1
|
Zhang M, Wen H, Sun Q, Zhang D, Li Y, Xi A, Zheng X, Wu Y, Cao J, Bouyer J, Xi Z. Early attainment of 20-hydroxyecdysone threshold shapes mosquito sexual dimorphism in developmental timing. Nat Commun 2025; 16:821. [PMID: 39827175 PMCID: PMC11743200 DOI: 10.1038/s41467-025-56224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
In holometabolous insects, critical weight (CW) attainment triggers pupation and metamorphosis, but its mechanism remains unclear in non-model organisms like mosquitoes. Here, we investigate the role of 20-hydroxyecdysone (20E) in CW assessment and pupation timing in Aedes albopictus and Ae. aegypti, vectors of arboviruses including dengue and Zika. Our results show that the attainment of CW is contingent upon surpassing a critical 20E threshold, which results in entrance into a constant 22 h interval and the subsequent 20E pulse responsible for larval-pupal ecdysis. Sexual dimorphism in pupation time arises from higher basal 20E levels in males, enabling earlier CW attainment. Administering 20E at 50% of L3/L4 molt, when most of males but not females pass the pulse, results in female-specific lethality. These findings highlight the pivotal role of 20E thresholds in CW, pupation timing, and sexual dimorphism, suggesting that manipulating 20E levels can skew populations male, offering a potential mosquito sex separation strategy.
Collapse
Affiliation(s)
- Meichun Zhang
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Han Wen
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
| | - Qiang Sun
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
| | - Dongjing Zhang
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Andrew Xi
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
| | - Xiaoying Zheng
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yu Wu
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Jeremy Bouyer
- Insect Pest Control Sub-programme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- ASTRE, CIRAD, F34398, Montpellier, France
- ASTRE, Cirad, INRAE, Univ. Montpellier, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Zhiyong Xi
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Luo Y, Takau A, Li J, Fan T, Hopkins BR, Le Y, Ramirez SR, Matsuo T, Kopp A. Regulatory Changes in the Fatty Acid Elongase eloF Underlie the Evolution of Sex-specific Pheromone Profiles in Drosophila prolongata. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617394. [PMID: 39464098 PMCID: PMC11507777 DOI: 10.1101/2024.10.09.617394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Pheromones play a key role in regulating sexual behavior throughout the animal kingdom. In Drosophila and other insects, many cuticular hydrocarbons (CHCs) are sexually dimorphic, and some are known to perform pheromonal functions. However, the genetic control of sex-specific CHC production is not understood outside of the model species D. melanogaster. A recent evolutionary change is found in D. prolongata, which, compared to its closest relatives, shows greatly increased sexual dimorphism in both CHCs and the chemosensory system responsible for their perception. A key transition involves a male-specific increase in the proportion of long-chain CHCs. Perfuming D. prolongata females with the male-biased CHCs reduces copulation success, suggesting that these compounds function as sex pheromones. The evolutionary change in CHC profiles correlates with a male-specific increase in the expression of multiple genes involved in CHC biosynthesis, including fatty acid elongases and reductases and other key enzymes. In particular, elongase F, which is responsible for producing female-specific pheromones in D. melanogaster, is strongly upregulated in D. prolongata males compared both to females and to males of the sibling species. Induced mutations in eloF reduce the amount of long-chain CHCs, resulting in a partial feminization of pheromone profiles in D. prolongata males while having minimal effect in females. Transgenic experiments show that sex-biased expression of eloF is caused in part by a putative transposable element insertion in its regulatory region. These results reveal one of the genetic mechanisms responsible for a recent evolutionary change in sexual communication.
Collapse
Affiliation(s)
- Yige Luo
- Department of Evolution and Ecology, University of California, Davis
| | - Ayumi Takau
- Department of Agricultural and Environmental Biology, The University of Tokyo
| | - Jiaxun Li
- Department of Evolution and Ecology, University of California, Davis
| | - Tiezheng Fan
- Department of Evolution and Ecology, University of California, Davis
| | - Ben R Hopkins
- Department of Evolution and Ecology, University of California, Davis
| | - Yvonne Le
- Department of Evolution and Ecology, University of California, Davis
| | | | - Takashi Matsuo
- Department of Agricultural and Environmental Biology, The University of Tokyo
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis
| |
Collapse
|
3
|
Iino S, Oya S, Kakutani T, Kohno H, Kubo T. Identification of ecdysone receptor target genes in the worker honey bee brains during foraging behavior. Sci Rep 2023; 13:10491. [PMID: 37380789 DOI: 10.1038/s41598-023-37001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Ecdysone signaling plays central roles in morphogenesis and female ovarian development in holometabolous insects. In the European honey bee (Apis mellifera L.), however, ecdysone receptor (EcR) is expressed in the brains of adult workers, which have already undergone metamorphosis and are sterile with shrunken ovaries, during foraging behavior. Aiming at unveiling the significance of EcR signaling in the worker brain, we performed chromatin-immunoprecipitation sequencing of EcR to search for its target genes using the brains of nurse bees and foragers. The majority of the EcR targets were common between the nurse bee and forager brains and some of them were known ecdysone signaling-related genes. RNA-sequencing analysis revealed that some EcR target genes were upregulated in forager brains during foraging behavior and some were implicated in the repression of metabolic processes. Single-cell RNA-sequencing analysis revealed that EcR and its target genes were expressed mostly in neurons and partly in glial cells in the optic lobes of the forager brain. These findings suggest that in addition to its role during development, EcR transcriptionally represses metabolic processes during foraging behavior in the adult worker honey bee brain.
Collapse
Affiliation(s)
- Shiori Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuji Kakutani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
4
|
Vengatharajuloo V, Goh HH, Hassan M, Govender N, Sulaiman S, Afiqah-Aleng N, Harun S, Mohamed-Hussein ZA. Gene Co-Expression Network Analysis Reveals Key Regulatory Genes in Metisa plana Hormone Pathways. INSECTS 2023; 14:503. [PMID: 37367319 DOI: 10.3390/insects14060503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023]
Abstract
Metisa plana Walker (Lepidoptera: Psychidae) is a major oil palm pest species distributed across Southeast Asia. M. plana outbreaks are regarded as serious ongoing threats to the oil palm industry due to their ability to significantly reduce fruit yield and subsequent productivity. Currently, conventional pesticide overuses may harm non-target organisms and severely pollute the environment. This study aims to identify key regulatory genes involved in hormone pathways during the third instar larvae stage of M. plana gene co-expression network analysis. A weighted gene co-expression network analysis (WGCNA) was conducted on the M. plana transcriptomes to construct a gene co-expression network. The transcriptome datasets were obtained from different development stages of M. plana, i.e., egg, third instar larvae, pupa, and adult. The network was clustered using the DPClusO algorithm and validated using Fisher's exact test and receiver operating characteristic (ROC) analysis. The clustering analysis was performed on the network and 20 potential regulatory genes (such as MTA1-like, Nub, Grn, and Usp) were identified from ten top-most significant clusters. Pathway enrichment analysis was performed to identify hormone signalling pathways and these pathways were identified, i.e., hormone-mediated signalling, steroid hormone-mediated signalling, and intracellular steroid hormone receptor signalling as well as six regulatory genes Hnf4, Hr4, MED14, Usp, Tai, and Trr. These key regulatory genes have a potential as important targets in future upstream applications and validation studies in the development of biorational pesticides against M. plana and the RNA interference (RNAi) gene silencing method.
Collapse
Affiliation(s)
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Nisha Govender
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Suhaila Sulaiman
- FGV R&D Sdn Bhd, FGV Innovation Center, PT23417 Lengkuk Teknologi, Bandar Baru Enstek, Nilai 71760, Negeri Sembilan, Malaysia
| | - Nor Afiqah-Aleng
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Sarahani Harun
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
5
|
Zhang X, Wu X, Peng J, Sun A, Guo Y, Fu P, Gao G. Cis- and trans-regulation by histone H4 basic patch R17/R19 in metazoan development. Open Biol 2022; 12:220066. [PMID: 36382370 PMCID: PMC9667139 DOI: 10.1098/rsob.220066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
The histone H4 basic patch is critical for chromatin structure and regulation of the chromatin machinery. However, the biological roles of these positively charged residues and the mechanisms by which they regulate gene expression remain unclear. In this study, we used histone mutagenesis to investigate the physiological function and downstream regulatory genes of H4 residues R17 and R19 in Drosophila. We found all histone mutations including R17A/E/H and R19A/E/H (R17 and R19 of H4 are substituted by A, E and H respectively) result in a range of growth defects and abnormalities in chromosomal high-order structures, whereas R17E mutation is embryonic lethal. RNA-seq demonstrates that downregulated genes in both R17A and R19A show significant overlap and are enriched in development-related pathways. In addition, Western and cytological analyses showed that the R17A mutation resulted in a significant reduction in H4K16 acetylation and male offspring, implying that the R17 may be involved in male dosage compensation mechanisms. R19 mutation on the other hand strongly affect Gpp (Dot1 homologue in flies)-mediated H3K79 methylation, possibly through histone crosstalk. Together these results provide insights into the differential impacts of positive charges of H4 basic patch R17/R19 on regulation of gene transcription during developmental processes.
Collapse
Affiliation(s)
- Xuedi Zhang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People's Republic of China
| | - Xiangyu Wu
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People's Republic of China
| | - Ju Peng
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People's Republic of China
| | - Angyang Sun
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People's Republic of China
| | - Yan Guo
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People's Republic of China
| | - Pengchong Fu
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People's Republic of China
| | - Guanjun Gao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People's Republic of China
| |
Collapse
|
6
|
Yuan H, Zhang W, Qiao H, Jin S, Jiang S, Xiong Y, Gong Y, Fu H. MnHR4 Functions during Molting of Macrobrachium nipponense by Regulating 20E Synthesis and Mediating 20E Signaling. Int J Mol Sci 2022; 23:ijms232012528. [PMID: 36293382 PMCID: PMC9604295 DOI: 10.3390/ijms232012528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 12/05/2022] Open
Abstract
HR4, a member of the nuclear receptor family, has been extensively studied in insect molting and development, but reports on crustaceans are still lacking. In the current study, the MnHR4 gene was identified in Macrobrachium nipponense. To further improve the molting molecular mechanism of M. nipponense, this study investigated whether MnHR4 functions during the molting process of M. nipponense. The domain, phylogenetic relationship and 3D structure of MnHR4 were analyzed by bioinformatics. Quantitative real-time PCR (qRT-PCR) analysis showed that MnHR4 was highly expressed in the ovary. In different embryo stages, the highest mRNA expression was observed in the cleavage stage (CS). At different individual stages, the mRNA expression of MnHR4 reached its peak on the fifteenth day after hatching (L15). The in vivo injection of 20-hydroxyecdysone (20E) can effectively promote the expression of the MnHR4 gene, and the silencing of the MnHR4 gene increased the content of 20E in M. nipponense. The regulatory role of MnHR4 in 20E synthesis and 20E signaling was further investigated by RNAi. Finally, the function of the MnHR4 gene in the molting process of M. nipponense was studied by counting the molting frequency. After knocking down MnHR4, the molting frequency of M. nipponense decreased significantly. It was proved that MnHR4 plays a pivotal role in the molting process of M. nipponense.
Collapse
Affiliation(s)
- Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Correspondence: ; Tel.: +86-510-8555-8835
| |
Collapse
|
7
|
Liu WT, Chen CC, Ji DD, Tu WC. The cecropin-prophenoloxidase regulatory mechanism is a cross-species physiological function in mosquitoes. iScience 2022; 25:104478. [PMID: 35712072 PMCID: PMC9194137 DOI: 10.1016/j.isci.2022.104478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 11/06/2022] Open
Abstract
This study's aim was to investigate whether the cecropin-prophenoloxidase regulatory mechanism is a cross-species physiological function among mosquitoes. BLAST and phylogenetic analysis revealed that three mosquito cecropin Bs, namely Aedes albopictus cecropin B (Aalcec B), Armigeres subalbatus cecropin B2 (Ascec B2), and Culex quinquefasciatus cecropin B1 (Cqcec B1), play crucial roles in cuticle formation during pupal development via the regulation of prophenoloxidase 3 (PPO 3). The effects of cecropin B knockdown were rescued in a cross-species manner by injecting synthetic cecropin B peptide into pupae. Further investigations showed that these three cecropin B peptides bind to TTGG(A/C)A motifs within each of the PPO 3 DNA fragments obtained from these three mosquitoes. These results suggest that Aalcec B, Ascec B2, and Cqcec B1 each play an important role as a transcription factor in cuticle formation and that similar cecropin-prophenoloxidase regulatory mechanisms exist in multiple mosquito species. Cecropin B is able to regulate PPO 3 expression in the pupae Cecropin B binds to TTGG(A/C)A motifs within the PPO 3 DNA The knockdown of cecropin B was rescued by sequence-similar cecropin B peptides The cecropin B-prophenoloxidase 3 regulatory mechanism is conserved in mosquitoes
Collapse
|
8
|
Liu X, Li J, Sun Y, Liang X, Zhang R, Zhao X, Zhang M, Zhang J. A nuclear receptor HR4 is essential for the formation of epidermal cuticle in the migratory locust, Locusta migratoria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103740. [PMID: 35183732 DOI: 10.1016/j.ibmb.2022.103740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Nuclear receptors (NRs) function as key factors in diverse signaling and metabolic pathways. Previous studies have focused on the roles of a nuclear receptor, hormone receptor 4 (HR4), mainly in holometabolous insects, while current knowledge of its function in hemimetabolous insects is still limited. In this study, we identified a HR4 gene in the orthopteran species Locusta migratoria. The full-length open reading frame of LmHR4 comprises 2694-nucleotides encoding a polypeptide of 897 amino acids, which contained a DNA-binding and a ligand-binding domain. Analyzing LmHR4 expression by quantitative reverse-transcription PCR (RT-qPCR) revealed that LmHR4 was highly expressed in integument, hindgut and fat body. During development from 3rd and 5th nymphal instars, the expression of LmHR4 reached maximal levels before ecdysis. We further demonstrated that LmHR4 expression is induced by 20-hydroxyecdysone (20E) and suppressed by silencing LmEcR, suggesting that LmHR4 expression is controlled by 20E signaling. The dsLmHR4-injected nymphs failed to molt and remained in the nymphal stage until death. Hematoxylin and eosin staining of the integument indicated that apolysis in the dsLmHR4-injected insects was delayed compared to that in control insects. Chitin staining and ultra-structural analysis showed that both the synthesis of the new cuticle and the degradation of the old cuticle were blocked in dsLmHR4-injected insects. Silencing LmHR4 decreased 20E titer and down-regulated the transcript levels of genes involved in chitin synthesis and degradation. Taken together, these results suggest that LmHR4 is essential for the formation of epidermal cuticle by mediating the 20E signaling to regulate the expression of chitin synthesis and degradation genes.
Collapse
Affiliation(s)
- Xiaojian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Juan Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Yawen Sun
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Xiaoyu Liang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Rui Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Xiaoming Zhao
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Min Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
9
|
Ghosh S, Leng W, Wilsch-Bräuninger M, Barrera-Velázquez M, Léopold P, Eaton S. A local insulin reservoir in Drosophila alpha cell homologs ensures developmental progression under nutrient shortage. Curr Biol 2022; 32:1788-1797.e5. [PMID: 35316653 DOI: 10.1016/j.cub.2022.02.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 12/19/2022]
Abstract
Insulin/insulin-like growth factor (IGF) signaling (IIS) controls many aspects of development and physiology. In Drosophila, a conserved family of insulin-like peptides called Dilps is produced by brain neurosecretory cells, and it regulates organismal growth and developmental timing. To accomplish these systemic functions, the Dilps are secreted into the general circulation, and they signal to peripheral tissues in an endocrine fashion. Here, we describe the local uptake and storage of Dilps in the corpora cardiaca (CC), an endocrine organ composed of alpha cell homologs known to produce the glucagon-like adipokinetic hormone (AKH). We show that Dilp uptake by the CC relies on the expression of an IGF-binding protein called ImpL2. Following their uptake, immunogold staining demonstrates that Dilps are co-packaged with AKH in dense-core vesicles for secretion. In response to nutrient shortage, this specific Dilp reservoir is released and activates IIS in a paracrine manner in the prothoracic gland. This stimulates the production of the steroid hormone ecdysone and initiates entry into pupal development. We therefore uncover a sparing mechanism whereby insulin stores in CC serve to locally activate IIS and the production of ecdysone in the PG, accelerating developmental progression in adverse food conditions.
Collapse
Affiliation(s)
- Suhrid Ghosh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Biotechnologisches Zentrum, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
| | - Weihua Leng
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Michaela Wilsch-Bräuninger
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Mariana Barrera-Velázquez
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Undergraduate Program on Genomic Sciences, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos 62210, Mexico
| | - Pierre Léopold
- Institut Curie, PSL Research University, CNRS UMR3215, Inserm U934, 26 Rue d'Ulm, 75005 Paris, France.
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Biotechnologisches Zentrum, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| |
Collapse
|
10
|
Kamiyama T, Niwa R. Transcriptional Regulators of Ecdysteroid Biosynthetic Enzymes and Their Roles in Insect Development. Front Physiol 2022; 13:823418. [PMID: 35211033 PMCID: PMC8863297 DOI: 10.3389/fphys.2022.823418] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
Steroid hormones are responsible for coordinating many aspects of biological processes in most multicellular organisms, including insects. Ecdysteroid, the principal insect steroid hormone, is biosynthesized from dietary cholesterol or plant sterols. In the last 20 years, a number of ecdysteroidogenic enzymes, including Noppera-bo, Neverland, Shroud, Spook/Spookier, Cyp6t3, Phantom, Disembodied, Shadow, and Shade, have been identified and characterized in molecular genetic studies using the fruit fly Drosophila melanogaster. These enzymes are encoded by genes collectively called the Halloween genes. The transcriptional regulatory network, governed by multiple regulators of transcription, chromatin remodeling, and endoreplication, has been shown to be essential for the spatiotemporal expression control of Halloween genes in D. melanogaster. In this review, we summarize the latest information on transcriptional regulators that are crucial for controlling the expression of ecdysteroid biosynthetic enzymes and their roles in insect development.
Collapse
Affiliation(s)
- Takumi Kamiyama
- College of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
11
|
Glastad KM, Ju L, Berger SL. Tramtrack acts during late pupal development to direct ant caste identity. PLoS Genet 2021; 17:e1009801. [PMID: 34550980 PMCID: PMC8489709 DOI: 10.1371/journal.pgen.1009801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/04/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
A key question in the rising field of neuroepigenetics is how behavioral plasticity is established and maintained in the developing CNS of multicellular organisms. Behavior is controlled through systemic changes in hormonal signaling, cell-specific regulation of gene expression, and changes in neuronal connections in the nervous system, however the link between these pathways is unclear. In the ant Camponotus floridanus, the epigenetic corepressor CoREST is a central player in experimentally-induced reprogramming of caste-specific behavior, from soldier (Major worker) to forager (Minor worker). Here, we show this pathway is engaged naturally on a large genomic scale during late pupal development targeting multiple genes differentially expressed between castes, and central to this mechanism is the protein tramtrack (ttk), a DNA binding partner of CoREST. Caste-specific differences in DNA binding of ttk co-binding with CoREST correlate with caste-biased gene expression both in the late pupal stage and immediately after eclosion. However, we find a unique set of exclusive Minor-bound genes that show ttk pre-binding in the late pupal stage preceding CoREST binding, followed by caste-specific gene repression on the first day of eclosion. In addition, we show that ttk binding correlates with neurogenic Notch signaling, and that specific ttk binding between castes is enriched for regulatory sites associated with hormonal function. Overall our findings elucidate a pathway of transcription factor binding leading to a repressive epigenetic axis that lies at the crux of development and hormonal signaling to define worker caste identity in C. floridanus.
Collapse
Affiliation(s)
- Karl M Glastad
- Department of Cell and Developmental Biology, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America.,Epigenetics Institute; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America
| | - Linyang Ju
- Epigenetics Institute; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America.,Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania United States of America
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America.,Epigenetics Institute; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America.,Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania United States of America
| |
Collapse
|
12
|
Legrand E, Bachvaroff T, Schock TB, Chung JS. Understanding molt control switches: Transcriptomic and expression analysis of the genes involved in ecdysteroidogenesis and cholesterol uptake pathways in the Y-organ of the blue crab, Callinectes sapidus. PLoS One 2021; 16:e0256735. [PMID: 34478479 PMCID: PMC8415587 DOI: 10.1371/journal.pone.0256735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
The crustacean molting process is regulated by an interplay of hormones produced by the eyestalk ganglia and Y-organs (YO). Molt-inhibiting hormone and crustacean hyperglycemic hormone released by the sinus gland of the eyestalk ganglia (EG) inhibit the synthesis and secretion of ecdysteroid by the YO, hence regulating hemolymph levels during the molt cycle. The purpose of this study is to investigate the ecdysteroidogenesis pathway, specifically genes linked to changes in ecdysteroid levels occurring at early premolt (ePM). To this end, a reference transcriptome based on YO, EG, and hepatopancreas was de novo assembled. Two genes (cholesterol 7-desaturase Neverland and cytochrome p450 307a1-like Spook) involved in ecdysteroidogenesis were identified from the YO transcriptome using sequence comparisons and transcript abundance. Two other candidates, Hormone receptor 4 and probable cytochrome p450 49a1 potentially involved in ecdysteroidogenesis were also identified. Since cholesterol is the ecdysteroid precursor, a putative cholesterol carrier (Apolipoprotein D-like) was also examined to understand if cholesterol uptake coincided with the increase in the ecdysteroid levels at the ePM stage. The expression level changes of the five candidate genes in the YO were compared between intermolt (IM) and induced ePM (iePM) stages using transcriptomic analysis. Expression analysis using qPCR were carried out at IM, iePM, and normal ePM. The increase in Spook and Neverland expression in the YO at the ePM was accompanied by a concomitant rise in ecdysteroid levels. The data obtained from iePM stage were congruent with those obtained from the normal ePM stage of intact control animals. The present findings support the role of Halloween genes in the ecdysteroidogenesis and molt cycle in the blue crab, Callinectes sapidus.
Collapse
Affiliation(s)
- Elena Legrand
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, United States of America
| | - Tsvetan Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, United States of America
| | - Tracey B. Schock
- Chemical Sciences Division, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, South Carolina, United States of America
| | - J. Sook Chung
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, United States of America
| |
Collapse
|
13
|
The circadian clock gates Drosophila adult emergence by controlling the timecourse of metamorphosis. Proc Natl Acad Sci U S A 2021; 118:2023249118. [PMID: 34183412 PMCID: PMC8271606 DOI: 10.1073/pnas.2023249118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In holometabolous insects, the circadian clock restricts the time of adult emergence. Although this daily gating of behavior is one of the first circadian rhythms to be studied, little is known about the mechanism underlying the gating process itself. Here, we show that the circadian clock imposes a daily rhythmicity to the pattern of adult emergence by controlling the timing of the completion of metamorphosis. Thus, our findings reveal that the basis of gating is a developmental process and not an acute on/off activational switch and fundamentally changes our understanding of how this circadian control is accomplished. It also provides evidence of a mechanism by which the circadian clock imposes a daily rhythmicity to behavior through the control of the pace of development. The daily rhythm of adult emergence of holometabolous insects is one of the first circadian rhythms to be studied. In these insects, the circadian clock imposes a daily pattern of emergence by allowing or stimulating eclosion during certain windows of time and inhibiting emergence during others, a process that has been described as “gating.” Although the circadian rhythm of insect emergence provided many of the key concepts of chronobiology, little progress has been made in understanding the bases of the gating process itself, although the term “gating” suggests that it is separate from the developmental process of metamorphosis. Here, we follow the progression through the final stages of Drosophila adult development with single-animal resolution and show that the circadian clock imposes a daily rhythmicity to the pattern of emergence by controlling when the insect initiates the final steps of metamorphosis itself. Circadian rhythmicity of emergence depends on the coupling between the central clock located in the brain and a peripheral clock located in the prothoracic gland (PG), an endocrine gland whose only known function is the production of the molting hormone, ecdysone. Here, we show that the clock exerts its action by regulating not the levels of ecdysone but that of its actions mediated by the ecdysone receptor. Our findings may also provide insights for understanding the mechanisms by which the daily rhythms of glucocorticoids are produced in mammals, which result from the coupling between the central clock in the suprachiasmatic nucleus and a peripheral clock located in the suprarenal gland.
Collapse
|
14
|
Weaver LN, Drummond-Barbosa D. Hormone receptor 4 is required in muscles and distinct ovarian cell types to regulate specific steps of Drosophila oogenesis. Development 2021; 148:dev.198663. [PMID: 33547134 DOI: 10.1242/dev.198663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
The conserved nuclear receptor superfamily has crucial roles in many processes, including reproduction. Nuclear receptors with known roles in oogenesis have been studied mostly in the context of their ovary-intrinsic requirement. Recent studies in Drosophila, however, have begun to reveal new roles of nuclear receptor signaling in peripheral tissues in controlling reproduction. Here, we identified Hormone receptor 4 (Hr4) as an oogenesis regulator required in the ovary and muscles. Global Hr4 knockdown leads to increased germline stem cell (GSC) loss, reduced GSC proliferation, early germline cyst death, slowed follicle growth and vitellogenic follicle degeneration. Tissue-specific knockdown experiments uncovered ovary-intrinsic and peripheral tissue requirements for Hr4 In the ovary, Hr4 is required in the niche for GSC proliferation and in the germline for GSC maintenance. Hr4 functions in muscles to promote GSC maintenance and follicle growth. The specific tissues that require Hr4 for survival of early germline cysts and vitellogenic follicles remain unidentified. These results add to the few examples of muscles controlling gametogenesis and expand our understanding of the complexity of nuclear receptor regulation of various aspects of oogenesis.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Opachaloemphan C, Mancini G, Konstantinides N, Parikh A, Mlejnek J, Yan H, Reinberg D, Desplan C. Early behavioral and molecular events leading to caste switching in the ant Harpegnathos. Genes Dev 2021; 35:410-424. [PMID: 33602869 PMCID: PMC7919410 DOI: 10.1101/gad.343699.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Ant societies show a division of labor in which a queen is in charge of reproduction while nonreproductive workers maintain the colony. In Harpegnathos saltator, workers retain reproductive ability, inhibited by the queen pheromones. Following the queen loss, the colony undergoes social unrest with an antennal dueling tournament. Most workers quickly abandon the tournament while a few workers continue the dueling for months and become gamergates (pseudoqueens). However, the temporal dynamics of the social behavior and molecular mechanisms underlining the caste transition and social dominance remain unclear. By tracking behaviors, we show that the gamergate fate is accurately determined 3 d after initiation of the tournament. To identify genetic factors responsible for this commitment, we compared transcriptomes of different tissues between dueling and nondueling workers. We found that juvenile hormone is globally repressed, whereas ecdysone biosynthesis in the ovary is increased in gamergates. We show that molecular changes in the brain serve as earliest caste predictors compared with other tissues. Thus, behavioral and molecular data indicate that despite the prolonged social upheaval, the gamergate fate is rapidly established, suggesting a robust re-establishment of social structure.
Collapse
Affiliation(s)
- Comzit Opachaloemphan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Giacomo Mancini
- Department of Biology, New York University, New York, New York 10003, USA
| | | | - Apurva Parikh
- Department of Biology, New York University, New York, New York 10003, USA
| | - Jakub Mlejnek
- Department of Biology, New York University, New York, New York 10003, USA
| | - Hua Yan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
16
|
Weaver LN, Drummond-Barbosa D. The Nuclear Receptor Seven Up Regulates Genes Involved in Immunity and Xenobiotic Response in the Adult Drosophila Female Fat Body. G3 (BETHESDA, MD.) 2020; 10:4625-4635. [PMID: 33087412 PMCID: PMC7718730 DOI: 10.1534/g3.120.401745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/17/2020] [Indexed: 01/02/2023]
Abstract
The physiology of organisms depends on inter-organ communication in response to changes in the environment. Nuclear receptors are broadly expressed transcription factors that respond to circulating molecules to control many biological processes, including immunity, detoxification, and reproduction. Although the tissue-intrinsic roles of nuclear receptors in reproduction have been extensively studied, there is increasing evidence that nuclear receptor signaling in peripheral tissues can also influence oogenesis. We previously showed that the Drosophila nuclear receptor Seven up (Svp) is required in the adult fat body to regulate distinct steps of oogenesis; however, the relevant downstream targets of Svp remain unknown. Here, we took an RNA sequencing approach to identify candidate Svp targets specifically in the adult female fat body that might mediate this response. svp knockdown in the adult female fat body significantly downregulated immune genes involved in the first line of pathogen defense, suggesting a role for Svp in stimulating early immunity. In addition, we found that Svp transcriptionally regulates genes involved in each step of the xenobiotic detoxification response. Based on these findings, we propose a testable model in which Svp functions in the adult female fat body to stimulate early defense against pathogens and facilitate detoxification as part of its mechanisms to promote oogenesis.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
17
|
Texada MJ, Koyama T, Rewitz K. Regulation of Body Size and Growth Control. Genetics 2020; 216:269-313. [PMID: 33023929 PMCID: PMC7536854 DOI: 10.1534/genetics.120.303095] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
The control of body and organ growth is essential for the development of adults with proper size and proportions, which is important for survival and reproduction. In animals, adult body size is determined by the rate and duration of juvenile growth, which are influenced by the environment. In nutrient-scarce environments in which more time is needed for growth, the juvenile growth period can be extended by delaying maturation, whereas juvenile development is rapidly completed in nutrient-rich conditions. This flexibility requires the integration of environmental cues with developmental signals that govern internal checkpoints to ensure that maturation does not begin until sufficient tissue growth has occurred to reach a proper adult size. The Target of Rapamycin (TOR) pathway is the primary cell-autonomous nutrient sensor, while circulating hormones such as steroids and insulin-like growth factors are the main systemic regulators of growth and maturation in animals. We discuss recent findings in Drosophila melanogaster showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions. In addition to this, proper organ growth is also monitored and coordinated with whole-body growth and the timing of maturation through modulation of steroid signaling. This coordination involves interorgan communication mediated by Drosophila insulin-like peptide 8 in response to tissue growth status. Together, these multiple nutritional and developmental cues feed into neuroendocrine hubs controlling insulin and steroid signaling, serving as checkpoints at which developmental progression toward maturation can be delayed. This review focuses on these mechanisms by which external and internal conditions can modulate developmental growth and ensure proper adult body size, and highlights the conserved architecture of this system, which has made Drosophila a prime model for understanding the coordination of growth and maturation in animals.
Collapse
Affiliation(s)
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Denmark
| |
Collapse
|
18
|
Premature termination codon readthrough in Drosophila varies in a developmental and tissue-specific manner. Sci Rep 2020; 10:8485. [PMID: 32444687 PMCID: PMC7244557 DOI: 10.1038/s41598-020-65348-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/31/2020] [Indexed: 12/29/2022] Open
Abstract
Despite their essential function in terminating translation, readthrough of stop codons occurs more frequently than previously supposed. However, little is known about the regulation of stop codon readthrough by anatomical site and over the life cycle of animals. Here, we developed a set of reporters to measure readthrough in Drosophila melanogaster. A focused RNAi screen in whole animals identified upf1 as a mediator of readthrough, suggesting that the stop codons in the reporters were recognized as premature termination codons (PTCs). We found readthrough rates of PTCs varied significantly throughout the life cycle of flies, being highest in older adult flies. Furthermore, readthrough rates varied dramatically by tissue and, intriguingly, were highest in fly brains, specifically neurons and not glia. This was not due to differences in reporter abundance or nonsense-mediated mRNA decay (NMD) surveillance between these tissues. Readthrough rates also varied within neurons, with cholinergic neurons having highest readthrough compared with lowest readthrough rates in dopaminergic neurons. Overall, our data reveal temporal and spatial variation of PTC-mediated readthrough in animals, and suggest that readthrough may be a potential rescue mechanism for PTC-harboring transcripts when the NMD surveillance pathway is inhibited.
Collapse
|
19
|
Zeng J, Huynh N, Phelps B, King-Jones K. Snail synchronizes endocycling in a TOR-dependent manner to coordinate entry and escape from endoreplication pausing during the Drosophila critical weight checkpoint. PLoS Biol 2020; 18:e3000609. [PMID: 32097403 PMCID: PMC7041797 DOI: 10.1371/journal.pbio.3000609] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
The final body size of any given individual underlies both genetic and environmental constraints. Both mammals and insects use target of rapamycin (TOR) and insulin signaling pathways to coordinate growth with nutrition. In holometabolous insects, the growth period is terminated through a cascade of peptide and steroid hormones that end larval feeding behavior and trigger metamorphosis, a nonfeeding stage during which the larval body plan is remodeled to produce an adult. This irreversible decision, termed the critical weight (CW) checkpoint, ensures that larvae have acquired sufficient nutrients to complete and survive development to adulthood. How insects assess body size via the CW checkpoint is still poorly understood on the molecular level. We show here that the Drosophila transcription factor Snail plays a key role in this process. Before and during the CW checkpoint, snail is highly expressed in the larval prothoracic gland (PG), an endocrine tissue undergoing endoreplication and primarily dedicated to the production of the steroid hormone ecdysone. We observed two Snail peaks in the PG, one before and one after the molt from the second to the third instar. Remarkably, these Snail peaks coincide with two peaks of PG cells entering S phase and a slowing of DNA synthesis between the peaks. Interestingly, the second Snail peak occurs at the exit of the CW checkpoint. Snail levels then decline continuously, and endoreplication becomes nonsynchronized in the PG after the CW checkpoint. This suggests that the synchronization of PG cells into S phase via Snail represents the mechanistic link used to terminate the CW checkpoint. Indeed, PG-specific loss of snail function prior to the CW checkpoint causes larval arrest due to a cessation of endoreplication in PG cells, whereas impairing snail after the CW checkpoint no longer affected endoreplication and further development. During the CW window, starvation or loss of TOR signaling disrupted the formation of Snail peaks and endocycle synchronization, whereas later starvation had no effect on snail expression. Taken together, our data demonstrate that insects use the TOR pathway to assess nutrient status during larval development to regulate Snail in ecdysone-producing cells as an effector protein to coordinate endoreplication and CW attainment. During Drosophila development, the time window when larvae assess their readiness for metamorphosis is marked by slowing of cell growth in the prothoracic gland that produces the molting hormone; cell growth (via DNA endoreplication) then increases, allowing the production of the amount of hormone required to trigger metamorphosis. This study shows that these processes depend on the transcription factor Snail.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Nhan Huynh
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Brian Phelps
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
20
|
Pascini TV, Ramalho-Ortigão M, Ribeiro JM, Jacobs-Lorena M, Martins GF. Transcriptional profiling and physiological roles of Aedes aegypti spermathecal-related genes. BMC Genomics 2020; 21:143. [PMID: 32041546 PMCID: PMC7011475 DOI: 10.1186/s12864-020-6543-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Successful mating of female mosquitoes typically occurs once, with the male sperm being stored in the female spermatheca for every subsequent oviposition event. The female spermatheca is responsible for the maintenance, nourishment, and protection of the male sperm against damage during storage. Aedes aegypti is a major vector of arboviruses, including Yellow Fever, Dengue, Chikungunya, and Zika. Vector control is difficult due to this mosquito high reproductive capacity. RESULTS Following comparative RNA-seq analyses of spermathecae obtained from virgin and inseminated females, eight transcripts were selected based on their putative roles in sperm maintenance and survival, including energy metabolism, chitin components, transcriptional regulation, hormonal signaling, enzymatic activity, antimicrobial activity, and ionic homeostasis. In situ RNA hybridization confirmed tissue-specific expression of the eight transcripts. Following RNA interference (RNAi), observed outcomes varied between targeted transcripts, affecting mosquito survival, egg morphology, fecundity, and sperm motility within the spermathecae. CONCLUSIONS This study identified spermatheca-specific transcripts associated with sperm storage in Ae. aegypti. Using RNAi we characterized the role of eight spermathecal transcripts on various aspects of female fecundity and offspring survival. RNAi-induced knockdown of transcript AeSigP-66,427, coding for a Na+/Ca2+ protein exchanger, specifically interfered with egg production and reduced sperm motility. Our results bring new insights into the molecular basis of sperm storage and identify potential targets for Ae. aegypti control.
Collapse
Affiliation(s)
- Tales Vicari Pascini
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570-900 Brazil
| | - Marcelo Ramalho-Ortigão
- Division of Tropical Public Health, Department of Preventive Medicine and Biostatistics, Uniformed Services University, 4301 Jones Bridge Road, Rm A-3083, Bethesda, MD 20814 USA
| | - José Marcos Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E32D, Rockville, MD 20852 USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | | |
Collapse
|
21
|
De Novo Transcriptome Sequencing of Serangium japonicum (Coleoptera: Coccinellidae) and Application of Two Assembled Unigenes. G3-GENES GENOMES GENETICS 2020; 10:247-254. [PMID: 31722887 PMCID: PMC6945030 DOI: 10.1534/g3.119.400785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ladybird beetle Serangium japonicum is an important predator of whiteflies. Investigations of the molecular mechanisms of this predatory beetle have been hindered by the scarcity of gene sequence data. To obtain gene sequences for the ladybird beetle and determine differences in gene expression between the summer and winter seasons, paired-end sequencing was performed. Real-time PCR was used to validate differences in Krueppel homolog 1 gene (Kr-h1) mRNA expression in summer vs. winter samples. To determined the diversity of the population, annotated cytochrome c oxidase subunit I gene (COX1) gene fragments were amplified from several ladybird beetle populations. The analysis yielded 191,246 assembled unigenes, 127,016 of which (66.4%) were annotated. These functional annotations of gene sequences are currently available from the National Center for Biotechnology Information (NCBI), and will provide a basis for studying the molecular mechanisms underlying the biological characteristics of S. japonicum We found a change in expression of ribosome-associated genes across seasons, and postulate that this change is because of seasonal variation in temperature and photoperiod. The differential expression of Kr-h1 suggests that S. japonicum can successfully overwinter because the adults enter diapause. To explain the effects of season on Kr-h1 gene expression, we hypothesize a model in which that a short photoperiod affects the density of Ca2+, the subsequent activity of methyl farnesoate epoxidase and the synthesis of JH, and in turn Kr-h1 gene expression. COX1 annotation was concordant with the morphological ID. The same COX1 sequence was found in the samples from several provinces in China. Therefore, the COX1 sequence is worth further study to distinguish beetle species and populations.
Collapse
|
22
|
Kovalenko EV, Mazina MY, Krasnov AN, Vorobyeva NE. The Drosophila nuclear receptors EcR and ERR jointly regulate the expression of genes involved in carbohydrate metabolism. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 112:103184. [PMID: 31295549 DOI: 10.1016/j.ibmb.2019.103184] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/14/2019] [Accepted: 07/06/2019] [Indexed: 06/09/2023]
Abstract
The rate of carbohydrate metabolism is tightly coordinated with developmental transitions in Drosophila, and fluctuates depending on the requirements of a particular developmental stage. These successive metabolic switches result from changes in the expression levels of genes encoding glycolytic, tricarboxylic acid cycle (TCA), and oxidative phosphorylation enzymes. In this report, we describe a repressive action of ecdysone signaling on the expression of glycolytic genes and enzymes of glycogen metabolism in Drosophila development. The basis of this effect is an interaction between the ecdysone receptor (EcR) and the estrogen-related receptor (ERR), a specific regulator of the Drosophila glycolysis. We found an overlapping DNA-binding pattern for the EcR and ERR in the Drosophila S2 cells. EcR was detected at a subset of the ERR target genes responsible for carbohydrate metabolism. The 20-hydroxyecdysone treatment of both the Drosophila larvae and the S2 cells decreased transcriptional levels of ERR targets. We propose a joint action mode for both the EcR and ERR, for at least a subset of the glycolytic genes. We find that both receptors bind to the same regulatory regions and may form or be part of a joint transcriptional regulatory complex in the Drosophila S2 cells.
Collapse
Affiliation(s)
- Elena V Kovalenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Marina Yu Mazina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Aleksey N Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | | |
Collapse
|
23
|
Neuman SD, Bashirullah A. Hobbit regulates intracellular trafficking to drive insulin-dependent growth during Drosophila development. Development 2018; 145:dev161356. [PMID: 29891564 PMCID: PMC6031322 DOI: 10.1242/dev.161356] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/08/2018] [Indexed: 12/17/2022]
Abstract
All animals must coordinate growth rate and timing of maturation to reach the appropriate final size. Here, we describe hobbit, a novel and conserved gene identified in a forward genetic screen for Drosophila animals with small body size. hobbit is highly conserved throughout eukaryotes, but its function remains unknown. We demonstrate that hobbit mutant animals have systemic growth defects because they fail to secrete insulin. Other regulated secretion events also fail in hobbit mutant animals, including mucin-like 'glue' protein secretion from the larval salivary glands. hobbit mutant salivary glands produce glue-containing secretory granules that are reduced in size. Importantly, secretory granules in hobbit mutant cells lack essential membrane fusion machinery required for exocytosis, including Synaptotagmin 1 and the SNARE SNAP-24. These membrane fusion proteins instead accumulate inside enlarged late endosomes. Surprisingly, however, the Hobbit protein localizes to the endoplasmic reticulum. Our results suggest that Hobbit regulates a novel step in intracellular trafficking of membrane fusion proteins. Our studies also suggest that genetic control of body size, as a measure of insulin secretion, is a sensitive functional readout of the secretory machinery.
Collapse
Affiliation(s)
- Sarah D Neuman
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
24
|
Xu X, Zhang YN, Peng S, Wu J, Deng D, Zhou Z. Effects of Microcystis aeruginosa on the expression of nuclear receptor genes in Daphnia similoides sinensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:344-352. [PMID: 29306189 DOI: 10.1016/j.ecoenv.2017.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Nuclear receptor (NR) genes form a conserved superfamily, which is involved in organism metabolism, reproduction, development, homeostasis, and resource allocation. Microcystis aeruginosa can inhibit the growth and reproduction of Daphnia. However, whether M. aeruginosa can affect the expression of Daphnia NR genes is unknown. In total, 18 NRs were identified in this study based on previous Daphnia similoides sinensis transcriptome data. In treatments containing M. aeruginosa, the gene expression of the NR1 subfamily (E75a, E75b, HR3, HR96, NHR-1, HR97a, HR97g, and NHR97) and the NR2 subfamily (RXR, TLL, PNR, and SVP) were down-regulated 59% and 79%, respectively. In treatments containing M. aeruginosa, although the expression of 78% of the genes showed a similar trend in clones 1 and 2, the expression of 42% of the genes in clone 3 showed the opposite trend compared to clones 1 and 2, suggesting that the adaptability and molecular mechanism differ in individuals with different Microcystis tolerance genotypes.
Collapse
Affiliation(s)
- Xiaoxue Xu
- School of Resources and Environmental Engineering, Anhui University, 230601, Hefei, Anhui, China; School of Life Science, Huaibei Normal University, 235000 Huaibei, Anhui, China
| | - Ya-Nan Zhang
- School of Life Science, Huaibei Normal University, 235000 Huaibei, Anhui, China
| | - Shuixiu Peng
- School of Life Science, Huaibei Normal University, 235000 Huaibei, Anhui, China
| | - Jianxun Wu
- School of Resources and Environmental Engineering, Anhui University, 230601, Hefei, Anhui, China
| | - Daogui Deng
- School of Life Science, Huaibei Normal University, 235000 Huaibei, Anhui, China.
| | - Zhongze Zhou
- School of Resources and Environmental Engineering, Anhui University, 230601, Hefei, Anhui, China.
| |
Collapse
|
25
|
Krüppel homolog 1 represses insect ecdysone biosynthesis by directly inhibiting the transcription of steroidogenic enzymes. Proc Natl Acad Sci U S A 2018; 115:3960-3965. [PMID: 29567866 DOI: 10.1073/pnas.1800435115] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In insects, juvenile hormone (JH) and the steroid hormone ecdysone have opposing effects on regulation of the larval-pupal transition. Although increasing evidence suggests that JH represses ecdysone biosynthesis during larval development, the mechanism underlying this repression is not well understood. Here, we demonstrate that the expression of the Krüppel homolog 1 (Kr-h1), a gene encoding a transcription factor that mediates JH signaling, in ecdysone-producing organ prothoracic gland (PG) represses ecdysone biosynthesis by directly inhibiting the transcription of steroidogenic enzymes in both Drosophila and Bombyx Application of a JH mimic on ex vivo cultured PGs from Drosophila and Bombyx larvae induces Kr-h1 expression and inhibits the transcription of steroidogenic enzymes. In addition, PG-specific knockdown of Drosophila Kr-h1 promotes-while overexpression hampers-ecdysone production and pupariation. We further find that Kr-h1 inhibits the transcription of steroidogenic enzymes by directly binding to their promoters to induce promoter DNA methylation. Finally, we show that Kr-h1 does not affect DNA replication in Drosophila PG cells and that the reduction of PG size mediated by Kr-h1 overexpression can be rescued by feeding ecdysone. Taken together, our data indicate direct and conserved Kr-h1 repression of insect ecdysone biosynthesis in response to JH stimulation, providing insights into mechanisms underlying the antagonistic roles of JH and ecdysone.
Collapse
|
26
|
Xu QY, Meng QW, Deng P, Guo WC, Li GQ. Leptinotarsa hormone receptor 4 (HR4) tunes ecdysteroidogenesis and mediates 20-hydroxyecdysone signaling during larval-pupal metamorphosis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 94:50-60. [PMID: 28951206 DOI: 10.1016/j.ibmb.2017.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
Hormone receptor 4 (HR4) is involved in the regulation of 20-hydroxyecdysone (20E) biosynthesis and the mediation of 20E signaling during larval-pupal transition in a holometabolan Drosophila melanogaster, whereas it acts as a repressor in 20E-responsive transcriptional cascade in a hemimetabolan, Blattella germanica. Here we characterized two HR4 splicing variants, LdHR4X1 and LdHR4X2, in a coleopteran Leptinotarsa decemlineata. LdHR4X1 was highly expressed in the prothoracic gland and epidermis while LdHR4X2 was abundantly transcribed in the nervous system. In vivo results showed that both prothoracicotropic hormone and 20E pathways transcriptionally regulated LdHR4, in an isoform-dependent pattern. RNA interference of LdHR4 at the final (fourth) larval instar, in contrast to the second- and third-instar periods, enhanced the expression of two ecdysteroidogenesis genes, increased 20E titer, upregulated transcription of five 20E-response genes, and reduced the mRNA level of Fushi tarazu-factor 1 (FTZ-F1). As a result, the fourth-instar LdHR4 RNAi larvae exhibited accelerated development and reduced body weight. Moreover, knockdown of LdHR4 at the fourth instar resulted in larval lethality and impaired pupation. Feeding of pyriproxyfen (a mimic of juvenile hormone) or silencing of a juvenile hormone degrading enzyme gene restored the normal course of ecdysteroidogenesis, duration of larval development, and body weight in fourth-instar LdHR4 RNAi larvae. The treatment partially suppressed the larval mortality but not the failure to pupate. The dual role of HR4 during larval-pupal metamorphosis appears to be evolutionarily conserved among holometabolans.
Collapse
Affiliation(s)
- Qing-Yu Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qing-Wei Meng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Pan Deng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
27
|
Mazina MY, Kovalenko EV, Derevyanko PK, Nikolenko JV, Krasnov AN, Vorobyeva NE. One signal stimulates different transcriptional activation mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:178-189. [PMID: 29410380 DOI: 10.1016/j.bbagrm.2018.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/10/2017] [Accepted: 01/15/2018] [Indexed: 12/30/2022]
Abstract
Transcriptional activation is often represented as a "one-step process" that involves the simultaneous recruitment of co-activator proteins, leading to a change in gene status. Using Drosophila developmental ecdysone-dependent genes as a model, we demonstrated that activation of transcription is instead a continuous process that consists of a number of steps at which different phases of transcription (initiation or elongation) are stimulated. Thorough evaluation of the behaviour of multiple transcriptional complexes during the early activation process has shown that the pathways by which activation proceeds for different genes may vary considerably, even in response to the same induction signal. RNA polymerase II recruitment is an important step that is involved in one of the pathways. RNA polymerase II recruitment is accompanied by the recruitment of a significant number of transcriptional coactivators as well as slight changes in the chromatin structure. The second pathway involves the stimulation of transcriptional elongation as its key step. The level of coactivator binding to the promoter shows almost no increase, whereas chromatin modification levels change significantly.
Collapse
Affiliation(s)
- Marina Yu Mazina
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Elena V Kovalenko
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Polina K Derevyanko
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Julia V Nikolenko
- Group of Studying an Association of Transcription and mRNA Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Aleksey N Krasnov
- Group of Studying an Association of Transcription and mRNA Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Nadezhda E Vorobyeva
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
28
|
Manning L, Sheth J, Bridges S, Saadin A, Odinammadu K, Andrew D, Spencer S, Montell D, Starz-Gaiano M. A hormonal cue promotes timely follicle cell migration by modulating transcription profiles. Mech Dev 2017; 148:56-68. [PMID: 28610887 PMCID: PMC5758037 DOI: 10.1016/j.mod.2017.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/30/2017] [Accepted: 06/09/2017] [Indexed: 12/12/2022]
Abstract
Cell migration is essential during animal development. In the Drosophila ovary, the steroid hormone ecdysone coordinates nutrient sensing, growth, and the timing of morphogenesis events including border cell migration. To identify downstream effectors of ecdysone signaling, we profiled gene expression in wild-type follicle cells compared to cells expressing a dominant negative Ecdysone receptor or its coactivator Taiman. Of approximately 400 genes that showed differences in expression, we validated 16 candidate genes for expression in border and centripetal cells, and demonstrated that seven responded to ectopic ecdysone activation by changing their transcriptional levels. We found a requirement for seven putative targets in effective cell migration, including two other nuclear hormone receptors, a calcyphosine-encoding gene, and a prolyl hydroxylase. Thus, we identified multiple new genetic regulators modulated at the level of transcription that allow cells to interpret information from the environment and coordinate cell migration in vivo.
Collapse
Affiliation(s)
- Lathiena Manning
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States; UNC Chapel Hill, NC, United States
| | - Jinal Sheth
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Stacey Bridges
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Afsoon Saadin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Kamsi Odinammadu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Deborah Andrew
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | | | - Denise Montell
- University of Santa Barbara, Santa Barbara, CA, United States.
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States.
| |
Collapse
|
29
|
Yang M, Li J, Wu J, Wang H, Guo B, Wu C, Shou X, Yang N, Zhang Z, McManus DP, Zhang F, Zhang W. Cloning and characterization of an Echinococcus granulosus ecdysteroid hormone nuclear receptor HR3-like gene. ACTA ACUST UNITED AC 2017; 24:36. [PMID: 28971798 PMCID: PMC5625357 DOI: 10.1051/parasite/2017037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022]
Abstract
Cystic echinococcosis is an important parasitic zoonosis caused by the dog tapeworm Echinococcus granulosus. Little is known about adult worm development at the molecular level. Transcription analysis showed that the E. granulosus hormone receptor 3-like (EgHR3) gene was expressed in protoscoleces and adult worms, indicating its role in early adult development. In this study, we cloned and characterized EgHR3 showing that its cDNA contains an open reading frame (ORF) of 1890 bp encoding a 629 amino acid protein, which has a DNA-binding domain (DBD) and a ligand-binding domain (LBD). Immunolocalization revealed the protein was localized in the parenchyma of protoscoleces and adult worms. Real-time PCR analysis showed that EgHR3 was expressed significantly more in adults than in other stages of development (p<0.01) and that its expression was especially high in the early stage of adult worm development induced by bile acids. EgHR3 siRNA silenced 69–78% of the level of transcription in protoscoleces, which resulted in killing 43.6–60.9% of protoscoleces after 10 days of cultivation in vitro. EgHR3 may play an essential role in early adult worm development and in maintaining adult biological processes and may represent a novel drug or vaccine target against echinococcosis.
Collapse
Affiliation(s)
- Mei Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 14 Shengli Road, Urumqi 830046, PR China - Basic Medical College of Xinjiang Medical University, Urumqi 830011, PR China
| | - Jun Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Jun Wu
- Public Health College of Xinjiang Medical University, Urumqi 830011, PR China
| | - Hui Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Baoping Guo
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Chuanchuan Wu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Xi Shou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Ning Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Zhuangzhi Zhang
- Molecular Parasitology Laboratory, QIMR Berghofer, Herston, QLD, 4006, Australia
| | - Donald P McManus
- Veterinary Research Institute, Xinjiang Academy of Animal Sciences, Urumqi 830000, PR China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 14 Shengli Road, Urumqi 830046, PR China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| |
Collapse
|
30
|
Song Y, Villeneuve DL, Toyota K, Iguchi T, Tollefsen KE. Ecdysone Receptor Agonism Leading to Lethal Molting Disruption in Arthropods: Review and Adverse Outcome Pathway Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4142-4157. [PMID: 28355071 PMCID: PMC6135102 DOI: 10.1021/acs.est.7b00480] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Molting is critical for growth, development, reproduction, and survival in arthropods. Complex neuroendocrine pathways are involved in the regulation of molting and may potentially become targets of environmental endocrine disrupting chemicals (EDCs). Based on several known ED mechanisms, a wide range of pesticides has been developed to combat unwanted organisms in food production activities such as agriculture and aquaculture. Meanwhile, these chemicals may also pose hazards to nontarget species by causing molting defects, and thus potentially affecting the health of the ecosystems. The present review summarizes the available knowledge on molting-related endocrine regulation and chemically mediated disruption in arthropods (with special focus on insects and crustaceans), to identify research gaps and develop a mechanistic model for assessing environmental hazards of these compounds. Based on the review, multiple targets of EDCs in the molting processes were identified and the link between mode of action (MoA) and adverse effects characterized to inform future studies. An adverse outcome pathway (AOP) describing ecdysone receptor agonism leading to incomplete ecdysis associated mortality was developed according to the OECD guideline and subjected to weight of evidence considerations by evolved Bradford Hill Criteria. This review proposes the first invertebrate ED AOP and may serve as a knowledge foundation for future environmental studies and AOP development.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
- Corresponding Author: Knut Erik Tollefsen, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00, , You Song, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00,
| | | | - Kenji Toyota
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Taisen Iguchi
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV). P.O. Box 5003, N-1432 Ås, Norway
- Corresponding Author: Knut Erik Tollefsen, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00, , You Song, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00,
| |
Collapse
|
31
|
Sun Y, Huang S, Wang S, Guo D, Ge C, Xiao H, Jie W, Yang Q, Teng X, Li F. Large-scale identification of differentially expressed genes during pupa development reveals solute carrier gene is essential for pupal pigmentation in Chilo suppressalis. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:117-125. [PMID: 28041944 DOI: 10.1016/j.jinsphys.2016.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/22/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
Insects undergo metamorphosis, involving an abrupt change in body structure through cell growth and differentiation. Rice stem stripped borer (SSB), Chilo suppressalis, is one of the most destructive rice pests. However, little is known about the regulation mechanism of metamorphosis development in this notorious insect pest. Here, we studied the expression of 22,197 SSB genes at seven time points during pupa development with a customized microarray, identifying 622 differentially expressed genes (DEG) during pupa development. Gene ontology (GO) analysis of these DEGs indicated that the genes related to substance metabolism were highly expressed in the early pupa, which participate in the physiological processes of larval tissue disintegration at these stages. In comparison, highly expressed genes in the late pupal stages were mainly associated with substance biosynthesis, consistent with adult organ formation at these stages. There were 27 solute carrier (SLC) genes that were highly expressed during pupa development. We knocked down SLC22A3 at the prepupal stage, demonstrating that silencing SLC22A3 induced a deficiency in pupa stiffness and pigmentation. The RNAi-treated individuals had white and soft pupa, suggesting that this gene has an essential role in pupal development.
Collapse
Affiliation(s)
- Yang Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuijin Huang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Shuping Wang
- Technical Centre for Animal Plant and Food Inspection and Quarantine, Shanghai Entry-exit Inspection and Quarantine Bureau, Shanghai 200135, China
| | - Dianhao Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Ge
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huamei Xiao
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wencai Jie
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiupu Yang
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolu Teng
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Li
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
32
|
Guo Y, Flegel K, Kumar J, McKay DJ, Buttitta LA. Ecdysone signaling induces two phases of cell cycle exit in Drosophila cells. Biol Open 2016; 5:1648-1661. [PMID: 27737823 PMCID: PMC5155522 DOI: 10.1242/bio.017525] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During development, cell proliferation and differentiation must be tightly coordinated to ensure proper tissue morphogenesis. Because steroid hormones are central regulators of developmental timing, understanding the links between steroid hormone signaling and cell proliferation is crucial to understanding the molecular basis of morphogenesis. Here we examined the mechanism by which the steroid hormone ecdysone regulates the cell cycle in Drosophila. We find that a cell cycle arrest induced by ecdysone in Drosophila cell culture is analogous to a G2 cell cycle arrest observed in the early pupa wing. We show that in the wing, ecdysone signaling at the larva-to-puparium transition induces Broad which in turn represses the cdc25c phosphatase String. The repression of String generates a temporary G2 arrest that synchronizes the cell cycle in the wing epithelium during early pupa wing elongation and flattening. As ecdysone levels decline after the larva-to-puparium pulse during early metamorphosis, Broad expression plummets, allowing String to become re-activated, which promotes rapid G2/M progression and a subsequent synchronized final cell cycle in the wing. In this manner, pulses of ecdysone can both synchronize the final cell cycle and promote the coordinated acquisition of terminal differentiation characteristics in the wing. Summary: Pulsed ecdysone signaling remodels cell cycle dynamics, causing distinct primary and secondary cell cycle arrests in Drosophila cells, analogous to those observed in the wing during metamorphosis.
Collapse
Affiliation(s)
- Yongfeng Guo
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kerry Flegel
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jayashree Kumar
- Biology Department and Genetics Department, Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel J McKay
- Biology Department and Genetics Department, Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura A Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
33
|
Dai TH, Sserwadda A, Song K, Zang YN, Shen HS. Cloning and Expression of Ecdysone Receptor and Retinoid X Receptor from Procambarus clarkii: Induction by Eyestalk Ablation. Int J Mol Sci 2016; 17:ijms17101739. [PMID: 27763563 PMCID: PMC5085767 DOI: 10.3390/ijms17101739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/30/2016] [Accepted: 10/10/2016] [Indexed: 11/16/2022] Open
Abstract
Ecdysone receptor and retinoid X receptor are key regulators in molting. Here, full length ecdysone receptor (PcEcR) and retinoid X receptor (PcRXR) cDNAs from Procambarus clarkii were cloned. Full length cDNA of PcEcR has 2500 bp, encoding 576 amino acid proteins, and full length cDNA of PcRXR has 2593 bp, in which a 15 bp and a 204 bp insert/deletion splice variant regions in DNA binding domain and hinge domain were identified. The two splice variant regions in PcRXR result four isoforms: PcRXR1-4, encoding 525, 520, 457 and 452 amino acids respectively. PcEcR was highly expressed in the hepatopancreas and eyestalk and PcRXR was highly expressed in the eyestalk among eight examined tissues. Both PcEcR and PcRXR had induced expression after eyestalk ablation (ESA) in the three examined tissues. In muscle, PcEcR and PcRXR were upregulated after ESA, PcEcR reached the highest level on day 3 after ESA and increased 33.5-fold relative to day 0, and PcRXR reached highest the level on day 1 after ESA and increased 2.7-fold relative to day 0. In the hepatopancreas, PcEcR and PcRXR dEcReased continuously after ESA, and the expression levels of PcEcR and PcRXR were only 0.7% and 1.7% on day 7 after ESA relative to day 0, respectively. In the ovaries, PcEcR was upregulated after ESA, reached the highest level on day 3 after ESA, increased 3.0-fold relative to day 0, and the expression level of PcRXR changed insignificantly after ESA (p > 0.05). The different responses of PcEcR and PcRXR after ESA indicates that different tissues play different roles (and coordinates their functions) in molting.
Collapse
Affiliation(s)
- Tian-Hao Dai
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Ali Sserwadda
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Kun Song
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Ya-Nan Zang
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Huai-Shun Shen
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
34
|
Hwang DS, Han J, Won EJ, Kim DH, Jeong CB, Hwang UK, Zhou B, Choe J, Lee JS. BDE-47 causes developmental retardation with down-regulated expression profiles of ecdysteroid signaling pathway-involved nuclear receptor (NR) genes in the copepod Tigriopus japonicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:285-294. [PMID: 27337698 DOI: 10.1016/j.aquatox.2016.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) is a persistent organic pollutant (POP) in marine environments. Despite its adverse effects (e.g. developmental retardation) in ecdysozoa, the effects of BDE-47 on transcription of ecdysteroid signaling pathway-involved-nuclear receptor (NR) genes and metamorphosis-related genes have not been examined in copepods. To examine the deleterious effect of BDE-47 on copepod molting and metamorphosis, BDE-47 was exposed to the harpacticoid copepod Tigriopus japonicus, followed by monitoring developmental retardation and transcriptional alteration of NR genes. The developmental rate was significantly inhibited (P<0.05) in response to BDE-47 and the agricultural insecticide gamma-hexachlorocyclohexane. Conversely, the ecdysteroid agonist ponasterone A (PoA) led to decreased molting and metamorphosis time (P<0.05) from the nauplius stage to the adult stage. In particular, expression profiles of all NR genes were the highest at naupliar stages 5-6 except for SVP, FTZ-F1, and HR96 genes. Nuclear receptor USP, HR96, and FTZ-F1 genes also showed significant sex differences (P<0.05) in gene expression levels over different developmental stages, indicating that these genes may be involved in vitellogenesis. NR gene expression patterns showed significant decreases (P<0.05) in response to BDE-47 exposure, implying that molting and metamorphosis retardation is likely associated with NR gene expression. In summary, BDE-47 leads to molting and metamorphosis retardation and suppresses transcription of NR genes. This information will be helpful in understanding the molting and metamorphosis delay mechanism in response to BDE-47 exposure.
Collapse
Affiliation(s)
- Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Fisheries Research & Development Institute, Incheon 46083, South Korea
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
35
|
Ou Q, Zeng J, Yamanaka N, Brakken-Thal C, O'Connor MB, King-Jones K. The Insect Prothoracic Gland as a Model for Steroid Hormone Biosynthesis and Regulation. Cell Rep 2016; 16:247-262. [PMID: 27320926 DOI: 10.1016/j.celrep.2016.05.053] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/01/2016] [Accepted: 05/12/2016] [Indexed: 11/17/2022] Open
Abstract
Steroid hormones are ancient signaling molecules found in vertebrates and insects alike. Both taxa show intriguing parallels with respect to how steroids function and how their synthesis is regulated. As such, insects are excellent models for studying universal aspects of steroid physiology. Here, we present a comprehensive genomic and genetic analysis of the principal steroid hormone-producing organs in two popular insect models, Drosophila and Bombyx. We identified 173 genes with previously unknown specific expression in steroid-producing cells, 15 of which had critical roles in development. The insect neuropeptide PTTH and its vertebrate counterpart ACTH both regulate steroid production, but molecular targets of these pathways remain poorly characterized. Identification of PTTH-dependent gene sets identified the nuclear receptor HR4 as a highly conserved target in both Drosophila and Bombyx. We consider this study to be a critical step toward understanding how steroid hormone production and release are regulated in all animal models.
Collapse
Affiliation(s)
- Qiuxiang Ou
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada
| | - Jie Zeng
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada
| | - Naoki Yamanaka
- Institute for Integrative Genome Biology, Center for Disease Vector Research, and Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Christina Brakken-Thal
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
36
|
Heldin CH, Lu B, Evans R, Gutkind JS. Signals and Receptors. Cold Spring Harb Perspect Biol 2016; 8:a005900. [PMID: 27037414 DOI: 10.1101/cshperspect.a005900] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Communication between cells in a multicellular organism occurs by the production of ligands (proteins, peptides, fatty acids, steroids, gases, and other low-molecular-weight compounds) that are either secreted by cells or presented on their surface, and act on receptors on, or in, other target cells. Such signals control cell growth, migration, survival, and differentiation. Signaling receptors can be single-span plasma membrane receptors associated with tyrosine or serine/threonine kinase activities, proteins with seven transmembrane domains, or intracellular receptors. Ligand-activated receptors convey signals into the cell by activating signaling pathways that ultimately affect cytosolic machineries or nuclear transcriptional programs or by directly translocating to the nucleus to regulate transcription.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Benson Lu
- The Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, California 92037
| | - Ron Evans
- The Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, California 92037
| | - J Silvio Gutkind
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-4340
| |
Collapse
|
37
|
Shahin R, Iwanaga M, Kawasaki H. Cuticular protein and transcription factor genes expressed during prepupal-pupal transition and by ecdysone pulse treatment in wing discs of Bombyx mori. INSECT MOLECULAR BIOLOGY 2016; 25:138-152. [PMID: 26748620 DOI: 10.1111/imb.12207] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We aimed to understand the underlying mechanism that regulates successively expressed cuticular protein (CP) genes around pupation in Bombyx mori. Quantitative PCR was conducted to clarify the expression profile of CP genes and ecdysone-responsive transcription factor (ERTF) genes around pupation. Ecdysone pulse treatment was also conducted to compare the developmental profiles and the ecdysone induction of the CP and ERTF genes. Fifty-two CP genes (RR-1 13, RR-2 18, CPG 8, CPT 3, CPFL 2, CPH 8) in wing discs of B. mori were examined. Different expression profiles were found, which suggests the existence of a mechanism that regulates CP genes. We divided the genes into five groups according to their peak stages of expression. RR-2 genes were expressed until the day of pupation and RR-1 genes were expressed before and after pupation and for longer than RR-2 genes; this suggests different construction of exo- and endocuticular layers. CPG, CPT, CPFL and CPH genes were expressed before and after pupation, which implies their involvement in both cuticular layers. Expression profiles of ERTFs corresponded with previous reports. Ecdysone pulse treatment showed that the induction of CP and ERTF genes in vitro reflected developmental expression, from which we speculated that ERTFs regulate CP gene expression around pupation.
Collapse
Affiliation(s)
- R Shahin
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - M Iwanaga
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - H Kawasaki
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| |
Collapse
|
38
|
Lacher SE, Lee JS, Wang X, Campbell MR, Bell DA, Slattery M. Beyond antioxidant genes in the ancient Nrf2 regulatory network. Free Radic Biol Med 2015; 88:452-465. [PMID: 26163000 PMCID: PMC4837897 DOI: 10.1016/j.freeradbiomed.2015.06.044] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/10/2015] [Accepted: 06/30/2015] [Indexed: 01/01/2023]
Abstract
Nrf2, a basic leucine zipper transcription factor encoded by the gene NFE2L2, is a master regulator of the transcriptional response to oxidative stress. Nrf2 is structurally and functionally conserved from insects to humans, and it heterodimerizes with the small MAF transcription factors to bind a consensus DNA sequence (the antioxidant response element, or ARE) and regulate gene expression. We have used genome-wide chromatin immunoprecipitation and gene expression data to identify direct Nrf2 target genes in Drosophila and humans. These data have allowed us to construct the deeply conserved ancient Nrf2 regulatory network-target genes that are conserved from Drosophila to human. The ancient network consists of canonical antioxidant genes, as well as genes related to proteasomal pathways and metabolism and a number of less expected genes. We have also used enhancer reporter assays and electrophoretic mobility-shift assays to confirm Nrf2-mediated regulation of ARE activity at a number of these novel target genes. Interestingly, the ancient network also highlights a prominent negative feedback loop; this, combined with the finding that Nrf2-mediated regulatory output is tightly linked to the quality of the ARE it is targeting, suggests that precise regulation of nuclear Nrf2 concentration is necessary to achieve proper quantitative regulation of distinct gene sets. Together, these findings highlight the importance of balance in the Nrf2-ARE pathway and indicate that Nrf2-mediated regulation of xenobiotic metabolism, glucose metabolism, and proteostasis has been central to this pathway since its inception.
Collapse
Affiliation(s)
- Sarah E Lacher
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Joslynn S Lee
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Xuting Wang
- Environmental Genomics Section, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Michelle R Campbell
- Environmental Genomics Section, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Douglas A Bell
- Environmental Genomics Section, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
39
|
Sap KA, Bezstarosti K, Dekkers DHW, van den Hout M, van Ijcken W, Rijkers E, Demmers JAA. Global quantitative proteomics reveals novel factors in the ecdysone signaling pathway in Drosophila melanogaster. Proteomics 2015; 15:725-38. [PMID: 25403936 DOI: 10.1002/pmic.201400308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/19/2014] [Accepted: 11/12/2014] [Indexed: 01/06/2023]
Abstract
The ecdysone signaling pathway plays a major role in various developmental transitions in insects. Recent advances in the understanding of ecdysone action have relied to a large extent on the application of molecular genetic tools in Drosophila. Here, we used a comprehensive quantitative SILAC MS-based approach to study the global, dynamic proteome of a Drosophila cell line to investigate how hormonal signals are transduced into specific cellular responses. Global proteome data after ecdysone treatment after various time points were then integrated with transcriptome data. We observed a substantial overlap in terms of affected targets between the dynamic proteome and transcriptome, although there were some clear differences in timing effects. Also, downregulation of several specific mRNAs did not always correlate with downregulation of their corresponding protein counterparts, and in some cases there was no correlation between transcriptome and proteome dynamics whatsoever. In addition, we performed a comprehensive interactome analysis of EcR, the major target of ecdysone. Proteins copurified with EcR include factors involved in transcription, chromatin remodeling, ecdysone signaling, ecdysone biosynthesis, and other signaling pathways. Novel ecdysone-responsive proteins identified in this study might link previously unknown proteins to the ecdysone signaling pathway and might be novel targets for developmental studies. To our knowledge, this is the first time that ecdysone signaling is studied by global quantitative proteomics. All MS data have been deposited in the ProteomeXchange with identifier PXD001455 (http://proteomecentral.proteomexchange.org/dataset/PXD001455).
Collapse
Affiliation(s)
- Karen A Sap
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands; Netherlands Proteomics Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
40
|
Parvy JP, Wang P, Garrido D, Maria A, Blais C, Poidevin M, Montagne J. Forward and feedback regulation of cyclic steroid production in Drosophila melanogaster. Development 2014; 141:3955-65. [PMID: 25252945 DOI: 10.1242/dev.102020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In most animals, steroid hormones are crucial regulators of physiology and developmental life transitions. Steroid synthesis depends on extrinsic parameters and autoregulatory processes to fine-tune the dynamics of hormone production. In Drosophila, transient increases of the steroid prohormone ecdysone, produced at each larval stage, are necessary to trigger moulting and metamorphosis. Binding of the active ecdysone (20-hydroxyecdysone) to its receptor (EcR) is followed by the sequential expression of the nuclear receptors E75, DHR3 and βFtz-f1, representing a model for steroid hormone signalling. Here, we have combined genetic and imaging approaches to investigate the precise role of this signalling cascade within theprothoracic gland (PG), where ecdysone synthesis takes place. We show that these receptors operate through an apparent unconventional hierarchy in the PG to control ecdysone biosynthesis. At metamorphosis onset, DHR3 emerges as the downstream component that represses steroidogenic enzymes and requires an early effect of EcR for this repression. To avoid premature repression of steroidogenesis, E75 counteracts DHR3 activity, whereas EcR and βFtz-f1 act early in development through a forward process to moderate DHR3 levels. Our findings suggest that within the steroidogenic tissue, a given 20-hydroxyecdysone peak induces autoregulatory processes to sharpen ecdysone production and to confer competence for ecdysteroid biosynthesis at the next developmental phase, providing novel insights into steroid hormone kinetics.
Collapse
Affiliation(s)
- Jean-Philippe Parvy
- CGM, UPR 3404, CNRS, Gif sur Yvette 91190, France Université Pierre et Marie Curie, Paris 75005, France
| | - Peng Wang
- CGM, UPR 3404, CNRS, Gif sur Yvette 91190, France Université Paris-Sud 11, Orsay 91400, France
| | - Damien Garrido
- CGM, UPR 3404, CNRS, Gif sur Yvette 91190, France Université Paris-Sud 11, Orsay 91400, France
| | | | | | - Mickael Poidevin
- CGM, UPR 3404, CNRS, Gif sur Yvette 91190, France Université Paris-Sud 11, Orsay 91400, France
| | - Jacques Montagne
- CGM, UPR 3404, CNRS, Gif sur Yvette 91190, France Université Paris-Sud 11, Orsay 91400, France
| |
Collapse
|
41
|
Litoff EJ, Garriott TE, Ginjupalli GK, Butler L, Gay C, Scott K, Baldwin WS. Annotation of the Daphnia magna nuclear receptors: comparison to Daphnia pulex. Gene 2014; 552:116-25. [PMID: 25239664 DOI: 10.1016/j.gene.2014.09.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/09/2014] [Accepted: 09/13/2014] [Indexed: 11/18/2022]
Abstract
Most nuclear receptors (NRs) are ligand-dependent transcription factors crucial in homeostatic physiological responses or environmental responses. We annotated the Daphnia magna NRs and compared them to Daphnia pulex and other species, primarily through phylogenetic analysis. Daphnia species contain 26 NRs spanning all seven gene subfamilies. Thirteen of the 26 receptors found in Daphnia species phylogenetically segregate into the NR1 subfamily, primarily involved in energy metabolism and resource allocation. Some of the Daphnia NRs, such as RXR, HR96, and E75 show strong conservation between D. magna and D. pulex. Other receptors, such as EcRb, THRL-11 and RARL-10 have diverged considerably and therefore may show different functions in the two species. Curiously, there is an inverse association between the number of NR splice variants and conservation of the LBD. Overall, D. pulex and D. magna possess the same NRs; however not all of the NRs demonstrate high conservation indicating the potential for a divergence of function.
Collapse
Affiliation(s)
| | | | | | - LaToya Butler
- Biological Sciences, Clemson University, United States
| | - Claudy Gay
- Biological Sciences, Clemson University, United States
| | - Kiandra Scott
- Biological Sciences, Clemson University, United States
| | - William S Baldwin
- Biological Sciences, Clemson University, United States; Environmental Toxicology Program, Clemson University, United States.
| |
Collapse
|
42
|
Nuclear receptors in nematode development: Natural experiments made by a phylum. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:224-37. [PMID: 24984201 DOI: 10.1016/j.bbagrm.2014.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/21/2022]
Abstract
The development of complex multicellular organisms is dependent on regulatory decisions that are necessary for the establishment of specific differentiation and metabolic cellular states. Nuclear receptors (NRs) form a large family of transcription factors that play critical roles in the regulation of development and metabolism of Metazoa. Based on their DNA binding and ligand binding domains, NRs are divided into eight NR subfamilies from which representatives of six subfamilies are present in both deuterostomes and protostomes indicating their early evolutionary origin. In some nematode species, especially in Caenorhabditis, the family of NRs expanded to a large number of genes strikingly exceeding the number of NR genes in vertebrates or insects. Nematode NRs, including the multiplied Caenorhabditis genes, show clear relation to vertebrate and insect homologues belonging to six of the eight main NR subfamilies. This review summarizes advances in research of nematode NRs and their developmental functions. Nematode NRs can reveal evolutionarily conserved mechanisms that regulate specific developmental and metabolic processes as well as new regulatory adaptations. They represent the results of a large number of natural experiments with structural and functional potential of NRs for the evolution of the phylum. The conserved and divergent character of nematode NRs adds a new dimension to our understanding of the general biology of regulation by NRs. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
|
43
|
Boulanger A, Dura JM. Nuclear receptors and Drosophila neuronal remodeling. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:187-95. [PMID: 24882358 DOI: 10.1016/j.bbagrm.2014.05.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/25/2014] [Accepted: 05/26/2014] [Indexed: 11/30/2022]
Abstract
During the development of both vertebrates and invertebrates, neurons undergo a crucial remodeling process that is necessary for their new function. Neuronal remodeling is composed of two stages: first, axons and dendrites are pruned without the loss of the cell body; later, this process is most commonly followed by a regrowth step. Holometabolous insects like the fruitfly Drosophila exhibit striking differences between their larval and adult stages. These neuronal remodeling processes occur during metamorphosis, the period of transformation from a larva to an adult. All axon and dendrite pruning events ultimately depend on the EcR nuclear receptor. Its ligand, the steroid molting hormone ecdysone, binds to heteromeric receptors comprising the nuclear receptor ECR and USP, and this complex regulates target genes involved in neuronal remodeling. Here we review the nuclear receptor-mediated genetic control of the main neuronal remodeling events described so far in Drosophila. These events consist of neurite degeneration in the mushroom bodies (MBs: the brain memory center) and in the dendritic arborizing sensory neurons, of neurite retraction or small scale elimination in the thoracic ventral neurosecretory cells, in the olfactory circuits and in the neuromuscular junction. MB axon regrowth after pruning and the role of MB neuron remodeling in memory formation are also reviewed. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- Ana Boulanger
- Institute of Human Genetics, UPR 1142, CNRS, 141, rue de la Cardonille, 34396 Montpellier, France.
| | - Jean-Maurice Dura
- Institute of Human Genetics, UPR 1142, CNRS, 141, rue de la Cardonille, 34396 Montpellier, France.
| |
Collapse
|
44
|
Chung S, Hanlon CD, Andrew DJ. Building and specializing epithelial tubular organs: the Drosophila salivary gland as a model system for revealing how epithelial organs are specified, form and specialize. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:281-300. [PMID: 25208491 DOI: 10.1002/wdev.140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/02/2014] [Accepted: 04/15/2014] [Indexed: 12/28/2022]
Abstract
The past two decades have witnessed incredible progress toward understanding the genetic and cellular mechanisms of organogenesis. Among the organs that have provided key insight into how patterning information is integrated to specify and build functional body parts is the Drosophila salivary gland, a relatively simple epithelial organ specialized for the synthesis and secretion of high levels of protein. Here, we discuss what the past couple of decades of research have revealed about organ specification, development, specialization, and death, and what general principles emerge from these studies.
Collapse
Affiliation(s)
- SeYeon Chung
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Caitlin D Hanlon
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
45
|
Flaven-Pouchon J, Garcia T, Abed-Vieillard D, Farine JP, Ferveur JF, Everaerts C. Transient and permanent experience with fatty acids changes Drosophila melanogaster preference and fitness. PLoS One 2014; 9:e92352. [PMID: 24667657 PMCID: PMC3965419 DOI: 10.1371/journal.pone.0092352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/21/2014] [Indexed: 01/01/2023] Open
Abstract
Food and host-preference relies on genetic adaptation and sensory experience. In vertebrates, experience with food-related cues during early development can change adult preference. This is also true in holometabolous insects, which undergo a drastic nervous system remodelling during their complete metamorphosis, but remains uncertain in Drosophila melanogaster. We have conditioned D. melanogaster with oleic (C18:1) and stearic (C18:0) acids, two common dietary fatty acids, respectively preferred by larvae and adult. Wild-type individuals exposed either during a transient period of development-from embryo to adult-or more permanently-during one to ten generation cycles-were affected by such conditioning. In particular, the oviposition preference of females exposed to each fatty acid during larval development was affected without cross-effect indicating the specificity of each substance. Permanent exposure to each fatty acid also drastically changed oviposition preference as well as major fitness traits (development duration, sex-ratio, fecundity, adult lethality). This suggests that D. melanogaster ability to adapt to new food sources is determined by its genetic and sensory plasticity both of which may explain the success of this generalist-diet species.
Collapse
Affiliation(s)
- Justin Flaven-Pouchon
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Thibault Garcia
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Dehbia Abed-Vieillard
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Jean-Pierre Farine
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Claude Everaerts
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| |
Collapse
|
46
|
Genetic and functional studies implicate synaptic overgrowth and ring gland cAMP/PKA signaling defects in the Drosophila melanogaster neurofibromatosis-1 growth deficiency. PLoS Genet 2013; 9:e1003958. [PMID: 24278035 PMCID: PMC3836801 DOI: 10.1371/journal.pgen.1003958] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 10/01/2013] [Indexed: 12/21/2022] Open
Abstract
Neurofibromatosis type 1 (NF1), a genetic disease that affects 1 in 3,000, is caused by loss of a large evolutionary conserved protein that serves as a GTPase Activating Protein (GAP) for Ras. Among Drosophila melanogaster Nf1 (dNf1) null mutant phenotypes, learning/memory deficits and reduced overall growth resemble human NF1 symptoms. These and other dNf1 defects are relatively insensitive to manipulations that reduce Ras signaling strength but are suppressed by increasing signaling through the 3′-5′ cyclic adenosine monophosphate (cAMP) dependent Protein Kinase A (PKA) pathway, or phenocopied by inhibiting this pathway. However, whether dNf1 affects cAMP/PKA signaling directly or indirectly remains controversial. To shed light on this issue we screened 486 1st and 2nd chromosome deficiencies that uncover >80% of annotated genes for dominant modifiers of the dNf1 pupal size defect, identifying responsible genes in crosses with mutant alleles or by tissue-specific RNA interference (RNAi) knockdown. Validating the screen, identified suppressors include the previously implicated dAlk tyrosine kinase, its activating ligand jelly belly (jeb), two other genes involved in Ras/ERK signal transduction and several involved in cAMP/PKA signaling. Novel modifiers that implicate synaptic defects in the dNf1 growth deficiency include the intersectin-related synaptic scaffold protein Dap160 and the cholecystokinin receptor-related CCKLR-17D1 drosulfakinin receptor. Providing mechanistic clues, we show that dAlk, jeb and CCKLR-17D1 are among mutants that also suppress a recently identified dNf1 neuromuscular junction (NMJ) overgrowth phenotype and that manipulations that increase cAMP/PKA signaling in adipokinetic hormone (AKH)-producing cells at the base of the neuroendocrine ring gland restore the dNf1 growth deficiency. Finally, supporting our previous contention that ALK might be a therapeutic target in NF1, we report that human ALK is expressed in cells that give rise to NF1 tumors and that NF1 regulated ALK/RAS/ERK signaling appears conserved in man. Neurofibromatosis type 1 (NF1) is a genetic disease that affects 1 in 3,000 and that is caused by loss of a protein that inactivates Ras oncoproteins. NF1 is a characteristically variable disease that predisposes patients to several symptoms, the most common of which include benign and malignant tumors, reduced growth and learning problems. We and others previously found that fruit fly mutants that lack a highly conserved dNf1 gene are reduced in size and exhibit impaired learning and memory, and that both defects appear due to abnormal Ras and cyclic-AMP (cAMP) signaling. The former was unremarkable, but how loss of dNf1 affects cAMP signaling remains poorly understood. Here we report results of a genetic screen for dominant modifiers of the dNf1 growth defect. This screen and follow-up functional studies support a model in which synaptic defects and reduced cAMP signaling in specific parts of the neuroendocrine ring gland contribute to the dNf1 growth defect. Beyond these results, we show that human ALK is expressed in cells that give rise to NF1 tumors, and that NF1 regulated ALK/RAS/ERK signaling is evolutionary conserved.
Collapse
|
47
|
Ali MS, Iwanaga M, Kawasaki H. Ecdysone-responsive transcriptional regulation determines the temporal expression of cuticular protein genes in wing discs of Bombyx mori. Gene 2013; 512:337-47. [DOI: 10.1016/j.gene.2012.09.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 01/09/2023]
|
48
|
Ou Q, King-Jones K. What goes up must come down: transcription factors have their say in making ecdysone pulses. Curr Top Dev Biol 2013; 103:35-71. [PMID: 23347515 DOI: 10.1016/b978-0-12-385979-2.00002-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insect metamorphosis is one of the most fascinating biological processes in the animal kingdom. The dramatic transition from an immature juvenile to a reproductive adult is under the control of the steroid hormone ecdysone, also known as the insect molting hormone. During Drosophila development, periodic pulses of ecdysone are released from the prothoracic glands, upon which the hormone is rapidly converted in peripheral tissues to its biologically active form, 20-hydroxyecdysone. Each hormone pulse has a unique profile and causes different developmental events, but we only have a rudimentary understanding of how the timing, amplitude, and duration of a given pulse are controlled. A key component involved in the timing of ecdysone pulses is PTTH, a brain-derived neuropeptide. PTTH stimulates ecdysone production through a Ras/Raf/ERK signaling cascade; however, comparatively little is known about the downstream targets of this pathway. In recent years, it has become apparent that transcriptional regulation plays a critical role in regulating the synthesis of ecdysone, but only one transcription factor has a well-defined link to PTTH. Interestingly, many of the ecdysteroidogenic transcription factors were originally characterized as primary response genes in the ecdysone signaling cascade that elicits the biological responses to the hormone in target tissues. To review these developments, we will first provide an overview of the transcription factors that act in the Drosophila ecdysone regulatory hierarchy. We will then discuss the roles of these transcriptional regulators in controlling ecdysone synthesis. In the last section, we will briefly outline transcription factors that likely have roles in regulating ecdysone synthesis but have not been formally identified as downstream effectors of ecdysone.
Collapse
Affiliation(s)
- Qiuxiang Ou
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
49
|
Rewitz KF, Yamanaka N, O'Connor MB. Developmental checkpoints and feedback circuits time insect maturation. Curr Top Dev Biol 2013; 103:1-33. [PMID: 23347514 DOI: 10.1016/b978-0-12-385979-2.00001-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transition from juvenile to adult is a fundamental process that allows animals to allocate resource toward reproduction after completing a certain amount of growth. In insects, growth to a species-specific target size induces pulses of the steroid hormone ecdysone that triggers metamorphosis and reproductive maturation. The past few years have seen significant progress in understanding the interplay of mechanisms that coordinate timing of ecdysone production and release. These studies show that the neuroendocrine system monitors complex size-related and nutritional signals, as well as external cues, to time production and release of ecdysone. Based on results discussed here, we suggest that developmental progression to adulthood is controlled by checkpoints that regulate the genetic timing program enabling it to adapt to different environmental conditions. These checkpoints utilize a number of signaling pathways to modulate ecdysone production in the prothoracic gland. Release of ecdysone activates an autonomous cascade of both feedforward and feedback signals that determine the duration of the ecdysone pulse at each developmental transitions. Conservation of the genetic mechanisms that coordinate the juvenile-adult transition suggests that insights from the fruit fly Drosophila will provide a framework for future investigation of developmental timing in metazoans.
Collapse
Affiliation(s)
- Kim F Rewitz
- Department of Biology, Cell and Neurobiology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
50
|
Mané-Padrós D, Borràs-Castells F, Belles X, Martín D. Nuclear receptor HR4 plays an essential role in the ecdysteroid-triggered gene cascade in the development of the hemimetabolous insect Blattella germanica. Mol Cell Endocrinol 2012; 348:322-30. [PMID: 21945476 DOI: 10.1016/j.mce.2011.09.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 09/09/2011] [Accepted: 09/10/2011] [Indexed: 01/20/2023]
Abstract
Despite the differences in the developmental strategies between hemimetabolous and holometabolous insects, a common feature between both types of development is that periodic pulses of the steroid hormone 20-hydroxyecdysone (20E) dictate each developmental transition. Although the molecular action of 20E has been extensively studied in holometabolous insects, data on hemimetabolous is scarce. To address this, we have used the German cockroach Blattella germanica to show that 20E signals through a transcriptional cascade of the nuclear hormone receptor-encoding genes BgE75, BgHR3 and BgFTZ-F1. Here, we report the isolation and functional characterization of BgHR4, another nuclear receptor involved in this cascade. Expression studies along with tissue incubations and RNAi experiments show that cross-regulation between BgE75 and BgHR3 directs the expression of BgHR4. Finally, we have also shown that BgHR4 is an essential gene required for successfully completing nymphal-nymphal and nymphal-adult transitions, by allowing the appropriate delay in the induction of BgFTZ-F1.
Collapse
Affiliation(s)
- Daniel Mané-Padrós
- Institute of Evolutionary Biology (CSIC-UPF), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|