1
|
Elhenawy S, Khraisheh M, AlMomani F, Al-Ghouti M, Selvaraj R, Al-Muhtaseb A. Emerging Nanomaterials for Drinking Water Purification: A New Era of Water Treatment Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1707. [PMID: 39513787 PMCID: PMC11547847 DOI: 10.3390/nano14211707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
The applications of nanotechnology in the field of water treatment are rapidly expanding and have harvested significant attention from researchers, governments, and industries across the globe. This great interest stems from the numerous benefits, properties, and capabilities that nanotechnology offers in addressing the ever-growing challenges related to water quality, availability, and sustainability. This review paper extensively studies the applications of several nanomaterials including: graphene and its derivative-based adsorbents, CNTs, TiO2 NPs, ZnO NPs, Ag NPs, Fe NPs, and membrane-based nanomaterials in the purification of drinking water. This, it is hoped, will provide the water treatment sector with efficient materials that can be applied successfully in the water purification process to help in addressing the worldwide water scarcity issue.
Collapse
Affiliation(s)
- Salma Elhenawy
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.)
| | - Majeda Khraisheh
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.)
| | - Fares AlMomani
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.)
| | - Mohammad Al-Ghouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar;
| | - Rengaraj Selvaraj
- Department of Chemistry, Sultan Qaboos University, Muscat 123, Oman;
| | - Ala’a Al-Muhtaseb
- Department of Petroleum and Chemical Engineering, Sultan Qaboos University, Muscat 123, Oman;
- Sustainable Energy Research Centre, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
2
|
Buch AC, Sims DB, de Ramos LM, Marques ED, Ritcher S, Abdullah MMS, Silva-Filho EV. Assessment of environmental pollution and human health risks of mine tailings in soil: after dam failure of the Córrego do Feijão Mine (in Brumadinho, Brazil). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:72. [PMID: 38367120 DOI: 10.1007/s10653-024-01870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 01/11/2024] [Indexed: 02/19/2024]
Abstract
The dam failure of the Córrego do Feijão Mine (CFM) located in Minas Gerais State, Brazil, killed at least 278 people. In addition, large extensions of aquatic and terrestrial ecosystems were destroyed, directly compromising the environmental and socioeconomic quality of the region. This study assessed the pollution and human health risks of soils impacted by the tailing spill of the CFM dam, along a sample perimeter of approximately 200 km. Based on potential ecological risk and pollution load indices, the enrichments of Cd, As, Hg, Cu, Pb and Ni in soils indicated that the Brumadinho, Mário Campos, Betim and São Joaquim de Bicas municipalities were the most affected areas by the broken dam. Restorative and reparative actions must be urgently carried out in these areas. For all contaminated areas, the children's group indicated an exacerbated propensity to the development of carcinogenic and non-carcinogenic diseases, mainly through the ingestion pathway. Toxicological risk assessments, including acute, chronic and genotoxic effects, on people living and working in mining areas should be a priority for public management and mining companies to ensure effective environmental measures that do not harm human health and well-being over time.
Collapse
Affiliation(s)
- Andressa Cristhy Buch
- Department of Environmental Geochemistry, Fluminense Federal University, Outeiro São João Baptista, S/N., Centro, Niterói, Rio de Janeiro, 24020-007, Brazil.
| | - Douglas B Sims
- Department of Physical Sciences, College of Southern Nevada, North Las Vegas, NV, 89030, USA
| | - Larissa Magalhães de Ramos
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, 82590-300, Brazil
| | - Eduardo Duarte Marques
- Service Geological Survey of Brazil/Company of Research of Mineral Resources (SGB/CPRM), Belo Horizonte Regional Office, Belo Horizonte, Minas Gerais, 30140-002, Brazil
| | - Simone Ritcher
- Researcher of Paraná Center of Reference in Agroecology, Estrada da Graciosa, Pinhais, Paraná, 6960, 83327-055, Brazil
| | - Mahmood M S Abdullah
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Emmanoel Vieira Silva-Filho
- Department of Environmental Geochemistry, Fluminense Federal University, Outeiro São João Baptista, S/N., Centro, Niterói, Rio de Janeiro, 24020-007, Brazil
| |
Collapse
|
3
|
ŞAHİN M, ATASOY M, ARSLAN Y, YILDIZ D. Removal of Ni(II), Cu(II), Pb(II), and Cd(II) from Aqueous Phases by Silver Nanoparticles and Magnetic Nanoparticles/Nanocomposites. ACS OMEGA 2023; 8:34834-34843. [PMID: 37779946 PMCID: PMC10536035 DOI: 10.1021/acsomega.3c04054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
The intake of heavy metals into the body, even at very low concentrations, may cause a decrease in central nervous system functions; deterioration of blood composition; and liver, kidney, and lung damage. Therefore, heavy metal ions must be removed from water. In this study, silver, magnetic iron/copper, and iron oxide nanoparticles were synthesized using Lathyrus brachypterus extract and then Fe/Cu-AT, Fe3O4-AT, Fe/Cu-CS, and Fe3O4-CS magnetic nanocomposite beads were synthesized using alginate and chitosan. The removal of Cd(II), Pb(II), Ni(II), and Cu(II) ions from aqueous phases using synthesized nanoadsorbents was investigated by single and competitive (double and quaternary) adsorption techniques. The kinetic usability of the magnetic iron oxide chitosan (Fe3O4-CS) nanocomposite beads with the highest removal efficiency was evaluated. Based on experimental results, the order of removal was found to be 98.39, 75.52, 51.54, and 45.34%, and it was listed as Pb(II) > Cu(II) > Cd(II) > Ni(II), respectively. The Dubinin-Radushkevich, Freundlich, Langmuir, and Temkin isotherm models were used, and experimental results revealed that the experimental data fit the Langmuir model better. The maximum adsorption capacities (qm) obtained from the Langmuir isotherm model of Fe3O4-CS were found to be 8.71, 23.75, 18.57, and 12.38 mg/g for Ni(II), Pb(II), Cu(II), and Cd(II) ions, respectively. When the kinetic data were applied to the Lagergren, Ho-McKay, and Elovich models, it was observed that the adsorption kinetics mostly conformed to the Ho-McKay second-order rate equation. The binary and quaternary competitive adsorption data showed that Fe3O4-CS were selective toward Cu(II) and Pb(II). The reusability of the Fe3O4-CS nanoadsorbent was performed as three cycles with the same concentration. The adsorption capacities were found to be 95.81, 70.65, 50.50, and 42.75%, in turn for Pb(II), Cu(II), Cd(II), and Ni(II) ions after three cycles, which revealed that the Fe3O4-CS nanoadsorbent can be used after three cycles without losing its efficiency.
Collapse
Affiliation(s)
- Muradiye ŞAHİN
- Kırşehir
Ahi Evran University, Campus, Kırşehir 40100, Turkey
| | - Muhammet ATASOY
- Muğla
Vocational School, Chemistry and Chemical Treatment Technologies Department,
Chemistry Technology Program, Muğla
Sıtkı Koçman University, Muğla 48000, Turkey
| | - Yasin ARSLAN
- Faculty
of Arts and Science, Nanoscience and Nanotechnology Department, Burdur Mehmet Akif Ersoy University, Burdur 15000, Turkey
| | - Dilek YILDIZ
- Environmental
Problems Research and Application Center, Muğla Sıtkı Kocçman University, Muğla 48000, Turkey
| |
Collapse
|
4
|
Zhang Z, Qi H, Chen H, Zhang X, Tan C, Bai X, Gong Y, Li H. The control efficiency and mechanism of heavy metals by permeable pavement system in runoff based on enhanced infiltration materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117042. [PMID: 36566735 DOI: 10.1016/j.jenvman.2022.117042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
As one of the commonly used stormwater management measures, permeable pavement system (PPS) played a prominent role in controlling runoff pollution and alleviating urban waterlogging. In this study, new enhanced infiltration materials (construction waste brick, coal gangue, activated carbon, multi-walled carbon nanotube, multi-layer graphene) were applied in PPS and the control efficiency and mechanism of typical heavy metals (HMs, Mn2+, Pb2+, Zn2+, Cu2+, Cd2+, Ni2+) was investigated in runoff. Furthermore, the influences of different rainfall intensities and antecedent dry periods on HMs removal by PPS were evaluated. The results showed that all PPS with enhanced infiltration materials have little leaching effect on HMs (<3 μg/L). All the selected enhanced infiltration materials meet the requirements of PPS. The concentration of HMs in the effluent of PPS dropped sharply first, followed rebounded and then maintained at a stable range. Activated carbon PPS (AC), Multi-walled carbon nanotube PPS (MCN), and Multi-layer graphene PPS (MG) could significantly improve the control effect of PPS on nearly all selected HMs. The average removal rates of AC, MCN and MG for six HMs were 75.48%-99.35%, 81.30%-97.59%, and 73.03%-99.33%, respectively. Compared with Traditional PPS (TR), the effluent concentrations of HMs in construction waste brick PPS (CW) and coal gangue PPS (CG) were relatively higher and unstable. AC, CN and MG could adapt to different rainfall conditions and the maximum removal rates of most HMs exceed to 99%. With antecedent dry periods increased, the control effect of HMs was significantly improved. The influences of the antecedent drying period on HMs removal followed as: CW>CG>TR>MG>CN>AC. This study provided novel methods to eliminating HMs in runoff and provides implications for the design of PPS.
Collapse
Affiliation(s)
- Ziyang Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China.
| | - Hao Qi
- Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China
| | - Hongrui Chen
- CRRC Environmental Science & Technology Cooperation, Beijing, 100067, China
| | - Xiaoran Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China
| | - Chaohong Tan
- Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China
| | - Xiaojuan Bai
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China
| | - Yongwei Gong
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China
| | - Haiyan Li
- Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China
| |
Collapse
|
5
|
Mendes RG, do Valle Junior RF, de Melo Silva MMAP, de Morais Fernandes GH, Fernandes LFS, Fernandes ACP, Pissarra TCT, de Melo MC, Valera CA, Pacheco FAL. A partial least squares-path model of environmental degradation in the Paraopeba River, for rainy seasons after the rupture of B1 tailings dam, Brumadinho, Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158248. [PMID: 36028023 DOI: 10.1016/j.scitotenv.2022.158248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The present study aimed to investigate the rupture of B1 tailings dam of Córrego do Feijão mine, which drastically affected the region of Brumadinho (Minas Gerais, Brazil). The contamination of water resources reached 155.3 km from the dam site. In the river channel, high concentrations of Mn, Al, As and Fe were detected and correlated to the spillage of the tailings in the river. The presence of the tailings also affected the chlorophyll-a content in the water, as well as the reflectance of riparian forests. With the increase of metal(oid) concentrations above permitted levels, water management authorities suspended the use of Paraopeba River as resource in the impacted areas, namely the drinking water supply to the Metropolitan region of Belo Horizonte. This study aimed to evaluate possible links between tailings distribution, river water quality, and environmental degradation, which worked as latent variables in partial least squares regression models. The latent variables were represented by numerous physical and chemical parameters of water and sediment, measured four times in 22 locations during the rainy season of 2019, in addition to stream flow and to NDVI evaluated in satellite images processed daily. The modeling results suggested a relationship between river flow turbulence and increased arsenic release from sand fractions, as well as desorption of Mn from metal oxides, both representing causes of water quality reduction. They also revealed increasing iron concentrations affecting the forest NDVI (greening), which was interpreted as environmental degradation. The increase of chlorophyll-a concentrations (related with turbidity decreases), as well as the increase of river flows (responsible for dilution effects), seemed to work out as attenuators of degradation. Although applied to a specific site, our modeling approach can be transposed to equivalent dam failures and climate contexts, helping water resource management authorities to decide upon appropriate recovery solutions.
Collapse
Affiliation(s)
- Rafaella Gouveia Mendes
- Instituto Federal do Triângulo Mineiro (IFTM), Campus Uberaba, Laboratório de Geoprossessamento, Uberaba, MG 38064-790, Brazil
| | - Renato Farias do Valle Junior
- Instituto Federal do Triângulo Mineiro (IFTM), Campus Uberaba, Laboratório de Geoprossessamento, Uberaba, MG 38064-790, Brazil.
| | | | | | - Luís Filipe Sanches Fernandes
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Ap. 1013, 5001-801 Vila Real, Portugal.
| | - António Carlos Pinheiro Fernandes
- Centro de Recursos Naturais e Ambiente (CERENA/FEUP), Faculdade de Engenharia, Universidade do Porto, Dr. Roberto Frias st., Porto 4200-465, Portugal.
| | - Teresa Cristina Tarlé Pissarra
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil.
| | - Marília Carvalho de Melo
- Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável, Cidade Administrativa do Estado de Minas Gerais, Rodovia João Paulo II, 4143 Bairro Serra Verde - Belo Horizonte - Minas Gerais, Brazil.
| | - Carlos Alberto Valera
- Coordenadoria Regional das Promotorias de Justiça do Meio Ambiente das Bacias dos Rios Paranaíba e Baixo Rio Grande, Rua Coronel Antônio Rios, 951, Uberaba, MG 38061-150, Brazil.
| | - Fernando António Leal Pacheco
- Centro de Química de Vila Real (CQVR), Universidade de Trás-os-Montes e Alto Douro (UTAD), Ap. 1013, 5001-801 Vila Real, Portugal.
| |
Collapse
|
6
|
Damiri F, Andra S, Kommineni N, Balu SK, Bulusu R, Boseila AA, Akamo DO, Ahmad Z, Khan FS, Rahman MH, Berrada M, Cavalu S. Recent Advances in Adsorptive Nanocomposite Membranes for Heavy Metals Ion Removal from Contaminated Water: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5392. [PMID: 35955327 PMCID: PMC9369589 DOI: 10.3390/ma15155392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 05/31/2023]
Abstract
Water contamination is one of the most urgent concerns confronting the world today. Heavy metal poisoning of aquatic systems has piqued the interest of various researchers due to the high toxicity and carcinogenic consequences it has on living organisms. Due to their exceptional attributes such as strong reactivity, huge surface area, and outstanding mechanical properties, nanomaterials are being produced and employed in water treatment. In this review, recent advances in the use of nanomaterials in nanoadsorptive membrane systems for wastewater treatment and heavy metal removal are extensively discussed. These materials include carbon-based nanostructures, metal nanoparticles, metal oxide nanoparticles, nanocomposites, and layered double hydroxide-based compounds. Furthermore, the relevant properties of the nanostructures and the implications on their performance for water treatment and contamination removal are highlighted. The hydrophilicity, pore size, skin thickness, porosity, and surface roughness of these nanostructures can help the water permeability of the nanoadsorptive membrane. Other properties such as surface charge modification and mechanical strength can improve the metal adsorption effectiveness of nanoadsorptive membranes during wastewater treatment. Various nanocomposite membrane fabrication techniques are also reviewed. This study is important because it gives important information on the roles of nanomaterials and nanostructures in heavy metal removal and wastewater treatment.
Collapse
Affiliation(s)
- Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| | - Swetha Andra
- Department of Chemistry, Rajalakshmi Institute of Technology, Chennai 600124, Tamil Nadu, India
| | | | - Satheesh Kumar Balu
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Raviteja Bulusu
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Amira A. Boseila
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR), Cairo 12611, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Sinai 41636, Egypt
| | - Damilola O. Akamo
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
7
|
Moreira VR, Lebron YAR, Gontijo D, Amaral MCS. One-step recycling of mineral acid from concentrated gold mining wastewater by high-temperature liquid–liquid extraction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Costa A, Knop RG, Felippe MF. A produção acadêmica acerca dos desastres tecnológicos da mineração em Mariana e Brumadinho (Minas Gerais). CONFINS 2021. [DOI: 10.4000/confins.41045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
9
|
Oak wood ash/GO/Fe3O4 adsorption efficiencies for cadmium and lead removal from aqueous solution: Kinetics, equilibrium and thermodynamic evaluation. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.102991] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
10
|
Moreira VR, Lebron YAR, Santos LVDS. Predicting the biosorption capacity of copper by dried Chlorella pyrenoidosa through response surface methodology and artificial neural network models. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|