1
|
Liu Y, Tang Y, Bao Y, Cai K, Lu B, Zhao R, Yu C, Du Y, Li B. Iso-E-Codelock: A Rebuilding-free Electrochemical Chip with a Customizable Decoding Probe for Real-Time and Portable Pathogen Diagnostics. Angew Chem Int Ed Engl 2024; 63:e202400340. [PMID: 38497899 DOI: 10.1002/anie.202400340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
In order to realize portable pathogen diagnostics with easier quantitation, digitization and integration, we develop a ready-to-use electrochemical sensing strategy (Iso-E-Codelock) for real-time detection of isothermal nucleic acid amplification. Bridged by a branched DNA as codelock, the isothermal amplicon is transduced into increased current of an electrochemical probe, holding multiple advantages of high sensitivity, high selectivity, signal-on response, "zero" background and one-pot operation. Through a self-designed portable instrument (BioAlex PHE-T), the detection can be implemented on a multichannel microchip and output real-time amplification curves just like an expensive commercial PCR machine. The microchip is a rebuilding-free and disposable component. The branch codelock probe can be customized for different targets and designs. Such high performance and flexibility have been demonstrated utilizing four virus (SARS-CoV-2, African swine fever, FluA and FluB) genes as targets, and two branch (3-way and 4-way) DNAs as codelock probes.
Collapse
Affiliation(s)
- Yichen Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yidan Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Yin Bao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Kaiwei Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Baiyang Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Rujian Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chunxu Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bingling Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Fernández-Sánchez F, Martín-Bautista E, Rivas-Ruiz F, Wu W, García-Aranda M. Evaluation of the EasyNAT SARS-CoV-2 assay PCR test for the diagnosis of SARS-CoV-2 infection. J Virol Methods 2024; 326:114908. [PMID: 38423363 DOI: 10.1016/j.jviromet.2024.114908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Reverse transcription polymerase chain reaction (RT-PCR) tests are commonly utilized in commercial settings but pose challenges due to labor-intensive procedures and extended response times during peak demand. In contrast, real-time fluorescence and isothermal amplification assays using Crossing Priming Amplification (CPA) offer faster genetic material analysis, eliminate subjectivity, and require less manipulation and personnel training. This study aimed to validate the EasyNAT SARS-CoV-2 Assay, a diagnostic kit based on CPA, using oral and nasopharyngeal samples. The EasyNAT kit was compared to the Xpert Xpress SARS-CoV-2 kit, evaluating 873 samples obtained during routine analysis at the Microbiology Laboratory of the Hospital Costa del Sol (Marbella, Spain). The overall sensitivity and specificity for the EasyNAT SARS-CoV-2 Assay were 79.1% (95%CI 74.5-83.7) and 99.5% (95%CI 98.7-100), respectively; with, validity index of 91.9%, positive predictive value of 98.9%, negative predictive value of 88.9%, positive likelihood ratio of 144.5, negative likelihood ratio of 0.21 and a total Youden Index of 0.79. Notably, sensitivity improved in fresh samples (91.4%), along with a high Youden Index (0.91). The EasyNAT SARS-CoV-2 Assay achieved a higher percentage of concordance in positive samples with Xpert Xpress SARS-CoV-2 when analyzing cycle threshold (Ct) intervals below 30 compared to intervals equal or greater than 30, and demons. In conclusion, the EasyNAT SARS-CoV-2 Assay demonstrated high sensitivity and agreement with Xpert Xpress SARS-CoV-2, particularly in fresh samples or when the signal was detected at Ct intervals below 30, indicating higher viral loads. This makes it suitable for rapid screening in various settings, including those with limited access to conventional molecular laboratory setting.
Collapse
Affiliation(s)
- Fernando Fernández-Sánchez
- Microbiology Unit. Hospital Universitario Costa del Sol, Autovía A-7, km 187, Málaga, Marbella 29603, Spain.
| | - Elena Martín-Bautista
- Research and Innovation Unit. Hospital Universitario Costa del Sol, Autovía A-7, km 187, Málaga, Marbella 29603, Spain
| | - Francisco Rivas-Ruiz
- Research and Innovation Unit. Hospital Universitario Costa del Sol, Autovía A-7, km 187, Málaga, Marbella 29603, Spain
| | - Winnie Wu
- GeneFirst, Abingdon Science Park, Abingdon Oxfordshire, United Kingdom
| | - Marilina García-Aranda
- Research and Innovation Unit. Hospital Universitario Costa del Sol, Autovía A-7, km 187, Málaga, Marbella 29603, Spain; Department of Surgical Specialties, Biochemistry and Immunology, Faculty of Medicine, University of Málaga. Málaga, Spain
| |
Collapse
|
3
|
Shi Y, Tan Q, Gong T, Li QY, Zhu Y, Duan X, Yang C, Ding JW, Li S, Xie H, Li Y, Chen L. Cascaded signal amplification strategy for ultra-specific, ultra-sensitive, and visual detection of Shigella flexneri. Mikrochim Acta 2024; 191:271. [PMID: 38632191 DOI: 10.1007/s00604-024-06309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
Pathogen infections including Shigella flexneri have posed a significant threat to human health for numerous years. Although culturing and qPCR were the gold standards for pathogen detection, time-consuming and instrument-dependent restrict their application in rapid diagnosis and economically less-developed regions. Thus, it is urgently needed to develop rapid, simple, sensitive, accurate, and low-cost detection methods for pathogen detection. In this study, an immunomagnetic beads-recombinase polymerase amplification-CRISPR/Cas12a (IMB-RPA-CRISPR/Cas12a) method was built based on a cascaded signal amplification strategy for ultra-specific, ultra-sensitive, and visual detection of S. flexneri in the laboratory. Firstly, S. flexneri was specifically captured and enriched by IMB (Shigella antibody-coated magnetic beads), and the genomic DNA was released and used as the template in the RPA reaction. Then, the RPA products were mixed with the pre-loaded CRISPR/Cas12a for fluorescence visualization. The results were observed by naked eyes under LED blue light, with a sensitivity of 5 CFU/mL in a time of 70 min. With no specialized equipment or complicated technical requirements, the IMB-RPA-CRISPR/Cas12a diagnostic method can be used for visual, rapid, and simple detection of S. flexneri and can be easily adapted to monitoring other pathogens.
Collapse
Affiliation(s)
- Yaoqiang Shi
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Qi Tan
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Tao Gong
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Qing-Yuan Li
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Ya Zhu
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Xiaoqiong Duan
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Chunhui Yang
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Jia-Wei Ding
- Clinical Laboratory Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Shilin Li
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - He Xie
- The Hospital of Xidian Group, Xi'an, 710077, China
| | - Yujia Li
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China.
| | - Limin Chen
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China.
- The Joint Laboratory On Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Nanning, 530007, China.
- The Hospital of Xidian Group, Xi'an, 710077, China.
| |
Collapse
|
4
|
Zhou T, Ji W, Fan H, Zhang L, Wan X, Fan Z, Liu GL, Peng Q, Huang L. A Metasurface Plasmonic Analysis Platform Combined with Gold Nanoparticles for Ultrasensitive Quantitative Detection of Small Molecules. BIOSENSORS 2023; 13:681. [PMID: 37504080 PMCID: PMC10377222 DOI: 10.3390/bios13070681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 07/29/2023]
Abstract
Food safety related to drug residues in food has become a widespread public concern. Small-molecule drug residue analysis often relies on mass spectrometry, thin-layer chromatography, or enzyme-linked immunosorbent assays (ELISA). Some of these techniques have limited sensitivity and accuracy, while others are time-consuming, costly, and rely on specialized equipment that requires skilled operation. Therefore, the development of a sensitive, fast, and easy-to-operate biosensor could provide an accessible alternative to conventional small-molecule analysis. Here, we developed a nanocup array-enhanced metasurface plasmon resonance (MetaSPR) chip coupled with gold nanoparticles (AuNPs) (MSPRAN) to detect small molecules. As sulfamethazine drug residues in poultry eggs may cause health issues, we selected this as a model to evaluate the feasibility of using MSPRAN for small-molecule detection. The MSPRAN biosensor employed competitive immunoassay technology for sulfamethazine detection. The limit of detection was calculated as 73 pg/mL, with sensitivity approximately twice that of previously reported detection methods. Additionally, the recovery rate of the biosensor, tested in egg samples, was similar to that measured using ELISA. Overall, this newly developed MSPRAN biosensor platform for small-molecule detection provides fast and reliable results, facile operation, and is relatively cost-effective for application in food safety testing, environmental monitoring, or clinical diagnostics.
Collapse
Affiliation(s)
- Taohong Zhou
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
| | - Weihao Ji
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
| | - Hongli Fan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Zhang
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-Derived Food for State Market Regulation, Wuhan 430075, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan 430075, China
| | - Xugang Wan
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-Derived Food for State Market Regulation, Wuhan 430075, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan 430075, China
| | - Zhiyong Fan
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-Derived Food for State Market Regulation, Wuhan 430075, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan 430075, China
| | - Gang Logan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingzhi Peng
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-Derived Food for State Market Regulation, Wuhan 430075, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan 430075, China
| | - Liping Huang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Liangzhun (Wuhan) Life Technology Co., Ltd., 666 Gaoxin Avenue, Wuhan 430070, China
| |
Collapse
|
5
|
Dorta-Gorrín A, Navas-Méndez J, Gozalo-Margüello M, Miralles L, García-Hevia L. Detection of SARS-CoV-2 Based on Nucleic Acid Amplification Tests (NAATs) and Its Integration into Nanomedicine and Microfluidic Devices as Point-of-Care Testing (POCT). Int J Mol Sci 2023; 24:10233. [PMID: 37373381 DOI: 10.3390/ijms241210233] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The coronavirus SARS-CoV-2 has highlighted the criticality of an accurate and rapid diagnosis in order to contain the spread of the virus. Knowledge of the viral structure and its genome is essential for diagnosis development. The virus is still quickly evolving and the global scenario could easily change. Thus, a greater range of diagnostic options is essential to face this threat to public health. In response to the global demand, there has been a rapid advancement in the understanding of current diagnostic methods. In fact, innovative approaches have emerged, leveraging the benefits of nanomedicine and microfluidic technologies. Although this development has been incredibly fast, several key areas require further investigation and optimization, such as sample collection and preparation, assay optimization and sensitivity, cost effectiveness, scalability device miniaturization, and portability and integration with smartphones. Addressing these gaps in the knowledge and these technological challenges will contribute to the development of reliable, sensitive, and user-friendly NAAT-based POCTs for the diagnosis of SARS-CoV-2 and other infectious diseases, facilitating rapid and effective patient management. This review aims to provide an overview of current SARS-CoV-2 detection methods based on nucleic acid detection tests (NAATs). Additionally, it explores promising approaches that combine nanomedicine and microfluidic devices with high sensitivity and relatively fast 'time to answer' for integration into point-of-care testing (POCT).
Collapse
Affiliation(s)
- Alexis Dorta-Gorrín
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria (UC), 39011 Santander, Spain
- Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
- Environmental Genetics Department, Ecohydros S.L., 39600 Maliaño, Spain
| | - Jesús Navas-Méndez
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria (UC), 39011 Santander, Spain
- Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mónica Gozalo-Margüello
- Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
- Microbiology Service of University Hospital Marqués de Valdecilla (HUMV), 39008 Santander, Spain
- CIBER de Enfermedades Infecciosas-CIBERINFEC (CB21/13/00068), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Miralles
- Environmental Genetics Department, Ecohydros S.L., 39600 Maliaño, Spain
- Department of Functional Biology, Area of Genetics, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Lorena García-Hevia
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria (UC), 39011 Santander, Spain
- Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
6
|
Li Y, Liu Y, Wen L, Chen H, Wang W, Tian M, Cheng Y, Xue H, Chen C. Clinical efficacy analysis of paxlovid in children with hematological diseases infected with the omicron SARS-CoV-2 new variant. Front Pediatr 2023; 11:1160929. [PMID: 37181421 PMCID: PMC10167044 DOI: 10.3389/fped.2023.1160929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2023] Open
Abstract
Objective To summarize the clinical characteristics of children with hematological malignancies co-infected with novel coronavirus and explore the safety and effectiveness of Paxlovid treatment. Methods From December 10, 2022, to January 20, 2023, the clinical data of children with hematological diseases diagnosed with novel coronavirus infection in the outpatient and emergency department of the Seventh Affiliated Hospital of Sun Yat-sen University were retrospectively analyzed. Results According to whether to give paxlovid or not, it is divided into group A (paxlovid group) and group B (non-paxlovid group). The length of fever was 1-6 days in group A and 0-3 days in group B. The viral clearance time was shorter in group A than in group B. The inflammatory indexes CRP and PCT were significantly higher in group A than in group B (P < 0.05). Twenty patients were followed up for 1 month after leaving the hospital, and there were 5 cases of reappearance of fever, 1 case of increased sleep, 1 case of physical fatigue and 1 case of loss of appetite within 2 weeks. Conclusions Paxlovid has no apparent adverse reactions in children 12 years old and younger with underlying hematological diseases infected with the new coronavirus. Focusing on the interaction between paxlovid and other drugs is necessary during the treatment.
Collapse
Affiliation(s)
- Yixian Li
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yong Liu
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Luping Wen
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Hui Chen
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wenqing Wang
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Mengyao Tian
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yucai Cheng
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Hongman Xue
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Chun Chen
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
7
|
Li D, Wu J, Liang Z, Li L, Dong X, Chen S, Fu T, Wang X, Wang Y, Song F. Sophisticated yet Convenient Information Encryption/Decryption Based on Synergistically Time-/Temperature-Resolved Photonic Inks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206290. [PMID: 36504335 PMCID: PMC9929127 DOI: 10.1002/advs.202206290] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Exploring high-safety but convenient encryption and decryption technologies to combat threats of information leakage is urgently needed but remains a great challenge. Here, a synergistically time- and temperature-resolved information coding/decoding solution based on functional photonic inks is demonstrated. Encrypted messages can be stored into multiple channels with dynamic-color patterns, and information decryption is only enabled at appointed temperature and time points. Notably, the ink can be easily processed into quick-response codes and multipixel plates. With high transparency and responsive color variations controlled by ink compositions and ambient temperatures, advanced 3D stacking multichannel coding and Morse coding techniques can be applied for multi-information storage, complex anticounterfeiting, and information interference. This study paves an avenue for the design and development of dynamic photonic inks and complex encryption technologies for high-end anticounterfeiting applications.
Collapse
Affiliation(s)
- Dong Li
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Jia‐Min Wu
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Zheng‐Hong Liang
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Lin‐Yue Li
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Xiu Dong
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Si‐Kai Chen
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Teng Fu
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Xiu‐Li Wang
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Yu‐Zhong Wang
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Fei Song
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| |
Collapse
|
8
|
Choi HK, Yoon J. Nanotechnology-Assisted Biosensors for the Detection of Viral Nucleic Acids: An Overview. BIOSENSORS 2023; 13:208. [PMID: 36831973 PMCID: PMC9953881 DOI: 10.3390/bios13020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The accurate and rapid diagnosis of viral diseases has garnered increasing attention in the field of biosensors. The development of highly sensitive, selective, and accessible biosensors is crucial for early disease detection and preventing mortality. However, developing biosensors optimized for viral disease diagnosis has several limitations, including the accurate detection of mutations. For decades, nanotechnology has been applied in numerous biological fields such as biosensors, bioelectronics, and regenerative medicine. Nanotechnology offers a promising strategy to address the current limitations of conventional viral nucleic acid-based biosensors. The implementation of nanotechnologies, such as functional nanomaterials, nanoplatform-fabrication techniques, and surface nanoengineering, to biosensors has not only improved the performance of biosensors but has also expanded the range of sensing targets. Therefore, a deep understanding of the combination of nanotechnologies and biosensors is required to prepare for sanitary emergencies such as the recent COVID-19 pandemic. In this review, we provide interdisciplinary information on nanotechnology-assisted biosensors. First, representative nanotechnologies for biosensors are discussed, after which this review summarizes various nanotechnology-assisted viral nucleic acid biosensors. Therefore, we expect that this review will provide a valuable basis for the development of novel viral nucleic acid biosensors.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
9
|
Yang X, Yin ZZ, Zheng G, Zhou M, Zhang H, Li J, Cai W, Kong Y. Molecularly imprinted miniature electrochemical biosensor for SARS-CoV-2 spike protein based on Au nanoparticles and reduced graphene oxide modified acupuncture needle. Bioelectrochemistry 2023; 151:108375. [PMID: 36716516 PMCID: PMC9883973 DOI: 10.1016/j.bioelechem.2023.108375] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023]
Abstract
Accurate detection of SARS-CoV-2 spike (SARS-CoV-2-S) protein is of clinical significance for early diagnosis and timely treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, a surface molecularly imprinted miniature biosensor was fabricated. Au nanoparticles (AuNPs), reduced graphene oxide (rGO), poly(methylene blue)/poly(ionic liquids) and poly(ionic liquids) were successively electrodeposited onto the pinpoint of an acupuncture needle (AN). The molecularly imprinted miniature biosensor was obtained after the template of SARS-CoV-2-S protein was removed, which could be used for sensitive detection of SARS-CoV-2-S protein. The linear range and limit of detection (LOD) were 0.1 ∼ 1000 ng mL-1 and 38 pg mL-1, respectively, which were superior to other molecularly imprinted biosensors previously reported. The developed miniature biosensor also exhibited high specificity and stability. The reliability of the biosensor was evaluated by the detection of SARS-CoV-2-S protein in clinical serum samples.
Collapse
Affiliation(s)
- Xu Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zheng-Zhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Guojun Zheng
- Department of Clinical Laboratory, Changzhou No.3 People's Hospital, Changzhou 213001, China
| | - Min Zhou
- Department of Clinical Laboratory, Changzhou No.3 People's Hospital, Changzhou 213001, China
| | - Hongyu Zhang
- Department of Clinical Laboratory, Changzhou No.3 People's Hospital, Changzhou 213001, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|