1
|
Liu G, Qi Y, Wu J, Lin F, Liu Z, Cui X. Follistatin is a crucial chemoattractant for mouse decidualized endometrial stromal cell migration by JNK signalling. J Cell Mol Med 2022; 27:127-140. [PMID: 36528873 PMCID: PMC9806297 DOI: 10.1111/jcmm.17648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/19/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Follistatin (FST) and activin A as gonadal proteins exhibit opposite effects on follicle-stimulating hormone (FSH) release from pituitary gland, and activin A-FST system is involved in regulation of decidualization in reproductive biology. However, the roles of FST and activin A in migration of decidualized endometrial stromal cells are not well characterized. In this study, transwell chambers and microfluidic devices were used to assess the effects of FST and activin A on migration of decidualized mouse endometrial stromal cells (d-MESCs). We found that compared with activin A, FST exerted more significant effects on adhesion, wound healing and migration of d-MESCs. Similar results were also seen in the primary cultured decidual stromal cells (DSCs) from uterus of pregnant mouse. Simultaneously, the results revealed that FST increased calcium influx and upregulated the expression levels of the migration-related proteins MMP9 and Ezrin in d-MESCs. In addition, FST increased the level of phosphorylation of JNK in d-MESCs, and JNK inhibitor AS601245 significantly attenuated FST action on inducing migration of d-MESCs. These data suggest that FST, not activin A in activin A-FST system, is a crucial chemoattractant for migration of d-MESCs by JNK signalling to facilitate the successful uterine decidualization and tissue remodelling during pregnancy.
Collapse
Affiliation(s)
- Guole Liu
- Department of Immunology, College of Basic Medical SciencesJilin UniversityChangchunChina
| | - Yan Qi
- Department of Immunology, College of Basic Medical SciencesJilin UniversityChangchunChina
| | - Jiandong Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Francis Lin
- Department of Physics and AstronomyUniversity of ManitobaWinnipegManitobaCanada
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical SciencesJilin UniversityChangchunChina
| | - Xueling Cui
- Department of Genetics, College of Basic Medical SciencesJilin UniversityChangchunChina
| |
Collapse
|
2
|
Bao L, Festa F, Hirschler-Laszkiewicz I, Keefer K, Wang HG, Cheung JY, Miller BA. The human ion channel TRPM2 modulates migration and invasion in neuroblastoma through regulation of integrin expression. Sci Rep 2022; 12:20544. [PMID: 36446940 PMCID: PMC9709080 DOI: 10.1038/s41598-022-25138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Transient receptor potential channel TRPM2 is highly expressed in many cancers and involved in regulation of key physiological processes including mitochondrial function, bioenergetics, and oxidative stress. In Stage 4 non-MYCN amplified neuroblastoma patients, high TRPM2 expression is associated with worse outcome. Here, neuroblastoma cells with high TRPM2 expression demonstrated increased migration and invasion capability. RNA sequencing, RT-qPCR, and Western blotting demonstrated that the mechanism involved significantly greater expression of integrins α1, αv, β1, and β5 in cells with high TRPM2 expression. Transcription factors HIF-1α, E2F1, and FOXM1, which bind promoter/enhancer regions of these integrins, were increased in cells with high TRPM2 expression. Subcellular fractionation confirmed high levels of α1, αv, and β1 membrane localization and co-immunoprecipitation confirmed the presence of α1β1, αvβ1, and αvβ5 complexes. Inhibitors of α1β1, αvβ1, and αvβ5 complexes significantly reduced migration and invasion in cells highly expressing TRPM2, confirming their functional role. Increased pAktSer473 and pERKThr202/Tyr204, which promote migration through mechanisms including integrin activation, were found in cells highly expressing TRPM2. TRPM2 promotes migration and invasion in neuroblastoma cells with high TRPM2 expression through modulation of integrins together with enhancing cell survival, negatively affecting patient outcome and providing rationale for TRPM2 inhibition in anti-neoplastic therapy.
Collapse
Affiliation(s)
- Lei Bao
- grid.29857.310000 0001 2097 4281Departments of Pediatrics, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA
| | - Fernanda Festa
- grid.29857.310000 0001 2097 4281Departments of Pediatrics, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA
| | - Iwona Hirschler-Laszkiewicz
- grid.29857.310000 0001 2097 4281Departments of Pediatrics, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA
| | - Kerry Keefer
- grid.29857.310000 0001 2097 4281Departments of Pediatrics, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA
| | - Hong-Gang Wang
- grid.29857.310000 0001 2097 4281Departments of Pediatrics, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Departments of Pharmacology, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA
| | - Joseph Y. Cheung
- grid.62560.370000 0004 0378 8294Renal Medicine, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Barbara A. Miller
- grid.29857.310000 0001 2097 4281Departments of Pediatrics, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA
| |
Collapse
|
3
|
The human ion channel TRPM2 modulates cell survival in neuroblastoma through E2F1 and FOXM1. Sci Rep 2022; 12:6311. [PMID: 35428820 PMCID: PMC9012789 DOI: 10.1038/s41598-022-10385-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential channel melastatin 2 (TRPM2) is highly expressed in cancer and has an essential function in preserving viability through maintenance of mitochondrial function and antioxidant response. Here, the role of TRPM2 in cell survival was examined in neuroblastoma cells with TRPM2 deletion with CRISPR technology. Viability was significantly decreased in TRPM2 knockout after doxorubicin treatment. RNA sequence analysis and RT-qPCR revealed reduced RNAs encoding master transcription regulators FOXM1 and E2F1/2 and downstream cell cycle targets including Cyclin B1, CDK1, PLK1, and CKS1. CHIP analysis demonstrated decreased FOXM1 binding to their promoters. Western blotting confirmed decreased expression, and increased expression of CDK inhibitor p21, a CKS1 target. In cells with TRPM2 deletion, cell cycle progression to S and G2/M phases was reduced after treatment with doxorubicin. RNA sequencing also identified decreased DNA repair proteins in cells with TRPM2 deletion after doxorubicin treatment, and DNA damage was increased. Wild type TRPM2, but not Ca2+-impermeable mutant E960D, restored live cell number and reconstituted expression of E2F1, FOXM1, and cell cycle/DNA repair proteins. FOXM1 expression alone restored viability. TRPM2 is a potential therapeutic target to reduce tumor proliferation and increase doxorubicin sensitivity through modulation of FOXM1, E2F1, and cell cycle/DNA repair proteins.
Collapse
|
4
|
Deng Y, Hu S, Luo C, Ouyang Q, Li L, Ma J, Lin Z, Chen J, Liu H, Hu J, Chen G, Shu D, Pan Y, Hu B, He H, Qu H, Wang J. Integrative analysis of histomorphology, transcriptome and whole genome resequencing identified DIO2 gene as a crucial gene for the protuberant knob located on forehead in geese. BMC Genomics 2021; 22:487. [PMID: 34193033 PMCID: PMC8244220 DOI: 10.1186/s12864-021-07822-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND During domestication, remarkable changes in behavior, morphology, physiology and production performance have taken place in farm animals. As one of the most economically important poultry, goose owns a unique appearance characteristic called knob, which is located at the base of the upper bill. However, neither the histomorphology nor the genetic mechanism of the knob phenotype has been revealed in geese. RESULTS In the present study, integrated radiographic, histological, transcriptomic and genomic analyses revealed the histomorphological characteristics and genetic mechanism of goose knob. The knob skin was developed, and radiographic results demonstrated that the knob bone was obviously protuberant and pneumatized. Histologically, there were major differences in structures in both the knob skin and bone between geese owing knob (namely knob-geese) and those devoid of knob (namely non-knob geese). Through transcriptome analysis, 592 and 952 genes differentially expressed in knob skin and bone, and significantly enriched in PPAR and Calcium pathways in knob skin and bone, respectively, which revealed the molecular mechanisms of histomorphological differences of the knob between knob- and non-knob geese. Furthermore, integrated transcriptomic and genomic analysis contributed to the identification of 17 and 21 candidate genes associated with the knob formation in the skin and bone, respectively. Of them, DIO2 gene could play a pivotal role in determining the knob phenotype in geese. Because a non-synonymous mutation (c.642,923 G > A, P265L) changed DIO2 protein secondary structure in knob geese, and Sanger sequencing further showed that the AA genotype was identified in the population of knob geese, and was prevalent in a crossing population which was artificially selected for 10 generations. CONCLUSIONS This study was the first to uncover the knob histomorphological characteristics and genetic mechanism in geese, and DIO2 was identified as the crucial gene associated with the knob phenotype. These data not only expand and enrich our knowledge on the molecular mechanisms underlying the formation of head appendages in both mammalian and avian species, but also have important theoretical and practical significance for goose breeding.
Collapse
Affiliation(s)
- Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Chenglong Luo
- The Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong, 510640, Guangzhou, China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Jiaming Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Zhenping Lin
- The Baisha Livestock and Poultry Original Species Research Institute, Guangdong, 515000, Shantou, China
| | - Junpeng Chen
- The Baisha Livestock and Poultry Original Species Research Institute, Guangdong, 515000, Shantou, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Guohong Chen
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Jiangsu, 225009, Yangzhou, China
| | - Dingming Shu
- The Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong, 510640, Guangzhou, China
| | - Yuxuan Pan
- The Baisha Livestock and Poultry Original Species Research Institute, Guangdong, 515000, Shantou, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Hao Qu
- The Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong, 510640, Guangzhou, China.
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China.
| |
Collapse
|
5
|
Dong R, Yang R, Zhan Y, Lai HD, Ye CJ, Yao XY, Luo WQ, Cheng XM, Miao JJ, Wang JF, Liu BH, Liu XQ, Xie LL, Li Y, Zhang M, Chen L, Song WC, Qian W, Gao WQ, Tang YH, Shen CY, Jiang W, Chen G, Yao W, Dong KR, Xiao XM, Zheng S, Li K, Wang J. Single-Cell Characterization of Malignant Phenotypes and Developmental Trajectories of Adrenal Neuroblastoma. Cancer Cell 2020; 38:716-733.e6. [PMID: 32946775 DOI: 10.1016/j.ccell.2020.08.014] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/08/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
Neuroblastoma (NB), which is a subtype of neural-crest-derived malignancy, is the most common extracranial solid tumor occurring in childhood. Despite extensive research, the underlying developmental origin of NB remains unclear. Using single-cell RNA sequencing, we generate transcriptomes of adrenal NB from 160,910 cells of 16 patients and transcriptomes of putative developmental cells of origin of NB from 12,103 cells of early human embryos and fetal adrenal glands at relatively late development stages. We find that most adrenal NB tumor cells transcriptionally mirror noradrenergic chromaffin cells. Malignant states also recapitulate the proliferation/differentiation status of chromaffin cells in the process of normal development. Our findings provide insight into developmental trajectories and cellular states underlying human initiation and progression of NB.
Collapse
Affiliation(s)
- Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China.
| | - Ran Yang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Hua-Dong Lai
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chun-Jing Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Xiao-Ying Yao
- Family Planning Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Wen-Qin Luo
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiao-Mu Cheng
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ju-Ju Miao
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jun-Feng Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Bai-Hui Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Xiang-Qi Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Lu-Lu Xie
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Yi Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Man Zhang
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lian Chen
- Department of Pathology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Wei-Chen Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wei Qian
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wei-Qiang Gao
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China; State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yun-Hui Tang
- Family Planning Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Chun-Yan Shen
- Family Planning Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Wei Jiang
- Genergy Bio-technology (Shanghai) Co., Ltd, Shanghai 200235, China
| | - Gong Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Wei Yao
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Kui-Ran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Xian-Min Xiao
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Kai Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China.
| | - Jia Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
6
|
Sun Y, Nascimento Da Conceicao V, Ahamad N, Madesh M, Singh BB. Spatial localization of SOCE channels and its modulators regulate neuronal physiology and contributes to pathology. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Zakharko MA, Panchenko PA, Ignatov PA, Fedorov YV, Fedorova OA. New conjugate of bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetate with naphthalimide as a fluorescent sensor for calcium cations. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Affiliation(s)
- Mathieu Gautier
- Laboratoire de Physiologie Cellulaire et Moléculaire - EA4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), F-80039, Amiens, France.
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology and Penn State Cancer Institute (Mechanisms of Carcinogenesis), Penn State University College of Medicine, H166, 500 University Drive, Hershey, PA, 17033, USA.
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center, Honolulu, HI 96813, USA; University of Hawaii Cancer Center and John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Christophe Vandier
- Nutrition-Growth and Cancer-INSERM UMR 1069, Université de Tours, F-37000, Tours, France
| | - Halima Ouadid-Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire - EA4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), F-80039, Amiens, France
| |
Collapse
|