1
|
Wang C, Peng J, Xiao Y, Zhang Z, Yang X, Liang X, Yang J, Zhou X, Li C. Advances in nanotherapeutics for tumor treatment by targeting calcium overload. Colloids Surf B Biointerfaces 2025; 245:114190. [PMID: 39232477 DOI: 10.1016/j.colsurfb.2024.114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Traditional antitumor strategies are facing challenges such as low therapeutic efficacy and high side effects, highlighting the significance of developing non-toxic or low-toxic alternative therapies. As a second messenger, calcium ion (Ca2+) plays an important role in cellular metabolism and communication. However, persistent Ca2+ overload leads to mitochondrial structural and functional dysfunction and ultimately induced apoptosis. Therefore, an antitumor strategy based on calcium overload is a promising alternative. Here, we first reviewed the classification of calcium-based nanoparticles (NPs) for exogenous Ca2+ overload, including calcium carbonate (CaCO3), calcium phosphate (CaP), calcium peroxide (CaO2), and hydroxyapatite (HA), calcium hydroxide, etc. Next, the current endogenous Ca2+ overload strategies were summarized, including regulation of Ca2+ channels, destruction of membrane integrity, induction of abnormal intracellular acidity and oxidative stress. Due to the specificity of the tumor microenvironment, it is difficult to completely suppress tumor development with monotherapy. Therefore, we reviewed the progress based on mitochondrial Ca2+ overload, which improved the treatment efficiency by combining photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), sonodynamic therapy (SDT), immunogenic cell death (ICD) and gas therapy. We further explored in detail the advantages and promising new targets of this combination antitumor strategies to better address future opportunities and challenges.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Pharmacy, Yibin Hospital Affiliated to Children's Hospital of Chongqing Medical University, Yibin, Sichuan 644000, China
| | - Junrong Peng
- Department of Thyroid Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yiwei Xiao
- Department of Thyroid Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jing Yang
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
| | - Xiangyu Zhou
- Department of Thyroid Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education, Luzhou, Sichuan 646000, China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education, Luzhou, Sichuan 646000, China.
| |
Collapse
|
2
|
Gamal H, Ismail KA, Omar AMME, Teleb M, Abu-Serie MM, Huang S, Abdelsattar AS, Zamponi GW, Fahmy H. Non-small cell lung cancer sensitisation to platinum chemotherapy via new thiazole-triazole hybrids acting as dual T-type CCB/MMP-9 inhibitors. J Enzyme Inhib Med Chem 2024; 39:2388209. [PMID: 39140776 PMCID: PMC11328607 DOI: 10.1080/14756366.2024.2388209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Cisplatin remains the unchallenged standard therapy for NSCLC. However, it is not completely curative due to drug resistance and oxidative stress-induced toxicity. Drug resistance is linked to overexpression of matrix metalloproteinases (MMPs) and aberrant calcium signalling. We report synthesis of novel thiazole-triazole hybrids as MMP-9 inhibitors with T-type calcium channel blocking and antioxidant effects to sensitise NSCLC to cisplatin and ameliorate its toxicity. MTT and whole cell patch clamp assays revealed that 6d has a balanced profile of cytotoxicity (IC50 = 21 ± 1 nM, SI = 12.14) and T-type calcium channel blocking activity (⁓60% at 10 μM). It exhibited moderate ROS scavenging activity and nanomolar MMP-9 inhibition (IC50 = 90 ± 7 nM) surpassing NNGH with MMP-9 over -2 and MMP-10 over -13 selectivity. Docking and MDs simulated its receptor binding mode. Combination studies confirmed that 6d synergized with cisplatin (CI = 0.69 ± 0.05) lowering its IC50 by 6.89 folds. Overall, the study introduces potential lead adjuvants for NSCLC platinum-based therapy.
Collapse
Affiliation(s)
- Hassan Gamal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Khadiga A Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City, Egypt
| | - A-Mohsen M E Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Sun Huang
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Abdalla S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Sciences and Technology, October Gardens, Giza, Egypt
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Hesham Fahmy
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
3
|
Jasim SA, Salahdin OD, Malathi H, Sharma N, Rab SO, Aminov Z, Pramanik A, Mohammed IH, Jawad MA, Gabel BC. Targeting Hepatic Cancer Stem Cells (CSCs) and Related Drug Resistance by Small Interfering RNA (siRNA). Cell Biochem Biophys 2024; 82:3031-3051. [PMID: 39060914 DOI: 10.1007/s12013-024-01423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Tumor recurrence after curative therapy and hepatocellular carcinoma (HCC) cells' resistance to conventional therapies is the reasons for the worse clinical results of HCC patients. A tiny population of cancer cells with a strong potential for self-renewal, differentiation, and tumorigenesis has been identified as cancer stem cells (CSCs). The discovery of CSC surface markers and the separation of CSC subpopulations from HCC cells have been made possible by recent developments in the study of hepatic (liver) CSCs. Hepatic CSC surface markers include epithelial cell adhesion molecules (EpCAM), CD133, CD90, CD13, CD44, OV-6, ALDH, and K19. CSCs have a significant influence on the development of cancer, invasiveness, self-renewal, metastasis, and drug resistance in HCC, and thus provide a therapeutic chance to treat HCC and avoid its recurrence. Therefore, it is essential to develop treatment approaches that specifically and effectively target hepatic stem cells. Given this, one potential treatment approach is to use particular small interfering RNA (siRNA) to target CSC, disrupting their behavior and microenvironment as well as changing their epigenetic state. The characteristics of CSCs in HCC are outlined in this study, along with new treatment approaches based on siRNA that may be used to target hepatic CSCs and overcome HCC resistance to traditional therapies.
Collapse
Affiliation(s)
| | | | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University, Bangalore, Karnataka, India
| | - Neha Sharma
- Chandigarh Pharmacy College, Chandigarh group of Colleges, Jhanjeri, 140307, Mohali, Punjab, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Israa Hussein Mohammed
- College of nursing, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Benien C Gabel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
4
|
Liu H, Weng J, Huang CLH, Jackson AP. Voltage-gated sodium channels in cancers. Biomark Res 2024; 12:70. [PMID: 39060933 PMCID: PMC11282680 DOI: 10.1186/s40364-024-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Voltage-gated sodium channels (VGSCs) initiate action potentials in electrically excitable cells and tissues. Surprisingly, some VGSC genes are aberrantly expressed in a variety of cancers, derived from "non-excitable" tissues that do not generate classic action potentials, showing potential as a promising pharmacological target for cancer. Most of the previous review articles on this topic are limited in scope, and largely unable to provide researchers with a comprehensive understanding of the role of VGSC in cancers. Here, we review the expression patterns of all nine VGSC α-subunit genes (SCN1A-11A) and their four regulatory β-subunit genes (SCN1B-4B). We reviewed data from the Cancer Genome Atlas (TCGA) database, complemented by an extensive search of the published papers. We summarized and reviewed previous independent studies and analyzed the VGSC genes in the TCGA database regarding the potential impact of VGSC on cancers. A comparison between evidence gathered from independent studies and data review was performed to scrutinize potential biases in prior research and provide insights into future research directions. The review supports the view that VGSCs play an important role in diagnostics as well as therapeutics of some cancer types, such as breast, colon, prostate, and lung cancer. This paper provides an overview of the current knowledge on voltage-gated sodium channels in cancer, as well as potential avenues for further research. While further research is required to fully understand the role of VGSCs in cancer, the potential of VGSCs for clinical diagnosis and treatment is promising.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | - Jieling Weng
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Christopher L-H Huang
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Antony P Jackson
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
5
|
Kumari N, Pullaguri N, Rath SN, Bajaj A, Sahu V, Ealla KKR. Dysregulation of calcium homeostasis in cancer and its role in chemoresistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:11. [PMID: 38510751 PMCID: PMC10951838 DOI: 10.20517/cdr.2023.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Globally, cancer, as a major public health concern, poses a severe threat to people's well-being. Advanced and specialized therapies can now cure the majority of people with early-stage cancer. However, emerging resistance to traditional and novel chemotherapeutic drugs remains a serious issue in clinical medicine. Chemoresistance often leads to cancer recurrence, metastasis, and increased mortality, accounting for 90% of chemotherapy failures. Thus, it is important to understand the molecular mechanisms of chemoresistance and find novel therapeutic approaches for cancer treatment. Among the several factors responsible for chemoresistance, calcium (Ca2+) dysregulation plays a significant role in cancer progression and chemoresistance. Therefore, targeting this derailed Ca2+ signalling for cancer therapy has become an emerging research area. Of note, the Ca2+ signal and its proteins are a multifaceted and potent tool by which cells achieve specific outcomes. Depending on cell survival needs, Ca2+ is either upregulated or downregulated in both chemosensitive and chemoresistant cancer cells. Consequently, the appropriate treatment should be selected based on Ca2+ signalling dysregulation. This review discusses the role of Ca2+ in cancer cells and the targeting of Ca2+ channels, pumps, and exchangers. Furthermore, we have emphasised the role of Ca2+ in chemoresistance and therapeutic strategies. In conclusion, targeting Ca2+ signalling is a multifaceted process. Methods such as site-specific drug delivery, target-based drug-designing, and targeting two or more Ca2+ proteins simultaneously may be explored; however, further clinical studies are essential to validate Ca2+ blockers' anti-cancer efficacy.
Collapse
Affiliation(s)
- Neema Kumari
- Department of Microbiology, Malla Reddy Institute of Medical Sciences, Hyderabad 500055, India
- Authors contributed equally
| | - Narasimha Pullaguri
- Research & Development division, Hetero Biopharma Limited, Jadcherla 509301, India
- Authors contributed equally
| | - Subha Narayan Rath
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad 502284, India
| | - Ashish Bajaj
- National Reference Laboratory, Oncquest Laboratories Ltd., Gurugram 122001, India
| | - Vikas Sahu
- Department of Oral and Maxillofacial Pathology, Malla Reddy Institute of Dental Sciences, Hyderabad 500055, India
| | - Kranti Kiran Reddy Ealla
- Department of Oral and Maxillofacial Pathology, Malla Reddy Institute of Dental Sciences, Hyderabad 500055, India
| |
Collapse
|
6
|
Fan RF, Chen XW, Cui H, Fu HY, Xu WX, Li JZ, Lin H. Selenoprotein K knockdown induces apoptosis in skeletal muscle satellite cells via calcium dyshomeostasis-mediated endoplasmic reticulum stress. Poult Sci 2023; 102:103053. [PMID: 37716231 PMCID: PMC10507440 DOI: 10.1016/j.psj.2023.103053] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/18/2023] Open
Abstract
Skeletal muscle satellite cells (SMSCs), known as muscle stem cells, play an important role in muscle embryonic development, post-birth growth, and regeneration after injury. Selenoprotein K (SELENOK), an endoplasmic reticulum (ER) resident selenoprotein, is known to regulate calcium ion (Ca2+) flux and ER stress (ERS). SELENOK deficiency is involved in dietary selenium deficiency-induced muscle injury, but the regulatory mechanisms of SELENOK in SMSCs development remain poorly explored in chicken. Here, we established a SELENOK deficient model to explore the role of SELENOK in SMSCs. SELENOK knockdown inhibited SMSCs proliferation and differentiation by regulating the protein levels of paired box 7 (Pax7), myogenic factor 5 (Myf5), CyclinD1, myogenic differentiation (MyoD), and Myf6. Further analysis exhibited that SELENOK knockdown markedly activated the ERS signaling pathways, which ultimately induced apoptosis in SMSCs. SELENOK knockdown-induced ERS is related with ER Ca2+ ([Ca2+]ER) overload via decreasing the protein levels of STIM2, Orai1, palmitoylation of inositol 1,4,5-trisphosphate receptor 1 (IP3R1), phospholamban (PLN), and plasma membrane Ca2+-ATPase (PMCA) while increasing the protein levels of sarco/endoplasmic Ca2+-ATPase 1 (SERCA1) and Na+/Ca2+ exchanger 1 (NCX1). Moreover, thimerosal, an activator of IP3R1, reversed the overload of [Ca2+]ER, ERS, and subsequent apoptosis caused by SELENOK knockdown. These findings indicated that SELENOK knockdown triggered ERS driven by intracellular Ca2+ dyshomeostasis and further induced apoptosis, which ultimately inhibited SMSCs proliferation and differentiation.
Collapse
Affiliation(s)
- Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Xue-Wei Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Han Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Hong-Yu Fu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Wan-Xue Xu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Jiu-Zhi Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; State Key Laboratory of Crop Biology, College of Life Sciences, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
7
|
Balwierz R, Biernat P, Jasińska-Balwierz A, Siodłak D, Kusakiewicz-Dawid A, Kurek-Górecka A, Olczyk P, Ochędzan-Siodłak W. Potential Carcinogens in Makeup Cosmetics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4780. [PMID: 36981689 PMCID: PMC10048826 DOI: 10.3390/ijerph20064780] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Facial makeup cosmetics are commonly used products that are applied to the skin, and their ingredients come into contact with it for many years. Consequently, they should only contain substances that are considered safe or used within an allowable range of established concentrations. According to current European laws, all cosmetics approved for use should be entirely safe for their users, and the responsibility for this lies with manufacturers, distributors, and importers. However, the use of cosmetics can be associated with undesirable effects due to the presence of certain chemical substances. An analysis of 50 random facial makeup cosmetics commercially available on the European Union market and manufactured in six European countries was carried out, concerning the presence of substances with potential carcinogenic properties, as described in recent years in the literature. Nine types of facial makeup cosmetics were selected, and their compositions, as declared on the labels, were analyzed. The carcinogens were identified with information present in the European CosIng database and according to the Insecticide Resistance Action Committee's (IRAC) classification. As a result, the following potential carcinogens were identified: parabens (methylparaben, propylparaben, butylparaben, and ethylparaben), ethoxylated compounds (laureth-4, lautreth-7, or ethylene glycol polymers known as PEG), formaldehyde donors (imidazolidinyl urea, quaternium 15, and DMDM hydantoin), and ethanolamine and their derivatives (triethanolamine and diazolidinyl urea), as well as carbon and silica. In conclusion, all of the analyzed face makeup cosmetics contain potential carcinogenic substances. The literature review confirmed the suppositions regarding the potential carcinogenic effects of selected cosmetic ingredients. Therefore, it seems necessary to carry out studies on the long-term exposure of compounds present in cosmetics and perhaps introduce stricter standards and laws regulating the potential presence of carcinogens and their activity in cosmetics.
Collapse
Affiliation(s)
| | - Paweł Biernat
- Department of Drug Forms Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | | - Dawid Siodłak
- Faculty of Chemistry, University of Opole, 45-052 Opole, Poland
| | | | - Anna Kurek-Górecka
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Kasztanowa 3, 41-200 Sosnowiec, Poland
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Kasztanowa 3, 41-200 Sosnowiec, Poland
| | | |
Collapse
|
8
|
Park M, Sunwoo K, Kim YJ, Won M, Xu Y, Kim J, Pu Z, Li M, Kim JY, Seo JH, Kim JS. Cutting Off H + Leaks on the Inner Mitochondrial Membrane: A Proton Modulation Approach to Selectively Eradicate Cancer Stem Cells. J Am Chem Soc 2023; 145:4647-4658. [PMID: 36745678 DOI: 10.1021/jacs.2c12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are associated with the invasion and metastatic relapse of various cancers. However, current cancer therapies are limited to targeting the bulk of primary tumor cells while remaining the CSCs untouched. Here, we report a new proton (H+) modulation approach to selectively eradicate CSCs via cutting off the H+ leaks on the inner mitochondrial membrane (IMM). Based on the fruit extract of Gardenia jasminoides, a multimodal molecule channel blocker with high biosafety, namely, Bo-Mt-Ge, is developed. Importantly, in this study, we successfully identify that mitochondrial uncoupling protein UCP2 is closely correlated with the stemness of CSCs, which may offer a new perspective for selective CSC drug discovery. Mechanistic studies show that Bo-Mt-Ge can specifically inhibit the UCP2 activities, decrease the H+ influx in the matrix, regulate the electrochemical gradient, and deplete the endogenous GSH, which synergistically constitute a unique MoA to active apoptotic CSC death. Intriguingly, Bo-Mt-Ge also counteracts the therapeutic resistance via a two-pronged tactic: drug efflux pump P-glycoprotein downregulation and antiapoptotic factor (e.g., Bcl-2) inhibition. With these merits, Bo-Mt-Ge proved to be one of the safest and most efficacious anti-CSC agents, with ca. 100-fold more potent than genipin alone in vitro and in vivo. This study offers new insights and promising solutions for future CSC therapies in the clinic.
Collapse
Affiliation(s)
- Minsu Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 02841, Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul 08308, Korea
| | - Kyoung Sunwoo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yoon-Jae Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 02841, Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul 08308, Korea
| | - Miae Won
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yunjie Xu
- Department of Chemistry, Korea University, Seoul 02841, Korea.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jaewon Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Zhongji Pu
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, P. R. China
| | - Mingle Li
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Ji Young Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul 08308, Korea
| | - Jae Hong Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 02841, Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul 08308, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
9
|
Liu J, Tao M, Zhao W, Song Q, Yang X, Li M, Zhang Y, Xiu D, Zhang Z. Calcium Channel α2δ1 is Essential for Pancreatic Tumor-Initiating Cells through Sequential Phosphorylation of PKM2. Cell Mol Gastroenterol Hepatol 2022; 15:373-392. [PMID: 36244646 PMCID: PMC9791133 DOI: 10.1016/j.jcmgh.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND & AIMS Tumor-initiating cells (TICs) drive pancreatic cancer tumorigenesis, therapeutic resistance, and metastasis. However, TICs are highly plastic and heterogenous, which impede the robust identification and targeted therapy of such a population. The aim of this study is to identify the surface marker and therapeutic target for pancreatic TICs. METHODS We isolated voltage-gated calcium channel α2δ1 subunit (isoform 5)-positive subpopulation from pancreatic cancer cell lines and freshly resected primary tissues by fluorescence-activated cell sorting and evaluated their TIC properties by spheroid formation and tumorigenic assays. Coimmunoprecipitation was used to identify the direct substrate of CaMKⅡδ. RESULTS We demonstrate that the voltage-gated calcium channel α2δ1 subunit (isoform 5) marks a subpopulation of pancreatic TICs with the highest TIC frequency among the known pancreatic TIC markers tested. Furthermore, α2δ1 is functionally sufficient and indispensable to promote TIC properties by mediating Ca2+ influx, which activates CaMKⅡδ to directly phosphorylate PKM2 at T454 that results in subsequent phosphorylation at Y105 to translocate into nucleus, enhancing the stem-like properties. Interestingly, blocking α2δ1 with its specific antibody has remarkably therapeutic effects on pancreatic cancer xenografts by reducing TICs. CONCLUSIONS α2δ1 promotes pancreatic TIC properties through sequential phosphorylation of PKM2 mediated by CaMKⅡδ, and targeting α2δ1 provides a therapeutic strategy against TICs for pancreatic cancer.
Collapse
Affiliation(s)
- Jingtao Liu
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China; Department of Pharmacology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Ming Tao
- Department of General Surgery, Peking University Third Hospital, Beijing, P.R. China
| | - Wei Zhao
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Qingru Song
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Xiaodan Yang
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Meng Li
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Yanhua Zhang
- Department of Pharmacology, Peking University Cancer Hospital and Institute, Beijing, P.R. China.
| | - Dianrong Xiu
- Department of General Surgery, Peking University Third Hospital, Beijing, P.R. China.
| | - Zhiqian Zhang
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China.
| |
Collapse
|
10
|
Kouba S, Hague F, Ahidouch A, Ouadid-Ahidouch H. Crosstalk between Ca2+ Signaling and Cancer Stemness: The Link to Cisplatin Resistance. Int J Mol Sci 2022; 23:ijms231810687. [PMID: 36142596 PMCID: PMC9503744 DOI: 10.3390/ijms231810687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/28/2022] Open
Abstract
In the fight against cancer, therapeutic strategies using cisplatin are severely limited by the appearance of a resistant phenotype. While cisplatin is usually efficient at the beginning of the treatment, several patients endure resistance to this agent and face relapse. One of the reasons for this resistant phenotype is the emergence of a cell subpopulation known as cancer stem cells (CSCs). Due to their quiescent phenotype and self-renewal abilities, these cells have recently been recognized as a crucial field of investigation in cancer and treatment resistance. Changes in intracellular calcium (Ca2+) through Ca2+ channel activity are essential for many cellular processes such as proliferation, migration, differentiation, and survival in various cell types. It is now proved that altered Ca2+ signaling is a hallmark of cancer, and several Ca2+ channels have been linked to CSC functions and therapy resistance. Moreover, cisplatin was shown to interfere with Ca2+ homeostasis; thus, it is considered likely that cisplatin-induced aberrant Ca2+ signaling is linked to CSCs biology and, therefore, therapy failure. The molecular signature defining the resistant phenotype varies between tumors, and the number of resistance mechanisms activated in response to a range of pressures dictates the global degree of cisplatin resistance. However, if we can understand the molecular mechanisms linking Ca2+ to cisplatin-induced resistance and CSC behaviors, alternative and novel therapeutic strategies could be considered. In this review, we examine how cisplatin interferes with Ca2+ homeostasis in tumor cells. We also summarize how cisplatin induces CSC markers in cancer. Finally, we highlight the role of Ca2+ in cancer stemness and focus on how they are involved in cisplatin-induced resistance through the increase of cancer stem cell populations and via specific pathways.
Collapse
Affiliation(s)
- Sana Kouba
- Laboratoire de Physiologie Cellulaire et Moléculaire, Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| | - Frédéric Hague
- Laboratoire de Physiologie Cellulaire et Moléculaire, Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| | - Ahmed Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire, Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
- Département de Biologie, Faculté des Sciences, Université Ibn Zohr, Agadir 81016, Morocco
| | - Halima Ouadid-Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire, Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
- Correspondence:
| |
Collapse
|
11
|
Li S, Lee DJ, Kim HY, Kim JY, Jung YS, Jung HS. Unraveled roles of Cav1.2 in proliferation and stemness of ameloblastoma. Cell Biosci 2022; 12:145. [PMID: 36057617 PMCID: PMC9440535 DOI: 10.1186/s13578-022-00873-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Background Transcriptome analysis has been known as a functional tool for cancer research recently. Mounting evidence indicated that calcium signaling plays several key roles in cancer progression. Despite numerous studies examining calcium signaling in cancer, calcium signaling studies in ameloblastoma are limited. Results In the present study, comparative transcriptome profiling of two representative odontogenic lesions, ameloblastoma and odontogenic keratocyst, revealed that Cav1.2 (CACNA1C, an L-type voltage-gated calcium channel) is strongly enriched in ameloblastoma. It was confirmed that the Ca2+ influx in ameloblastoma cells is mainly mediated by Cav1.2 through L-type voltage-gated calcium channel agonist and blocking reagent treatment. Overexpression and knockdown of Cav1.2 showed that Cav1.2 is directly involved in the regulation of the nuclear translocation of nuclear factor of activated T cell 1 (NFATc1), which causes cell proliferation. Furthermore, a tumoroid study indicated that Cav1.2-dependent Ca2+ entry is also associated with the maintenance of stemness of ameloblastoma cells via the enhancement of Wnt/β-catenin signaling activity. Conclusion In conclusion, Cav1.2 regulates the NFATc1 nuclear translocation to enhance ameloblastoma cell proliferation. Furthermore, Cav1.2 dependent Ca2+ influx contributes to the Wnt/β-catenin activity for the ameloblastoma cell stemness and tumorigenicity. Our fundamental findings could have a major impact in the fields of oral maxillofacial surgery, and genetic manipulation or pharmacological approaches to Cav1.2 can be considered as new therapeutic options. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00873-9.
Collapse
|
12
|
Kumari N, Giri PS, Rath SN. Adjuvant role of a T-type calcium channel blocker, TTA-A2, in lung cancer treatment with paclitaxel. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:996-1007. [PMID: 35582374 PMCID: PMC8992437 DOI: 10.20517/cdr.2021.54] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022]
Abstract
Aim: Chemoresistance is a prevalent issue in cancer treatment. Paclitaxel (PTX) is a microtubule-binding anticancer drug used in various cancer treatments. However, cancer cells often show chemoresistance against PTX with the help of P-glycoprotein (Pgp) - a drug efflux pump. It has also been observed that overexpressed T-type calcium channels (TTCCs) maintain calcium homeostasis in cancer cells, and calcium has a role in chemoresistance. Therefore, the aim of this study was to test the adjuvant role of TTA-A2, a TTCC blocker, in enhancing the anticancer effect of PTX on the A549 lung adenocarcinoma cell line. Methods: Morphology assay, calcium imaging assay, clonogenic assay, apoptosis assay, and real-time polymerase chain reaction (real-time PCR) were performed to find the adjuvant role of TTA-A2. Samples were treated with PTX at 10 nM concentration and TTA-A2 at 50 and 100 nM concentrations. PTX and TTA-A2 were used in the combination treatment at 10 and 100 nM concentrations, respectively. Results: Immunocytochemistry confirmed the expression of TTCC in A549 cells. Morphology assay showed altered morphology of A549 cells. The adjuvant role of TTA-A2 was observed in the calcium imaging assay in spheroids, in the clonogenic assay in monolayers, and in the apoptosis assay in both cultures. With real-time PCR, it was observed that, even though cells express the mRNA of Pgp, it is non-significant upon treatment with PTX and TTA-A2. Conclusion: TTA-A2 can be used as an adjuvant to reduce chemoresistance in cancer cells as well as to enhance the anticancer effect of the standard anticancer drug PTX. Being a potent TTCC inhibitor, TTA-A2 may also enhance the anticancer effects of other anticancer drugs.
Collapse
Affiliation(s)
- Neema Kumari
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502285, India.,Department of Biotechnology, Indian Institute of Technology Hyderabad, Hyderabad 502285, India
| | - Pravin Shankar Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502285, India
| | - Subha Narayan Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502285, India
| |
Collapse
|
13
|
Wang S, Wang R, Gao F, Huang J, Zhao X, Li D. Pan-cancer analysis of the DNA methylation patterns of long non-coding RNA. Genomics 2022; 114:110377. [PMID: 35513292 DOI: 10.1016/j.ygeno.2022.110377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/23/2022] [Accepted: 04/27/2022] [Indexed: 11/04/2022]
Abstract
Long non-coding RNA (lncRNA) regulated by abnormal DNA methylation (ADM-lncRNA) emerges as a biomarker for cancer diagnosis and treatment. This study comprehensively described the methylation patterns of lncRNA in pan-cancer using the cancer data set in The Cancer Genome Atlas (TCGA). Based on the cancer heterogeneity of ADM-lncRNA in pan-cancer, we constructed a co-expression network of pan-cancer ADM-lncRNA (pADM-lncRNA) in 10 cancers, highlighting the combined action mode of abnormal DNA methylation, and indicating the internal connection among different cancers. Functional analysis revealed the pan-carcinogenic pathway of pADM-lncRNA and suggested potential factors for cancer heterogeneity and tumor immune microenvironment changes. Survival analysis showed the potential of pADM-lncRNA-mRNA co-expression pair as cancer biomarkers. Revealing the action mode of lncRNA and DNA methylation in cancer may help understand the key molecular mechanisms of cell carcinogenesis.
Collapse
Affiliation(s)
- Shijia Wang
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing 100069, China
| | - Rendong Wang
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing 100069, China
| | - Fang Gao
- Health Management Center, Binzhou People's Hospital, Shandong Province, China
| | - Jun Huang
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing 100069, China
| | - Xiaoxiao Zhao
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing 100069, China
| | - Dongguo Li
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
14
|
Liang C, Huang M, Li T, Li L, Sussman H, Dai Y, Siemann DW, Xie M, Tang X. Towards an integrative understanding of cancer mechanobiology: calcium, YAP, and microRNA under biophysical forces. SOFT MATTER 2022; 18:1112-1148. [PMID: 35089300 DOI: 10.1039/d1sm01618k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An increasing number of studies have demonstrated the significant roles of the interplay between microenvironmental mechanics in tissues and biochemical-genetic activities in resident tumor cells at different stages of tumor progression. Mediated by molecular mechano-sensors or -transducers, biomechanical cues in tissue microenvironments are transmitted into the tumor cells and regulate biochemical responses and gene expression through mechanotransduction processes. However, the molecular interplay between the mechanotransduction processes and intracellular biochemical signaling pathways remains elusive. This paper reviews the recent advances in understanding the crosstalk between biomechanical cues and three critical biochemical effectors during tumor progression: calcium ions (Ca2+), yes-associated protein (YAP), and microRNAs (miRNAs). We address the molecular mechanisms underpinning the interplay between the mechanotransduction pathways and each of the three effectors. Furthermore, we discuss the functional interactions among the three effectors in the context of soft matter and mechanobiology. We conclude by proposing future directions on studying the tumor mechanobiology that can employ Ca2+, YAP, and miRNAs as novel strategies for cancer mechanotheraputics. This framework has the potential to bring insights into the development of novel next-generation cancer therapies to suppress and treat tumors.
Collapse
Affiliation(s)
- Chenyu Liang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Miao Huang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Tianqi Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Lu Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Hayley Sussman
- Department of Radiation Oncology, COM, Gainesville, FL, 32611, USA
| | - Yao Dai
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Dietmar W Siemann
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Mingyi Xie
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
- Department of Biomedical Engineering, College of Engineering (COE), University of Delaware (UD), Newark, DE, 19716, USA
| | - Xin Tang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| |
Collapse
|
15
|
Lewuillon C, Laguillaumie MO, Quesnel B, Idziorek T, Touil Y, Lemonnier L. Put in a “Ca2+ll” to Acute Myeloid Leukemia. Cells 2022; 11:cells11030543. [PMID: 35159351 PMCID: PMC8834247 DOI: 10.3390/cells11030543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disorder characterized by genetic aberrations in myeloid primitive cells (blasts) which lead to their defective maturation/function and their proliferation in the bone marrow (BM) and blood of affected individuals. Current intensive chemotherapy protocols result in complete remission in 50% to 80% of AML patients depending on their age and the AML type involved. While alterations in calcium signaling have been extensively studied in solid tumors, little is known about the role of calcium in most hematologic malignancies, including AML. Our purpose with this review is to raise awareness about this issue and to present (i) the role of calcium signaling in AML cell proliferation and differentiation and in the quiescence of hematopoietic stem cells; (ii) the interplay between mitochondria, metabolism, and oxidative stress; (iii) the effect of the BM microenvironment on AML cell fate; and finally (iv) the mechanism by which chemotherapeutic treatments modify calcium homeostasis in AML cells.
Collapse
Affiliation(s)
- Clara Lewuillon
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Marie-Océane Laguillaumie
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Bruno Quesnel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Thierry Idziorek
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Yasmine Touil
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Loïc Lemonnier
- Univ. Lille, Inserm, U1003—PHYCEL—Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, F-59655 Villeneuve d’Ascq, France
- Correspondence:
| |
Collapse
|
16
|
Kim JH, Lee E, Yun J, Ryu HS, Kim HK, Ju YW, Kim K, Kim J, Moon H. Calsequestrin 2 overexpression in breast cancer increases tumorigenesis and metastasis by modulating the tumor microenvironment. Mol Oncol 2022; 16:466-484. [PMID: 34743414 PMCID: PMC8763655 DOI: 10.1002/1878-0261.13136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/05/2021] [Accepted: 11/04/2021] [Indexed: 01/16/2023] Open
Abstract
The spatial tumor shape is determined by the complex interactions between tumor cells and their microenvironment. Here, we investigated the role of a newly identified breast cancer-related gene, calsequestrin 2 (CASQ2), in tumor-microenvironment interactions during tumor growth and metastasis. We analyzed gene expression and three-dimensional tumor shape data from the breast cancer dataset of The Cancer Genome Atlas (TCGA) and identified CASQ2 as a potential regulator of tumor-microenvironment interaction. In TCGA breast cancer cases containing information of three-dimensional tumor shapes, CASQ2 mRNA showed the highest correlation with the spatial tumor shapes. Furthermore, we investigated the expression pattern of CASQ2 in human breast cancer tissues. CASQ2 was not detected in breast cancer cell lines in vitro but was induced in the xenograft tumors and human breast cancer tissues. To evaluate the role of CASQ2, we established CASQ2-overexpressing breast cancer cell lines for in vitro and in vivo experiments. CASQ2 overexpression in breast cancer cells resulted in a more aggressive phenotype and altered epithelial-mesenchymal transition (EMT) markers in vitro. CASQ2 overexpression induced cancer-associated fibroblast characteristics along with increased hypoxia-inducible factor 1α (HIF1α) expression in stromal fibroblasts. CASQ2 overexpression accelerated tumorigenesis, induced collagen structure remodeling, and increased distant metastasis in vivo. CASQ2 conferred more metaplastic features to triple-negative breast cancer cells. Our data suggest that CASQ2 is a key regulator of breast cancer tumorigenesis and metastasis by modulating diverse aspects of tumor-microenvironment interactions.
Collapse
Affiliation(s)
- Ju Hee Kim
- Biomedical Research InstituteSeoul National University HospitalSouth Korea
| | - Eun‐Shin Lee
- Biomedical Research InstituteSeoul National University HospitalSouth Korea
- Department of PathologySeoul National University School of MedicineSouth Korea
| | - Jihui Yun
- Genomic Medicine InstituteMedical Research CenterSeoul National UniversityKorea
- Department of Biomedical SciencesSeoul National University College of MedicineKorea
| | - Han Suk Ryu
- Department of PathologySeoul National University HospitalSouth Korea
| | - Hong Kyu Kim
- Department of SurgerySeoul National University HospitalKorea
| | - Young Wook Ju
- Department of SurgerySeoul National University HospitalKorea
| | - Kwangsoo Kim
- Division of Clinical BioinformaticsSeoul National University HospitalKorea
| | - Jong‐Il Kim
- Genomic Medicine InstituteMedical Research CenterSeoul National UniversityKorea
- Department of Biomedical SciencesSeoul National University College of MedicineKorea
- Cancer Research InstituteSeoul National UniversityKorea
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineKorea
| | - Hyeong‐Gon Moon
- Department of SurgerySeoul National University HospitalKorea
- Cancer Research InstituteSeoul National UniversityKorea
- Department of SurgerySeoul National University College of MedicineSouth Korea
| |
Collapse
|
17
|
Terrié E, Déliot N, Benzidane Y, Harnois T, Cousin L, Bois P, Oliver L, Arnault P, Vallette F, Constantin B, Coronas V. Store-Operated Calcium Channels Control Proliferation and Self-Renewal of Cancer Stem Cells from Glioblastoma. Cancers (Basel) 2021; 13:cancers13143428. [PMID: 34298643 PMCID: PMC8307764 DOI: 10.3390/cancers13143428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Glioblastoma is a high-grade primary brain tumor that contains a subpopulation of cells called glioblastoma stem cells, which are responsible for tumor initiation, growth and recurrence after treatment. Recent transcriptomic studies have highlighted that calcium pathways predominate in glioblastoma stem cells. Calcium channels have the ability to transduce signals from the microenvironment and are therefore ideally placed to control cellular behavior. Using multiple approaches, we demonstrate in five different primary cultures, previously derived from surgical specimens, that glioblastoma stem cells express store-operated channels (SOC) that support calcium entry into these cells. Pharmacological inhibition of SOC dramatically reduces cell proliferation and stem cell self-renewal in these cultures. By identifying SOC as a critical mechanism involved in the maintenance of the stem cell population in glioblastoma, our study will contribute to the framework for the identification of new therapies against this deadly tumor. Abstract Glioblastoma is the most frequent and deadly form of primary brain tumors. Despite multimodal treatment, more than 90% of patients experience tumor recurrence. Glioblastoma contains a small population of cells, called glioblastoma stem cells (GSC) that are highly resistant to treatment and endowed with the ability to regenerate the tumor, which accounts for tumor recurrence. Transcriptomic studies disclosed an enrichment of calcium (Ca2+) signaling transcripts in GSC. In non-excitable cells, store-operated channels (SOC) represent a major route of Ca2+ influx. As SOC regulate the self-renewal of adult neural stem cells that are possible cells of origin of GSC, we analyzed the roles of SOC in cultures of GSC previously derived from five different glioblastoma surgical specimens. Immunoblotting and immunocytochemistry experiments showed that GSC express Orai1 and TRPC1, two core SOC proteins, along with their activator STIM1. Ca2+ imaging demonstrated that SOC support Ca2+ entries in GSC. Pharmacological inhibition of SOC-dependent Ca2+ entries decreased proliferation, impaired self-renewal, and reduced expression of the stem cell marker SOX2 in GSC. Our data showing the ability of SOC inhibitors to impede GSC self-renewal paves the way for a strategy to target the cells considered responsible for conveying resistance to treatment and tumor relapse.
Collapse
Affiliation(s)
- Elodie Terrié
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
| | - Nadine Déliot
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
| | - Yassine Benzidane
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
| | - Thomas Harnois
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
| | - Laëtitia Cousin
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
| | - Patrick Bois
- EA 4379, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France;
| | - Lisa Oliver
- CRCINA-UMR 1232 INSERM, Université de Nantes, CEDEX 01, 44007 Nantes, France; (L.O.); (F.V.)
| | - Patricia Arnault
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
| | - François Vallette
- CRCINA-UMR 1232 INSERM, Université de Nantes, CEDEX 01, 44007 Nantes, France; (L.O.); (F.V.)
- CNRS GDR3697, Micronit “Microenvironment of Tumor Niches”, 37000 Tours, France
| | - Bruno Constantin
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
- CNRS GDR3697, Micronit “Microenvironment of Tumor Niches”, 37000 Tours, France
| | - Valérie Coronas
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
- CNRS GDR3697, Micronit “Microenvironment of Tumor Niches”, 37000 Tours, France
- Correspondence: ; Tel.: +33-(0)5-49-45-36-55
| |
Collapse
|
18
|
Novohradsky V, Markova L, Kostrhunova H, Kasparkova J, Ruiz J, Marchán V, Brabec V. A Cyclometalated Ir III Complex Conjugated to a Coumarin Derivative Is a Potent Photodynamic Agent against Prostate Differentiated and Tumorigenic Cancer Stem Cells. Chemistry 2021; 27:8547-8556. [PMID: 33835526 DOI: 10.1002/chem.202100568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Indexed: 12/14/2022]
Abstract
A cyclometalated IrIII complex conjugated to a far-red-emitting coumarin, IrIII -COUPY (3), was recently shown as a very promising photosensitizer suitable for photodynamic therapy of cancer. Therefore, the primary goal of this work was to deepen knowledge on the mechanism of its photoactivated antitumor action so that this information could be used to propose a new class of compounds as drug candidates for curing very hardly treatable human tumors, such as androgen resistant prostatic tumors of metastatic origin. Conventional anticancer chemotherapies exhibit several disadvantages, such as limited efficiency to target cancer stem cells (CSCs), which are considered the main reason for chemotherapy resistance, relapse, and metastasis. Herein, we show, using DU145 tumor cells, taken as the model of hormone-refractory and aggressive prostate cancer cells resistant to conventional antineoplastic drugs, that the photoactivated conjugate 3 very efficiently eliminates both prostate bulk (differentiated) and prostate hardly treatable CSCs simultaneously and with a similar efficiency. Notably, the very low toxicity of IrIII -COUPY conjugate in the prostate DU145 cells in the dark and its pronounced selectivity for tumor cells compared with noncancerous cells could result in low side effects and reduced damage of healthy cells during the photoactivated therapy by this agent. Moreover, the experiments performed with the 3D spheroids formed from DU145 CSCs showed that conjugate 3 can penetrate the inner layers of tumor spheres, which might markedly increase its therapeutic effect. Also interestingly, this conjugate induces apoptotic cell death in prostate cancer DU145 cells associated with calcium signaling flux in these cells and autophagy. To the best of our knowledge, this is the first study demonstrating that a photoactivatable metal-based compound is an efficient agent capable of killing even hardly treatable CSCs.
Collapse
Affiliation(s)
- Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30071, Murcia, Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| |
Collapse
|
19
|
Yu Y, Yang X, Reghu S, Kaul SC, Wadhwa R, Miyako E. Photothermogenetic inhibition of cancer stemness by near-infrared-light-activatable nanocomplexes. Nat Commun 2020; 11:4117. [PMID: 32807785 PMCID: PMC7431860 DOI: 10.1038/s41467-020-17768-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Strategies for eradicating cancer stem cells (CSCs) are urgently required because CSCs are resistant to anticancer drugs and cause treatment failure, relapse and metastasis. Here, we show that photoactive functional nanocarbon complexes exhibit unique characteristics, such as homogeneous particle morphology, high water dispersibility, powerful photothermal conversion, rapid photoresponsivity and excellent photothermal stability. In addition, the present biologically permeable second near-infrared (NIR-II) light-induced nanocomplexes photo-thermally trigger calcium influx into target cells overexpressing the transient receptor potential vanilloid family type 2 (TRPV2). This combination of nanomaterial design and genetic engineering effectively eliminates cancer cells and suppresses stemness of cancer cells in vitro and in vivo. Finally, in molecular analyses of mechanisms, we show that inhibition of cancer stemness involves calcium-mediated dysregulation of the Wnt/β-catenin signalling pathway. The present technological concept may lead to innovative therapies to address the global issue of refractory cancers. Cancer stem cells (CSCs) are known to induce chemotherapy resistance, and cause tumour relapse and metastasis. Here, the authors develop photoactive nanocarbon complexes with second near-infrared photothermal ability to target cancer cells overexpressing the receptor TRPV2 and show it to suppress CSCs through dysregulation of the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Yue Yu
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Ikeda, 563-8577, Japan
| | - Xi Yang
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Sheethal Reghu
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Sunil C Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Cellular and Molecular Biotechnology Research Institute, AIST, Tsukuba, 305-8565, Japan
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Cellular and Molecular Biotechnology Research Institute, AIST, Tsukuba, 305-8565, Japan
| | - Eijiro Miyako
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan.
| |
Collapse
|
20
|
Kumari N, Bhargava A, Rath SN. T-type calcium channel antagonist, TTA-A2 exhibits anti-cancer properties in 3D spheroids of A549, a lung adenocarcinoma cell line. Life Sci 2020; 260:118291. [PMID: 32810510 DOI: 10.1016/j.lfs.2020.118291] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
Abstract
AIMS Despite the advanced cancer treatments, there is increased resistance to chemotherapy and subsequent mortality. In lack of reliable data in monolayer cultures and animal models, researchers are shifting to 3D cancer spheroids, which represents the in vivo robust tumour morphology. Calcium is essential in cell signalling and proliferation. It is found that T-type calcium channels (TTCCs) are overexpressed in various cancer cells, supporting their increased proliferation. Many of the TTCCs blockers available could target other channels besides TTCCs, which can cause adverse effects. Therefore, we hypothesise that TTA-A2, a highly selective blocker towards TTCCs, can inhibit the growth of cancer spheroids, and provide an anti-cancer and an adjuvant role in cancer therapy. METHODS We studied TTA-A2 and paclitaxel (PTX-control drug) in lung adenocarcinoma cell line- A549, cancer cells and human embryonic kidney cell line- HEK 293, control cell, in their monolayer and spheroids forms for viability, proliferation, morphology change, migration, and invasion-after 48-96 h of treatment. KEY FINDINGS Though the results varied between the monolayer and spheroids studies, we found both anti-cancer as well as adjuvant effect of TTA-A2 in both the studies. TTA-A2 was able to inhibit the growth, viability, and metastasis of the cancer cells and spheroids. Differences in the results of two modes might explain that why drugs tested successfully in monolayer culture fail in clinical trials. SIGNIFICANCE This study establishes the role of TTA-A2, a potent TTCC blocker as an anti-cancer and adjuvant drug in reducing the viability and metastasis of the cancer cells.
Collapse
Affiliation(s)
- Neema Kumari
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India; Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Subha Narayan Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India.
| |
Collapse
|
21
|
Affiliation(s)
- Mathieu Gautier
- Laboratoire de Physiologie Cellulaire et Moléculaire - EA4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), F-80039, Amiens, France.
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology and Penn State Cancer Institute (Mechanisms of Carcinogenesis), Penn State University College of Medicine, H166, 500 University Drive, Hershey, PA, 17033, USA.
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center, Honolulu, HI 96813, USA; University of Hawaii Cancer Center and John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Christophe Vandier
- Nutrition-Growth and Cancer-INSERM UMR 1069, Université de Tours, F-37000, Tours, France
| | - Halima Ouadid-Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire - EA4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), F-80039, Amiens, France
| |
Collapse
|