1
|
Sari AAA, El-Bahy SM, Debbabi KF, El-Sayed R, Amin AS. Quantification of arsenic in real samples using a spectrophotometric cloud point extraction of the formed ion pair with astrazon orange G. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124787. [PMID: 38972096 DOI: 10.1016/j.saa.2024.124787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
A novel cloud-point extraction (CPE) procedure for the determination of ultra-trace amounts of arsenic species in real samples, purchased from the local market by spectrophotometer was developed. Inorganic arsenic species analysis in water, beverages, and foods has become increasingly important in recent years, as arsenic species are considered carcinogenic and are assessed at significant levels in samples. The technique is established on a selective ternary complex of As(V) with astrazon orange G (AOG+) in the presence of tartaric acid and polyethylene glycol tertoctylphenyl ether (Triton X-114) at pH 4.0. The calibration curve developed within range 3.0-160 ng/mL with a correlation coefficient of 0.9988 for As(V) provided a preconcentration factor of 200 and a limit of detection (3S blank/m) of 0.88 ng/mL under optimum investigation conditions. The results of molar absorptivity and Sandell sensitivity are calculated and found to be 4.38 × 105 L/mol cm and 0.018 ng cm-2, respectively. The statistical treatment of data obtained from the proposed and GF-AAS procedures are compared in terms of Student's t-tests and variance ratio F-tests has revealed no significant differences. The methodology has been effectively confirmed by assessing real samples and comparing it to the GF-AAS method statistically.
Collapse
Affiliation(s)
- Abdullah A A Sari
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Salah M El-Bahy
- Department of Chemistry, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Khaled F Debbabi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, 21955 Makkah, Saudi Arabia; Department of Chemistry, High Institute of Applied Science & Technology of Monastir, Monastir, Tunisia
| | - Refat El-Sayed
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, 21955 Makkah, Saudi Arabia; Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Alaa S Amin
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt.
| |
Collapse
|
2
|
Youssif MM, El-Attar HG, Małecki S, Włoch G, Czapkiewicz M, Kornaus K, Wojnicki M. Mercury Ion Selective Adsorption from Aqueous Solution Using Amino-Functionalized Magnetic Fe 2O 3/SiO 2 Nanocomposite. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4254. [PMID: 39274644 PMCID: PMC11396377 DOI: 10.3390/ma17174254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
This study focuses on the development of new amino-functionalized magnetic Fe2O3/SiO2 nanocomposites with varying silicate shell ratios (1:0.5, 1:1, and 1:2) for the efficient elimination of Hg2+ ions found in solutions. The Fe2O3/SiO2-NH2 adsorbents were characterized for their structural, surface, and magnetic properties using various techniques, including Fourier transform infrared spectrum (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Braunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), zeta-potential, and particle size measurement. We investigated the adsorption circumstances, such as pH, dosage of the adsorbent, and duration of adsorption. The pH value that yielded the best results was determined to be 5.0. The Fe2O3/SiO2-NH2 adsorbent with a silicate ratio of (1:2) exhibited the largest amount of adsorption capacity of 152.03 mg g-1. This can be attributed to its significantly large specific surface area of 100.1 m2 g-1, which surpasses that of other adsorbents. The adsorbent with amino functionalization demonstrated a strong affinity for Hg2+ ions due to the chemical interactions between the metal ions and the amino groups on the surface. The analysis of adsorption kinetics demonstrated that the adsorption outcomes adhere to the pseudo-second-order kinetic model. The study of adsorption isotherms revealed that the adsorption followed the Langmuir model, indicating that the adsorption of Hg2+ ions with the adsorbent occurred as a monomolecular layer adsorption process. Furthermore, the thermodynamic analyses revealed that the adsorption of Hg2+ ions using the adsorbent was characterized by a spontaneous and endothermic process. Additionally, the adsorbent has the ability to selectively extract mercury ions from a complex mixture of ions. The Fe2O3/SiO2-NH2 nanocomposite, which is loaded with metal, can be easily recovered from a water solution due to its magnetic properties. Moreover, it can be regenerated effortlessly through acid treatment. This study highlights the potential use of amino-functionalized Fe2O3/SiO2 magnetic nanoparticles as a highly efficient, reusable adsorbent for the removal of mercury ions from contaminated wastewater.
Collapse
Affiliation(s)
- Mahmoud M Youssif
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Heba G El-Attar
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Stanisław Małecki
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
| | - Grzegorz Włoch
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
| | - Maciej Czapkiewicz
- Faculty of Computer Science, Electronics and Telecommunications, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Kamil Kornaus
- Faculty of Materials Science and Ceramics, Department of Ceramics and Refractory Materials, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
3
|
Alshammari MS. Tetraethylenepentamine-Grafted Amino Terephthalic Acid-Modified Activated Carbon as a Novel Adsorbent for Efficient Removal of Toxic Pb(II) from Water. Molecules 2024; 29:1586. [PMID: 38611865 PMCID: PMC11013411 DOI: 10.3390/molecules29071586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, a new composite, tetraethylenepentamine (TEPA), was incorporated into amino terephthalic acid-modified activated carbon (ATA@AC) through a one-pot integration of TEPA with the COOH moiety of ATA@AC. This process resulted in the creation of a TEPA@ATA@AC composite for Pb(II) removal from an aquatic environment. Several techniques, including SEM, EDX, FT-IR, TGA, XRD, and Zeta potential, were employed to emphasize the chemical composition, morphology, and thermal durability of the as-synthesized TEPA@ATA@AC composite. The impact of experimental variables on the adsorption of Pb(II) ions was studied using batch adsorption. The uptake assessment suggested that the TEPA@ATA@AC composite exhibited superior Pb(II) removal performance with high removal efficiency (97.65%) at pH = 6.5, dosage = 0.02 g, equilibrium time = 300 min, and temperature = 298 K. The isotherm data exhibited good conformity with the Langmuir isotherm model, whereas the kinetics data displayed strong agreement with both pseudo-first-order and pseudo-second-order kinetics models. This reflected that the Pb((II) uptake by the TEPA@ATA@AC composite was caused by physisorption coupled with limited chemisorption. The greatest monolayer uptake capacity of the TEPA@ATA@AC composite was 432.8 mg/g. The thermodynamic findings indicated that the Pb(II) uptake on the TEPA@ATA@AC composite was an exothermic and feasible process. After five adsorption-desorption runs, the TEPA@ATA@AC composite maintained a superior uptake capacity (83.80%). In summary, the TEPA@ATA@AC composite shows promise as a potent adsorbent for effectively removing Cr(VI) from contaminated water, with impressive removal efficiency.
Collapse
Affiliation(s)
- Mutairah S Alshammari
- Chemistry Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72341, Saudi Arabia
| |
Collapse
|
4
|
Shao Z, Xing C, Xue M, Fang Y, Li P. Selective removal of Pb(II) from yellow rice wine using magnetic carbon-based adsorbent. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6929-6939. [PMID: 37308807 DOI: 10.1002/jsfa.12776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND The non-distilled property and prolonged production period of yellow rice wine have significantly increased the metal residue problem, posing a threat to human health. In this study, a magnetic carbon-based adsorbent, named magnetic nitrogen-doped carbon (M-NC), was developed for the selective removal of lead(II) (Pb(II)) from yellow rice wine. RESULTS The results showed that the uniformly structured M-NC could be easily separated from the solution, exhibiting a high Pb(II) adsorption capacity of 121.86 mg g-1 . The proposed adsorption treatment showed significant Pb(II) removal efficiencies (91.42-98.90%) for yellow rice wines in 15 min without affecting their taste, odor, and physicochemical characteristics of the wines. The adsorption mechanism studied by X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) analyses indicated that the selective removal of Pb(II) could be attributed to the electrostatic interaction and covalent interaction between the empty orbital of Pb(II) and the π electrons of the N species on M-NC. Additionally, the M-NC showed no significant cytotoxicity on the Caco-2 cell lines. CONCLUSION Selective removal of Pb(II) from yellow rice wine was achieved using magnetic carbon-based adsorbent. This facile and recyclable adsorption operation could potentially address the challenge of toxic metal pollution in liquid foods. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiying Shao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Changrui Xing
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Mei Xue
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
5
|
Cheng X, Jiang D, Chen H, Barati B, Yuan C, Li H, Wang S. Multi-stage adsorption of methyl orange on the nitrogen-rich biomass-derived carbon adsorbent: DFT and MD evaluation. CHEMOSPHERE 2023; 338:139218. [PMID: 37414293 DOI: 10.1016/j.chemosphere.2023.139218] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
Dyes that are released into the environment may have negative effects on living organisms. To address this issue, a biomass-derived carbon adsorbent made from Enteromorpha was tested for its ability to remove methyl orange (MO) from wastewater. The adsorbent was found to be effective in removing MO, with a 1:4 impregnation ratio producing an adsorbent that could remove 96.34% of MO from a 200 mg/L solution using only 0.1 g of adsorbent. At higher concentrations, the adsorption capacity increased up to 269.58 mg/g. Through molecular dynamics simulations, it was discovered that after mono-layer adsorption reached saturation, the remaining MO molecules in solution formed hydrogen bonds with the adsorbed MO, which led to further aggregation on the adsorbent surface and increased adsorption capacity. Additionally, theoretical investigations revealed that the adsorption energy of anionic dyes increased with Nitrogen-doped carbon materials, with the pyrrolic-N site having the highest adsorption energy for MO. The carbon material derived from Enteromorpha showed promise in treating wastewater containing anionic dyes, thanks to its high adsorption capacity and strong electrostatic interaction with the sulfonic acid groups of MO.
Collapse
Affiliation(s)
- Xiaoxue Cheng
- School of Energy and Power Engineering, Jiangsu University, 212013, Jiangsu, China; School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Ding Jiang
- School of Energy and Power Engineering, Jiangsu University, 212013, Jiangsu, China
| | - Hao Chen
- School of Energy and Power Engineering, Jiangsu University, 212013, Jiangsu, China
| | - Bahram Barati
- Department of Green Chemistry and Technology, LIWET-Laboratory for Industrial Water and EcoTechnology, Ghent University, Sint-Martens Latemlaan 2B, 8500, Kortrijk, Belgium
| | - Chuan Yuan
- School of Agricultural Engineering, Jiangsu University, 212013, Jiangsu, China
| | - Hongping Li
- Institute for Energy Research of Jiangsu University, Jiangsu University, 212013, Jiangsu, China.
| | - Shuang Wang
- School of Energy and Power Engineering, Jiangsu University, 212013, Jiangsu, China.
| |
Collapse
|
6
|
Gupta D, Boora A, Thakur A, Gupta TK. Green and sustainable synthesis of nanomaterials: Recent advancements and limitations. ENVIRONMENTAL RESEARCH 2023; 231:116316. [PMID: 37270084 DOI: 10.1016/j.envres.2023.116316] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/05/2023]
Abstract
Nanomaterials have been widely used in diverse fields of research such as engineering, biomedical science, energy, and environment. At present, chemical and physical methods are the main methods for large-scale synthesis of nanomaterials, but these methods have adverse effects on the environment, and health issues, consume more energy, and are expensive. The green synthesis of nanoparticles is a promising and environmentally friendly approach to producing materials with unique properties. Natural reagents such as herbs, bacteria, fungi, and agricultural waste are used in the green synthesis of nanomaterials instead of hazardous chemicals and reduce the carbon footprint of the synthesis process. Green synthesis of nanomaterials is highly beneficial compared to traditional methods due to its low cost, negligible pollution level, and safety for the environment and human health. Nanoparticles possess enhanced thermal and electrical conductivity, catalytic activity, and biocompatibility, making them highly attractive for a range of applications, including catalysis, energy storage, optics, biological labeling, and cancer therapy. This review article provides a comprehensive overview of recent advancements in the green synthesis routes of different types of nanomaterials, including metal oxide-based, inert metal-based, carbon-based, and composite-based nanoparticles. Moreover, we discuss the various applications of nanoparticles, emphasizing their potential to revolutionize fields such as medicine, electronics energy, and the environment. The factors affecting the green synthesis of nanomaterials, and their limitations are also pointed out to decide the direction of this research field, Overall, this paper highlights the importance of green synthesis in promoting sustainable development in various industries.
Collapse
Affiliation(s)
- Deepshikha Gupta
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Pin 201301, India.
| | - Anuj Boora
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Pin 201301, India
| | - Amisha Thakur
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Pin 201301, India
| | - Tejendra K Gupta
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Pin 201301, India
| |
Collapse
|
7
|
Almotairy ARZ, Al-Maswari BM, Alkanad K, Lokanath N, Radhika R, Venkatesha B. Nickel vanadate nitrogen-doped carbon nanocomposites for high-performance supercapacitor electrode. Heliyon 2023; 9:e18496. [PMID: 37533978 PMCID: PMC10392098 DOI: 10.1016/j.heliyon.2023.e18496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
A nickel-vanadium-based bimetallic precursor was produced using the polymerization process by urea-formaldehyde copolymers. The precursor was then calcined at 800 °C in an argon ambiance to form a Ni3V2O8-NC magnetic nanocomposite. Powerful techniques were used to study the physical characteristics and chemical composition of the fabricated Ni3V2O8-NC electrode. PXRD, Raman, and FTIR analyses proved that the crystal structure of Ni3V2O8-NC included N-doped graphitic carbon. FESEM and TEM analyses imaging showed the distribution of the Ni3V2O8 nanoparticles on the layered graphitic carbon structure. TEM images showed the prepared sample has a particle size of around 10-15 nm with an enhanced active site area of 146 m2/g, as demonstrated by BET analysis. Ni3V2O8-NC nanocomposite exhibits magnetic behaviors and a magnetization saturation value of 35.99 emu/g. The electrochemical (EC) studies of the synthesized Ni3V2O8-NC electrode proceeded in an EC workstation of three-electrode. In a 5 M potassium hydroxide as an electrolyte, the cyclic voltmeter exhibited an enhanced capacitance (CS) of 915 F/g at 50 mV/s. Galvanic charge-discharge (GCD) study also exhibited a superior capacitive improvement of 1045 F/g at a current density (It) of 10 A/g. Moreover, the fabricated Ni3V2O8-NC nanocomposite displays a good power density (Pt) of 356.67 W/kg, improved ion accessibility, and substantial charge storage. At the high energy density (Et) of 67.34 W h/kg, the obtained Pt was 285.17 W/kg. The enhanced GCD rate, cycle stability, and Et of the Ni3V2O8-NC magnetic nanocomposite nominate the sample as an excellent supercapacitor electrode. This study paves the way for developing effective, efficient, affordable, and ecologically friendly electrode materials.
Collapse
Affiliation(s)
| | - Basheer M. Al-Maswari
- Department of Chemistry, Faculty of Applied Sciences and Humanities, Amran University, Yemen
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru- 570005 Karnataka, India
| | - Khaled Alkanad
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - N.K. Lokanath
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - R.T. Radhika
- Department of Chemistry, Maharani's Science College for Women, University of Mysore, Mysuru, India
| | - B.M. Venkatesha
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru- 570005 Karnataka, India
| |
Collapse
|
8
|
Sun J, Tao J, Ma R, Lin J, Luo J, Sun S, Ma N. Synergistic optimization of bio-oil quality and heavy metal solidification during microwave co-pyrolysis of cow dung and red mud. CHEMOSPHERE 2023:139187. [PMID: 37336443 DOI: 10.1016/j.chemosphere.2023.139187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
To decrease the environmental risks caused by heavy metals (HMs) in red mud (RM) and improve the quality of pyrolysis oil from biomass, high-temperature pretreated RM and cow dung (CD) were microwave co-pyrolyzed. Then, the optimization potential of energy consumption was evaluated and the interaction mechanism between RM and CD was explored. The results showed that the increase in transition metal oxides and specific surface area improved the microwave-absorption and catalytic capacity of the pretreated RM. By optimizing the parameters, a pretreatment temperature of 650 °C resulted in a 21.65% reduction in acid content of bio-oil, higher HMs immobilization rates (>91%) and a 7.44% reduction in energy consumption. The synergistic optimization of bio-oil quality, HMs immobilization and energy consumption was achieved. After microwave co-pyrolysis with cow dung, the larger specific surface area (92.90 m2 g-1) and higher carbon crystallinity (ID/IG = 1.02) of pyrolysis residues enhanced the physical adsorption to HMs. The complexation of HMs with -OH could further enhance the solidification of HMs. This work will provide support to efficient resource utilization of solid waste, and demonstrate the great potential of microwave co-pyrolysis in HMs immobilization.
Collapse
Affiliation(s)
- Jiaman Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jinlin Tao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Junhao Lin
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Juan Luo
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shichang Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ning Ma
- China Electronic System Engineering Co., Ltd, No.8 Xiaotun Road, Fengtai District, Beijing, 100040, China
| |
Collapse
|
9
|
Al-Maswari BM, Al-Zaqri N, Alkanad K, AlOstoot FH, Boshaala A, Radhika RT, Venkatesha BM. Magnesium Bismuth Ferrite Nitrogen-Doped Carbon Nanomagnetic Perovskite: Synthesis and Characterization as a High-Performance Electrode in a Supercapacitor for Energy Storage. ACS OMEGA 2023; 8:16145-16157. [PMID: 37179637 PMCID: PMC10173333 DOI: 10.1021/acsomega.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
Bismuth ferrite (BiFeO3) is regarded as an important ABO3 perovskite in the areas of energy storage and electronics. A high-performance novel MgBiFeO3-NC nanomagnetic composite (MBFO-NC) electrode was prepared using a perovskite ABO3-inspired method as a supercapacitor for energy storage. The electrochemical behavior of the perovskite BiFeO3 has been enhanced by magnesium ion doping in the basic aquatic electrolyte as the A-site. H2-TPR revealed that the doping of Mg2+ ions at the Bi3+ sites minimizes the oxygen vacancy content and improves the electrochemical characteristics of MgBiFeO3-NC. Various techniques were used to confirm the phase, structure, surface, and magnetic properties of the MBFO-NC electrode. The prepared sample showed an enhanced mantic performance and specific area with an average nanoparticle size of ∼15 nm. The electrochemical behavior of the three-electrode system was shown by cyclic voltammetry to have a significant specific capacity of 2079.44 F/g at 30 mV/s in 5 M KOH electrolyte. GCD analysis at a 5 A/g current density also showed an enhanced capacity improvement of 2159.88 F/g, which is 3.4× higher than that of pristine BiFeO3. At the power density of 5284.83 W/kg, the constructed MBFO-NC//MBFO-NC symmetric cell showed an exceptional energy density of 730.04 W h/kg. The MBFO-NC//MBFO-NC symmetric cell was employed as a direct practical application of the electrode material to entirely brighten the laboratory panel, which had 31 LEDs. This work proposes the utilization of duplicate cell electrodes made of MBFO-NC//MBFO-NC in portable devices for daily use.
Collapse
Affiliation(s)
| | - Nabil Al-Zaqri
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Khaled Alkanad
- Department
of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, Karnataka 570006, India
| | - Fares Hezam AlOstoot
- Department
of Chemistry, Yuvaraja’s College, University of Mysore, Mysuru, Karnataka 570005, India
| | - Ahmed Boshaala
- Research
Centre, Manchester Salt & Catalysis, Manchester University, Unit C, 88- 90 Chorlton Rd, Manchester M15 4AN, United
Kingdom
- Libyan
Authority for Scientific Research, P.O.
Box 80045, Tripoli, Libya
| | - Rayapura Thimmegowda Radhika
- Department
of Chemistry, Maharani’s Science College for Women, University of Mysore, Mysuru, Karnataka 570005, India
| | | |
Collapse
|
10
|
Wu J, Yang C, Zhao H, Shi J, Liu Z, Li C, Song F. Efficient removal of microplastics from aqueous solution by a novel magnetic biochar: performance, mechanism, and reusability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26914-26928. [PMID: 36374390 DOI: 10.1007/s11356-022-24130-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Microplastics' (MPs) pollution removal from water bodies has become an urgent task to ensure water quality safety and water ecological security on a global scale. In this work, coprecipitation was employed to investigate the adsorption of MPs by magnetic biochar (MRB) prepared from agricultural waste rice husks in an aquatic system. The results showed that MRB can adsorb up to 99.96% of MPs in water; acidic conditions were favorable for the effective MPs' adsorption reaction, and competing anions had a greater effect on adsorption. The adsorption mechanism results revealed that the adsorption of MPs by MRB was a spontaneous process, and electrostatic attraction, surface complexation, hydrogen bonding and π-π interactions were present in the adsorption process. Furthermore, after the adsorption of MPs, MRB can be recovered by thermal treatment (500 °C) and still exhibits up to 90% MPs adsorption (after four uses). This work reveals that MRB is an inexpensive, efficient, and reusable nanoscale adsorbent for MPs pollution removal in water, which may provide new ideas for microplastic pollution control in the aqueous environment.
Collapse
Affiliation(s)
- Juanjuan Wu
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Chan Yang
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Hanghang Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Juan Shi
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Zhifeng Liu
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Chen Li
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Fengmin Song
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China.
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China.
| |
Collapse
|
11
|
Bhutto AA, Baig JA, Sirajuddin, Kazi TG, Sierra-Alvarez R, Akhtar K, Hussain S, Afridi HI, Hol A, Samejo S. Biosynthesis and Analytical Characterization of Iron Oxide Nanobiocomposite for In-Depth Adsorption Strategy for the Removal of Toxic Metals from Drinking Water. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022; 48:7411-7424. [PMID: 36466582 PMCID: PMC9685060 DOI: 10.1007/s13369-022-07477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
Abstract
The biosynthesis of the iron oxide nanoparticles was done using Ixoro coccinea leaf extract, followed by the fabrication of iron oxide nanobiocomposites (I-Fe3O4-NBC) using chitosan biopolymer. Furthermore, the synthesized I-Fe3O4-NPs and I-Fe3O4-NBC were characterized, and I-Fe3O4-NBC was applied to remove toxic metals (TMs: Cd, Ni, and Pb) from water. The characterization study confirmed that the nanostructure, porous, rough, crystalline structure, and different functional groups of chitosan and I-Fe3O4-NPs in I-Fe3O4-NBCs showed their feasibility for the application as excellent adsorbents for quantitative removal of TMs. The batch mode strategy as feasibility testing was done to optimize different adsorption parameters (pH, concentrations of TMs, dose of I-Fe3O4-NBC, contact time, and temperature) for maximum removal of TMs from water by Fe3O4-NBC. The maximum adsorption capacities using nanocomposites for Cd, Ni, and Pb were 66.0, 60.0, and 66.4 mg g-1, respectively. The adsorption process follows the Freundlich isotherm model by I-Fe3O4-NBC to remove Cd and Ni, while the Pb may be adsorption followed by multilayer surface coverage. The proposed adsorption process was best fitted to follow pseudo-second-order kinetics and showed an exothermic, favorable, and spontaneous nature. In addition, the I-Fe3O4-NBC was applied to adsorption TMs from surface water (%recovery > 95%). Thus, it can be concluded that the proposed nanocomposite is most efficient in removing TMs from drinking water up to recommended permissible limit.
Collapse
Affiliation(s)
- Ashfaque Ali Bhutto
- Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Jameel Ahmed Baig
- Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Sirajuddin
- ICCBS, HEJ, University of Karachi, Karachi, 75270 Pakistan
| | - Tasneem Gul Kazi
- Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721-0011 USA
| | - Khalil Akhtar
- Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Sajjad Hussain
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, 05422 Pakistan
| | - Hassan Imran Afridi
- Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Aysen Hol
- Chemistry Department, Pamukkale University, 20017 Denizli, Turkey
| | - Suraya Samejo
- Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
- Chemistry Department, Pamukkale University, 20017 Denizli, Turkey
| |
Collapse
|
12
|
Mahmoud R, Mohamed F, Gaber E, Abdel-Gawad OF. Insights into the Synergistic Removal of Copper(II), Cadmium(II), and Chromium(III) Ions Using Modified Chitosan Based on Schiff Bases- g-poly(acrylonitrile). ACS OMEGA 2022; 7:42012-42026. [PMID: 36440165 PMCID: PMC9685764 DOI: 10.1021/acsomega.2c03809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/18/2022] [Indexed: 05/26/2023]
Abstract
Chitosan has received broad consideration as an adsorbent for all pollutants because of its low cost and great adsorption potential. However, its shortcomings, including sensitivity to pH, poor thermal stability, and poor mechanical strength, limit its use. The functional groups of chitosan can be modified to enhance its performance by the grafting technique and Schiff base modification. The grafting process used acrylonitrile (Ch-g-PAN) as a monomer and potassium persulfate as an initiator. After that, the modification via preparation of the Schiff base reaction using salicylaldehyde (Ch-g-Sch I) and P-anisaldehyde (Ch-g-Sch II) was carried out. The synthesized copolymers were detailed and characterized through several spectroscopic and microscopic techniques including infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. In addition, Ch-g-Sch I and Ch-g-Sch II were applied in the removal of different metal ions such as Cu2+, Cd2+, and Cr3+. The maximum adsorption capacity of Ch-g-Sch I for Cd2+ was 183.7 mg g-1 in 24 h, while in the case of Ch-g-Sch II, the maximum adsorption capacity for Cd2+ was improved to 322.9 mg g-1 for the same time. Moreover, adsorption thermodynamic analysis displays that the all ion adsorption process was not random and the pseudo-second-order model fitted with experimental results. Finally, Ch-g-Sch I and Ch-g-Sch II were applied as designs for industrial wastewater treatment with significant efficiency.
Collapse
Affiliation(s)
- Rehab
Khaled Mahmoud
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni-Suef62514, Egypt
| | - Fatma Mohamed
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni-Suef62514, Egypt
- Nanophotonics
and Applications Lab, Faculty of Science, Beni-Suef University, Beni-Suef62514, Egypt
| | - Esraa Gaber
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni-Suef62514, Egypt
| | - Omayma F. Abdel-Gawad
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni-Suef62514, Egypt
| |
Collapse
|
13
|
Vallejos S, Trigo-López M, Arnaiz A, Miguel Á, Muñoz A, Mendía A, García JM. From Classical to Advanced Use of Polymers in Food and Beverage Applications. Polymers (Basel) 2022; 14:4954. [PMID: 36433081 PMCID: PMC9699061 DOI: 10.3390/polym14224954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Polymers are extensively used in food and beverage packaging to shield against contaminants and external damage due to their barrier properties, protecting the goods inside and reducing waste. However, current trends in polymers for food, water, and beverage applications are moving forward into the design and preparation of advanced polymers, which can act as active packaging, bearing active ingredients in their formulation, or controlling the head-space composition to extend the shelf-life of the goods inside. In addition, polymers can serve as sensory polymers to detect and indicate the presence of target species, including contaminants of food quality indicators, or even to remove or separate target species for later quantification. Polymers are nowadays essential materials for both food safety and the extension of food shelf-life, which are key goals of the food industry, and the irruption of smart materials is opening new opportunities for going even further in these goals. This review describes the state of the art following the last 10 years of research within the field of food and beverage polymer's applications, covering present applications, perspectives, and concerns related to waste generation and the circular economy.
Collapse
Affiliation(s)
- Saúl Vallejos
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Miriam Trigo-López
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Ana Arnaiz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain
| | - Álvaro Miguel
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
- Facultad de Ciencias, Campus de Cantoblanco, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain
| | - Asunción Muñoz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Aránzazu Mendía
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - José Miguel García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|
14
|
Micro-meso porous biocarbons derived from a typical biopolymer with superior adsorption capacity for methylene blue dye and high-performance supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Bio-Inspired Synthesis of Carbon-Based Nanomaterials and Their Potential Environmental Applications: A State-of-the-Art Review. INORGANICS 2022. [DOI: 10.3390/inorganics10100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Providing safe drinking water and clean water is becoming a more challenging task all around the world. Although some critical issues and limits remain unsolved, implementing ecologically sustainable nanomaterials (NMs) with unique features, e.g., highly efficient and selective, earth-abundance, renewability, low-cost manufacturing procedures, and stability, has become a priority. Carbon nanoparticles (NPs) offer tremendous promise in the sectors of energy and the environment. However, a series of far more ecologically friendly synthesis techniques based on natural, renewable, and less expensive waste resources must be explored. This will reduce greenhouse gas emissions and harmful material extraction and assist the development of green technologies. The progress achieved in the previous 10 years in the fabrication of novel carbon-based NMs utilizing waste materials as well as natural precursors is reviewed in this article. Research on carbon-based NPs and their production using naturally occurring precursors and waste materials focuses on this review research. Water treatment and purification using carbon NMs, notably for industrial and pharmaceutical wastes, has shown significant potential. Research in this area focuses on enhanced carbonaceous NMs, methods, and novel nano-sorbents for wastewater, drinking water, groundwater treatment, as well as ionic metal removal from aqueous environments. Discussed are the latest developments and challenges in environmentally friendly carbon and graphene quantum dot NMs.
Collapse
|
16
|
Ainiwaer M, Zhang T, Zhang N, Yin X, Su S, Wang Y, Zhang Y, Zeng X. Synergistic removal of As(III) and Cd(II) by sepiolite-modified nanoscale zero-valent iron and a related mechanistic study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115658. [PMID: 35842987 DOI: 10.1016/j.jenvman.2022.115658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) and cadmium (Cd) are two highly toxic elements. In recent years, many newly synthesized chemical materials have been used widely for treatments of As- and Cd-contaminated effluents. However, most materials do not exhibit high efficiencies for simultaneous removal of As and Cd from water systems. Our study established a simple scheme for synthesizing a sepiolite (SEP)-modified nanoscale zero-valent iron (S-nZVI) for simultaneous removal of coexisting As and Cd from water and illuminated a possible underlying mechanism. Batch experiments showed that the maximum capacities for adsorption of As(III) and Cd(II) by S-nZVI were 230.29 mg/g and 11.37 mg/g, respectively, which represented better effects than those of other materials, as reported previously. Removal of Cd(II) depended on pH, but As(III) removal showed little dependence on pH. Coexisting ions such as phosphate (PO43-) and the conjugate base of humic acid (HA) significantly inhibited simultaneous removal of As(III) and Cd(II). In the mixed As(III)-Cd(II) system, the presence of As(III)-pretreated S-nZVI significantly enhanced Cd(II) adsorption by a factor of four over that seen for aqueous solution without As(III). XRD and XPS results showed that CdFe2O4 (Fe-O-Cd), Fe2As2O14 or FeAsO4 (Fe-O-As) were formed after As(III) and Cd(II) were captured by S-nZVI. However, a further zeta (ζ) potential analysis showed that the mechanism for As(III) and Cd(II) adsorption by S-nZVI is not just simple formation of the above chemicals, since the adsorbed As(III) increased the negative charge of S-nZVI; this suggested an electrostatic attraction between S-nZVI and Cd(II) and indicated that adsorbed As(III) created new sorption sites for Cd(II), which enhanced Cd(II) sorption via formation of ternary complexes (Fe-As-Cd). These results suggested that S-nZVI is a promising material for in situ remediation of heavy metal-contaminated groundwaters or paddy soils.
Collapse
Affiliation(s)
- Meihaguli Ainiwaer
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Tuo Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China; College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Nan Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xianxiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yanan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xibai Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
17
|
Ainiwaer M, Zeng X, Yin X, Wen J, Su S, Wang Y, Zhang Y, Zhang T, Zhang N. Thermodynamics, Kinetics, and Mechanisms of the Co-Removal of Arsenate and Arsenite by Sepiolite-Supported Nanoscale Zero-Valent Iron in Aqueous Solution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11401. [PMID: 36141677 PMCID: PMC9517050 DOI: 10.3390/ijerph191811401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
In this study, a newly synthesized sepiolite-supported nanoscale zero-valent iron (S-nZVI) adsorbent was tested for the efficient removal of As(III) and As(V) in aqueous solution. Compared with ZVI nanoparticles, the As(III) and As(V) adsorption abilities of S-nZVI were substantially enhanced to 165.86 mg/g and 95.76 mg/g, respectively, owing to the good dispersion of nZVI on sepiolite. The results showed that the adsorption kinetics were well fitted with the pseudo-second-order model, and the adsorption isotherms were fitted with the Freundlich model, denoting a multilayer chemical adsorption process. The increase in the initial solution pH of the solution inhibited As(III) and As(V) adsorption, but a weaker influence on As(III) than As(V) adsorption was observed with increasing pH. Additionally, the presence of SO42- and NO3- ions had no pronounced effect on As(III) and As(V) removal, while PO43- and humic acid (HA) significantly restrained the As(III) and As(V) adsorption ability, and Mg2+/Ca2+ promoted the As(V) adsorption efficiency. Spectral analysis showed that As(III) and As(V) formed inner-sphere complexes on S-nZVI. As(III) oxidation and As(V) reduction occurred with the adsorption process on S-nZVI. Overall, the study demonstrated a potential adsorbent, S-nZVI, for the efficient removal of As(III) and As(V) from contaminated water.
Collapse
Affiliation(s)
- Meihaguli Ainiwaer
- Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xibai Zeng
- Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jiong Wen
- Scientific Observation and Experiment Station of Yueyang, Ministry of Agriculture, Yueyang Agricultural Research Academy, Yueyang 414021, China
| | - Shiming Su
- Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yanan Wang
- Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yang Zhang
- Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Tuo Zhang
- Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- College of Environmental Science & Engineering, China West Normal University, Nanchong 637009, China
| | - Nan Zhang
- Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
18
|
Ahamad T, Alshehri SM. Fabrication of Ag@SrTiO3/g-C3N4 heterojunctions for H2 production and the degradation of pesticides under visible light. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Yao X, Zhou J, Liu Z. Study on adsorption of low-concentration methyl mercaptan by starch-based activated carbon. CHEMOSPHERE 2022; 302:134901. [PMID: 35568218 DOI: 10.1016/j.chemosphere.2022.134901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
The development of a low-concentration methyl mercaptan adsorbing material for an efficient decontamination has become a hot research topic. In this study, carbonization activation was employed with starch and urea as carbon and nitrogen sources, respectively, to prepare a type of starch-based activated carbon. Subsequently, the product was used to adsorb low-concentration methyl mercaptan. Based on sorption experiments and molecular simulations, the underlying mechanism of the adsorption effect of the adsorbent's pore structure and surface oxygen- and nitrogen-containing functional groups on methyl mercaptan molecules were discussed. The results indicated that when the methyl mercaptan equilibrium concentration was 0.197 mg/L, the adsorption capacity of SUAC-16-2 for methyl mercaptan was 78.16 mg/g. Its adsorption performance was better than that of its previously reported counterparts. The well-developed microporous structure of SUAC-16-2 promoted the adsorption of methyl mercaptan. In addition, methyl mercaptan molecules could be broken down to produce CH3S- and H+ by the effect of the surface functional groups. Adjacent carbon atoms containing nitrogen and oxygen functional groups could better adsorb CH3S- and H+, and further strengthen the methyl mercaptan adsorption performance of activated carbon. The study could help to develop new technology for treatment of low concentration of methyl mercaptan in the air.
Collapse
Affiliation(s)
- Xiaolong Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Jingya Zhou
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zheng Liu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
20
|
Farmand M, Jahanpeyma F, Gholaminejad A, Azimzadeh M, Malaei F, Shoaie N. Carbon nanostructures: a comprehensive review of potential applications and toxic effects. 3 Biotech 2022; 12:159. [PMID: 35814038 PMCID: PMC9259781 DOI: 10.1007/s13205-022-03175-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/25/2022] [Indexed: 12/17/2022] Open
Abstract
There is no doubt that nanotechnology has revolutionized our life since the 1970s when it was first introduced. Nanomaterials have helped us to improve the current products and services we use. Among the different types of nanomaterials, the application of carbon-based nanomaterials in every aspect of our lives has rapidly grown over recent decades. This review discusses recent advances of those applications in distinct categories, including medical, industrial, and environmental applications. The first main section introduces nanomaterials, especially carbon-based nanomaterials. In the first section, we discussed medical applications, including medical biosensors, drug and gene delivery, cell and tissue labeling and imaging, tissue engineering, and the fight against bacterial and fungal infections. The next section discusses industrial applications, including agriculture, plastic, electronic, energy, and food industries. In addition, the environmental applications, including detection of air and water pollutions and removal of environmental pollutants, were vastly reviewed in the last section. In the conclusion section, we discussed challenges and future perspectives.
Collapse
Affiliation(s)
- Maryam Farmand
- Department of Biology, Tehran University, PO Box: 14155-6619, Tehran, Iran
| | - Fatemeh Jahanpeyma
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, PO Box: 73461-81746, Isfahan, Iran
| | - Mostafa Azimzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, PO Box: 89195-999, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, PO Box: 89195-999, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, PO Box: 8916188635, Yazd, Iran
| | - Fatemeh Malaei
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| | - Nahid Shoaie
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| |
Collapse
|
21
|
Qin P, Chen D, Li M, Li D, Gao Y, Zhu S, Mu M, Lu M. Melamine/MIL-101(Fe)-derived magnetic carbon nanotube-decorated nitrogen-doped carbon materials as sorbent for rapid removal of organic dyes from environmental water sample. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Al-Maswari BM, Al-Zaqri N, Ahmed J, Ahamad T, Boshaala A, Ananda S, Venkatesha B. Nanomagnetic strontium ferrite nitrogen doped carbon (SrFe2O4-NC): Synthesis, characterization and excellent supercapacitor performance. JOURNAL OF ENERGY STORAGE 2022; 52:104821. [DOI: 10.1016/j.est.2022.104821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
|
23
|
Liu D, Huang J, Wu D, Liu Y, Zhang R, Chen S. Efficient removal of phosphate by nitrogen and oxygen-rich polyethyleneimine composite. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Isfahani AP, Shamsabadi AA, Alimohammadi F, Soroush M. Efficient mercury removal from aqueous solutions using carboxylated Ti 3C 2T x MXene. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128780. [PMID: 35460992 DOI: 10.1016/j.jhazmat.2022.128780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Water supplies contaminated with heavy metals are a worldwide concern. MXenes have properties that make them attractive for the removal of metal ions from water. This work presents a simple one-step method of Ti3C2Tx carboxylation that involves the use of a chelating agent with a linear structure, providing strong carboxylic acid groups with high mobility. The carboxylation decreases the zeta-potential of Ti3C2Tx by ~16 to ~18 mV over a pH range of 2.0-8.5 and improves Ti3C2Tx stability in the presence of molecular oxygen. pH in the range of 2-6 has a negligible effect on the adsorption capacity of Ti3C2Tx and COOH-Ti3C2Tx. Compared to Ti3C2Tx, COOH-Ti3C2Tx has a slightly higher and much faster mercury uptake, and the concentration of mercury ions leached out from COOH-Ti3C2Tx is lower. For both Ti3C2Tx and COOH-Ti3C2Tx, the leached mercury ion concentration is far below the U.S.-EPA maximum level. At an initial Hg2+ concentration of 50 ppm and pH of 6, COOH-Ti3C2Tx has the equilibrium adsorption capacity of 499.7 mg/g and removes 95% of Hg2+ in less than 1 min. Moreover, it has an equilibrium time of 5 min, which is significantly shorter than that of Ti3C2Tx (~ 60 min). Finally, its mercury-ion uptake capacity is higher than commercially available adsorbents reported in the literature. Its mercury removal is mainly via chemisorption and monolayer adsorption.
Collapse
Affiliation(s)
- Ali Pournaghshband Isfahani
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Ahmad A Shamsabadi
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Farbod Alimohammadi
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Masoud Soroush
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.
| |
Collapse
|
25
|
Cao YJ, Lu CY, Zhang ZW, Wang Z, Kang YH, Yang TT, Liu GH, Wei XY, Bai HC. N/O Co-doped Porous Carbons Derived from Coal Tar Pitch for Ultra-high Specific Capacitance Supercapacitors. ACS OMEGA 2022; 7:23342-23352. [PMID: 35847265 PMCID: PMC9281300 DOI: 10.1021/acsomega.2c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this paper, a series of N/O co-doped porous carbons (PCs) were designed and used to prepare coal tar pitch-based supercapacitors (SCs). The introduction of N/O species under the intervention of urea effectively improves the pseudocapacitance of PCs. The results show that the specific surface area of synthesized N3PC4-700 is 1914 m2 g-1, while the N and O contents are 1.3 and 7.2%, respectively. The unique interconnected pore structure and proper organic N/O co-doping, especially the introduction of pyridine-N and pyrrole-N, are beneficial for improving the electrochemical performance of PCs. In the three-electrode system, the specific capacitance and rate capability of N3PC4-700 are 532.5 F g-1 and 72.5% at the current densities of 0.5 and 20 A g-1, respectively. In addition, the specific capacitance of N3PC4-700 in a coin-type symmetric device is 315.5 F g-1 at 0.5 A g-1. The N3PC4-700 electrode provides an energy density of 43.8 W h kg-1 with a power density of 0.5 kW kg-1 and still maintains a value of 29.7 at 10 kW kg-1. After 10,000 charge/discharge cycles, the retention rate was as high as 96.7%. In order to obtain high-performance carbon-based SCs, the effective identification and regulation of organic N/O species is necessary.
Collapse
Affiliation(s)
- Yuan-Jia Cao
- Shaanxi
Key Laboratory of Low Metamorphic Coal Clean Utilization, School of
Chemistry and Chemical Engineering, Yulin
University, Yulin 719000, Shaanxi, China
| | - Cui-Ying Lu
- Shaanxi
Key Laboratory of Low Metamorphic Coal Clean Utilization, School of
Chemistry and Chemical Engineering, Yulin
University, Yulin 719000, Shaanxi, China
- . Phone: +86 0912 3891144. Fax: +86 0912 3891144
| | - Zhi-Wen Zhang
- Shaanxi
Key Laboratory of Low Metamorphic Coal Clean Utilization, School of
Chemistry and Chemical Engineering, Yulin
University, Yulin 719000, Shaanxi, China
| | - Zhen Wang
- Shaanxi
Key Laboratory of Low Metamorphic Coal Clean Utilization, School of
Chemistry and Chemical Engineering, Yulin
University, Yulin 719000, Shaanxi, China
| | - Yu-Hong Kang
- Shaanxi
Key Laboratory of Low Metamorphic Coal Clean Utilization, School of
Chemistry and Chemical Engineering, Yulin
University, Yulin 719000, Shaanxi, China
| | - Ting-Ting Yang
- Shaanxi
Key Laboratory of Low Metamorphic Coal Clean Utilization, School of
Chemistry and Chemical Engineering, Yulin
University, Yulin 719000, Shaanxi, China
| | - Guang-Hui Liu
- Shaanxi
Key Laboratory of Low Metamorphic Coal Clean Utilization, School of
Chemistry and Chemical Engineering, Yulin
University, Yulin 719000, Shaanxi, China
- Anhui
Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Ma’anshan 243002, Anhui, China
- State
Key Laboratory of High-efficiency Coal Utilization and Green Chemical
Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Xian-Yong Wei
- Shaanxi
Key Laboratory of Low Metamorphic Coal Clean Utilization, School of
Chemistry and Chemical Engineering, Yulin
University, Yulin 719000, Shaanxi, China
- State
Key Laboratory of High-efficiency Coal Utilization and Green Chemical
Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
- Key
Laboratory of Coal Processing and Efficient Utilization, Ministry
of Education, China University of Mining
& Technology, Xuzhou 221116, Jiangsu, China
| | - Hong-Cun Bai
- State
Key Laboratory of High-efficiency Coal Utilization and Green Chemical
Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
| |
Collapse
|
26
|
Qiu S, Wang W, Yu J, Tian X, Li X, Deng Z, Lin F, Zhang Y. Enhanced photocatalytic degradation efficiency of formaldehyde by in-situ fabricated TiO2/C/CaCO3 heterojunction photocatalyst from mussel shell extract. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Amino-modified magnetic glucose-based carbon composites for efficient Cr(VI) removal. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Tran CC, Dong HC, Truong VTN, Bui TTM, Nguyen HN, Nguyen TAT, Dang NN, Nguyen MV. Enhancing the remarkable adsorption of Pb 2+ in a series of sulfonic-functionalized Zr-based MOFs: a combined theoretical and experimental study for elucidating the adsorption mechanism. Dalton Trans 2022; 51:7503-7516. [PMID: 35506481 DOI: 10.1039/d2dt01009g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A series of Zr-based metal-organic frameworks was prepared via the solvothermal route using sulfonic-rich linkers for the efficient capture of Pb2+ ions from aqueous medium. The factors affecting adsorption such as the solution pH, adsorbent dosage, contact time, adsorption isotherms, and mechanism were studied. Consequently, the maximum adsorption capacity of Pb2+ on the acidified VNU-23 was determined to be 617.3 mg g-1, which is much higher than that of previously reported adsorbents and MOF materials. Furthermore, the adsorption isotherms and kinetics of the Pb2+ ion are in good accordance with the Langmuir and pseudo-second-order kinetic model, suggesting that the uptake of Pb2+ is a chemisorption process. The reusability experiments demonstrated the facile recovery of the H+⊂VNU-23 material through immersion in an HNO3 solution (pH = 3), where its Pb2+ adsorption efficiency still remained at about 90% of the initial uptake over seven cycles. Remarkably, the adsorption mechanism was elucidated through a combined theoretical and experimental investigation. Accordingly, the Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy connected to energy-dispersive X-ray mapping (SEM-EDX-mapping), and X-ray photoelectron spectroscopy (XPS) analysis of the Pb⊂VNU-23 sample and comparison with H+⊂VNU-23 confirmed that the electrostatic interaction occurs via the interaction between the SO3- moieties in the framework and the Pb2+ ion, leading to the formation of a Pb-O bond. In addition, the density functional theory (DFT) calculations showed the effective affinity of the MOF adsorbent toward the Pb2+ ion via the strong driving force mentioned in the experimental studies. Thus, these findings illustrate that H+⊂VNU-23 can be employed as a potential adsorbent to eliminate Pb2+ ions from wastewater.
Collapse
Affiliation(s)
- Cuong C Tran
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam.
| | - Hieu C Dong
- Future Materials and Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
| | - Vy T N Truong
- Royal Melbourne Institute of Technology (RMIT) University, Ho Chi Minh City 700000, Vietnam
| | - Thinh T M Bui
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam.
| | - Hung N Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam.
| | - Tuyet A T Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam.
| | - Nam N Dang
- Future Materials and Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
| | - My V Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
29
|
La (III) Separation by Tri Octyl Phosphine Oxide (Cyanex 921) Based on Amberlite Xad-4 Chelating Resin. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02344-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractThe novel core–shell type polymeric supports with accessible phosphorus groups were synthesised in the search for new reactive materials designed for the synthesis of functional resins. Amberlite XAD-4 adsorbent was impregnated with tri octyl phosphine oxides (Cyanex 921), which were then polymerized in the polymer carrier structure. The syntheses were evaluated by capturing FT-IR spectra, SEM micrographs, and analysing the sorption process. Batch studies were conducted to study the influence of some factors like pH, contact time, the metal ions concentration, and temperature on sorption efficiency of La (III) ions. The results showed that the optimum conditions were at pH equal to 0.5 and an equilibrium contact time of 30 min. According to the results of the sorption data analysis, the pseudo-second-order and Langmuir models were better fitted than the other estimated models. The sorption capacity of La (III) ions into impregnated resin as adsorbent martial was 54.25 mg g−1. The results revealed that the used adsorbent has been used successfully as a promising material for the elimination and recovery of La ions from the aqueous solutions. The impregnated resin exhibits a high chemical stability, reusability and fast equilibration. Further, the above procedure has been successfully employed for the application of real sample.
Collapse
|
30
|
Robertson M, Zagho MM, Nazarenko S, Qiang Z. Mesoporous carbons from self‐assembled polymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mark Robertson
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA
| | - Moustafa M. Zagho
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA
| | - Sergei Nazarenko
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA
| | - Zhe Qiang
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA
| |
Collapse
|
31
|
Zhang H, Xing L, Liang H, Ren J, Ding W, Wang Q, Geng Z, Xu C. Efficient removal of Remazol Brilliant Blue R from water by a cellulose-based activated carbon. Int J Biol Macromol 2022; 207:254-262. [PMID: 35263647 DOI: 10.1016/j.ijbiomac.2022.02.174] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/29/2022] [Accepted: 02/27/2022] [Indexed: 12/27/2022]
Abstract
Due to its wide application and high toxicity, Remazol Brilliant Blue R (RBBR) has become a fatal contaminate in aquatic environment. In this study, to remove RBBR, a cellulose-based activated carbon (CAC) was synthesized at 800 °C with a cellulose-based hydrocarbon (CHC) activated by NaOH. The CHC was synthesized by the hydrothermal method with microcrystalline cellulose and urea as raw materials. The CAC possessed great amounts of N and O-containing functional groups and had well-developed pore structure. The BET specific surface area of CAC reached up to 1872.30 m2/g. The maximum adsorption capacity of CAC on RBBR was 653.19 mg/g during which chemical adsorption was the dominant mechanism. Adsorption thermodynamics indicated that the adsorption of RBBR by CAC was exothermic and spontaneous. Regeneration adsorption and ion competition experiments showed that the material could be used repeatedly and had good anti-interference ability. In addition, the removal rates of RBBR by CAC in actual water bodies, including river water and artificial lake water, were above 99.40%. Therefore, the novel CAC shows great potential for the remediation of printing and dyeing wastewater.
Collapse
Affiliation(s)
- Hongwei Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Libin Xing
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongxu Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jiawei Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wei Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Qiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Northwest Plant Nutrition and Agro-Environment in Ministry of Agriculture, Yangling 712100, China.
| | - Chenyang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
32
|
Wang X, Du Y, Li F, Fang L, Pang T, Wu W, Liu C, Chen L. Unique feature of Fe-OM complexes for limiting Cd accumulation in grains by target-regulating gene expression in rice tissues. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127361. [PMID: 34879560 DOI: 10.1016/j.jhazmat.2021.127361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The excessive accumulation of cadmium (Cd) in rice grains is highly determined by the expression of specific genes in different tissues. Targeted gene regulation in rice plants is a long-standing challenge. Herein, a new strategy for regulating target gene expression responsible for Cd absorption and translocation in roots and leaves was developed by complexing Fe(II) with organic matter (i.e., Fe-OM) with the optimal mass ratio of 1. Results showed that Fe-OM noticeably reduced the grain Cd content from 0.48 ± 0.04 mg kg-1 to 0.25 ± 0.03 mg kg-1, exhibiting a significantly higher capacity in mitigating Cd accumulation in grains than Fe(II) or OM alone. The translocation factor (TF) was reduced from 0.14 (control) to 0.08 by Fe-FA from root to grain, which could be due to the preferential Cd translocation to leaves (i.e., TFroot to leaves was enhanced four times by the complex of Fe(II) with fulvic acid (Fe-FA). Further gene analysis revealed that the cooperative effects of OsNramp1 and OsNramp5 downregulation in roots/stems and OsLCT1 upregulation in leaves contributed to the mitigation of Cd in grains. This work provides a new strategy to regulating target gene expression in specific tissues to alleviate Cd accumulation in grains.
Collapse
Affiliation(s)
- Xiangqin Wang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Yanhong Du
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Liping Fang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| | - Tingting Pang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Weijian Wu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Chuanping Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Lei Chen
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| |
Collapse
|
33
|
Jiao GJ, Ma J, Li Y, Jin D, Zhou J, Sun R. Removed heavy metal ions from wastewater reuse for chemiluminescence: Successive application of lignin-based composite hydrogels. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126722. [PMID: 34332480 DOI: 10.1016/j.jhazmat.2021.126722] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The novel sulfomethylated lignin-grafted-polyacrylic acid (SL-g-PAA) hydrogel was fabricated in this work via a facile and green synthetic strategy for the efficient removal of heavy metal ions from wastewater, and then successively reused for chemiluminescence (CL). The sulfomethylation of lignin was first performed to improve its water solubility and introduce numerous active sites for adsorption of heavy metal ions. The as-synthesized SL-g-PAA hydrogel with high content of lignin exhibited the highly efficient and rapid removal of various metal ions from simulated wastewater. More importantly, the spent hydrogel (M2+@SL-g-PAA) after adsorption was reused for the first time to develop a new CL system by an ingenious strategy, in which these metal ions adsorbed on M2+@SL-g-PAA act as heterogeneous catalytic sites to catalyze the CL reaction between N-(4-aminobutyl)-N-ethylisoluminol (ABEI) and H2O2. The resultant CL system displayed high CL intensity and long duration time, which could be observed by naked eye in the dark and lasted for > 24 h. The combination of facile fabrication process, renewable raw materials, and ingenious strategy for successive application in adsorption and CL endows this lignin-based composite hydrogel with a great potential for application in wastewater treatment, biological imaging and cold light sources.
Collapse
Affiliation(s)
- Gao-Jie Jiao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiliang Ma
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China.
| | - Yancong Li
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dongnv Jin
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
34
|
Chen Y, Zhang J, Xu H. Exploration of the degradation mechanism of ciprofloxacin in water by nano zero-valent iron combined with activated carbon and nickel. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Qin Y, Bai X. N-doped graphitized carbon supported Co@Ru core–shell bimetallic catalyst for hydrogen storage of N-ethylcarbazole. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02231h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the hydrogenation of one promising liquid organic hydrogen carrier N-ethylcarbazole on the N-doped graphitized carbon (NGC) supported Co@Ru core–shell bimetallic catalyst.
Collapse
Affiliation(s)
- Yibo Qin
- School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Xuefeng Bai
- School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
- Institute of Petrochemistry, Heilongjiang Academy of Sciences, Harbin 150040, China
| |
Collapse
|
36
|
Chen J, Dong X, Cao S, Chen Z, Yang X, Jin J. Multiple chemical modifications and Cd 2+ adsorption characteristics of sludge-based activated carbon. RSC Adv 2022; 12:18559-18571. [PMID: 35799929 PMCID: PMC9219043 DOI: 10.1039/d2ra03268f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
The multiple chemical modifications were carried out to achieve N-doping and pore-making to modify sludge-based activated carbon (SACU–PF′). SACU–PF′ possessed abundant functional groups and high adsorption capacity of Cd2+.
Collapse
Affiliation(s)
- Jun Chen
- School of Biology, Food and Environment, Anhui Key Laboratory of Sewage Purification and Eco-restoration Materials, Hefei University, Hefei 230601, P. R. China
- Anhui Guoke Testing Technology Co., LTD, Hefei 230041, P. R. China
| | - Xiaowan Dong
- School of Biology, Food and Environment, Anhui Key Laboratory of Sewage Purification and Eco-restoration Materials, Hefei University, Hefei 230601, P. R. China
| | - Sisi Cao
- School of Biology, Food and Environment, Anhui Key Laboratory of Sewage Purification and Eco-restoration Materials, Hefei University, Hefei 230601, P. R. China
| | - Zhaoming Chen
- School of Biology, Food and Environment, Anhui Key Laboratory of Sewage Purification and Eco-restoration Materials, Hefei University, Hefei 230601, P. R. China
| | - Xiaohong Yang
- School of Biology, Food and Environment, Anhui Key Laboratory of Sewage Purification and Eco-restoration Materials, Hefei University, Hefei 230601, P. R. China
| | - Jie Jin
- School of Biology, Food and Environment, Anhui Key Laboratory of Sewage Purification and Eco-restoration Materials, Hefei University, Hefei 230601, P. R. China
| |
Collapse
|
37
|
Nguyen MV, Nguyen HN, Nguyen TAT, Nguyen KMV. Engineering of appropriate pore size combined with sulfonic functionalization in a Zr-MOF with reo topology for the ultra-high removal of cationic malachite green dye from an aqueous medium. RSC Adv 2022; 12:30201-30212. [DOI: 10.1039/d2ra05787e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
A Zr-based metal–organic framework with reo topology, denoted as Reo-MOF-1, was fabricated through a solvothermal method capable of efficiently removing the cationic MG dye from an aqueous medium.
Collapse
Affiliation(s)
- My V. Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam
| | - Hung N. Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam
| | - Tuyet A. T. Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam
| | - Khang M. V. Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
38
|
Al-Maswari BM, Ahmed J, Alzaqri N, Ahamad T, Mao Y, Hezam A, Venkatesha B. Synthesis of perovskite bismuth ferrite embedded nitrogen-doped Carbon (BiFeO3-NC) nanocomposite for energy storage application. JOURNAL OF ENERGY STORAGE 2021; 44:103515. [DOI: 10.1016/j.est.2021.103515] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
|
39
|
Zhou M, Ou H, Li S, Qin X, Fang Y, Lee S, Wang X, Ho W. Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102376. [PMID: 34693667 PMCID: PMC8693081 DOI: 10.1002/advs.202102376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/20/2021] [Indexed: 05/19/2023]
Abstract
The techniques for the production of the environment have received attention because of the increasing air pollution, which results in a negative impact on the living environment of mankind. Over the decades, burgeoning interest in polymeric carbon nitride (PCN) based photocatalysts for heterogeneous catalysis of air pollutants has been witnessed, which is improved by harvesting visible light, layered/defective structures, functional groups, suitable/adjustable band positions, and existing Lewis basic sites. PCN-based photocatalytic air purification can reduce the negative impacts of the emission of air pollutants and convert the undesirable and harmful materials into value-added or nontoxic, or low-toxic chemicals. However, based on previous reports, the systematic summary and analysis of PCN-based photocatalysts in the catalytic elimination of air pollutants have not been reported. The research progress of functional PCN-based composite materials as photocatalysts for the removal of air pollutants is reviewed here. The working mechanisms of each enhancement modification are elucidated and discussed on structures (nanostructure, molecular structue, and composite) regarding their effects on light-absorption/utilization, reactant adsorption, intermediate/product desorption, charge kinetics, and reactive oxygen species production. Perspectives related to further challenges and directions as well as design strategies of PCN-based photocatalysts in the heterogeneous catalysis of air pollutants are also provided.
Collapse
Affiliation(s)
- Min Zhou
- Department of Science and Environmental StudiesThe Education University of Hong KongTai Po, New TerritoriesHong KongP. R. China
| | - Honghui Ou
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Shanrong Li
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116P. R. China
| | - Xing Qin
- Department of Science and Environmental StudiesThe Education University of Hong KongTai Po, New TerritoriesHong KongP. R. China
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116P. R. China
| | - Shun‐cheng Lee
- Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHong KongP. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116P. R. China
| | - Wingkei Ho
- Department of Science and Environmental StudiesThe Education University of Hong KongTai Po, New TerritoriesHong KongP. R. China
| |
Collapse
|
40
|
Sustainable Durio zibethinus-Derived Biosorbents for Congo Red Removal from Aqueous Solution: Statistical Optimization, Isotherms and Mechanism Studies. SUSTAINABILITY 2021. [DOI: 10.3390/su132313264] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This investigation reports on the biosorption mechanism of Congo Red dyes (CR) in aqueous solution using acid-treated durian peels, prepared for this study. The biosorbent nature was characterized using the Scanning Electron Microscopy (SEM), Fourier Transform infrared spectroscopy (FT-IR) and Brunaure-Emmet-Teller (BET). The effect of process parameters within operational range of pH (2–9), contact time (10–200 min), initial concentration (25–400 mg g−1) and temperature (25–65 °C) for the optimum removal of CR dyes was investigated using central composite design (CCD) under response surface methodology (RSM), and revealed that the optimum condition of biosorption was achieved around a pH of 5.5, contact time of 105 min at initial concentration of 212.5 mg L−1 within 45 °C temperature, which corresponds to 95.2% percent removal of CR. The experimental data fitted better to the second order polynomial model, with a correlation coefficient R2 value of 0.9917 and the Langmuir isotherm model with biosorption capacity of 107.52 mg g−1. Gibbs free energy indicated that the adsorption of CR dyes was spontaneous. The mechanism of the adsorption of CR dyes revealed that the biosorption of CR dyes investigated under different operational conditions show that under acidic pH, the adsorption efficiency of the acid treated durian peels is enhanced for the adsorption of CR dye molecules.
Collapse
|
41
|
Understanding Pore Surface Modification of Sucrose-Modified Iron Oxide/Silica Mesoporous Composite for Degradation of Methylene Blue. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.3.10619.459-471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Santa Barbara Amorphous (SBA-15) containing iron oxide with a sucrose-modified in a heterogeneous reaction for degradation methylene blue (MB) successful synthesized used hydrothermal, ultrasonication, and wet impregnation method. SBA-15 is mesoporous silica that can easily serve as external and internal surfaces making it suitable for a wide range of applications. The structure and morphology of materials were characterized using Surface Area Analyzer (SAA), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX), and Transmission Electron Microscopy (TEM). Iron oxide impregnated as a maghemite phase has an average size of 12 nm and well distributed on the SBA-15. After modified with sucrose the materials remaining stable, which has a two-dimensional hexagonal (p6mm) structure, high specific surface area, and large pore volume (up to 1.82 cm3.g−1). The degradation of MB was evaluated under visible light irradiation using UV-Vis spectroscopy. Catalytic activity showed efficiencies of 52.9; 70.2; and 21.1% for SBA-15, Fe2O3/SBA-15, and sucrose-modified Fe2O3/SBA-15 respectively. Sucrose-modified Fe2O3/SBA-15 has the lowest efficiency, which probably occurs due to the presence of pore-blocking and the formation of micropores on the external pore. The modification with sucrose has the advantage of producing a high surface area even though there is a catalytic center due to partial decomposition which causes a decrease in the efficiency of degradation of MB. All materials provide a high micro surface area so that they can be further adapted and can be widely applied to many potential applications as both catalyst support and an adsorbent. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
42
|
Modified Grape Seeds: A Promising Alternative for Nitrate Removal from Water. MATERIALS 2021; 14:ma14174791. [PMID: 34500880 PMCID: PMC8432480 DOI: 10.3390/ma14174791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
The aim of this work was to investigate grape seeds as a potential adsorbent for nitrate removal from water. Grape seeds were modified by quaternization and the applicability of the modified grape seeds (MGS) was evaluated in batch adsorption experiments. Fixed bed adsorption and regeneration studies were carried out to determine the regeneration capacity of MGS. The maximum adsorption capacity of 25.626 mg g−1 at native pH (6.3) for nitrate removal by MSG was comparable to that of the commercial anion exchange resin Relite A490 under similar conditions. The percent removal of nitrate from model nitrate solution was 86.47% and 93.25% for MGS, and Relite A490, respectively, and in synthetic wastewater 57.54% and 78.37%. Analysis of the batch adsorption data using isotherm models revealed that the Freundlich model provided a better fit to the data obtained than the Langmuir model, indicating multilayer adsorption. In kinetic terms, the results showed that the adsorption followed the pseudo-first order model. By investigating the adsorption mechanism, the results suggest that the intraparticle diffusion model was not the only process controlling the adsorption of nitrate on MGS. In column experiments (adsorption/desorption studies), three adsorption cycles were tested with minimal decrease in adsorption capacities, implying that this alternative adsorbent can be successfully regenerated and reused.
Collapse
|
43
|
Peng J, Li Y, Chen Z, Liang G, Hu S, Zhou T, Zheng F, Pan Q, Wang H, Li Q, Liu J, Guo Z. Phase Compatible NiFe 2O 4 Coating Tunes Oxygen Redox in Li-Rich Layered Oxide. ACS NANO 2021; 15:11607-11618. [PMID: 34164988 DOI: 10.1021/acsnano.1c02023] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Li-rich layered oxides have attracted intense attention for lithium-ion batteries, as provide substantial capacity from transition metal cation redox simultaneous with reversible oxygen-anion redox. However, unregulated irreversible oxygen-anion redox leads to critical issues such as voltage fade and oxygen release. Here, we report a feasible NiFe2O4 (NFO) surface-coating strategy to turn the nonbonding coordination of surface oxygen into metal-oxygen decoordination. In particular, the surface simplex M-O (M = Ni, Co, Mn from MO6 octahedra) and N-O (N = Ni, Fe from NO6 octahedra) bonds are reconstructed in the form of M-O-N bonds. By applying both in operando and ex situ technologies, we found this heterostructural interface traps surface lattice oxygen, as well as restrains cation migration in Li-rich layered oxide during electrochemical cycling. Therefore, surface lattice oxygen behavior is significantly sustained. More interestingly, we directly observe the surface oxygen redox decouple with cation migration. In addition, the NFO-coating blocks HF produced from electrolyte decomposition, resulting in reducing the dissolution of Mn. With this strategy, higher cycle stability (91.8% at 1 C after 200 cycles) and higher rate capability (109.4 mA g-1 at 1 C) were achieved in this work, compared with pristine Li-rich layered oxide. Our work offers potential for designing electrode materials utilizing oxygen redox chemistry.
Collapse
Affiliation(s)
- Jiming Peng
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China
| | - Yu Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhiqiang Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Gemeng Liang
- Institute for Superconducting and Electronic Materials, School of Mechanical, Materials, Mechatronic and Bio-medical Engineering, University of Wollongong, Wollongong 2500, Australia
| | - Sijiang Hu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China
| | - Tengfei Zhou
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui Graphene Engineering Laboratory, Anhui University, Hefei 230601, China
| | - Fenghua Zheng
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Qichang Pan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Qingyu Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jianwen Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
- China Jiangsu Pylon Battery Co. Ltd., Yangzhou 211400, P. R. China
| | - Zaiping Guo
- School of Chemical Engineering & Advanced Materials, The Unveristy of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
44
|
Divya G, Sivakumar S, Sakthi D, Priyadharsan A, Arun V, Kavitha R, Boobas S. Developing the NiO/CuTiO3/ZnO Ternary Semiconductor Heterojunction for Harnessing Photocatalytic Activity of Reactive Dye with Enhanced Durability. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02068-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Wang X, Xu P, Yang C, Shen T, Qu J, Wang P, Zhang G. Enhanced 4-FP removal with MnFe 2O 4 catalysts under dielectric barrier discharge plasma: Economical synthesis, catalytic performance and degradation mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125602. [PMID: 34030426 DOI: 10.1016/j.jhazmat.2021.125602] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The dielectric barrier discharge plasma (DBDP) process has received extensive attention for the removal of organic contaminants from water. A novel microwave-assisted hydrothermal method was used to easily and rapidly synthesize MnFe2O4 catalysts. Based on the DBDP process, MnFe2O4 can enhance 4-fluorophenol (4-FP) abatement from 44.15% to 58.78% through the catalysis within 18 min. Then, the adjunction of O3 generated by discharge can further boost 4-FP degradation to 94.94%. After the whole optimization process is complete, the associated pseudo-first-order reaction kinetic constant and energy efficiency were enhanced from 0.0327 to 0.1536 min-1 and 2067.13 mg kW h-1 to 4444.75 mg kW h-1, respectively. With the help of the condition, blank and radical capture experiments, the catalytic performance caused by MnFe2O4 and O3 was attributed to the joint action of Fenton-like reactions, photocatalysis (ultraviolet, UV), photoassisted Fenton reactions and O3 catalysis. The overall downward trend of the possible intermediate toxicities indicated that the DBDP/MnFe2O4/O3 process can effectively remove and mineralize 4-FP without the generation of more toxic intermediates. In addition, during the 5 cycles, MnFe2O4 can maintain excellent recovery, efficiency and durability. In summary, the coupling of discharge plasma and MnFe2O4 sheds new light on catalysis for wastewater treatment.
Collapse
Affiliation(s)
- Xiaojing Wang
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Peng Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chunyan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Tianyao Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Peng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
46
|
Zhang N, Cheng N, Liu Q. Functionalized Biomass Carbon-Based Adsorbent for Simultaneous Removal of Pb 2+ and MB in Wastewater. MATERIALS 2021; 14:ma14133537. [PMID: 34201910 PMCID: PMC8269509 DOI: 10.3390/ma14133537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 01/26/2023]
Abstract
It is of great significance to realize the sustainable development of the environment to synthesize functional materials by value-added utilization of waste resources. Herein, a composite material of polyacrylic acid/lignosulfonate sodium/cotton biochar (PAA/LS/BC) was successfully prepared by grafting polyacrylic acid with functionalized waste cotton biochar and lignosulfonate sodium. The obtained absorbent showed prominent capture ability toward Pb2+ and methylene blue (MB) with capture characteristics of the pseudo-second-order model and Langmuir isotherm model. This experiment explored the adsorption performance of the adsorbent for pollutants at different conditions, and further revealed the selective adsorption of Pb2+ and MB in the mixed system. Analysis confirmed that electrostatic attraction and complexation are the most critical methods to remove contaminants. Additionally, the regeneration and stability experiment showed that the adsorption capacity of PAA/LS/BC for pollutants did not significantly decrease after five runs of adsorption–desorption. Various results can demonstrate that the adsorbent has excellent performance for removing pollutants and can be used as a material with development potential in the field of adsorption.
Collapse
Affiliation(s)
- Nannan Zhang
- Modern Experiment Center, Harbin Normal University, Harbin 150025, China
- Correspondence: (N.Z.); (Q.L.)
| | - Nan Cheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
| | - Qing Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Correspondence: (N.Z.); (Q.L.)
| |
Collapse
|
47
|
Jiao GJ, Ma J, Zhang Y, Jin D, Li Y, Hu C, Guo Y, Wang Z, Zhou J, Sun R. Nitrogen-doped lignin-derived biochar with enriched loading of CeO 2 nanoparticles for highly efficient and rapid phosphate capture. Int J Biol Macromol 2021; 182:1484-1494. [PMID: 34019923 DOI: 10.1016/j.ijbiomac.2021.05.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 12/28/2022]
Abstract
Development of lignin-derived carbon adsorbents with ultrahigh phosphate adsorption activity and rapid adsorption kinetics is of great importance, yet limited success has been achieved. Herein, we develop a CeO2 functionalized N-doped lignin-derived biochar (Ce@NLC) via a cooperative modification strategy for effective and fast phosphate capture. The novel modification strategy not only contributes greatly to the loading of well-dispersed CeO2 nanoparticles with a smaller size, but also significantly increases the relative concentration of Ce(III) species on Ce@NLC. Consequently, an enhanced capture capacity for phosphate (196.85 mg g-1) as well as extremely rapid adsorption kinetics were achieved in a wide operating pH range (2-10). Interestingly, Ce@NLC exhibited a strong phosphate adsorption activity at even low-concentration phosphorus-containing water. The removal efficiency and final P concentration reached 99.87% and 2.59 μg P L-1 within 1 min at the phosphate concentration of 2 mg P L-1. Experiments and characterization indicated that Ce(III) species plays a predominant role for the phosphate capture, and ligand exchange, together with electrostatic attraction, are the main adsorption mechanism. This work develops not only an efficient carbon-based adsorbent for phosphate capture, but also promotes the high-value application of industrial lignin.
Collapse
Affiliation(s)
- Gao-Jie Jiao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiliang Ma
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China.
| | - Yuheng Zhang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dongnv Jin
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yancong Li
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chensheng Hu
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yanzhu Guo
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Zhiwei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
48
|
Fabrication of magnetic nanoparticles supported ionic liquid catalyst for transesterification of vegetable oil to produce biodiesel. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Vakili F, Rashidi A, Taghavi L, Mansouri N. Single-step synthesis of N, S co-doped waste-derived nanoporous carbon sorbent for mercury vapor removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17265-17274. [PMID: 33394405 DOI: 10.1007/s11356-020-12075-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
As well known, mercury is a toxic trace element due to its bioaccumulation and volatility which results in severe effects in health of ecosystems and humans' life. Herein, for the first time, the synthesis of a N and S dual-doped waste-derived graphene-like nanoporous carbon via a facile and single-step route is presented and its capability in mercury vapor removal from gas streams is investigated. To prepare a modified adsorbent, thiourea was utilized as the doping agent to induce nitrogen and sulfur dopants into the nanoporous carbon structure derived from pyrolysis of cabbage (Capitat. var. Brassica oleracea) waste from Brassicaceae family as an inherently S, N-containing precursor, which is produced in noticeable amounts annually. The prepared adsorbents were characterized through FTIR, XRD, BET, SEM, TEM, and CHNOS techniques to get an insight into the structure, morphology, and chemical characteristics of the adsorbents. The structural characterization revealed the successful synthesis of a graphene-like nanoporous carbon sheet which was doped with nitrogen and sulfur atoms. The S, N dual-doped graphene-like carbon nanosheets showed an enhanced activity toward mercury vapor adsorption. For this end, two different dopant to carbon source ratios were considered and it was found that the higher dopant amount results in a better performance. From the adsorption experiments, it was revealed that the pristine graphene-like carbon had a less performance in mercury removal (71%) compared with doped samples (more than 90%) which shows the necessity of reinforcement and surface modification of as mentioned cabbage base graphene. However, the best sample which was prepared with the dopant to carbon ratio of 10 had a performance of 94.5% removal (2100 μg/g) compared with 89% (1980 μg/g) for mercury removal by the sulfur-impregnated commercial activated carbon.
Collapse
Affiliation(s)
- Forouzan Vakili
- Department of environmental science, Faculty of natural resources and environment, Science and research branch, Islamic Azad University, Tehran, Iran
| | - Alimorad Rashidi
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box 14857-33111, Tehran, Iran.
| | - Lobat Taghavi
- Department of environmental science, Faculty of natural resources and environment, Science and research branch, Islamic Azad University, Tehran, Iran
| | - Nabiollah Mansouri
- Department of environmental Engineering, Faculty of natural resources and environment, Science and research branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
50
|
Jiao GJ, Ma J, Li Y, Jin D, Guo Y, Zhou J, Sun R. Enhanced adsorption activity for phosphate removal by functional lignin-derived carbon-based adsorbent: Optimization, performance and evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143217. [PMID: 33162139 DOI: 10.1016/j.scitotenv.2020.143217] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Design of carbon-based adsorbents derived from industrial lignin with superior phosphate adsorption performance is of great significance, yet limited researches have been reported. Here, we report a MgO-functionalized lignin-based bio-charcoal (MFLC) as an efficient adsorbent for phosphate removal. The obtained MgO nanoparticles were dispersed homogeneously on MFLC with particle size of 50-100 nm and higher loading content (28.41%). Benefiting from the favorable morphology of MgO nanoparticles, the MFLC exhibits excellent regeneration ability for phosphate adsorption, which can be applied in a wide range of pH values (2-10). The maximum adsorption capacity could reach to 906.82 mg g-1 for phosphate. Interestingly, the MFLC shows extremely high adsorption activity in the low concentration of phosphate (2 mg P L-1), and its phosphate removal efficiency achieves 99.76%. Furthermore, the results also indicated that the higher loading content of MgO together with smaller particle size can effectively enhance the phosphate adsorption activity of MFLC. The adsorption mechanism revealed that the adsorption of phosphate on the surface of MFLC belongs to single-layer chemisorption, and ligand exchange plays a crucial role during adsorption/desorption. This work not only develops a new strategy for the preparation of high-efficiency carbon-based adsorbents, but also facilitates the value-added utilization of industrial lignin.
Collapse
Affiliation(s)
- Gao-Jie Jiao
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiliang Ma
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Yancong Li
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dongnv Jin
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yanzhu Guo
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jinghui Zhou
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Runcang Sun
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|