1
|
Mirizio G, Sampson S, Iwafuchi M. Interplay between pioneer transcription factors and epigenetic modifiers in cell reprogramming. Regen Ther 2025; 28:246-252. [PMID: 39834592 PMCID: PMC11745816 DOI: 10.1016/j.reth.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) from differentiated somatic cells by Yamanaka factors, including pioneer transcription factors (TFs), has greatly reshaped our traditional understanding of cell plasticity and demonstrated the remarkable potential of pioneer TFs. In addition to iPSC reprogramming, pioneer TFs are pivotal in direct reprogramming or transdifferentiation where somatic cells are converted into different cell types without passing through a pluripotent state. Pioneer TFs initiate a reprogramming process through chromatin opening, thereby establishing competence for new gene regulatory programs. The action of pioneer TFs is both influenced by and exerts influence on epigenetic regulation. Despite significant advances, many direct reprogramming processes remain inefficient, which limits their reliability for clinical applications. In this review, we discuss the molecular mechanisms underlying pioneer TF-driven reprogramming, with a focus on their interactions with epigenetic modifiers, including Polycomb repressive complexes (PRCs), nucleosome remodeling and deacetylase (NuRD) complexes, and the DNA methylation machinery. A deeper understanding of the dynamic interplay between pioneer TFs and epigenetic modifiers will be essential for advancing reprogramming technologies and unlocking their full clinical potential.
Collapse
Affiliation(s)
- Gerardo Mirizio
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| | - Samuel Sampson
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| | - Makiko Iwafuchi
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| |
Collapse
|
2
|
Ghosh K, Huang 黄玉莹 Y, Jin 金道忠 D, Chen 陈少瑞 SR, Pan 潘惠麟 HL. Histone Methyltransferase G9a in Primary Sensory Neurons Promotes Inflammatory Pain and Transcription of Trpa1 and Trpv1 via Bivalent Histone Modifications. J Neurosci 2025; 45:e1790242024. [PMID: 39824634 DOI: 10.1523/jneurosci.1790-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels are crucial for detecting and transmitting nociceptive stimuli. Inflammatory pain is associated with sustained increases in TRPA1 and TRPV1 expression in primary sensory neurons. However, the epigenetic mechanisms driving this upregulation remain unknown. G9a (encoded by Ehmt2) catalyzes H3K9me2 and generally represses gene transcription. In this study, we found that intrathecal administration of UNC0638, a specific G9a inhibitor, or G9a-specific siRNA, substantially reduced complete Freund's adjuvant (CFA)-induced pain hypersensitivity. Remarkably, CFA treatment did not induce persistent pain hypersensitivity in male and female mice with conditional Ehmt2 knock-out in dorsal root ganglion (DRG) neurons. RNA sequencing and quantitative PCR analyses showed that CFA treatment caused a sustained increase in mRNA levels of Trpa1 and Trpv1 in the DRG. Ehmt2 knock-out in DRG neurons elevated baseline Trpa1 and Trpv1 mRNA levels but notably reversed CFA-induced increases in their expression. Chromatin immunoprecipitation revealed that CFA treatment reduced G9a and H3K9me2 levels while increasing H3K9ac and H3K4me3-activating histone marks-at Trpa1 and Trpv1 promoters in the DRG. Strikingly, conditional Ehmt2 knock-out in DRG neurons not only diminished H3K9me2 but also reversed CFA-induced increases in H3K9ac and H3K4me3 at Trpa1 and Trpv1 promoters. Our findings suggest that G9a in primary sensory neurons constitutively represses Trpa1 and Trpv1 transcription under normal conditions but paradoxically enhances their transcription during tissue inflammation. This latter action accounts for inflammation-induced TRPA1 and TRPV1 upregulation in the DRG. Thus, G9a could be targeted for alleviating persistent inflammatory pain.
Collapse
Affiliation(s)
- Krishna Ghosh
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yuying Huang 黄玉莹
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Daozhong Jin 金道忠
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen 陈少瑞
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan 潘惠麟
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
3
|
Lambert J, Jørgensen HF. Epigenetic regulation of vascular smooth muscle cell phenotypes in atherosclerosis. Atherosclerosis 2025; 401:119085. [PMID: 39709233 DOI: 10.1016/j.atherosclerosis.2024.119085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
Vascular smooth muscle cells (VSMCs) in adult arteries maintain substantial phenotypic plasticity, which allows for the reversible cell state changes that enable vascular remodelling and homeostasis. In atherosclerosis, VSMCs dedifferentiate in response to lipid accumulation and inflammation, resulting in loss of their characteristic contractile state. Recent studies showed that individual, pre-existing VSMCs expand clonally and can acquire many different phenotypes in atherosclerotic lesions. The changes in gene expression underlying this phenotypic diversity are mediated by epigenetic modifications which affect transcription factor access and thereby gene expression dynamics. Additionally, epigenetic mechanisms can maintain cellular memory, potentially facilitating reversion to the contractile state. While technological advances have provided some insight, a comprehensive understanding of how VSMC phenotypes are governed in disease remains elusive. Here we review current literature in light of novel insight from studies at single-cell resolution. We also discuss how lessons from epigenetic studies of cellular regulation in other fields could help in translating the potential of targeting VSMC phenotype conversion into novel therapies in cardiovascular disease.
Collapse
Affiliation(s)
- Jordi Lambert
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart and Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK.
| | - Helle F Jørgensen
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart and Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK.
| |
Collapse
|
4
|
Manoukian P, Kuhnen LC, van Laarhoven HWM, Bijlsma MF. Association of epigenetic landscapes with heterogeneity and plasticity in pancreatic cancer. Crit Rev Oncol Hematol 2025; 206:104573. [PMID: 39581245 DOI: 10.1016/j.critrevonc.2024.104573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis. Due to a lack of clear symptoms, patients often present with advanced disease, with limited clinical intervention options. The high mortality rate of PDAC is, however, also a result of several other factors that include a high degree of heterogeneity and treatment resistant cellular phenotypes. Molecular subtypes of PDAC have been identified that are thought to represent cellular phenotypes at the tissue level. The epigenetic landscape is an important factor that dictates these subtypes. Permissive epigenetic landscapes serve as drivers of molecular heterogeneity and cellular plasticity in developing crypts as well as metaplastic lesions. Drawing parallels with other cancers, we hypothesize that epigenetic permissiveness is a potential driver of cellular plasticity in PDAC. In this review will explore the epigenetic alterations that underlie PDAC cell states and relate them to cellular plasticity from other contexts. In doing so, we aim to highlight epigenomic drivers of PDAC heterogeneity and plasticity and, with that, offer some insight to guide pre-clinical research.
Collapse
Affiliation(s)
- Paul Manoukian
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands.
| | - Leo C Kuhnen
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Hölzenspies JJ, Sengupta D, Bickmore WA, Brickman JM, Illingworth RS. PRC2 promotes canalisation during endodermal differentiation. PLoS Genet 2025; 21:e1011584. [PMID: 39883738 DOI: 10.1371/journal.pgen.1011584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
The genetic circuitry that encodes the developmental programme of mammals is regulated by transcription factors and chromatin modifiers. During early gestation, the three embryonic germ layers are established in a process termed gastrulation. The impact of deleterious mutations in chromatin modifiers such as the polycomb proteins manifests during gastrulation, leading to early developmental failure and lethality in mouse models. Embryonic stem cells have provided key insights into the molecular function of polycomb proteins, but it is impossible to fully appreciate the role of these epigenetic factors in development, or how development is perturbed due to their deficiency, in the steady-state. To address this, we have employed a tractable embryonic stem cell differentiation system to model primitive streak formation and early gastrulation. Using this approach, we find that loss of the repressive polycomb mark H3K27me3 is delayed relative to transcriptional activation, indicating a subordinate rather than instructive role in gene repression. Despite this, chemical inhibition of polycomb enhanced endodermal differentiation efficiency, but did so at the cost of lineage fidelity. These findings highlight the importance of the polycomb system in stabilising the developmental transcriptional response and, in so doing, in shoring up cellular specification.
Collapse
Affiliation(s)
| | - Dipta Sengupta
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Wendy Anne Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Joshua Mark Brickman
- Novo Nordisk Foundation Center for Stem Cell Medicine-reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Robert Scott Illingworth
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Carrothers S, Trevisan R, Jayasundara N, Pelletier N, Weeks E, Meyer JN, Di Giulio R, Weinhouse C. An epigenetic memory at the CYP1A gene in cancer-resistant, pollution-adapted killifish. Sci Rep 2025; 15:3033. [PMID: 39856074 PMCID: PMC11759692 DOI: 10.1038/s41598-024-82740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025] Open
Abstract
Human exposure to polycyclic aromatic hydrocarbons (PAH) is a significant public health problem that will worsen with a warming climate and increased large-scale wildfires. Here, we characterize an epigenetic memory at the cytochrome P450 1 A (CYP1A) gene in wild Fundulus heteroclitus that have adapted to chronic, extreme PAH pollution. In wild-type fish, CYP1A is highly induced by PAH. In PAH-tolerant fish, CYP1A induction is blunted. Since CYP1A metabolically activates PAH, this memory protects these fish from PAH-mediated cancer. However, PAH-tolerant fish reared in clean water recover CYP1A inducibility, indicating a non-genetic effect. We observed epigenetic control of this reversible memory of generational PAH stress in F1 PAH-tolerant embryos. We detected a bivalent domain in the CYP1A promoter enhancer comprising both activating and repressive histone post-translational modifications. Activating modifications, relative to repressive ones, showed greater increases in response to PAH in sensitive embryos, relative to tolerant, consistent with greater gene activation. PAH-tolerant adult fish showed persistent induction of CYP1A long after exposure cessation, which is consistent with defective CYP1A shutoff. These results indicate that PAH-tolerant fish have epigenetic protection against PAH-induced cancer in early life that degrades in response to continuous gene activation.
Collapse
Affiliation(s)
- Samantha Carrothers
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA
| | - Rafael Trevisan
- Nicholas School of the Environment, Duke University, 27701, Durham, NC, USA
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, 27701, Durham, NC, USA
| | - Nicole Pelletier
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA
| | - Emma Weeks
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, 27701, Durham, NC, USA
| | - Richard Di Giulio
- Nicholas School of the Environment, Duke University, 27701, Durham, NC, USA
| | - Caren Weinhouse
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
| |
Collapse
|
7
|
Liang Y, Liu M, Liu B, Ziman B, Peng G, Mao Q, Wang X, Jiang L, Lin DC, Zheng Y. Comprehensive analysis of H3K27me3 LOCKs under different DNA methylation contexts reveal epigenetic redistribution in tumorigenesis. Epigenetics Chromatin 2025; 18:6. [PMID: 39833880 PMCID: PMC11748335 DOI: 10.1186/s13072-025-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Histone modification H3K27me3 plays a critical role in normal development and is associated with various diseases, including cancer. This modification forms large chromatin domains, known as Large Organized Chromatin Lysine Domains (LOCKs), which span several hundred kilobases. RESULT In this study, we identify and categorize H3K27me3 LOCKs in 109 normal human samples, distinguishing between long and short LOCKs. Our findings reveal that long LOCKs are predominantly associated with developmental processes, while short LOCKs are enriched in poised promoters and are most associated with low gene expression. Further analysis of LOCKs in different DNA methylation contexts shows that long LOCKs are primarily located in partially methylated domains (PMDs), particularly in short-PMDs, where they are most likely responsible for the low expressions of oncogenes. We observe that in cancer cell lines, including those from esophageal and breast cancer, long LOCKs shift from short-PMDs to intermediate-PMDs and long-PMDs. Notably, a significant subset of tumor-associated long LOCKs in intermediate- and long-PMDs exhibit reduced H3K9me3 levels, suggesting that H3K27me3 compensates for the loss of H3K9me3 in tumors. Additionally, we find that genes upregulated in tumors following the loss of short LOCKs are typically poised promoter genes in normal cells, and their transcription is regulated by the ETS1 transcription factor. CONCLUSION These results provide new insights into the role of H3K27me3 LOCKs in cancer and underscore their potential impact on epigenetic regulation and disease mechanisms.
Collapse
Affiliation(s)
- Yuan Liang
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Mengni Liu
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Bingyuan Liu
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Benjamin Ziman
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, 2250 Alcazar Street - CSA 207D, Los Angeles, CA, 90033, USA
| | - Guanjie Peng
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Qiong Mao
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Xingzhe Wang
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Lizhen Jiang
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - De-Chen Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, 2250 Alcazar Street - CSA 207D, Los Angeles, CA, 90033, USA
| | - Yueyuan Zheng
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China.
| |
Collapse
|
8
|
De Paolis V, Paolillo N, Siri T, Grosso A, Lorello V, Spina C, Caporali G, La Regina F, Vignoli B, Giorgi C. An antisense-long-noncoding-RNA modulates p75 NTR expression levels during neuronal polarization. iScience 2025; 28:111566. [PMID: 39811648 PMCID: PMC11730960 DOI: 10.1016/j.isci.2024.111566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/05/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Proper polarization of newly generated neurons is a critical process for neural network formation and brain development. The pan-neurotrophin p75NTR receptor plays a key role in this process localizing asymmetrically in one of the differentiating neurites and specifying its axonal identity in response to neurotrophins. During axonal specification, p75NTR levels are transiently modulated, yet the molecular mechanisms underlying this process are not known. Here, we identified a previously uncharacterized natural antisense transcript, AS-p75, encoded within the p75NGFR mouse gene. Using an in vitro model of polarizing murine neurons, we found that AS-p75 and p75NTR display divergent expression profiles and that p75NTR expression levels increase upon competition or depletion of AS-p75, indicating that AS-p75 is a negative regulator of p75NTR expression. Depletion of AS-p75 also results in altered p75NTR subcellular distribution and affects the polarization process. Overall, our data uncovered AS-p75 as a modulator of p75NTR expression, offering new insights into the regulation of this neurotrophin receptor during in vitro neuronal polarization.
Collapse
Affiliation(s)
- Veronica De Paolis
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Via Ercole Ramarini 32, 00015 Monterotondo, Italy
| | - Nicoletta Paolillo
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
| | - Tiziano Siri
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Sciences, University of Roma Tre, Viale Guglielmo Marconi 446, 00146 Rome, Italy
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada
| | - Alessandra Grosso
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, University of Rome “Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Veronica Lorello
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, University of Rome “Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Cristina Spina
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, University of Rome “Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Gabriele Caporali
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, University of Rome “Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Federico La Regina
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
| | - Beatrice Vignoli
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Via Sommarive 9, 38123 Povo TN, Italy
| | - Corinna Giorgi
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Molecular Biology and Pathology, National Research Council of Italy (IBPM-CNR), P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
9
|
Akhatova A, Jones C, Coward K, Yeste M. How do lifestyle and environmental factors influence the sperm epigenome? Effects on sperm fertilising ability, embryo development, and offspring health. Clin Epigenetics 2025; 17:7. [PMID: 39819375 PMCID: PMC11740528 DOI: 10.1186/s13148-025-01815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
Recent studies support the influence of paternal lifestyle and diet before conception on the health of the offspring via epigenetic inheritance through sperm DNA methylation, histone modification, and small non-coding RNA (sncRNA) expression and regulation. Smoking may induce DNA hypermethylation in genes related to anti-oxidation and insulin resistance. Paternal diet and obesity are associated with greater risks of metabolic dysfunction in offspring via epigenetic alterations in the sperm. Metabolic changes, such as high blood glucose levels and increased body weight, are commonly observed in the offspring of fathers subjected to chronic stress, in addition to an enhanced risk of depressive-like behaviour and increased sensitivity to stress in both the F0 and F1 generations. DNA methylation is correlated with alterations in sperm quality and the ability to fertilise oocytes, possibly via a differentially regulated MAKP81IP3 signalling pathway. Paternal exposure to toxic endocrine-disrupting chemicals (EDCs) is also linked to the transgenerational transmission of increased predisposition to disease, infertility, testicular disorders, obesity, and polycystic ovarian syndrome (PCOS) in females through epigenetic changes during gametogenesis. As the success of assisted reproductive technology (ART) is also affected by paternal diet, BMI, and alcohol consumption, its outcomes could be improved by modifying factors that are dependent on male lifestyle choices and environmental factors. This review discusses the importance of epigenetic signatures in sperm-including DNA methylation, histone retention, and sncRNA-for sperm functionality, early embryo development, and offspring health. We also discuss the mechanisms by which paternal lifestyle and environmental factors (obesity, smoking, EDCs, and stress) may impact the sperm epigenome.
Collapse
Affiliation(s)
- Ayazhan Akhatova
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- School of Medicine, Nazarbayev University, Zhanybek-Kerey Khan Street 5/1, 010000, Astana, Kazakhstan
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003, Girona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
10
|
Kuroha K, Dočkal I, Radović U, Nakajima K, Hoshi I, Matsuda S, Kojitani N, Ohbo K, Tomizawa SI. Abnormal H3K27me3 underlies degenerative spermatogonial stem cells in cryptorchid testis. Development 2025; 152:dev204239. [PMID: 39745222 DOI: 10.1242/dev.204239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/15/2024] [Indexed: 01/18/2025]
Abstract
Cryptorchidism is the most frequent congenital defect in newborn males characterized by the absence of the testis from the scrotum. Approximately 90% of individuals with untreated bilateral cryptorchidism exhibit azoospermia due to defective spermatogenesis in the affected testis. Although abnormal spermatogonial stem cell maintenance or differentiation is suggested to cause germ cell degeneration in the cryptorchid testis, the underlying molecular mechanisms remain unclear. Here, we profiled spermatogonial epigenetic landscapes using surgically induced cryptorchid testis in the mouse. We show that cryptorchidism leads to alterations in local, but not global, H3K27me3 and H3K9me3 in undifferentiated spermatogonia. Of these, the loss of H3K27me3 was correlated with activation of developmental and proapoptotic pathway genes that are repressed by the polycomb machinery in germ cells. Cryptorchid spermatogonia exhibit an increase of the H3K27me3 demethylases KDM6A and KMD6B. Furthermore, we reveal that an increased temperature leads to Kdm6a/b upregulation in germline stem cells cultured in vitro. Thus, our study suggests that temperature-dependent histone demethylation may induce mRNA dysregulation due to the partial loss of H3K27me3 in spermatogonia.
Collapse
Affiliation(s)
- Kazushige Kuroha
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Ivana Dočkal
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Uroš Radović
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kuniko Nakajima
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Ikue Hoshi
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Shion Matsuda
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Noriko Kojitani
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Shin-Ichi Tomizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
11
|
Metzner E, Southard KM, Norman TM. Multiome Perturb-seq unlocks scalable discovery of integrated perturbation effects on the transcriptome and epigenome. Cell Syst 2025; 16:101161. [PMID: 39689711 PMCID: PMC11738662 DOI: 10.1016/j.cels.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/14/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Single-cell CRISPR screens link genetic perturbations to transcriptional states, but high-throughput methods connecting these induced changes to their regulatory foundations are limited. Here, we introduce Multiome Perturb-seq, extending single-cell CRISPR screens to simultaneously measure perturbation-induced changes in gene expression and chromatin accessibility. We apply Multiome Perturb-seq in a CRISPRi screen of 13 chromatin remodelers in human RPE-1 cells, achieving efficient assignment of sgRNA identities to single nuclei via an improved method for capturing barcode transcripts from nuclear RNA. We organize expression and accessibility measurements into coherent programs describing the integrated effects of perturbations on cell state, finding that ARID1A and SUZ12 knockdowns induce programs enriched for developmental features. Modeling of perturbation-induced heterogeneity connects accessibility changes to changes in gene expression, highlighting the value of multimodal profiling. Overall, our method provides a scalable and simply implemented system to dissect the regulatory logic underpinning cell state. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Eli Metzner
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY 10065, USA
| | - Kaden M Southard
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas M Norman
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
12
|
Xiang W, Zhang X, Dong M, Wan L, Zhang B, Wan F. Differentiation therapy targeting the stalled epigenetic developmental programs in pediatric high-grade gliomas. Pharmacol Res 2025; 212:107599. [PMID: 39818258 DOI: 10.1016/j.phrs.2025.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/13/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Pediatric high-grade gliomas (pHGGs) are the most common brain malignancies in children and are characterized by blocked differentiation. The epigenetic landscape of pHGGs, particularly the H3K27-altered and H3G34-mutant subtypes, suggests these tumors may be particularly susceptible to strategies that target blocked differentiation. Differentiation therapy aims to overcome this differentiation blockade by promoting glioma cell differentiation into more mature and less malignant cells. Epigenetic modulators, including inhibitors of histone deacetylase (HDAC), enhancer of zeste homolog 2 (EZH2), BRG1/BRM-associated factor (BAF) complex, have shown promise in preclinical studies of pHGGs by altering the differentiation program of glioma cells. Although challenges remain in overcoming tumor cell heterogeneity, induced differentiation therapy holds promise for treating these currently incurable pediatric brain cancers.
Collapse
Affiliation(s)
- Wang Xiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430030, PR China.
| | - Xiaolin Zhang
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| | - Minhai Dong
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China; Postdoctoral Research Station, School of Basic Medicine Science, Guangxi Medical University, Nanning 530021, PR China.
| | - Lijun Wan
- Department of Neurosurgery, The Second Affiliated Hospital of The Third Army Medical University, Chongqing 404100, PR China.
| | - Bin Zhang
- Department of Physiology, Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430030, PR China.
| | - Feng Wan
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| |
Collapse
|
13
|
Kandror EK, Wang A, Carriere M, Peterson A, Liao W, Tjärnberg A, Fung JH, Mahbubani KT, Loper J, Pangburn W, Xu Y, Saeb-Parsy K, Rabadan R, Maniatis T, Rizvi AH. Enhancer Dynamics and Spatial Organization Drive Anatomically Restricted Cellular States in the Human Spinal Cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632483. [PMID: 39829819 PMCID: PMC11741326 DOI: 10.1101/2025.01.10.632483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Here, we report the spatial organization of RNA transcription and associated enhancer dynamics in the human spinal cord at single-cell and single-molecule resolution. We expand traditional multiomic measurements to reveal epigenetically poised and bivalent active transcriptional enhancer states that define cell type specification. Simultaneous detection of chromatin accessibility and histone modifications in spinal cord nuclei reveals previously unobserved cell-type specific cryptic enhancer activity, in which transcriptional activation is uncoupled from chromatin accessibility. Such cryptic enhancers define both stable cell type identity and transitions between cells undergoing differentiation. We also define glial cell gene regulatory networks that reorganize along the rostrocaudal axis, revealing anatomical differences in gene regulation. Finally, we identify the spatial organization of cells into distinct cellular organizations and address the functional significance of this observation in the context of paracrine signaling. We conclude that cellular diversity is best captured through the lens of enhancer state and intercellular interactions that drive transitions in cellular state. This study provides fundamental insights into the cellular organization of the healthy human spinal cord.
Collapse
Affiliation(s)
- Elena K. Kandror
- Department of Neuroscience and Waisman Center, University of Wisconsin-Madison
| | - Anqi Wang
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Medical Center
| | | | - Alexis Peterson
- Department of Neuroscience and Waisman Center, University of Wisconsin-Madison
| | | | - Andreas Tjärnberg
- Department of Neuroscience and Waisman Center, University of Wisconsin-Madison
| | - Jun Hou Fung
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Medical Center
| | - Krishnaa T. Mahbubani
- Cambridge Biorepository for Translational Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge, UK
| | - Jackson Loper
- Department of Statistics, University of Michigan Ann Arbor
| | - William Pangburn
- Zuckerman Mind Brain Behavior Institute and Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center
| | - Yuchen Xu
- Department of Neuroscience and Waisman Center, University of Wisconsin-Madison
| | - Kourosh Saeb-Parsy
- Cambridge Biorepository for Translational Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Raul Rabadan
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Medical Center
| | - Tom Maniatis
- New York Genome Center
- Zuckerman Mind Brain Behavior Institute and Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center
| | - Abbas H. Rizvi
- Department of Neuroscience and Waisman Center, University of Wisconsin-Madison
- Lead contact
| |
Collapse
|
14
|
Lee D, Koo B, Kim S, Byun J, Hong J, Shin DY, Sun CH, Kim J, Song JJ, Jaiswal S, Yoon SS, Kim S, Koh Y. Increased local DNA methylation disorder in AMLs with DNMT3A-destabilizing variants and its clinical implication. Nat Commun 2025; 16:560. [PMID: 39794314 PMCID: PMC11724044 DOI: 10.1038/s41467-024-55691-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
The mechanistic link between the complex mutational landscape of de novo methyltransferase DNMT3A and the pathology of acute myeloid leukemia (AML) has not been clearly elucidated so far. Motivated by a recent discovery of the significance of DNMT3A-destabilizing mutations (DNMT3AINS) in AML, we here investigate the common characteristics of DNMT3AINS AML methylomes through computational analyses. We present that methylomes of DNMT3AINS AMLs are considerably different from those of DNMT3AR882 AMLs in that they exhibit increased intratumor DNA methylation heterogeneity in bivalent chromatin domains. This epigenetic heterogeneity was associated with the transcriptional variability of developmental and membrane-associated factors shaping stem cell niche, and also was a predictor of the response of AML cells to hypomethylating agents, implying that the survival of AML cells depends on stochastic DNA methylations at bivalent domains. Altogether, our work provides a novel mechanistic model suggesting the genomic origin of the aberrant epigenomic heterogeneity in disease conditions.
Collapse
Affiliation(s)
- Dohoon Lee
- Bioinformatics Institute, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Intelligence Computing, Seoul National University, Seoul, Republic of Korea
| | - Bonil Koo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- AIGENDRUG Co. Ltd, Seoul, Republic of Korea
| | - Seokhyeon Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jamin Byun
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junshik Hong
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Yeop Shin
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
| | | | - Jaesung Kim
- Department of Biological Sciences, KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | | | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul, Republic of Korea.
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea.
- MOGAM Institute for Biomedical Research, Yong-in, Republic of Korea.
| | - Youngil Koh
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.
- Genome Opinion Inc, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Almassalha LM, Carignano M, Liwag EP, Li WS, Gong R, Acosta N, Dunton CL, Gonzalez PC, Carter LM, Kakkaramadam R, Kröger M, MacQuarrie KL, Frederick J, Ye IC, Su P, Kuo T, Medina KI, Pritchard JA, Skol A, Nap R, Kanemaki M, Dravid V, Szleifer I, Backman V. Chromatin conformation, gene transcription, and nucleosome remodeling as an emergent system. SCIENCE ADVANCES 2025; 11:eadq6652. [PMID: 39792661 PMCID: PMC11721585 DOI: 10.1126/sciadv.adq6652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025]
Abstract
In single cells, variably sized nanoscale chromatin structures are observed, but it is unknown whether these form a cohesive framework that regulates RNA transcription. Here, we demonstrate that the human genome is an emergent, self-assembling, reinforcement learning system. Conformationally defined heterogeneous, nanoscopic packing domains form by the interplay of transcription, nucleosome remodeling, and loop extrusion. We show that packing domains are not topologically associated domains. Instead, packing domains exist across a structure-function life cycle that couples heterochromatin and transcription in situ, explaining how heterochromatin enzyme inhibition can produce a paradoxical decrease in transcription by destabilizing domain cores. Applied to development and aging, we show the pairing of heterochromatin and transcription at myogenic genes that could be disrupted by nuclear swelling. In sum, packing domains represent a foundation to explore the interactions of chromatin and transcription at the single-cell level in human health.
Collapse
Affiliation(s)
- Luay M. Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, IL 60611, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Marcelo Carignano
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Emily Pujadas Liwag
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Wing Shun Li
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Applied Physics Program, Northwestern University, Evanston, IL 60208, USA
| | - Ruyi Gong
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Nicolas Acosta
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Cody L. Dunton
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Paola Carrillo Gonzalez
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Lucas M. Carter
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Rivaan Kakkaramadam
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Martin Kröger
- Magnetism and Interface Physics and Computational Polymer Physics, Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Kyle L. MacQuarrie
- Stanley Manne Children’s Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jane Frederick
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - I Chae Ye
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Patrick Su
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Tiffany Kuo
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Karla I. Medina
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Josh A Pritchard
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Andrew Skol
- Stanley Manne Children’s Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Rikkert Nap
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Masato Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan
- Department of Biological Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Vinayak Dravid
- Applied Physics Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology (IIN), Northwestern University, Evanston, IL 60208, USA
| | - Igal Szleifer
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Vadim Backman
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
16
|
Gao Q, Wang M, Hou X, Li M, Li L. Substrate stiffness modulates osteogenic and adipogenic differentiation of osteosarcoma through PIEZO1 mediated signaling pathway. Cell Signal 2025; 127:111601. [PMID: 39798771 DOI: 10.1016/j.cellsig.2025.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Most osteosarcoma (OS) cases exhibit poor differentiation at the histopathological level. Disruption of the normal osteogenic differentiation process results in the unregulated proliferation of precursor cells, which is a critical factor in the development of OS. Differentiation therapy aims to slow disease progression by restoring the osteogenic differentiation process of OS cells and is considered a new approach to treating OS. However, there are currently few studies on the mechanism of differentiation of OS, which puts the development of differentiation therapeutic drugs into a bottleneck. Substrate stiffness can regulate differentiation in mesenchymal stem cells. Evidence supports that mesenchymal stem cells and osteoblast precursors are the origin of OS. In this study, we simulated different stiffnesses in vitro to investigate the mechanism of substrate stiffness affecting differentiation of OS. We demonstrate that Piezo type mechanosensitive ion channel component 1 (PIEZO1) plays a critical regulatory role in sensing substrate stiffness in osteogenic and adipogenic differentiation of OS. When OS cells are cultured on the stiff substrate, integrin subunit beta 1 (ITGB1) increases and cooperates with PIEZO1 to promote Yes-Associated Protein (YAP) entering the nucleus, and may inhibit EZH2, thereby inhibiting H3K27me3 and increasing RUNX2 expression, and cells differentiate toward osteogenesis. Our results provide new insights for research on differentiation treatment of OS and are expected to help identify new targets for future drug design.
Collapse
Affiliation(s)
- Qingyuan Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Meijing Wang
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiangyi Hou
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
17
|
Narayan AB, Hariom SK, Mukherjee AP, Das D, Nair A, Nelson EJR. 'Nomadic' Hematopoietic Stem Cells Navigate the Embryonic Landscape. Stem Cell Rev Rep 2025:10.1007/s12015-025-10843-6. [PMID: 39786676 DOI: 10.1007/s12015-025-10843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Hematopoietic stem cells are a unique population of tissue-resident multipotent cells with an extensive ability to self-renew and regenerate the entire lineage of differentiated blood cells. Stem cells reside in a highly specialized microenvironment with surrounding supporting cells, forming a complex and dynamic network to preserve and maintain their function. The survival, activation, and quiescence of stem cells are largely influenced by niche-derived signals, with aging niche contributing to a decline in stem cell function. Although the role of niche in regulating hematopoiesis has long been established by transplantation studies, limited methods in observing the process in vivo have eluded a detailed understanding of the various niche components. Danio rerio (zebrafish) has emerged as a solution in the past few decades, enabling discovery of cellular interactions, in addition to chemical and genetic factors regulating HSCs. This review reiterates zebrafish as a suitable model for studies on vertebrate embryonic and adult hematopoiesis, delving into this temporally and spatially dissected multi-step process. The critical role played by epigenetic regulators are discussed, along with contributions of the various physiological processes in sustaining the stem cell population. Stem cell niche transcends mere knowledge acquisition, assuring scope in cell therapy, organoid cultures, aging research, and clinical applications including bone marrow transplantation and cancer. A better understanding of the various niche components could also leverage therapeutic efforts to drive differentiation of HSCs from pluripotent progenitors, sustain stemness in laboratory cultures, and improve stem cell transplantation outcomes.
Collapse
Affiliation(s)
- Anand Badhri Narayan
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India
| | - Senthil Kumar Hariom
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India
| | - Ayan Prasad Mukherjee
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India
| | - Deotima Das
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India
| | - Aadhira Nair
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India
| | - Everette Jacob Remington Nelson
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India.
| |
Collapse
|
18
|
Bai W, Xu J, Gu W, Wang D, Cui Y, Rong W, Du X, Li X, Xia C, Gan Q, He G, Guo H, Deng J, Wu Y, Yen RWC, Yegnasubramanian S, Rothbart SB, Luo C, Wu L, Liu J, Baylin SB, Kong X. Defining ortholog-specific UHRF1 inhibition by STELLA for cancer therapy. Nat Commun 2025; 16:474. [PMID: 39774694 PMCID: PMC11707192 DOI: 10.1038/s41467-024-55481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
UHRF1 maintains DNA methylation by recruiting DNA methyltransferases to chromatin. In mouse, these dynamics are potently antagonized by a natural UHRF1 inhibitory protein STELLA, while the comparable effects of its human ortholog are insufficiently characterized, especially in cancer cells. Herein, we demonstrate that human STELLA (hSTELLA) is inadequate, while mouse STELLA (mSTELLA) is fully proficient in inhibiting the abnormal DNA methylation and oncogenic functions of UHRF1 in human cancer cells. Structural studies reveal a region of low sequence homology between these STELLA orthologs that allows mSTELLA but not hSTELLA to bind tightly and cooperatively to the essential histone-binding, linked tandem Tudor domain and plant homeodomain (TTD-PHD) of UHRF1, thus mediating ortholog-specific UHRF1 inhibition. For translating these findings to cancer therapy, we use a lipid nanoparticle (LNP)-mediated mRNA delivery approach in which the short mSTELLA, but not hSTELLA regions are required to reverse cancer-specific DNA hypermethylation and impair colorectal cancer tumorigenicity.
Collapse
Affiliation(s)
- Wenjing Bai
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wenbin Gu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Danyang Wang
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ying Cui
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Weidong Rong
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoan Du
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxia Li
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cuicui Xia
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qingqing Gan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Guantao He
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huahui Guo
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfeng Deng
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuqiong Wu
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ray-Whay Chiu Yen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Srinivasan Yegnasubramanian
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Linping Wu
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Stephen B Baylin
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA.
| | - Xiangqian Kong
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
19
|
Vieira Mourato B, Haubold B. Detection and annotation of unique regions in mammalian genomes. G3 (BETHESDA, MD.) 2025; 15:jkae257. [PMID: 39503253 PMCID: PMC11708210 DOI: 10.1093/g3journal/jkae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/28/2024] [Indexed: 01/11/2025]
Abstract
Long unique genomic regions have been reported to be highly enriched for developmental genes in mice and humans. In this paper, we identify unique genomic regions using an efficient method based on fast string matching. We quantify the resource consumption and accuracy of this method before applying it to the genomes of 18 mammals. We annotate their unique regions (URs) of at least 10 kb and find that they are strongly enriched for developmental genes across the board. We then investigated the subset of URs that lack annotations, which we call "anonymous." The longest anonymous UR in the Tasmanian devil spanned 83 kb and contained the gene encoding inositol polyphosphate-5-phosphatase A, which is an essential part of intracellular signaling. This discovery of an essential gene in a UR implies that URs might be given priority when annotating mammalian genomes. Our documented pipeline for annotating URs in any mammalian genome is available from the repository github.com/evolbioinf/auger; the additional data for this study are available from the dataverse at doi.org/10.17617/3.4IKQAG.
Collapse
Affiliation(s)
- Beatriz Vieira Mourato
- Research Group Bioinformatics, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön, Schleswig-Holstein 24306, Germany
| | - Bernhard Haubold
- Research Group Bioinformatics, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön, Schleswig-Holstein 24306, Germany
| |
Collapse
|
20
|
Su XM, Yuan DY, Liu N, Zhang ZC, Yang M, Li L, Chen S, Zhou Y, He XJ. ALFIN-like proteins link histone H3K4me3 to H2A ubiquitination and coordinate diverse chromatin modifications in Arabidopsis. MOLECULAR PLANT 2025; 18:130-150. [PMID: 39668562 DOI: 10.1016/j.molp.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/15/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Trimethylation of histone H3K4 (H3K4me3) is widely distributed at numerous actively transcribed protein-coding genes throughout the genome. However, the interplay between H3K4me3 and other chromatin modifications in plants remains poorly understood. In this study, we show that the Arabidopsis thaliana ALFIN-LIKE (AL) proteins contain a C-terminal PHD finger capable of binding to H3K4me3 and a PHD-associated AL (PAL) domain that interacts with components of the Polycomb repressive complex 1, thereby facilitating H2A ubiquitination (H2Aub) at H3K4me3-enriched genes throughout the genome. Furthermore, we demonstrate that loss of function of SDG2, encoding a key histone H3K4 methyltransferase, leads to a reduction in H3K4me3 level, which subsequently causes a genome-wide decrease in H2Aub, revealing a strong association between H3K4me3 and H2Aub. Finally, we discover that the PAL domain of AL proteins interacts with various other chromatin-related proteins or complexes, including those involved in regulating H2A.Z deposition, H3K27me3 demethylation, histone deacetylation, and chromatin accessibility. Our genome-wide analysis suggests that the AL proteins play a crucial role in coordinating H3K4me3 with multiple other chromatin modifications across the genome.
Collapse
Affiliation(s)
- Xiao-Min Su
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Na Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhao-Chen Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Minqi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xin-Jian He
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China; National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 10084, China.
| |
Collapse
|
21
|
Smith C, Asnafi V, Touzart A. Neo-enhancers in T-cell acute lymphoblastic Leukaemia (T-ALL) and beyond. Int J Cancer 2025. [PMID: 39749749 DOI: 10.1002/ijc.35315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
T-cell acute lymphoblastic leukaemia (T-ALL) is a rare aggressive haematological malignancy characterised by the clonal expansion of immature T-cell precursors. It accounts for 15% of paediatric and 25% of adult ALL. T-ALL is associated with the overexpression of major transcription factors (TLX1/3, TAL1, HOXA) that drive specific transcriptional programmes and constitute the molecular classifying subgroups of T-ALL. Although the dysregulation of transcription factor oncogenes is frequently associated with chromosomal translocations in T-ALL, epigenetic dysregulation resulting in changes to post-translational modifications of histones has also been reported. This includes non-coding intergenic mutations that form oncogenic neo-enhancers. This review will focus on the known epigenetically activating intergenic mutations reported in T-ALL, and will discuss the wider implications of neo-enhancer mutations in cancer.
Collapse
Affiliation(s)
- Charlotte Smith
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants-Malades (INEM), Paris, France
| | - Vahid Asnafi
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants-Malades (INEM), Paris, France
| | - Aurore Touzart
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants-Malades (INEM), Paris, France
| |
Collapse
|
22
|
Demond H, Khan S, Castillo-Fernandez J, Hanna CW, Kelsey G. Transcriptome and DNA methylation profiling during the NSN to SN transition in mouse oocytes. BMC Mol Cell Biol 2025; 26:2. [PMID: 39754059 PMCID: PMC11697814 DOI: 10.1186/s12860-024-00527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes. RESULTS To study the transcriptome and DNA methylation dynamics during the NSN to SN transition, we used single-cell (sc)M&T-seq to generate scRNA-seq and sc-bisulphite-seq (scBS-seq) data from GV oocytes classified as NSN or SN by Hoechst staining of their nuclei. Transcriptome analysis showed a lower number of detected transcripts in SN compared with NSN oocytes as well as downregulation of 576 genes, which were enriched for processes related to mRNA processing. We used the transcriptome data to generate a classifier that can infer chromatin stage in scRNA-seq datasets. The classifier was successfully tested in multiple published datasets of mouse models with a known skew in NSN: SN ratios. Analysis of the scBS-seq data showed increased DNA methylation in SN compared to NSN oocytes, which was most pronounced in regions with intermediate levels of methylation. Overlap with chromatin immunoprecipitation and sequencing (ChIP-seq) data for the histone modifications H3K36me3, H3K4me3 and H3K27me3 showed that regions gaining methylation in SN oocytes are enriched for overlapping H3K36me3 and H3K27me3, which is an unusual combination, as these marks do not typically coincide. CONCLUSIONS We characterise the transcriptome and DNA methylation changes accompanying the NSN-SN transition in mouse oocytes. We develop a classifier that can be used to infer chromatin status in single-cell or bulk RNA-seq data, enabling identification of altered chromatin transition in genetic knock-outs, and a quality control to identify skewed NSN-SN proportions that could otherwise confound differential gene expression analysis. We identify late-methylating regions in SN oocytes that are associated with an unusual combination of chromatin modifications, which may be regions with high chromatin plasticity and transitioning between H3K27me3 and H3K36me3, or reflect heterogeneity on a single-cell level.
Collapse
Affiliation(s)
- Hannah Demond
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- BMRC, Biomedical Research Consortium Chile, Santiago, Chile
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Soumen Khan
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - Courtney W Hanna
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
23
|
Chen F, Li X, Bai M, Zhao Y. Visualizing epigenetic modifications and their spatial proximities in single cells using three DNA-encoded amplifying FISH imaging strategies: BEA-FISH, PPDA-FISH and Cell-TALKING. Nat Protoc 2025; 20:220-247. [PMID: 39232201 DOI: 10.1038/s41596-024-01036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/11/2024] [Indexed: 09/06/2024]
Abstract
Epigenetic modifications and spatial proximities of nucleic acids and proteins play important roles in regulating physiological processes and disease progression. Currently available cell imaging methods, such as fluorescence in situ hybridization (FISH) and immunofluorescence, struggle to detect low-abundance modifications and their spatial proximities. Here we describe a step-by-step protocol for three DNA-encoded amplifying FISH-based imaging strategies to overcome these challenges for varying applications: base-encoded amplifying FISH (BEA-FISH), pairwise proximity-differentiated amplifying FISH (PPDA-FISH) and cellular macromolecules-tethered DNA walking indexing (Cell-TALKING). They all use the similar core principle of DNA-encoded amplification, which transforms different nonsequence molecular features into unique DNA barcodes for in situ rolling circle amplification and FISH analysis. This involves three key reactions in fixed cell samples: target labeling, DNA encoding and rolling circle amplification imaging. Using this protocol, these three imaging strategies achieve in situ counting of low-abundance modifications alone, the pairwise proximity-differentiated visualization of two modifications and the exploration of multiple modifications around one protein (one-to-many proximity), respectively. Low-abundance modifications, including 5-hydroxymethylcytosine, 5-formylcytosine, 5-hydroxymethyluracil and 5-formyluracil, are clearly visualized in single cells. Various combinatorial patterns of nucleic acid modifications and/or histone modifications are found. The whole protocol takes ~2-4 d to complete, depending on different imaging applications.
Collapse
Affiliation(s)
- Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'An, P. R. China
| | - Xinyin Li
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'An, P. R. China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'An, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'An, P. R. China.
| |
Collapse
|
24
|
Zhou W, Reizel Y. On correlative and causal links of replicative epimutations. Trends Genet 2025; 41:60-75. [PMID: 39289103 DOI: 10.1016/j.tig.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
The mitotic inheritability of DNA methylation as an epigenetic marker in higher-order eukaryotes has been established for >40 years. The DNA methylome and mitotic division interplay is now considered bidirectional and highly intertwined. Various epigenetic writers, erasers, and modulators shape the perceived replicative methylation dynamics. This Review surveys the principles and complexity of mitotic transmission of DNA methylation, emphasizing the awareness of mitotic aging in analyzing DNA methylation dynamics in development and disease. We reviewed how DNA methylation changes alter mitotic proliferation capacity, implicating age-related diseases like cancer. We link replicative epimutation to stem cell dysfunction, inflammatory response, cancer risks, and epigenetic clocks, discussing the causative role of DNA methylation in health and disease.
Collapse
Affiliation(s)
- Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Yitzhak Reizel
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
25
|
Condemi L, Mocavini I, Aranda S, Di Croce L. Polycomb function in early mouse development. Cell Death Differ 2025; 32:90-99. [PMID: 38997437 PMCID: PMC11742436 DOI: 10.1038/s41418-024-01340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Epigenetic factors are crucial for ensuring proper chromatin dynamics during the initial stages of embryo development. Among these factors, the Polycomb group (PcG) of proteins plays a key role in establishing correct transcriptional programmes during mouse embryogenesis. PcG proteins are classified into two complexes: Polycomb repressive complex 1 (PRC1) and PRC2. Both complexes decorate histone proteins with distinct post-translational modifications (PTMs) that are predictive of a silent transcriptional chromatin state. In recent years, a critical adaptation of the classical techniques to analyse chromatin profiles and to study biochemical interactions at low-input resolution has allowed us to deeply explore PcG molecular mechanisms in the very early stages of mouse embryo development- from fertilisation to gastrulation, and from zygotic genome activation (ZGA) to specific lineages differentiation. These advancements provide a foundation for a deeper understanding of the fundamental role Polycomb complexes play in early development and have elucidated the mechanistic dynamics of PRC1 and PRC2. In this review, we discuss the functions and molecular mechanisms of both PRC1 and PRC2 during early mouse embryo development, integrating new studies with existing knowledge. Furthermore, we highlight the molecular functionality of Polycomb complexes from ZGA through gastrulation, with a particular focus on non-canonical imprinted and bivalent genes, and Hox cluster regulation.
Collapse
Affiliation(s)
- Livia Condemi
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ivano Mocavini
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
26
|
Zhang N, Bitterli P, Oluoch P, Hermann M, Aichinger E, Groot EP, Laux T. Deciphering the molecular logic of WOX5 function in the root stem cell organizer. EMBO J 2025; 44:281-303. [PMID: 39558109 PMCID: PMC11696986 DOI: 10.1038/s44318-024-00302-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
Plant and animal stem cells receive signals from their surrounding cells to stay undifferentiated. In the Arabidopsis root, the quiescent center (QC) acts as a stem cell organizer, signaling to the neighboring stem cells. WOX5 is a central transcription factor regulating QC function. However, due to the scarcity of QC cells, WOX5 functions in the QC are largely unexplored at a genomic scale. Here, we unveil the transcriptional and epigenetic landscapes of the QC and the role of WOX5 within them. We find that WOX5 functions both as a transcriptional repressor and activator, affecting histone modifications and chromatin accessibility. Our data expand on known WOX5 functions, such as the regulation of differentiation, cell division, and auxin biosynthesis. We also uncover unexpected WOX5-regulated pathways involved in nitrate transport and the regulation of basal expression levels of genes associated with mature root tissues. These data suggest a role for QC cells as reserve stem cells and primed cells for prospective progenitor fates. Taken together, these findings offer insights into the role of WOX5 at the QC and provide a basis for further analyses to advance our understanding of the nature of plant stem cell organizers.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, 271018, Tai'an, Shandong, China.
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.
| | - Pamela Bitterli
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Peter Oluoch
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Marita Hermann
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Ernst Aichinger
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Edwin P Groot
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Thomas Laux
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
27
|
Liu Y, Liu Y, Zhu Y, Hu D, Nie H, Xie Y, Sun R, He J, Zhang H, Lu F. KDM2A and KDM2B protect a subset of CpG islands from DNA methylation. J Genet Genomics 2025; 52:39-50. [PMID: 39522683 DOI: 10.1016/j.jgg.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
In the mammalian genome, most CpGs are methylated. However, CpGs within the CpG islands (CGIs) are largely unmethylated, which are important for gene expression regulation. The mechanism underlying the low methylation levels at CGIs remains largely elusive. KDM2 proteins (KDM2A and KDM2B) are H3K36me2 demethylases known to bind specifically at CGIs. Here, we report that depletion of each or both KDM2 proteins, or mutation of all their JmjC domains that harbor the H3K36me2 demethylation activity, leads to an increase in DNA methylation at selective CGIs. The Kdm2a/2b double knockout shows a stronger increase in DNA methylation compared with the single mutant of Kdm2a or Kdm2b, indicating that KDM2A and KDM2B redundantly regulate DNA methylation at CGIs. In addition, the increase of CGI DNA methylation upon mutations of KDM2 proteins is associated with the chromatin environment. Our findings reveal that KDM2A and KDM2B function redundantly in regulating DNA methylation at a subset of CGIs in an H3K36me2 demethylation-dependent manner.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunji Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Hu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Nie
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Xie
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongrong Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin He
- Department of Biochemistry & Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI 48824, USA
| | - Honglian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
28
|
Affar M, Bottardi S, Quansah N, Lemarié M, Ramón AC, Affar EB, Milot E. IKAROS: from chromatin organization to transcriptional elongation control. Cell Death Differ 2025; 32:37-55. [PMID: 37620540 PMCID: PMC11742659 DOI: 10.1038/s41418-023-01212-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
IKAROS is a master regulator of cell fate determination in lymphoid and other hematopoietic cells. This transcription factor orchestrates the association of epigenetic regulators with chromatin, ensuring the expression pattern of target genes in a developmental and lineage-specific manner. Disruption of IKAROS function has been associated with the development of acute lymphocytic leukemia, lymphoma, chronic myeloid leukemia and immune disorders. Paradoxically, while IKAROS has been shown to be a tumor suppressor, it has also been identified as a key therapeutic target in the treatment of various forms of hematological malignancies, including multiple myeloma. Indeed, targeted proteolysis of IKAROS is associated with decreased proliferation and increased death of malignant cells. Although the molecular mechanisms have not been elucidated, the expression levels of IKAROS are variable during hematopoiesis and could therefore be a key determinant in explaining how its absence can have seemingly opposite effects. Mechanistically, IKAROS collaborates with a variety of proteins and complexes controlling chromatin organization at gene regulatory regions, including the Nucleosome Remodeling and Deacetylase complex, and may facilitate transcriptional repression or activation of specific genes. Several transcriptional regulatory functions of IKAROS have been proposed. An emerging mechanism of action involves the ability of IKAROS to promote gene repression or activation through its interaction with the RNA polymerase II machinery, which influences pausing and productive transcription at specific genes. This control appears to be influenced by IKAROS expression levels and isoform production. In here, we summarize the current state of knowledge about the biological roles and mechanisms by which IKAROS regulates gene expression. We highlight the dynamic regulation of this factor by post-translational modifications. Finally, potential avenues to explain how IKAROS destruction may be favorable in the treatment of certain hematological malignancies are also explored.
Collapse
Affiliation(s)
- Malik Affar
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Norreen Quansah
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Maud Lemarié
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Ailyn C Ramón
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - El Bachir Affar
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.
| | - Eric Milot
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.
| |
Collapse
|
29
|
Frenette B, Guéno J, Houde N, Landry-Truchon K, Giguère A, Ashok T, Ryckman A, Morton BR, Mansfield JH, Jeannotte L. Loss of Hoxa5 function affects Hox gene expression in different biological contexts. Sci Rep 2024; 14:30903. [PMID: 39730789 DOI: 10.1038/s41598-024-81867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Hoxa5 plays numerous roles in development, but its downstream molecular effects are mostly unknown. We applied bulk RNA-seq assays to characterize the transcriptional impact of the loss of Hoxa5 gene function in seven different biological contexts, including developing respiratory and musculoskeletal tissues that present phenotypes in Hoxa5 mouse mutants. This global analysis revealed few common transcriptional changes, suggesting that HOXA5 acts mainly via the regulation of context-specific effectors. However, Hox genes themselves appeared as potentially conserved targets of HOXA5 across tissues. Notably, a trend toward reduced expression of HoxA genes was observed in Hoxa5 null mutants in several tissue contexts. Comparative analysis of epigenetic marks along the HoxA cluster in lung tissue from two different Hoxa5 mutant mouse lines revealed limited effect of either mutation indicating that Hoxa5 gene targeting did not significantly perturb the chromatin landscape of the surrounding HoxA cluster. Combined with the shared impact of the two Hoxa5 mutant alleles on phenotype and Hox expression, these data argue against the contribution of local cis effects to Hoxa5 mutant phenotypes and support the notion that the HOXA5 protein acts in trans in the control of Hox gene expression.
Collapse
Affiliation(s)
- Béatrice Frenette
- Centre de Recherche sur le Cancer de L'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), 1401, 18e Rue, Québec, QC, G1J 1Z4, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada
| | - Josselin Guéno
- Centre de Recherche sur le Cancer de L'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), 1401, 18e Rue, Québec, QC, G1J 1Z4, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada
| | - Nicolas Houde
- Centre de Recherche sur le Cancer de L'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), 1401, 18e Rue, Québec, QC, G1J 1Z4, Canada
| | - Kim Landry-Truchon
- Centre de Recherche sur le Cancer de L'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), 1401, 18e Rue, Québec, QC, G1J 1Z4, Canada
| | - Anthony Giguère
- Centre de Recherche sur le Cancer de L'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), 1401, 18e Rue, Québec, QC, G1J 1Z4, Canada
| | - Theyjasvi Ashok
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Abigail Ryckman
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Brian R Morton
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Jennifer H Mansfield
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA.
| | - Lucie Jeannotte
- Centre de Recherche sur le Cancer de L'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), 1401, 18e Rue, Québec, QC, G1J 1Z4, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada.
| |
Collapse
|
30
|
Bryan E, Valsakumar D, Idigo NJ, Warburton M, Webb KM, McLaughlin KA, Spanos C, Lenci S, Major V, Ambrosi C, Andrews S, Baubec T, Rappsilber J, Voigt P. Nucleosomal asymmetry shapes histone mark binding and promotes poising at bivalent domains. Mol Cell 2024:S1097-2765(24)00997-3. [PMID: 39731917 DOI: 10.1016/j.molcel.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/16/2024] [Accepted: 12/03/2024] [Indexed: 12/30/2024]
Abstract
Promoters of developmental genes in embryonic stem cells (ESCs) are marked by histone H3 lysine 4 trimethylation (H3K4me3) and H3K27me3 in an asymmetric nucleosomal conformation, with each sister histone H3 carrying only one of the two marks. These bivalent domains are thought to poise genes for timely activation upon differentiation. Here, we show that asymmetric bivalent nucleosomes recruit repressive H3K27me3 binders but fail to enrich activating H3K4me3 binders, thereby promoting a poised state. Strikingly, the bivalent mark combination further promotes recruitment of specific chromatin proteins that are not recruited by each mark individually, including the lysine acetyltransferase (KAT) complex KAT6B. Knockout of KAT6B blocks neuronal differentiation, demonstrating that KAT6B is critical for proper bivalent gene expression during ESC differentiation. These findings reveal how readout of the bivalent histone marks directly promotes a poised state at developmental genes while highlighting how nucleosomal asymmetry is critical for histone mark readout and function.
Collapse
Affiliation(s)
- Elana Bryan
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Devisree Valsakumar
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Nwamaka J Idigo
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Marie Warburton
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Kimberly M Webb
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Katy A McLaughlin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Simone Lenci
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Viktoria Major
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Christina Ambrosi
- Department of Molecular Mechanism of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, UK
| | - Tuncay Baubec
- Department of Molecular Mechanism of Disease, University of Zurich, 8057 Zurich, Switzerland; Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Department of Biology, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK.
| |
Collapse
|
31
|
Garg V, Yang Y, Nowotschin S, Setty M, Salataj E, Kuo YY, Murphy D, Sharma R, Jang A, Polyzos A, Pe'er D, Apostolou E, Hadjantonakis AK. Single-cell analysis of bidirectional reprogramming between early embryonic states identify mechanisms of differential lineage plasticities in mice. Dev Cell 2024:S1534-5807(24)00722-6. [PMID: 39729987 DOI: 10.1016/j.devcel.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/01/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024]
Abstract
Two distinct lineages, pluripotent epiblast (EPI) and primitive (extra-embryonic) endoderm (PrE), arise from common inner cell mass (ICM) progenitors in mammalian embryos. To study how these sister identities are forged, we leveraged mouse embryonic stem (ES) cells and extra-embryonic endoderm (XEN) stem cells-in vitro counterparts of the EPI and PrE. Bidirectional reprogramming between ES and XEN coupled with single-cell RNA and ATAC-seq analyses showed distinct rates, efficiencies, and trajectories of state conversions, identifying drivers and roadblocks of reciprocal conversions. While GATA4-mediated ES-to-iXEN conversion was rapid and nearly deterministic, OCT4-, KLF4-, and SOX2-induced XEN-to-induced pluripotent stem (iPS) reprogramming progressed with diminished efficiency and kinetics. A dominant PrE transcriptional program, safeguarded by GATA4, alongside elevated chromatin accessibility and reduced DNA methylation of the EPI underscored the differential plasticities of the two states. Mapping in vitro to embryo trajectories tracked reprogramming cells in either direction along EPI and PrE in vivo states, without transitioning through the ICM.
Collapse
Affiliation(s)
- Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | - Yang Yang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manu Setty
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eralda Salataj
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ying-Yi Kuo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dylan Murphy
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Roshan Sharma
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amy Jang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander Polyzos
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| | - Effie Apostolou
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| |
Collapse
|
32
|
Bi R, Pan LN, Dai H, Sun C, Li C, Lin HJ, Xie LP, Ma HX, Li L, Xie H, Guo K, Hou CH, Yao YG, Chen LN, Zheng P. Epigenetic characterization of adult rhesus monkey spermatogonial stem cells identifies key regulators of stem cell homeostasis. Nucleic Acids Res 2024; 52:13644-13664. [PMID: 39535033 DOI: 10.1093/nar/gkae1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Spermatogonial stem cells (SSCs) play crucial roles in the preservation of male fertility. However, successful ex vivo expansion of authentic human SSCs remains elusive due to the inadequate understanding of SSC homeostasis regulation. Using rhesus monkeys (Macaca mulatta) as a representative model, we characterized SSCs and progenitor subsets through single-cell RNA sequencing using a cell-specific network approach. We also profiled chromatin status and major histone modifications (H3K4me1, H3K4me3, H3K27ac, H3K27me3 and H3K9me3), and subsequently mapped promoters and active enhancers in TSPAN33+ putative SSCs. Comparing the epigenetic changes between fresh TSPAN33+ cells and cultured TSPAN33+ cells (resembling progenitors), we identified the regulatory elements with higher activity in SSCs, and the potential transcription factors and signaling pathways implicated in SSC regulation. Specifically, TGF-β signaling is activated in monkey putative SSCs. We provided evidence supporting its role in promoting self-renewal of monkey SSCs in culture. Overall, this study outlines the epigenetic landscapes of monkey SSCs and provides clues for optimization of the culture condition for primate SSCs expansion.
Collapse
Affiliation(s)
- Rui Bi
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Baohua Road, Kunming 650107, China
| | - Lin-Nuo Pan
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, No. 320 Yue Yang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Hao Dai
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, No. 320 Yue Yang Road, Shanghai 200031, China
| | - Chunli Sun
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
| | - Cong Li
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
| | - Hui-Juan Lin
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Baohua Road, Kunming 650107, China
| | - Lan-Ping Xie
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Huai-Xiao Ma
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Baohua Road, Kunming 650107, China
| | - Lin Li
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Heng Xie
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Kun Guo
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
| | - Chun-Hui Hou
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Yong-Gang Yao
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Baohua Road, Kunming 650107, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
| | - Luo-Nan Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, No. 320 Yue Yang Road, Shanghai 200031, China
- Key Laboratory of Systems Biology, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, No. 1 Xiangshan Branch Lane, Xihu District, Hangzhou 310024, China
| | - Ping Zheng
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Baohua Road, Kunming 650107, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
| |
Collapse
|
33
|
Murphy AE, Askarova A, Lenhard B, Skene NG, Marzi SJ. Predicting gene expression from histone marks using chromatin deep learning models depends on histone mark function, regulatory distance and cellular states. Nucleic Acids Res 2024:gkae1212. [PMID: 39660643 DOI: 10.1093/nar/gkae1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/12/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024] Open
Abstract
To understand the complex relationship between histone mark activity and gene expression, recent advances have used in silico predictions based on large-scale machine learning models. However, these approaches have omitted key contributing factors like cell state, histone mark function or distal effects, which impact the relationship, limiting their findings. Moreover, downstream use of these models for new biological insight is lacking. Here, we present the most comprehensive study of this relationship to date - investigating seven histone marks in eleven cell types across a diverse range of cell states. We used convolutional and attention-based models to predict transcription from histone mark activity at promoters and distal regulatory elements. Our work shows that histone mark function, genomic distance and cellular states collectively influence a histone mark's relationship with transcription. We found that no individual histone mark is consistently the strongest predictor of gene expression across all genomic and cellular contexts. This highlights the need to consider all three factors when determining the effect of histone mark activity on transcriptional state. Furthermore, we conducted in silico histone mark perturbation assays, uncovering functional and disease related loci and highlighting frameworks for the use of chromatin deep learning models to uncover new biological insight.
Collapse
Affiliation(s)
- Alan E Murphy
- UK Dementia Research Institute at Imperial College London, 86 Wood Lane, London W12 0BZ, UK
- Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Aydan Askarova
- UK Dementia Research Institute at Imperial College London, 86 Wood Lane, London W12 0BZ, UK
- Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London W12 0HS, UK
| | - Nathan G Skene
- UK Dementia Research Institute at Imperial College London, 86 Wood Lane, London W12 0BZ, UK
- Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Sarah J Marzi
- Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
- UK Dementia Research Institute at King's College London, 338 Euston Road, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 9RT, UK
| |
Collapse
|
34
|
Zhang J, Donahue G, Gilbert MB, Lapidot T, Nicetto D, Zaret KS. Distinct H3K9me3 heterochromatin maintenance dynamics govern different gene programmes and repeats in pluripotent cells. Nat Cell Biol 2024; 26:2115-2128. [PMID: 39482359 DOI: 10.1038/s41556-024-01547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
H3K9me3 heterochromatin, established by lysine methyltransferases (KMTs) and compacted by heterochromatin protein 1 (HP1) isoforms, represses alternative lineage genes and DNA repeats. Our understanding of H3K9me3 heterochromatin stability is presently limited to individual domains and DNA repeats. Here we engineered Suv39h2-knockout mouse embryonic stem cells to degrade remaining two H3K9me3 KMTs within 1 hour and found that both passive dilution and active removal contribute to H3K9me3 decay within 12-24 hours. We discovered four different H3K9me3 decay rates across the genome and chromatin features and transcription factor binding patterns that predict the stability classes. A 'binary switch' governs heterochromatin compaction, with HP1 rapidly dissociating from heterochromatin upon KMT depletion and a particular threshold level of HP1 limiting pioneer factor binding, chromatin opening and exit from pluripotency within 12 h. Unexpectedly, receding H3K9me3 domains unearth residual HP1β peaks enriched with heterochromatin-inducing proteins. Our findings reveal distinct H3K9me3 heterochromatin maintenance dynamics governing gene networks and repeats that together safeguard pluripotency.
Collapse
Affiliation(s)
- Jingchao Zhang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Greg Donahue
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael B Gilbert
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomer Lapidot
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dario Nicetto
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Wan H, Cao L, Wang P, Hu H, Guo R, Chen J, Zhao H, Zeng C, Liu X. Genome-wide mapping of main histone modifications and coordination regulation of metabolic genes under salt stress in pea ( Pisum sativum L). HORTICULTURE RESEARCH 2024; 11:uhae259. [PMID: 39664693 PMCID: PMC11630261 DOI: 10.1093/hr/uhae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/05/2024] [Indexed: 12/13/2024]
Abstract
Pea occupy a key position in modern biogenetics, playing multifaceted roles as food, vegetable, fodder, and green manure. However, due to the complex nature of its genome and the prolonged unveiling of high-quality genetic maps, research into the molecular mechanisms underlying pea development and stress responses has been significantly delayed. Furthermore, the exploration of its epigenetic modification profiles and associated regulatory mechanisms remains uncharted. This research conducted a comprehensive investigation of four specific histone marks, namely H3K4me3, H3K27me3, H3K9ac, and H3K9me2, and the transcriptome in pea under normal conditions, and established a global map of genome-wide regulatory elements, chromatin states, and dynamics based on these major modifications. Our analysis identified epigenomic signals across ~82.6% of the genome. Each modification exhibits distinct enrichment patterns: H3K4me3 is predominantly associated with the gibberellin response pathway, H3K27me3 is primarily associated with auxin and ethylene responses, and H3K9ac is primarily associated with negative regulatory stimulus responses. We also identified a novel bivalent chromatin state (H3K9ac-H3K27me3) in pea, which is related to their development and stress response. Additionally, we unveil that these histone modifications synergistically regulate metabolic-related genes, influencing metabolite production under salt stress conditions. Our findings offer a panoramic view of the major histone modifications in pea, elucidate their interplay, and highlight their transcriptional regulatory roles during salt stress.
Collapse
Affiliation(s)
- Heping Wan
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Sanjiaohu Road, Wuhan Economic and Technological Development Zone, Hubei 430056, China
| | | | | | - Hanbing Hu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Sanjiaohu Road, Wuhan Economic and Technological Development Zone, Hubei 430056, China
| | - Rui Guo
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Sanjiaohu Road, Wuhan Economic and Technological Development Zone, Hubei 430056, China
| | - Jingdong Chen
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Sanjiaohu Road, Wuhan Economic and Technological Development Zone, Hubei 430056, China
| | - Huixia Zhao
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Sanjiaohu Road, Wuhan Economic and Technological Development Zone, Hubei 430056, China
| | - Changli Zeng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Sanjiaohu Road, Wuhan Economic and Technological Development Zone, Hubei 430056, China
| | - Xiaoyun Liu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Sanjiaohu Road, Wuhan Economic and Technological Development Zone, Hubei 430056, China
| |
Collapse
|
36
|
Perez AA, Goronzy IN, Blanco MR, Yeh BT, Guo JK, Lopes CS, Ettlin O, Burr A, Guttman M. ChIP-DIP maps binding of hundreds of proteins to DNA simultaneously and identifies diverse gene regulatory elements. Nat Genet 2024; 56:2827-2841. [PMID: 39587360 DOI: 10.1038/s41588-024-02000-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 10/21/2024] [Indexed: 11/27/2024]
Abstract
Gene expression is controlled by dynamic localization of thousands of regulatory proteins to precise genomic regions. Understanding this cell type-specific process has been a longstanding goal yet remains challenging because DNA-protein mapping methods generally study one protein at a time. Here, to address this, we developed chromatin immunoprecipitation done in parallel (ChIP-DIP) to generate genome-wide maps of hundreds of diverse regulatory proteins in a single experiment. ChIP-DIP produces highly accurate maps within large pools (>160 proteins) for all classes of DNA-associated proteins, including modified histones, chromatin regulators and transcription factors and across multiple conditions simultaneously. First, we used ChIP-DIP to measure temporal chromatin dynamics in primary dendritic cells following LPS stimulation. Next, we explored quantitative combinations of histone modifications that define distinct classes of regulatory elements and characterized their functional activity in human and mouse cell lines. Overall, ChIP-DIP generates context-specific protein localization maps at consortium scale within any molecular biology laboratory and experimental system.
Collapse
Affiliation(s)
- Andrew A Perez
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Isabel N Goronzy
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mario R Blanco
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Benjamin T Yeh
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jimmy K Guo
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carolina S Lopes
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Olivia Ettlin
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Alex Burr
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Mitchell Guttman
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
37
|
Liao C, Walters BW, DiStasio M, Lesch BJ. Human-specific epigenomic states in spermatogenesis. Comput Struct Biotechnol J 2024; 23:577-588. [PMID: 38274996 PMCID: PMC10809009 DOI: 10.1016/j.csbj.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/27/2024] Open
Abstract
Infertility is becoming increasingly common, affecting one in six people globally. Half of these cases can be attributed to male factors, many driven by abnormalities in the process of sperm development. Emerging evidence from genome-wide association studies, genetic screening of patient cohorts, and animal models highlights an important genetic contribution to spermatogenic defects, but comprehensive identification and characterization of the genes critical for male fertility remain lacking. High divergence of gene regulation in spermatogenic cells across species poses challenges for delineating the genetic pathways required for human spermatogenesis using common model organisms. In this study, we leveraged post-translational histone modification and gene transcription data for 15,491 genes in four mammalian species (human, rhesus macaque, mouse, and opossum), to identify human-specific patterns of gene regulation during spermatogenesis. We combined H3K27me3 ChIP-seq, H3K4me3 ChIP-seq, and RNA-seq data to define epigenetic states for each gene at two stages of spermatogenesis, pachytene spermatocytes and round spermatids, in each species. We identified 239 genes that are uniquely active, poised, or dynamically regulated in human spermatogenic cells distinct from the other three species. While some of these genes have been implicated in reproductive functions, many more have not yet been associated with human infertility and may be candidates for further molecular and epidemiologic studies. Our analysis offers an example of the opportunities provided by evolutionary and epigenomic data for broadly screening candidate genes implicated in reproduction, which might lead to discoveries of novel genetic targets for diagnosis and management of male infertility and male contraception.
Collapse
Affiliation(s)
- Caiyun Liao
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
| | | | - Marcello DiStasio
- Department of Pathology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
- Department of Opthamology & Visual Sciences, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
| | - Bluma J. Lesch
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
- Department of Genetics, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
- Yale Cancer Center, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
| |
Collapse
|
38
|
Cohen LRZ, Meshorer E. The many faces of H3.3 in regulating chromatin in embryonic stem cells and beyond. Trends Cell Biol 2024; 34:1044-1055. [PMID: 38614918 DOI: 10.1016/j.tcb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/15/2024]
Abstract
H3.3 is a highly conserved nonreplicative histone variant. H3.3 is enriched in promoters and enhancers of active genes, but it is also found within suppressed heterochromatin, mostly around telomeres. Accordingly, H3.3 is associated with seemingly contradicting functions: It is involved in development, differentiation, reprogramming, and cell fate, as well as in heterochromatin formation and maintenance, and the silencing of developmental genes. The emerging view is that different cellular contexts and histone modifications can promote opposing functions for H3.3. Here, we aim to provide an update with a focus on H3.3 functions in early mammalian development, considering the context of embryonic stem cell maintenance and differentiation, to finally conclude with emerging roles in cancer development and cell fate transition and maintenance.
Collapse
Affiliation(s)
- Lea R Z Cohen
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
39
|
Jarred EG, Western PS. Polycomb in female reproductive health: patterning the present and programming the future. Reprod Fertil Dev 2024; 36:RD24152. [PMID: 39636716 DOI: 10.1071/rd24152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Epigenetic modifications regulate chromatin accessibility, gene expression, cell differentiation and tissue development. As epigenetic modifications can be inherited via mitotic and meiotic cell divisions, they enable a heritable memory of cell identity and function and can alter inherited characteristics in the next generation. Tight regulation of epigenetic information is critical for normal cell function and is often disrupted in diseases including cancer, metabolic, neurological and inherited congenital conditions. The ovary performs critical functions in female reproductive health and fertility, including oocyte and sex-hormone production. Oocytes undergo extensive epigenetic programming including the establishment of maternal genomic imprints, which are critical for offspring health and development. Epigenetic modifiers also regulate ovarian somatic cells, such as granulosa and theca cells which support oocytes and produce hormones. While ovarian dysfunction contributes to serious ovarian conditions such as primary ovarian insufficiency (POI), polycystic ovary syndrome (PCOS) and ovarian cancers, the roles of epigenetic modifications in the ovary and their contribution to ovarian dysfunction are not properly understood. Here we review recent advancements in understanding Polycomb proteins, important epigenetic modifiers that have emerging roles in ovarian development and maternal epigenetic inheritance. Polycomb group proteins (PcGs) contribute to the faithful establishment of epigenetic information in oocytes, a process essential for normal offspring development in mice. Emerging evidence also indicates that PcGs regulate ovarian function and female fertility. Understanding these and similar mechanisms will provide greater insight into the epigenetic regulation of ovarian and oocyte function, and how its disruption can impact reproductive health and maternal inheritance.
Collapse
Affiliation(s)
- Ellen G Jarred
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Vic, Australia
| | - Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Vic, Australia
| |
Collapse
|
40
|
Han C, Niu D, Lan K. Rewriting Viral Fate: Epigenetic and Transcriptional Dynamics in KSHV Infection. Viruses 2024; 16:1870. [PMID: 39772181 PMCID: PMC11680275 DOI: 10.3390/v16121870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), a γ-herpesvirus, is predominantly associated with Kaposi's sarcoma (KS) as well as two lymphoproliferative disorders: primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). Like other herpesviruses, KSHV employs two distinct life cycles: latency and lytic replication. To establish a lifelong persistent infection, KSHV has evolved various strategies to manipulate the epigenetic machinery of the host. In latently infected cells, most viral genes are epigenetically silenced by components of cellular chromatin, DNA methylation and histone post-translational modifications. However, some specific latent genes are preserved and actively expressed to maintain the virus's latent state within the host cell. Latency is not a dead end, but the virus has the ability to reactivate. This reactivation is a complex process that involves the removal of repressive chromatin modifications and increased accessibility for both viral and cellular factors, allowing the activation of the full transcriptional program necessary for the subsequent lytic replication. This review will introduce the roles of epigenetic modifications in KSHV latent and lytic life cycles, including DNA methylation, histone methylation and acetylation modifications, chromatin remodeling, genome conformation, and non-coding RNA expression. Additionally, we will also review the transcriptional regulation of viral genes and host factors in KSHV infection. This review aims to enhance our understanding of the molecular mechanisms of epigenetic modifications and transcriptional regulation in the KSHV life cycle, providing insights for future research.
Collapse
Affiliation(s)
- Chunyan Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.H.); (D.N.)
| | - Danping Niu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.H.); (D.N.)
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.H.); (D.N.)
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
41
|
Murgas L, Pollastri G, Riquelme E, Sáez M, Martin AJM. Understanding relationships between epigenetic marks and their application to robust assignment of chromatin states. Brief Bioinform 2024; 26:bbae638. [PMID: 39658206 PMCID: PMC11631260 DOI: 10.1093/bib/bbae638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/09/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024] Open
Abstract
Structural changes of chromatin modulate access to DNA for the molecular machinery involved in the control of transcription. These changes are linked to variations in epigenetic marks that allow to classify chromatin in different functional states depending on the pattern of these histone marks. Importantly, alterations in chromatin states are known to be linked with various diseases, and their changes are known to explain processes such as cellular proliferation. For most of the available samples, there are not enough epigenomic data available to accurately determine chromatin states for the cells affected in each of them. This is mainly due to high costs of performing this type of experiments but also because of lack of a sufficient amount of sample or its degradation. In this work, we describe a cascade method based on a random forest algorithm to infer epigenetic marks, and by doing so, to identify relationships between different histone marks. Importantly, our approach also reduces the number of experimentally determined marks required to assign chromatin states. Moreover, in this work we have identified several relationships between patterns of different histone marks, which strengthens the evidence in favor of a redundant epigenetic code.
Collapse
Affiliation(s)
- Leandro Murgas
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de investigación, Universidad Mayor, Camino La Pirámide 5750, 8580745 Huechuraba, Chile
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avda. del Valle 725, 8580702 Huechuraba, Chile
| | - Gianluca Pollastri
- School of Computer Science, University College Dublin, Belfield, Dublin 4, Dublin D04 C1P1, Ireland
| | - Erick Riquelme
- Department of Respiratory Diseases, Facultad de Medicina, Pontificia Universidad Católica, Avda. Libertador Bernando O’Higgins 340, 8331150 Santiago, Chile
| | - Mauricio Sáez
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Manuel Montt 56, 4813302 Temuco, Chile
| | - Alberto J M Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avda. del Valle 725, 8580702 Huechuraba, Chile
- Escuela de Ingeniería, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, 8420524 Santiago, Chile
| |
Collapse
|
42
|
Kondratowski S, Cohen D, Deyell RJ, Sandhu A, Bush JW. Immunohistochemical study of histone protein 3 modification in pediatric osteosarcoma identifies reduced H3K27me3 as a marker of poor treatment response. PLoS One 2024; 19:e0309471. [PMID: 39570878 PMCID: PMC11581320 DOI: 10.1371/journal.pone.0309471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/07/2024] [Indexed: 11/24/2024] Open
Abstract
The most common pediatric primary malignant bone tumor, osteosarcoma, is often described as genetically non-recurrent and heterogeneous. Neoadjuvant chemotherapy is typically followed by resection and assessment of treatment response, which helps inform prognosis. Identifying biomarkers that may impact chemotherapy response and survival could aid in upfront risk stratification and identify patients in highest need of innovative therapies for future clinical trials. Relative to conventional genetics, little is known about osteosarcoma epigenetics. We aimed to characterize the methylation and phosphorylation status in osteosarcoma using histone markers found in primary diagnostic biopsies and their paired metastases. We constructed two tissue microarray sets from 58 primary diagnostic samples and 54 temporally-separated but related metastatic or recurrent samples, with tissue blocks available from 2002-2022. Clinical charts were reviewed for post-therapy necrosis response, presence of metastatic disease or recurrence, and overall survival. We evaluated 6 histone H3 residues using immunohistochemistry, including H3K4me3, H3K9me3, H3K27me2, H3K27me3, H3S10T11phos, and H3S28phos. Tumors were scored with low (<25%) or high (≥25%) nuclear staining of tumor cells. Diagnostic biopsies with low H3K27me3 nuclear staining were associated with poor treatment response (≤90% necrosis) at the time of definitive excision (P<0.05). We observed loss of H3S10T11phos expression in metastatic and recurrent resections specimens compared to the primary tumor (P<0.05). Expression patterns for the remaining histone markers did not show significant associations with disease parameters or survival. Although larger cohort studies are needed, these results support the expanded evaluation of histone markers, particularly H3K27me3 and H3S10T11phos, in osteosarcoma biology and risk stratification.
Collapse
Affiliation(s)
| | - Danielle Cohen
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rebecca J. Deyell
- Department of Pediatrics and Division of Hematology, Oncology, and Bone Marrow Transplant, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Ash Sandhu
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Jonathan W. Bush
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Division of Anatomical Pathology, BC Children’s and Women’s Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
43
|
Bonilla G, Morris A, Kundu S, DuCasse A, Kirkpatrick G, Jeffries NE, Chetal K, Yvanovich EE, Milosevic J, Zhao T, Xia J, Barghout R, Scadden D, Mansour MK, Kingston RE, Sykes DB, Mercier FE, Sadreyev RI. Leukemia aggressiveness is driven by chromatin remodeling and expression changes of core regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582846. [PMID: 38496490 PMCID: PMC10942317 DOI: 10.1101/2024.02.29.582846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Molecular mechanisms driving clonal aggressiveness in leukemia are not fully understood. We tracked and analyzed MLL-rearranged leukemic clones independently evolving towards higher aggressiveness. More aggressive subclones lost their growth differential ex vivo but restored it upon secondary transplantation, suggesting molecular memory of aggressiveness. Development of aggressiveness was associated with clone-specific gradual modulation of chromatin states and expression levels across the genome, with a surprising preferential trend of reversing the earlier changes between normal and leukemic progenitors. To focus on the core aggressiveness program, we identified genes with consistent changes of expression and chromatin marks that were maintained in vivo and ex vivo in both clones. Overexpressing selected core genes (Smad1 as aggressiveness driver, Irx5 and Plag1 as suppressors) affected leukemic progenitor growth in the predicted way and had convergent downstream effects on central transcription factors and repressive epigenetic modifiers, suggesting a broader regulatory network of leukemic aggressiveness.
Collapse
|
44
|
Cao X, Ma T, Fan R, Yuan GC. Systematic analysis identifies a connection between spatial and genomic variations of chromatin states. Cell Syst 2024; 15:1092-1102.e2. [PMID: 39541982 PMCID: PMC11581903 DOI: 10.1016/j.cels.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/17/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Chromatin states play important roles in the maintenance of cell identities, yet their spatial patterns remain poorly characterized at the organism scale. We developed a systematic approach to analyzing spatial epigenomic data and then applied it to a recently published spatial-CUT&Tag dataset that was obtained from a mouse embryo. We identified a set of spatial genes whose H3K4me3 patterns delineate tissue boundaries. These genes are enriched with tissue-specific transcription factors, and their corresponding genomic loci are marked by broad H3K4me3 domains. Integrative analysis with H3K27me3 profiles showed coordinated spatial transitions across tissue boundaries, which is marked by the continuous shortening of H3K4me3 domains and expansion of H3K27me3 domains. Motif-based analysis identified transcription factors whose activities change significantly during such transitions. Taken together, our systematic analyses reveal a strong connection between the genomic and spatial variations of chromatin states. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Xuan Cao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Terry Ma
- School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
45
|
Malla S, Martinez-Gamero C, Kumari K, Achour C, Mermelekas G, Martinez-Delgado D, Coego A, Guallar D, Roman AC, Aguilo F. Cooperative role of LSD1 and CHD7 in regulating differentiation of mouse embryonic stem cells. Sci Rep 2024; 14:28495. [PMID: 39557885 PMCID: PMC11574112 DOI: 10.1038/s41598-024-78920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
Lysine-specific histone demethylase 1 (LSD1) is a histone demethylase that plays a critical role in epigenetic regulation by removing the methyl group from mono- and di-methylated lysine 4 on histone H3 (H3K4me1/2), acting as a repressor of gene expression. Recently, catalytically independent functions of LSD1, serving as a scaffold for assembling chromatin-regulator and transcription factor complexes, have been identified. Herein, we show for the first time that LSD1 interacts with chromodomain-helicase-DNA-binding protein 7 (CHD7) in mouse embryonic stem cells (ESCs). To further investigate the CHD7-LSD1 crosstalk, we engineered Chd7 and Chd7/Lsd1 knockout (KO) mouse ESCs. We show that CHD7 is dispensable for ESC self-renewal and survival, while Chd7 KO ESCs can differentiate towards embryoid bodies (EBs) with defective expression of ectodermal markers. Intriguingly, Chd7/Lsd1 double KO mouse ESCs exhibit proliferation defects similar to Lsd1 KO ESCs and have lost the capacity to differentiate properly. Furthermore, the increased co-occupancy of H3K4me1 and CHD7 on chromatin following Lsd1 deletion suggests that LSD1 is required for facilitating the proper binding of CHD7 to chromatin and regulating differentiation. Collectively, our results suggest that LSD1 and CHD7 work in concert to modulate gene expression and influence proper cell fate determination.
Collapse
Affiliation(s)
- Sandhya Malla
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Carlos Martinez-Gamero
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Kanchan Kumari
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Cyrinne Achour
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Georgios Mermelekas
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 21, Solna, Sweden
| | - David Martinez-Delgado
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Alba Coego
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Diana Guallar
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Angel-Carlos Roman
- Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden.
| |
Collapse
|
46
|
Farrell C, Tandon K, Ferrari R, Lapborisuth K, Modi R, Snir S, Pellegrini M. The Multi-State Epigenetic Pacemaker enables the identification of combinations of factors that influence DNA methylation. GeroScience 2024:10.1007/s11357-024-01414-7. [PMID: 39549198 DOI: 10.1007/s11357-024-01414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/23/2024] [Indexed: 11/18/2024] Open
Abstract
Epigenetic clocks, DNA methylation-based predictive models of chronological age, are often utilized to study aging associated biology. Despite their widespread use, these methods do not account for other factors that also contribute to the variability of DNA methylation data. For example, many CpG sites show strong sex-specific or cell-type-specific patterns that likely impact the predictions of epigenetic age. To overcome these limitations, we developed a multidimensional extension of the Epigenetic Pacemaker, the Multi-state Epigenetic Pacemaker (MSEPM). We show that the MSEPM is capable of accurately modeling multiple methylation-associated factors simultaneously, while also providing site-specific models that describe the per site relationship between methylation and these factors. We utilized the MSEPM with a large aggregate cohort of blood methylation data to construct models of the effects of age-, sex-, and cell-type heterogeneity on DNA methylation. We found that these models capture a large faction of the variability at thousands of DNA methylation sites. Moreover, this approach allows us to identify sites that are primarily affected by aging and no other factors. An analysis of these sites reveals that those that lose methylation over time are enriched for CTCF transcription factor chip peaks, while those that gain methylation over time are associated with bivalent promoters of genes that are not expressed in blood. These observations suggest mechanisms that underlie age-associated methylation changes and suggest that age-associated increases in methylation may not have strong functional consequences on cell states. In conclusion, the MSEPM is capable of accurately modeling multiple methylation-associated factors, and the models produced can illuminate site-specific combinations of factors that affect methylation dynamics.
Collapse
Affiliation(s)
- Colin Farrell
- Dept. of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA.
| | - Keshiv Tandon
- Dept. of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA
| | - Roberto Ferrari
- Dept. of Chemistry, Life Sciences and Environmental Sustainability, Laboratory of Molecular Cell Biology of the Epigenome (MCBE), University of Parma, Parma, Italy
| | - Kalsuda Lapborisuth
- Dept. of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA
| | - Rahil Modi
- Dept. of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA
| | - Sagi Snir
- Dept. of Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Matteo Pellegrini
- Dept. of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA.
| |
Collapse
|
47
|
Hanafiah A, Geng Z, Liu T, Tai YT, Cai W, Wang Q, Christensen N, Liu Y, Yue F, Gao Z. PRC1 and CTCF-Mediated Transition from Poised to Active Chromatin Loops Drives Bivalent Gene Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623456. [PMID: 39605346 PMCID: PMC11601310 DOI: 10.1101/2024.11.13.623456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Polycomb Repressive Complex 1 (PRC1) and CCCTC-binding factor (CTCF) are critical regulators of 3D chromatin architecture that influence cellular transcriptional programs. Spatial chromatin structures comprise conserved compartments, topologically associating domains (TADs), and dynamic, cell-type-specific chromatin loops. Although the role of CTCF in chromatin organization is well-known, the involvement of PRC1 is less understood. In this study, we identified an unexpected, essential role for the canonical Pcgf2-containing PRC1 complex (cPRC1.2), a known transcriptional repressor, in activating bivalent genes during differentiation. Our Hi-C analysis revealed that cPRC1.2 forms chromatin loops at bivalent promoters, rendering them silent yet poised for activation. Using mouse embryonic stem cells (ESCs) with CRISPR/Cas9-mediated gene editing, we found that the loss of Pcgf2, though not affecting the global level of H2AK119ub1, disrupts these cPRC1.2 loops in ESCs and impairs the transcriptional induction of crucial target genes necessary for neuronal differentiation. Furthermore, we identified CTCF enrichment at cPRC1.2 loop anchors and at Polycomb group (PcG) bodies, nuclear foci with concentrated PRC1 and its tethered chromatin domains, suggesting that PRC1 and CTCF cooperatively shape chromatin loop structures. Through virtual 4C and other genomic analyses, we discovered that establishing neuronal progenitor cell (NPC) identity involves a switch from cPRC1.2-mediated chromatin loops to CTCF-mediated active loops, enabling the expression of critical lineage-specific factors. This study uncovers a novel mechanism by which pre-formed PRC1 and CTCF loops at lineage-specific genes maintain a poised state for subsequent gene activation, advancing our understanding of the role of chromatin architecture in controlling cell fate transitions.
Collapse
Affiliation(s)
- Aflah Hanafiah
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Zhuangzhuang Geng
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Tingting Liu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
- Center for Cancer Genomics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Yen Teng Tai
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Wenjie Cai
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Qiang Wang
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Neil Christensen
- Department of Pathology and Laboratory Medicine, Penn State College of Medicine, Hershey, PA 17033
| | - Yan Liu
- Center for Cancer Genomics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
- Center for Cancer Genomics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Zhonghua Gao
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| |
Collapse
|
48
|
Dodd AR, Luense LJ. Contribution of the paternal histone epigenome to the preimplantation embryo. Front Cell Dev Biol 2024; 12:1476312. [PMID: 39600339 PMCID: PMC11588740 DOI: 10.3389/fcell.2024.1476312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
The paternal germline contains a plethora of information that extends beyond DNA. Packaged within the sperm cell is a wealth of epigenetic information, including DNA methylation, small RNAs, and chromatin associated histone proteins and their covalently attached post-translational modifications. Paternal chromatin is particularly unique, as during the process of spermatogenesis, nearly all histones are evicted from the genome with only a small percentage retained in the mature sperm cell. This paternal epigenetic information is encoded into chromatin during spermatogenesis and is delivered to the oocyte upon fertilization. The exact role of these paternally contributed histones to the embryo remains to be fully understood, however recent studies support the hypothesis that retained sperm histones act as a mechanism to poise genes for early embryonic gene activation. Evidence from multiple mammalian species suggests sperm histones are present at loci that are important for preimplantation embryo chromatin dynamics and transcriptional regulation. Furthermore, abnormal sperm histone epigenomes result in infertility, poor embryogenesis, and offspring development. This mini-review describes recent advances in the field of paternal histone epigenetics and their potential roles in preimplantation embryo development.
Collapse
Affiliation(s)
- Ashton R. Dodd
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Lacey J. Luense
- Department of Animal Science, Texas A&M University, College Station, TX, United States
- Genetics and Genomics Interdisciplinary Program, Texas A&M University, College Station, TX, United States
| |
Collapse
|
49
|
Hegazi E, Muir TW. The spread of chemical biology into chromatin. J Biol Chem 2024; 300:107776. [PMID: 39276931 PMCID: PMC11555340 DOI: 10.1016/j.jbc.2024.107776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024] Open
Abstract
Understanding the molecular mechanisms underlying chromatin regulation, the complexity of which seems to deepen with each passing year, requires a multidisciplinary approach. While many different tools have been brought to bear in this area, here we focus on those that have emerged from the field of chemical biology. We discuss methods that allow the generation of what is now commonly referred to as "designer chromatin," a term that was coined by the late C. David (Dave) Allis. Among Dave's many talents was a remarkable ability to "brand" a nascent area (or concept) such that it was immediately relatable to the broader field. This also had the entirely intentional effect of drawing more people into the area, something that as this brief review attempts to convey has certainly happened when it comes to getting chemists involved in chromatin research.
Collapse
Affiliation(s)
- Esmat Hegazi
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|
50
|
Kim N, Filipovic D, Bhattacharya S, Cuddapah S. Epigenetic toxicity of heavy metals - implications for embryonic stem cells. ENVIRONMENT INTERNATIONAL 2024; 193:109084. [PMID: 39437622 DOI: 10.1016/j.envint.2024.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/14/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Exposure to heavy metals, such as cadmium, nickel, mercury, arsenic, lead, and hexavalent chromium has been linked to dysregulated developmental processes, such as impaired stem cell differentiation. Heavy metals are well-known modifiers of the epigenome. Stem and progenitor cells are particularly vulnerable to exposure to potentially toxic metals since these cells rely on epigenetic reprogramming for their proper functioning. Therefore, exposure to metals can impair stem and progenitor cell proliferation, pluripotency, stemness, and differentiation. In this review, we provide a comprehensive summary of current evidence on the epigenetic effects of heavy metals on stem cells, focusing particularly on DNA methylation and histone modifications. Moreover, we explore the underlying mechanisms responsible for these epigenetic changes. By providing an overview of heavy metal exposure-induced alterations to the epigenome, the underlying mechanisms, and the consequences of those alterations on stem cell function, this review provides a foundation for further research in this critical area of overlap between toxicology and developmental biology.
Collapse
Affiliation(s)
- Nicholas Kim
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
| | - David Filipovic
- Institute for Quantitative Health Science and Engineering, Division of Systems Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Sudin Bhattacharya
- Institute for Quantitative Health Science and Engineering, Division of Systems Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - Suresh Cuddapah
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA.
| |
Collapse
|