in the AP group compared with those in all other groups (P < 0.05). A significant improvement of all parameters was achieved with the TMZ treatment of AP. Histologically, significant differences were found between the AP and AP + TMZ groups in terms of leukocyte infiltration, necrosis, and apoptotic cell counts.
Conclusions:
In this study, we demonstrated that TMZ treatment protected the mitochondrial function and prevented the activation of the inflammatory cascade in the sodium taurocholate–induced AP model.
Collapse
|
43
|
Zeng M, Szymczak M, Ahuja M, Zheng C, Yin H, Swaim W, Chiorini JA, Bridges RJ, Muallem S. Restoration of CFTR Activity in Ducts Rescues Acinar Cell Function and Reduces Inflammation in Pancreatic and Salivary Glands of Mice. Gastroenterology 2017; 153. [PMID: 28634110 PMCID: PMC5623154 DOI: 10.1053/j.gastro.2017.06.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Sjögren's syndrome and autoimmune pancreatitis are disorders with decreased function of salivary, lacrimal glands, and the exocrine pancreas. Nonobese diabetic/ShiLTJ mice and mice transduced with the cytokine BMP6 develop Sjögren's syndrome and chronic pancreatitis and MRL/Mp mice are models of autoimmune pancreatitis. Cystic fibrosis transmembrane conductance regulator (CFTR) is a ductal Cl- channel essential for ductal fluid and HCO3- secretion. We used these models to ask the following questions: is CFTR expression altered in these diseases, does correction of CFTR correct gland function, and most notably, does correcting ductal function correct acinar function? METHODS We treated the mice models with the CFTR corrector C18 and the potentiator VX770. Glandular, ductal, and acinar cells damage, infiltration, immune cells and function were measured in vivo and in isolated duct/acini. RESULTS In the disease models, CFTR expression is markedly reduced. The salivary glands and pancreas are inflamed with increased fibrosis and tissue damage. Treatment with VX770 and, in particular, C18 restored salivation, rescued CFTR expression and localization, and nearly eliminated the inflammation and tissue damage. Transgenic overexpression of CFTR exclusively in the duct had similar effects. Most notably, the markedly reduced acinar cell Ca2+ signaling, Orai1, inositol triphosphate receptors, Aquaporin 5 expression, and fluid secretion were restored by rescuing ductal CFTR. CONCLUSIONS Our findings reveal that correcting ductal function is sufficient to rescue acinar cell function and suggests that CFTR correctors are strong candidates for the treatment of Sjögren's syndrome and pancreatitis.
Collapse
Affiliation(s)
- Mei Zeng
- Molecular Physiology and Therapeutics Branch, NIH, National Institute of Dental and Craniofacial Research, Bethesda MD,North Sichuan Medical College, Fujiang Road, Nanchong, 637000, Sichuan, China
| | - Mitchell Szymczak
- Molecular Physiology and Therapeutics Branch, NIH, National Institute of Dental and Craniofacial Research, Bethesda MD
| | - Malini Ahuja
- Molecular Physiology and Therapeutics Branch, NIH, National Institute of Dental and Craniofacial Research, Bethesda MD
| | - Changyu Zheng
- Molecular Physiology and Therapeutics Branch, NIH, National Institute of Dental and Craniofacial Research, Bethesda MD
| | - Hongen Yin
- Molecular Physiology and Therapeutics Branch, NIH, National Institute of Dental and Craniofacial Research, Bethesda MD
| | - William Swaim
- Molecular Physiology and Therapeutics Branch, NIH, National Institute of Dental and Craniofacial Research, Bethesda MD
| | - John A. Chiorini
- Molecular Physiology and Therapeutics Branch, NIH, National Institute of Dental and Craniofacial Research, Bethesda MD
| | - Robert J Bridges
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL
| | - Shmuel Muallem
- Molecular Physiology and Therapeutics Branch, National Institutes of Health, National Institute of Dental and Craniofacial Research, Bethesda, Maryland.
| |
Collapse
|
44
|
王 国, 余 玲, 刘 玲, 金 明. 血清钙离子对急性胰腺炎持续性器官功能衰竭的预测价值. Shijie Huaren Xiaohua Zazhi 2017; 25:2117-2122. [DOI: 10.11569/wcjd.v25.i23.2117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
目的 探讨血清钙离子(serum calcium Ca2+)在急性胰腺炎(acute pancreatitis, AP)持续性器官功能衰竭(persistent organ failure, POF)中的临床意义.
方法 选取2012-01/2016-12温州市龙湾区第一人民医院及温州医科大学附属第二医院进行治疗的AP患者165例, 收集患者在症状发作72 h内的临床资料及实验室数据, 分为AP非持续性器官功能衰竭(non persistent organ failure, NO-POF)127例和POF 38例两组, 多因素Logistic回归分析用于评价血清Ca2+的预测能力, 采用工作特征曲线(receiver operator characteristic curve, ROC)分析计算血清Ca2+的截断值.
结果 经急性胰腺炎NO-POF 127例和POF 38例临床资料及实验室数据比较, 血清Ca2+ POF组明显低于NO-POF组, 差异有统计学意义(P<0.001); 多因素Logistic回归分析, 血清Ca2+是急性胰腺炎POF的独立危险因素(OR = 0.30, 95%CI: 0.12-0.76); ROC分析结果显示: 血清Ca2+预测急性胰腺炎POF的曲线下面积为0.764(95%CI: 0.27-0.58, P<0.001), 其最佳预测截点1.84 mmol/L, 预测POF的敏感性为75.4%, 特异性为72.5%.
结论 入院患者血清Ca2+与急性胰腺炎POF独立相关, 可作为一个潜在的预后因素.
Collapse
|
45
|
Xiang H, Zhang Q, Qi B, Tao X, Xia S, Song H, Qu J, Shang D. Chinese Herbal Medicines Attenuate Acute Pancreatitis: Pharmacological Activities and Mechanisms. Front Pharmacol 2017; 8:216. [PMID: 28487653 PMCID: PMC5403892 DOI: 10.3389/fphar.2017.00216] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/06/2017] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP) is a commonly occurring gastrointestinal disorder. An increase in the annual incidence of AP has been observed, and it causes acute hospitalization and high mortality. The diagnosis and treatment guidelines for AP recommend conservative medical treatments focused on reducing pancreatic secretion and secondary injury, as a primary therapeutic approach. Unfortunately, the existing treatment options have limited impact on the incidence and severity of AP due to the complex and multifaceted pathological process of this disease. In recent decades, Chinese herbal medicines (CHMs) have been used as efficient therapeutic agents to attenuate AP in Asian countries. Despite early cell culture, animal models, and clinical trials, CHMs are capable of interacting with numerous molecular targets participating in the pathogenesis of AP; however, comprehensive, up-to-date communication in this field is not yet available. This review focuses on the pharmacological activities of CHMs against AP in vitro and in vivo and the underlying mechanisms. A computational prediction of few selected and promising plant-derived molecules (emodin, baicalin, resveratrol, curcumin, ligustrazine, and honokiol) to target numerous proteins or networks involved in AP was initially established based on a network pharmacology simulation. Moreover, we also summarized some potential toxic natural products for pancreas in order to more safe and reasonable medication. These breakthrough findings may have important implications for innovative drug research and the future development of treatments for AP.
Collapse
Affiliation(s)
- Hong Xiang
- College (Institute) of Integrative Medicine, Dalian Medical UniversityDalian, China
| | - Qingkai Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Bing Qi
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical UniversityDalian, China
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Huiyi Song
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Jialin Qu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Dong Shang
- College (Institute) of Integrative Medicine, Dalian Medical UniversityDalian, China.,Department of General Surgery, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| |
Collapse
|
46
|
Zhao P, Ye T, Yan X, Hu X, Liu P, Wang X. HMGB1 release by H 2O 2-induced hepatocytes is regulated through calcium overload and 58-F interference. Cell Death Discov 2017; 3:17008. [PMID: 28417016 PMCID: PMC5385391 DOI: 10.1038/cddiscovery.2017.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
HMGB1 is passively released by injured or dying cells and aggravates inflammatory processes. The release of HMGB1 and calcium overload have each been reported to be important mediators of H2O2-induced injury. However, a potential connection between these two processes remains to be elucidated. In the present study, we employed H2O2-induced hepatocytes to investigate how calcium overload takes place during cellular injury and how the extracellular release of HMGB1 is regulated by this overload. In addition, we investigated the use of 58-F, a flavanone extracted from Ophiopogon japonicus, as a potential therapeutic drug. We show that the PLCγ1-IP3R-SOC signalling pathway participates in the H2O2-induced disturbance of calcium homoeostasis and leads to calcium overload in hepatocytes. After a rise in intracellular calcium, two calcium-dependent enzymes, PKCα and CaMKIV, are activated and translocated from the cytoplasm to the nucleus to modify HMGB1 phosphorylation. In turn, this promotes HMGB1 translocation from the nucleus to the cytoplasm and subsequent extracellular release. 58-F effectively rescued the hepatocytes by suppressing the PLCγ1-IP3R-SOC signalling pathway and decreasing the calcium concentration in cells, thus reducing HMGB1 release.
Collapse
Affiliation(s)
- Pei Zhao
- The Public Experiment Platform, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tingjie Ye
- Department of Biology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaofeng Yan
- Department of Biology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xudong Hu
- Department of Biology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,E-institute of Shanghai Municipal Education Commission, Shanghai 201203, China
| | - Xiaoling Wang
- Department of Biology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
47
|
Yoon MN, Kim DK, Kim SH, Park HS. Hydrogen peroxide attenuates refilling of intracellular calcium store in mouse pancreatic acinar cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:233-239. [PMID: 28280417 PMCID: PMC5343057 DOI: 10.4196/kjpp.2017.21.2.233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 01/05/2023]
Abstract
Intracellular calcium (Ca2+) oscillation is an initial event in digestive enzyme secretion of pancreatic acinar cells. Reactive oxygen species are known to be associated with a variety of oxidative stress-induced cellular disorders including pancreatitis. In this study, we investigated the effect of hydrogen peroxide (H2O2) on intracellular Ca2+ accumulation in mouse pancreatic acinar cells. Perfusion of H2O2 at 300 µM resulted in additional elevation of intracellular Ca2+ levels and termination of oscillatory Ca2+ signals induced by carbamylcholine (CCh) in the presence of normal extracellular Ca2+. Antioxidants, catalase or DTT, completely prevented H2O2-induced additional Ca2+ increase and termination of Ca2+ oscillation. In Ca2+-free medium, H2O2 still enhanced CCh-induced intracellular Ca2+ levels and thapsigargin (TG) mimicked H2O2-induced cytosolic Ca2+ increase. Furthermore, H2O2-induced elevation of intracellular Ca2+ levels was abolished under sarco/endoplasmic reticulum Ca2+ ATPase-inactivated condition by TG pretreatment with CCh. H2O2 at 300 µM failed to affect store-operated Ca2+ entry or Ca2+ extrusion through plasma membrane. Additionally, ruthenium red, a mitochondrial Ca2+ uniporter blocker, failed to attenuate H2O2-induced intracellular Ca2+ elevation. These results provide evidence that excessive generation of H2O2 in pathological conditions could accumulate intracellular Ca2+ by attenuating refilling of internal Ca2+ stores rather than by inhibiting Ca2+ extrusion to extracellular fluid or enhancing Ca2+ mobilization from extracellular medium in mouse pancreatic acinar cells.
Collapse
Affiliation(s)
- Mi Na Yoon
- Department of Physiology, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Dong Kwan Kim
- Department of Physiology, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Se Hoon Kim
- Department of Physiology, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Hyung Seo Park
- Department of Physiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, Konyang University, Daejeon 35365, Korea
| |
Collapse
|
48
|
Dong J, Aulestia FJ, Assad Kahn S, Zeniou M, Dubois LG, El-Habr EA, Daubeuf F, Tounsi N, Cheshier SH, Frossard N, Junier MP, Chneiweiss H, Néant I, Moreau M, Leclerc C, Haiech J, Kilhoffer MC. Bisacodyl and its cytotoxic activity on human glioblastoma stem-like cells. Implication of inositol 1,4,5-triphosphate receptor dependent calcium signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1018-1027. [PMID: 28109792 DOI: 10.1016/j.bbamcr.2017.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Abstract
Glioblastoma is the most common malignant brain tumor. The heterogeneity at the cellular level, metabolic specificities and plasticity of the cancer cells are a challenge for glioblastoma treatment. Identification of cancer cells endowed with stem properties and able to propagate the tumor in animal xenografts has opened a new paradigm in cancer therapy. Thus, to increase efficacy and avoid tumor recurrence, therapies need to target not only the differentiated cells of the tumor mass, but also the cancer stem-like cells. These therapies need to be effective on cells present in the hypoxic, slightly acidic microenvironment found within tumors. Such a microenvironment is known to favor more aggressive undifferentiated phenotypes and a slow-growing "quiescent state" that preserves the cells from chemotherapeutic agents, which mostly target proliferating cells. Based on these considerations, we performed a differential screening of the Prestwick Chemical Library of approved drugs on both proliferating and quiescent glioblastoma stem-like cells and identified bisacodyl as a cytotoxic agent with selectivity for quiescent glioblastoma stem-like cells. In the present study we further characterize bisacodyl activity and show its efficacy in vitro on clonal macro-tumorospheres, as well as in vivo in glioblastoma mouse models. Our work further suggests that bisacodyl acts through inhibition of Ca2+ release from the InsP3 receptors.
Collapse
Affiliation(s)
- Jihu Dong
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France
| | - Francisco J Aulestia
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse Cedex, France
| | - Suzana Assad Kahn
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Neurosurgery, Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital Stanford University, California, USA
| | - Maria Zeniou
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France
| | - Luiz Gustavo Dubois
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Paris Seine-IBPS, Sorbonne Universities, 75005 Paris, France
| | - Elias A El-Habr
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Paris Seine-IBPS, Sorbonne Universities, 75005 Paris, France
| | - François Daubeuf
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France
| | - Nassera Tounsi
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France
| | - Samuel H Cheshier
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Neurosurgery, Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital Stanford University, California, USA
| | - Nelly Frossard
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France
| | - Marie-Pierre Junier
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Paris Seine-IBPS, Sorbonne Universities, 75005 Paris, France
| | - Hervé Chneiweiss
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Paris Seine-IBPS, Sorbonne Universities, 75005 Paris, France
| | - Isabelle Néant
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse Cedex, France
| | - Marc Moreau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse Cedex, France
| | - Catherine Leclerc
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse Cedex, France
| | - Jacques Haiech
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France.
| | - Marie-Claude Kilhoffer
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France
| |
Collapse
|
49
|
STIM-TRP Pathways and Microdomain Organization: Ca 2+ Influx Channels: The Orai-STIM1-TRPC Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:139-157. [PMID: 28900913 DOI: 10.1007/978-3-319-57732-6_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ca2+ influx by plasma membrane Ca2+ channels is the crucial component of the receptor-evoked Ca2+ signal. The two main Ca2+ influx channels of non-excitable cells are the Orai and TRPC families of Ca2+ channels. These channels are activated in response to cell stimulation and Ca2+ release from the endoplasmic reticulum (ER). The protein that conveys the Ca2+ content of the ER to the plasma membrane is the ER Ca2+ sensor STIM1. STIM1 activates the Orai channels and is obligatory for channel opening. TRPC channels can function in two modes, as STIM1-dependent and STIM1-independent. When activated by STIM1, both channel types function at the ER/PM (plasma membrane) junctions. This chapter describes the properties and regulation of the channels by STIM1, with emphasis how and when TRPC channels function as STIM1-dependent and STIM1-independent modes and their unique Ca2+-dependent physiological functions that are not shared with the Orai channels.
Collapse
|
50
|
Affiliation(s)
- Indu S Ambudkar
- Secretory Physiology Section and Epithelial Secretion and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, United States.
| | - Shmuel Muallem
- Secretory Physiology Section and Epithelial Secretion and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, United States
| |
Collapse
|