1
|
Yang J, Sun Q, Liu X, Yang Y, Rong R, Yan P, Xie Y. Targeting Notch signaling pathways with natural bioactive compounds: a promising approach against cancer. Front Pharmacol 2024; 15:1412669. [PMID: 39092224 PMCID: PMC11291470 DOI: 10.3389/fphar.2024.1412669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Notch signaling pathway is activated abnormally in solid and hematological tumors, which perform essential functions in cell differentiation, survival, proliferation, and angiogenesis. The activation of Notch signaling and communication among Notch and other oncogenic pathways heighten malignancy aggressiveness. Thus, targeting Notch signaling offers opportunities for improved survival and reduced disease incidence. Already, most attention has been given to its role in the cancer cells. Recent research shows that natural bioactive compounds can change signaling molecules that are linked to or interact with the Notch pathways. This suggests that there may be a link between Notch activation and the growth of tumors. Here, we sum up the natural bioactive compounds that possess inhibitory effects on human cancers by impeding the Notch pathway and preventing Notch crosstalk with other oncogenic pathways, which provoke further study of these natural products to derive rational therapeutic regimens for the treatment of cancer and develop novel anticancer drugs. This review revealed Notch as a highly challenging but promising target in oncology.
Collapse
Affiliation(s)
- Jia Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qihui Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyun Liu
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yong Yang
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Rong Rong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Peiyu Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Rey RA, Bergadá I, Ballerini MG, Braslavsky D, Chiesa A, Freire A, Grinspon RP, Keselman A, Arcari A. Diagnosing and treating anterior pituitary hormone deficiency in pediatric patients. Rev Endocr Metab Disord 2024; 25:555-573. [PMID: 38112850 DOI: 10.1007/s11154-023-09868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Hypopituitarism, or the failure to secrete hormones produced by the anterior pituitary (adenohypophysis) and/or to release hormones from the posterior pituitary (neurohypophysis), can be congenital or acquired. When more than one pituitary hormone axis is impaired, the condition is known as combined pituitary hormone deficiency (CPHD). The deficiency may be primarily due to a hypothalamic or to a pituitary disorder, or concomitantly both, and has a negative impact on target organ function. This review focuses on the pathophysiology, diagnosis and management of anterior pituitary hormone deficiency in the pediatric age. Congenital hypopituitarism is generally due to genetic disorders and requires early medical attention. Exposure to toxicants or intrauterine infections should also be considered as potential etiologies. The molecular mechanisms underlying the fetal development of the hypothalamus and the pituitary are well characterized, and variants in the genes involved therein may explain the pathophysiology of congenital hypopituitarism: mutations in the genes expressed in the earliest stages are usually associated with syndromic forms whereas variants in genes involved in later stages of pituitary development result in non-syndromic forms with more specific hormone deficiencies. Tumors or lesions of the (peri)sellar region, cranial radiation therapy, traumatic brain injury and, more rarely, other inflammatory or infectious lesions represent the etiologies of acquired hypopituitarism. Hormone replacement is the general strategy, with critical periods of postnatal life requiring specific attention.
Collapse
Affiliation(s)
- Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina.
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - María Gabriela Ballerini
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Débora Braslavsky
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Ana Chiesa
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Analía Freire
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Romina P Grinspon
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Ana Keselman
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Andrea Arcari
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| |
Collapse
|
3
|
Huang QH, Zhao GK, Wang HQ, Wei FH, Zhang JY, Zhang JB, Gao F, Yuan B. Single-Cell Transcriptional Profile Construction of Rat Pituitary Glands before and after Sexual Maturation and Identification of Novel Marker Spp1 in Gonadotropes. Int J Mol Sci 2024; 25:4694. [PMID: 38731915 PMCID: PMC11083676 DOI: 10.3390/ijms25094694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The mammalian pituitary gland drives highly conserved physiological processes such as somatic cell growth, pubertal transformation, fertility, and metabolism by secreting a variety of hormones. Recently, single-cell transcriptomics techniques have been used in pituitary gland research. However, more studies have focused on adult pituitary gland tissues from different species or different sexes, and no research has yet resolved cellular differences in pituitary gland tissue before and after sexual maturation. Here, we identified a total of 15 cell clusters and constructed single-cell transcriptional profiles of rats before and after sexual maturation. Furthermore, focusing on the gonadotrope cluster, 106 genes were found to be differentially expressed before and after sexual maturation. It was verified that Spp1, which is specifically expressed in gonadotrope cells, could serve as a novel marker for this cell cluster and has a promotional effect on the synthesis and secretion of follicle-stimulating hormone. The results provide a new resource for further resolving the regulatory mechanism of pituitary gland development and pituitary hormone synthesis and secretion.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Q.-H.H.); (G.-K.Z.); (H.-Q.W.); (F.-H.W.); (J.-Y.Z.); (J.-B.Z.)
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Q.-H.H.); (G.-K.Z.); (H.-Q.W.); (F.-H.W.); (J.-Y.Z.); (J.-B.Z.)
| |
Collapse
|
4
|
Wallis M, Xu Q, Krawczyk M, Skowronska-Krawczyk D. Evolution of the enhancer-rich regulatory region of the gene for the cell-type specific transcription factor POU1F1. Heliyon 2024; 10:e28640. [PMID: 38590853 PMCID: PMC10999999 DOI: 10.1016/j.heliyon.2024.e28640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Precise spatio-temporal expression of genes in organogenesis is regulated by the coordinated interplay of DNA elements such as promoter and enhancers present in the regulatory region of a given locus. POU1F1 transcription factor plays a crucial role in the development of somatotrophs, lactotrophs and thyrotrophs in the anterior pituitary gland, and in maintaining high expression of growth hormone, prolactin and TSH. In mouse, expression of POU1F1 is controlled by a region fenced by two CTCF sites, containing 5 upstream enhancer elements, designated E-A (5' to 3'). Elements C, B and A correspond to elements shown previously to play a role in pituitary development and hormonal expression; functional roles for elements E and D have not been reported. We performed comparative sequence analysis of this regulatory region and discovered that three elements, B, C and E, are present in all vertebrate groups except Agnatha. One very long (>2 kb) element (A) is unique to mammals suggesting a specific change in regulation of the gene in this group. Using DNA accessibility assay (ATAC-seq) we showed that conserved elements in anterior pituitary of four non-mammals are open, suggesting functionality as regulatory elements. We showed that, in many non-mammalian vertebrates, an additional upstream exon closely follows element E, leading to alternatively spliced transcripts. Here, element E functions as an alternative promoter, but in mammals this feature is lost, suggesting conversion of alternative promoter to enhancer. Our work shows that regulation of POU1F1 changed markedly during the course of vertebrate evolution, use of a low number of enhancer elements combined with alternative promoters in non-mammalian vertebrates being replaced by use of a unique combination of regulatory units in mammals. Most importantly, our work suggests that evolutionary conversion of alternate promoter to enhancer could be one of the evolutionary mechanisms of enhancer birth.
Collapse
Affiliation(s)
- Michael Wallis
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Qianlan Xu
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| | - Michal Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
5
|
Pérez Millán MI, Cheung LYM, Mercogliano F, Camilletti MA, Chirino Felker GT, Moro LN, Miriuka S, Brinkmeier ML, Camper SA. Pituitary stem cells: past, present and future perspectives. Nat Rev Endocrinol 2024; 20:77-92. [PMID: 38102391 PMCID: PMC10964491 DOI: 10.1038/s41574-023-00922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
Pituitary cells that express the transcription factor SOX2 are stem cells because they can self-renew and differentiate into multiple pituitary hormone-producing cell types as organoids. Wounding and physiological challenges can activate pituitary stem cells, but cell numbers are not fully restored, and the ability to mobilize stem cells decreases with increasing age. The basis of these limitations is still unknown. The regulation of stem cell quiescence and activation involves many different signalling pathways, including those mediated by WNT, Hippo and several cytokines; more research is needed to understand the interactions between these pathways. Pituitary organoids can be formed from human or mouse embryonic stem cells, or from human induced pluripotent stem cells. Human pituitary organoid transplantation is sufficient to induce corticosterone release in hypophysectomized mice, raising the possibility of therapeutic applications. Today, pituitary organoids have the potential to assess the role of individual genes and genetic variants on hormone production ex vivo, providing an important tool for the advancement of exciting frontiers in pituitary stem cell biology and pituitary organogenesis. In this article, we provide an overview of notable discoveries in pituitary stem cell function and highlight important areas for future research.
Collapse
Affiliation(s)
- María Inés Pérez Millán
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Leonard Y M Cheung
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Florencia Mercogliano
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Maria Andrea Camilletti
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Gonzalo T Chirino Felker
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Lucia N Moro
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Santiago Miriuka
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Gao J, Lu Y, Luo Y, Duan X, Chen P, Zhang X, Wu X, Qiu M, Shen W. β-Catenin and SOX2 Interaction Regulate Visual Experience-Dependent Cell Homeostasis in the Developing Xenopus Thalamus. Int J Mol Sci 2023; 24:13593. [PMID: 37686400 PMCID: PMC10488257 DOI: 10.3390/ijms241713593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
In the vertebrate brain, sensory experience plays a crucial role in shaping thalamocortical connections for visual processing. However, it is still not clear how visual experience influences tissue homeostasis and neurogenesis in the developing thalamus. Here, we reported that the majority of SOX2-positive cells in the thalamus are differentiated neurons that receive visual inputs as early as stage 47 Xenopus. Visual deprivation (VD) for 2 days shifts the neurogenic balance toward proliferation at the expense of differentiation, which is accompanied by a reduction in nuclear-accumulated β-catenin in SOX2-positive neurons. The knockdown of β-catenin decreases the expression of SOX2 and increases the number of progenitor cells. Coimmunoprecipitation studies reveal the evolutionary conservation of strong interactions between β-catenin and SOX2. These findings indicate that β-catenin interacts with SOX2 to maintain homeostatic neurogenesis during thalamus development.
Collapse
Affiliation(s)
- Juanmei Gao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China (M.Q.)
- College of Life and Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yufang Lu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China (M.Q.)
| | - Yuhao Luo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China (M.Q.)
| | - Xinyi Duan
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China (M.Q.)
| | - Peiyao Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China (M.Q.)
| | - Xinyu Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China (M.Q.)
| | - Xiaohua Wu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China (M.Q.)
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China (M.Q.)
- College of Life and Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China (M.Q.)
| |
Collapse
|
7
|
Scagliotti V, Vignola ML, Willis T, Howard M, Marinelli E, Gaston-Massuet C, Andoniadou C, Charalambous M. Imprinted Dlk1 dosage as a size determinant of the mammalian pituitary gland. eLife 2023; 12:e84092. [PMID: 37589451 PMCID: PMC10468206 DOI: 10.7554/elife.84092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Co-regulated genes of the Imprinted Gene Network are involved in the control of growth and body size, and imprinted gene dysfunction underlies human paediatric disorders involving the endocrine system. Imprinted genes are highly expressed in the pituitary gland, among them, Dlk1, a paternally expressed gene whose membrane-bound and secreted protein products can regulate proliferation and differentiation of multiple stem cell populations. Dosage of circulating DLK1 has been previously implicated in the control of growth through unknown molecular mechanisms. Here we generate a series of mouse genetic models to modify levels of Dlk1 expression in the pituitary gland and demonstrate that the dosage of DLK1 modulates the process of stem cell commitment with lifelong impact on pituitary gland size. We establish that stem cells are a critical source of DLK1, where embryonic disruption alters proliferation in the anterior pituitary, leading to long-lasting consequences on growth hormone secretion later in life.
Collapse
Affiliation(s)
- Valeria Scagliotti
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College LondonLondonUnited Kingdom
| | - Maria Lillina Vignola
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College LondonLondonUnited Kingdom
| | - Thea Willis
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College LondonLondonUnited Kingdom
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| | - Mark Howard
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College LondonLondonUnited Kingdom
| | - Eugenia Marinelli
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College LondonLondonUnited Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUnited Kingdom
| | - Cynthia Andoniadou
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| | - Marika Charalambous
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
8
|
Taghavi SF, Ghorbani M, Panahi M, Nazem S, Karimi M, Salimi V, Tavakoli-Yaraki M. Differential expression levels of β-catenin are associated with invasive behavior of both functional and non-functional pituitary neuroendocrine tumor (PitNET). Mol Biol Rep 2023; 50:6425-6434. [PMID: 37326745 DOI: 10.1007/s11033-023-08523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Although research continues to elucidate the molecular mechanism underlying pituitary tumor pathogenesis, limited information is available on the potential role and expression profile of β-catenin in functional and non-functional pituitary neuroendocrine tumors (PitNETs). METHODS AND RESULTS In the current study, 104 pituitary samples (tumors and cadaveric healthy pituitary tissues) were included and the gene and protein expression levels of β-catenin were assessed by Real-Time PCR and immunohistochemistry, respectively. The correlation between expression level of β-catenin and tumor invasive feature and size as well as patient age, gender, and hormonal level was measured. The data showed that PitNET samples expressed higher levels of the β-catenin gene and protein compared to healthy pituitary tissues. Although there was no difference in β-catenin expression level between non-functioning (NF-PitNETs) and growth hormone-producing tumors (GH-PitNETs), both tumor types showed significantly elevated β-catenin levels compared to healthy pituitary tissues. The high level of β-catenin in the invasive functional and non-functional tumors is indicative of the association of β-catenin with PitNETs invasion. The expression pattern of the β-catenin gene and protein was consistently and significantly associated with these tumor types. The correlation between β-catenin and insulin-like growth factor 1 (IGF-1) in GH-PitNETs indicates the potential relevance of β-catenin and IGF-1 for GH-PitNETs. CONCLUSIONS The simultaneous increase in the expression of β-catenin gene and protein level in PitNET tissues and their relationship to the tumor severity indicates the possible contributing role of β-catenin and its underlying signaling mediators in PitNET pathogenesis.
Collapse
Affiliation(s)
- S Fahimeh Taghavi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Mohammad Ghorbani
- Division of Vascular and Endovascular Neurosurgery, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Panahi
- Pathology Department, Firozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Nazem
- Department of Laboratory Medicine, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Karimi
- Department of Immunology, School of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran.
| |
Collapse
|
9
|
Campanini ML, Almeida JP, Martins CS, de Castro M. The molecular pathogenesis of craniopharyngiomas. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:266-275. [PMID: 36748936 PMCID: PMC10689043 DOI: 10.20945/2359-3997000000600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/11/2022] [Indexed: 02/08/2023]
Abstract
Research from the last 20 years has provided important insights into the molecular pathogenesis of craniopharyngiomas (CPs). Besides the well-known clinical and histological differences between the subtypes of CPs, adamantinomatous (ACP) and papillary (PCP) craniopharyngiomas, other molecular differences have been identified, further elucidating pathways related to the origin and development of such tumors. The present minireview assesses current knowledge on embryogenesis and the genetic, epigenetic, transcriptomic, and signaling pathways involved in the ACP and PCP subtypes, revealing the similarities and differences in their profiles. ACP and PCP subtypes can be identified by the presence of mutations in CTNNB1 and BRAF genes, with prevalence around 60% and 90%, respectively. Therefore, β-catenin accumulates in the nucleus-cytoplasm of cell clusters in ACPs and, in PCPs, cell immunostaining with specific antibody against the V600E-mutated protein can be seen. Distinct patterns of DNA methylation further differentiate ACPs and PCPs. In addition, research on genetic and epigenetic changes and tumor microenvironment specificities have further clarified the development and progression of the disease. No relevant transcriptional differences in ACPs have emerged between children and adults. In conclusion, ACPs and PCPs present diverse genetic signatures and each subtype is associated with specific signaling pathways. A better understanding of the pathways related to the growth of such tumors is paramount for the development of novel targeted therapeutic agents.
Collapse
Affiliation(s)
- Marina Lanciotti Campanini
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil,
| | - João Paulo Almeida
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States
| | - Clarissa Silva Martins
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
- Faculdade de Medicina, Universidade Federal do Mato Grosso do Sul, Campo Grande, RS, Brasil
| | - Margaret de Castro
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
10
|
Nagashima S, Ito N, Shiiba I, Shimura H, Yanagi S. Ubiquitin-mediated mitochondrial regulation by MITOL/MARCHF5 at a glance. J Biochem 2022; 173:1-11. [PMID: 36346121 DOI: 10.1093/jb/mvac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
Mitochondria are involved in various cellular processes, such as energy production, inflammatory responses and cell death. Mitochondrial dysfunction is associated with many age-related diseases, including neurological disorders and heart failure. Mitochondrial quality is strictly maintained by mitochondrial dynamics linked to an adequate supply of phospholipids and other substances from the endoplasmic reticulum (ER). The outer mitochondrial membrane-localized E3 ubiquitin ligase MITOL/MARCHF5 is responsible for mitochondrial quality control through the regulation of mitochondrial dynamics, formation of mitochondria-ER contacts and mitophagy. MITOL deficiency has been shown to impair mitochondrial function, cause an excessive inflammatory response and increase vulnerability to stress, resulting in the exacerbation of the disease. In this study, we overview the ubiquitin-mediated regulation of mitochondrial function by MITOL and the relationship between MITOL and diseases.
Collapse
Affiliation(s)
- Shun Nagashima
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Naoki Ito
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Isshin Shiiba
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Hiroki Shimura
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| |
Collapse
|
11
|
Akiba K, Hasegawa Y, Katoh-Fukui Y, Terao M, Takada S, Hasegawa T, Fukami M, Narumi S. POU1F1/Pou1f1 c.143-83A > G Variant Disrupts the Branch Site in Pre-mRNA and Leads to Dwarfism. Endocrinology 2022; 164:6847324. [PMID: 36427334 PMCID: PMC9795478 DOI: 10.1210/endocr/bqac198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
POU Class 1 Homeobox1 (POU1F1/Pou1f1) is a well-established pituitary-specific transcription factor, and causes, when mutated, combined pituitary hormone deficiency in humans and mice. POU1F1/Pou1f1 has 2 isoforms: the alpha and beta isoforms. Recently, pathogenic variants in the unique coding region of the beta isoform (beta domain) and the intron near the exon-intron boundary for the beta domain were reported, although their functional consequences remain obscure. In this study, we generated mice carrying the Pou1f1 c.143-83A>G substitution that recapitulates the human intronic variant near the exon-intron boundary for the beta domain. Homozygous mice showed postnatal growth failure, with an average body weight that was 35% of wild-type littermates at 12 weeks, which was accompanied by anterior pituitary hypoplasia and deficiency of circulating insulin-like growth factor 1 and thyroxine. The results of RNA-seq analysis of the pituitary gland were consistent with reduction of somatotrophs, and this was confirmed immunohistochemically. Reverse transcription polymerase chain reaction of pituitary Pou1f1 mRNA showed abnormal splicing in homozygous mice, with a decrease in the alpha isoform, an increase in the beta isoform, and the emergence of the exon-skipped transcript. We further characterized artificial variants in or near the beta domain, which were candidate positions of the branch site in pre-mRNA, using cultured cell-basis analysis and found that only c.143-83A>G produced transcripts similar to the mice model. Our report is the first to show that the c.143-83A>G variant leads to splicing disruption and causes morphological and functional abnormalities in the pituitary gland. Furthermore, our mice will contribute understanding the role of POU1F1/Pou1f1 transcripts in pituitary development.
Collapse
Affiliation(s)
- Kazuhisa Akiba
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Yuko Katoh-Fukui
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Satoshi Narumi
- Correspondence: Satoshi Narumi, MD, PhD, Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| |
Collapse
|
12
|
Zambanini G, Nordin A, Jonasson M, Pagella P, Cantù C. A new CUT&RUN low volume-urea (LoV-U) protocol optimized for transcriptional co-factors uncovers Wnt/β-catenin tissue-specific genomic targets. Development 2022; 149:dev201124. [PMID: 36355069 PMCID: PMC10112916 DOI: 10.1242/dev.201124] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
Upon WNT/β-catenin pathway activation, stabilized β-catenin travels to the nucleus where it associates with the TCF/LEF transcription factors, constitutively bound to genomic Wnt-responsive elements (WREs), to activate target gene transcription. Discovering the binding profile of β-catenin is therefore required to unambiguously assign direct targets of WNT signaling. Cleavage under targets and release using nuclease (CUT&RUN) has emerged as prime technique for mapping the binding profile of DNA-interacting proteins. Here, we present a modified version of CUT&RUN, named LoV-U (low volume and urea), that enables the robust and reproducible generation of β-catenin binding profiles, uncovering direct WNT/β-catenin target genes in human cells, as well as in cells isolated from developing mouse tissues. CUT&RUN-LoV-U outperforms original CUT&RUN when targeting co-factors that do not bind the DNA, can profile all classes of chromatin regulators and is well suited for simultaneous processing of several samples. We believe that the application of our protocol will allow the detection of the complex system of tissue-specific WNT/β-catenin target genes, together with other non-DNA-binding transcriptional regulators that act downstream of ontogenetically fundamental signaling cascades.
Collapse
Affiliation(s)
- Gianluca Zambanini
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping SE-58183, Sweden
- Department of Biomedical and Clinical Sciences (BKV), Division of Molecular Medicine and Virology (MMV), Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58183, Sweden
| | - Anna Nordin
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping SE-58183, Sweden
- Department of Biomedical and Clinical Sciences (BKV), Division of Molecular Medicine and Virology (MMV), Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58183, Sweden
| | - Mattias Jonasson
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping SE-58183, Sweden
- Department of Biomedical and Clinical Sciences (BKV), Division of Molecular Medicine and Virology (MMV), Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58183, Sweden
| | - Pierfrancesco Pagella
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping SE-58183, Sweden
- Department of Biomedical and Clinical Sciences (BKV), Division of Molecular Medicine and Virology (MMV), Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58183, Sweden
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping SE-58183, Sweden
- Department of Biomedical and Clinical Sciences (BKV), Division of Molecular Medicine and Virology (MMV), Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58183, Sweden
| |
Collapse
|
13
|
Willis TL, Lodge EJ, Andoniadou CL, Yianni V. Cellular interactions in the pituitary stem cell niche. Cell Mol Life Sci 2022; 79:612. [PMID: 36451046 PMCID: PMC9712314 DOI: 10.1007/s00018-022-04612-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 09/27/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022]
Abstract
Stem cells in the anterior pituitary gland can give rise to all resident endocrine cells and are integral components for the appropriate development and subsequent maintenance of the organ. Located in discreet niches within the gland, stem cells are involved in bi-directional signalling with their surrounding neighbours, interactions which underpin pituitary gland homeostasis and response to organ challenge or physiological demand. In this review we highlight core signalling pathways that steer pituitary progenitors towards specific endocrine fate decisions throughout development. We further elaborate on those which are conserved in the stem cell niche postnatally, including WNT, YAP/TAZ and Notch signalling. Furthermore, we have collated a directory of single cell RNA sequencing studies carried out on pituitaries across multiple organisms, which have the potential to provide a vast database to study stem cell niche components in an unbiased manner. Reviewing published data, we highlight that stem cells are one of the main signalling hubs within the anterior pituitary. In future, coupling single cell sequencing approaches with genetic manipulation tools in vivo, will enable elucidation of how previously understudied signalling pathways function within the anterior pituitary stem cell niche.
Collapse
Affiliation(s)
- Thea L Willis
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Emily J Lodge
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Cynthia L Andoniadou
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Val Yianni
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
14
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
15
|
Castillo-Rodríguez RA, Palencia G, Anaya-Rubio I, Pérez JCG, Jiménez-Farfán D, Escamilla-Ramírez Á, Zavala-Vega S, Cruz-Salgado A, Cervantes-Rebolledo C, Gracia-Mora I, Ruiz-Azuara L, Trejo-Solis C. Anti-proliferative, pro-apoptotic and anti-invasive effect of the copper coordination compound Cas III-La through the induction of reactive oxygen species and regulation of Wnt/β-catenin pathway in glioma. J Cancer 2021; 12:5693-5711. [PMID: 34475984 PMCID: PMC8408120 DOI: 10.7150/jca.59769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/11/2021] [Indexed: 01/12/2023] Open
Abstract
Gliomas are the most aggressive neoplasms that affect the central nervous system, being glioblastoma multiforme (GBM) the most malignant. The resistance of GBM to therapies is attributed to its high rate of cell proliferation, angiogenesis, invasion, and resistance to apoptosis; thus, finding alternative therapeutic approaches is vital. In this work, the anti-proliferative, pro-apoptotic, and anti-invasive effect of the copper coordination compound Casiopeina III-La (Cas III-La) on human U373 MG cells was determined in vitro and in vivo. Our results indicate that Cas III-La exerts an anti-proliferative effect, promoting apoptotic cell death and inactivating the invasive process by generating reactive oxygen species (ROS), inactivating GSK3β, activating JNK and ERK, and promoting the nuclear accumulation of β-catenin. The inhibition of ROS generation by N-acetyl-l-cysteine not only recovered cell migration and viability, but also reduced β-catenin accumulation and JNK and ERK activation. Additionally, Cas III-La significantly reduced tumor volume, cell proliferation and mitotic indices, and increased the apoptotic index in mice xenotransplanted with U373 glioma cells. Thus, Cas III-La is a promising agent to treat GBM.
Collapse
Affiliation(s)
| | - Guadalupe Palencia
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México
| | - Isabel Anaya-Rubio
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México
| | | | - Dolores Jiménez-Farfán
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Ángel Escamilla-Ramírez
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México.,Hospital Regional de Alta Especialidad de Oaxaca, Secretaria de Salud, C.P. 71256 Oaxaca, México
| | - Sergio Zavala-Vega
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México
| | - Arturo Cruz-Salgado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México
| | | | - Isabel Gracia-Mora
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Investigación Científica 70, Ciudad de México 04510, México
| | - Lena Ruiz-Azuara
- Facultad de Química, Departamento de Química Inorgánica y Nuclear, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México
| |
Collapse
|
16
|
Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell 2021; 13:877-919. [PMID: 34050894 PMCID: PMC9243210 DOI: 10.1007/s13238-021-00846-7] [Citation(s) in RCA: 229] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic rewiring and epigenetic remodeling, which are closely linked and reciprocally regulate each other, are among the well-known cancer hallmarks. Recent evidence suggests that many metabolites serve as substrates or cofactors of chromatin-modifying enzymes as a consequence of the translocation or spatial regionalization of enzymes or metabolites. Various metabolic alterations and epigenetic modifications also reportedly drive immune escape or impede immunosurveillance within certain contexts, playing important roles in tumor progression. In this review, we focus on how metabolic reprogramming of tumor cells and immune cells reshapes epigenetic alterations, in particular the acetylation and methylation of histone proteins and DNA. We also discuss other eminent metabolic modifications such as, succinylation, hydroxybutyrylation, and lactylation, and update the current advances in metabolism- and epigenetic modification-based therapeutic prospects in cancer.
Collapse
Affiliation(s)
- Linchong Sun
- Guangzhou First People's Hospital, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China.
| | - Huafeng Zhang
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China. .,CAS Centre for Excellence in Cell and Molecular Biology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ping Gao
- Guangzhou First People's Hospital, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China. .,School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
17
|
Scagliotti V, Esse R, Willis TL, Howard M, Carrus I, Lodge E, Andoniadou CL, Charalambous M. Dynamic Expression of Imprinted Genes in the Developing and Postnatal Pituitary Gland. Genes (Basel) 2021; 12:genes12040509. [PMID: 33808370 PMCID: PMC8066104 DOI: 10.3390/genes12040509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
In mammals, imprinted genes regulate many critical endocrine processes such as growth, the onset of puberty and maternal reproductive behaviour. Human imprinting disorders (IDs) are caused by genetic and epigenetic mechanisms that alter the expression dosage of imprinted genes. Due to improvements in diagnosis, increasing numbers of patients with IDs are now identified and monitored across their lifetimes. Seminal work has revealed that IDs have a strong endocrine component, yet the contribution of imprinted gene products in the development and function of the hypothalamo-pituitary axis are not well defined. Postnatal endocrine processes are dependent upon the production of hormones from the pituitary gland. While the actions of a few imprinted genes in pituitary development and function have been described, to date there has been no attempt to link the expression of these genes as a class to the formation and function of this essential organ. This is important because IDs show considerable overlap, and imprinted genes are known to define a transcriptional network related to organ growth. This knowledge deficit is partly due to technical difficulties in obtaining useful transcriptomic data from the pituitary gland, namely, its small size during development and cellular complexity in maturity. Here we utilise high-sensitivity RNA sequencing at the embryonic stages, and single-cell RNA sequencing data to describe the imprinted transcriptome of the pituitary gland. In concert, we provide a comprehensive literature review of the current knowledge of the role of imprinted genes in pituitary hormonal pathways and how these relate to IDs. We present new data that implicate imprinted gene networks in the development of the gland and in the stem cell compartment. Furthermore, we suggest novel roles for individual imprinted genes in the aetiology of IDs. Finally, we describe the dynamic regulation of imprinted genes in the pituitary gland of the pregnant mother, with implications for the regulation of maternal metabolic adaptations to pregnancy.
Collapse
Affiliation(s)
- Valeria Scagliotti
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Ruben Esse
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Thea L. Willis
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
| | - Mark Howard
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London SE19RT, UK;
| | - Isabella Carrus
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Emily Lodge
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
| | - Cynthia L. Andoniadou
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Marika Charalambous
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
- Correspondence:
| |
Collapse
|
18
|
Patni AP, Harishankar MK, Joseph JP, Sreeshma B, Jayaraj R, Devi A. Comprehending the crosstalk between Notch, Wnt and Hedgehog signaling pathways in oral squamous cell carcinoma - clinical implications. Cell Oncol (Dordr) 2021; 44:473-494. [PMID: 33704672 DOI: 10.1007/s13402-021-00591-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a malignant oral cavity neoplasm that affects many people, especially in developing countries. Despite several advances that have been made in diagnosis and treatment, the morbidity and mortality rates due to OSCC remain high. Accumulating evidence indicates that aberrant activation of cellular signaling pathways, such as the Notch, Wnt and Hedgehog pathways, occurs during the development and metastasis of OSCC. In this review, we have articulated the roles of the Notch, Wnt and Hedgehog signaling pathways in OSCC and their crosstalk during tumor development and progression. We have also examined possible interactions and associations between these pathways and treatment regimens that could be employed to effectively tackle OSCC and/or prevent its recurrence. CONCLUSIONS Activation of the Notch signaling pathway upregulates the expression of several genes, including c-Myc, β-catenin, NF-κB and Shh. Associations between the Notch signaling pathway and other pathways have been shown to enhance OSCC tumor aggressiveness. Crosstalk between these pathways supports the maintenance of cancer stem cells (CSCs) and regulates OSCC cell motility. Thus, application of compounds that block these pathways may be a valid strategy to treat OSCC. Such compounds have already been employed in other types of cancer and could be repurposed for OSCC.
Collapse
Affiliation(s)
- Anjali P Patni
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - M K Harishankar
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Joel P Joseph
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Bhuvanadas Sreeshma
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Rama Jayaraj
- College of Human and Human Sciences, Charles Darwin University, Ellangowan Drive, Darwin, Northern Territory, 0909, Australia
| | - Arikketh Devi
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
19
|
Ozaki H, Suga H, Arima H. Hypothalamic-pituitary organoid generation through the recapitulation of organogenesis. Dev Growth Differ 2021; 63:154-165. [PMID: 33662152 DOI: 10.1111/dgd.12719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/26/2022]
Abstract
This paper overviews the development and differentiation of the hypothalamus and pituitary gland from embryonic stem (ES) and induced pluripotent stem (iPS) cells. It is important to replicate the developmental process in vivo to create specific cells/organoids from ES/iPS cells. We also introduce the latest findings and discuss future issues for clinical application. Neuroectodermal progenitors are induced from pluripotent stem cells by strictly removing exogenous patterning factors during the early differentiation period. The induced progenitors differentiate into rostral hypothalamic neurons, in particular magnocellular vasopressin+ neurons. In three-dimensional cultures, ES/iPS cells differentiate into hypothalamic neuroectoderm and nonneural head ectoderm adjacently. Rathke's pouch-like structures self-organize at the interface between the two layers and generate various endocrine cells, including corticotrophs and somatotrophs. Our next objective is to sophisticate our stepwise methodology to establish a novel transplantation treatment for hypopituitarism and apply it to developmental disease models.
Collapse
Affiliation(s)
- Hajime Ozaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
20
|
Matsumoto R, Takahashi Y. Human pituitary development and application of iPSCs for pituitary disease. Cell Mol Life Sci 2021; 78:2069-2079. [PMID: 33206204 PMCID: PMC11071979 DOI: 10.1007/s00018-020-03692-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
The pituitary plays a pivotal role in maintaining systemic homeostasis by secreting several hormones. During fetal development, the pituitary develops from the oral ectoderm in contact with the adjacent hypothalamus. This process is regulated by the fine-tuned expression of transcription and growth factors. Impairments of this process result in congenital pituitary hypoplasia leading to dysfunction of the pituitary. Although animal models such as knockout mice have helped to clarify these underlying mechanisms, the developmental processes of the human pituitary gland and the mechanisms of human pituitary disorders have not been fully understood. This is because, at least in part, of the lack of a human pituitary developmental model. Recently, methods for in vitro induction of the pituitary gland from human pluripotent stem cells were developed. These models can be utilized not only for regenerative medicine but also for human pituitary studies on developmental biology and for modeling of pituitary disorders, such as hypopituitarism and pituitary tumors. In this review, we provide an overview of recent progress in the applications of pluripotent stem cells for pituitary research and discuss further perspectives for pituitary studies.
Collapse
Affiliation(s)
- Ryusaku Matsumoto
- Department of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yutaka Takahashi
- Department of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan.
- Department of Diabetes and Endocrinology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan.
| |
Collapse
|
21
|
Matsuno K, Nagashima S, Shiiba I, Taniwaka K, Takeda K, Tokuyama T, Ito N, Matsushita N, Fukuda T, Ishido S, Inatome R, Yanagi S. MITOL dysfunction causes dwarfism with anterior pituitary hypoplasia. J Biochem 2021; 168:305-312. [PMID: 32302394 DOI: 10.1093/jb/mvaa050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/03/2020] [Indexed: 11/12/2022] Open
Abstract
In mitochondrial disorders, short stature and growth failure are common symptoms, but their underlying mechanism remains unknown. In this study, we examined the cause of growth failure of mice induced by nestin promoter-driven knockout of the mitochondrial ubiquitin ligase MITOL (MARCH5), a key regulator of mitochondrial function. MITOL-knockout mice have congenital hypoplasia of the anterior pituitary caused by decreased expression of pituitary transcript factor 1 (Pit1). Consistently, both mRNA levels of growth hormone (GH) and prolactin levels were markedly decreased in the anterior pituitary of mutant mice. Growth failure of mutant mice was partly rescued by hypodermic injection of recombinant GH. To clarify whether this abnormality was induced by the primary effect of MITOL knockdown in the anterior pituitary or a secondary effect of other lesions, we performed lentiviral-mediated knockdown of MITOL on cultured rat pituitary GH3 cells, which secrete GH. GH production was severely compromised in MITOL-knockdown GH3 cells. In conclusion, MITOL plays a critical role in the development of the anterior pituitary; therefore, mice with MITOL dysfunction exhibited pituitary dwarfism caused by anterior pituitary hypoplasia. Our findings suggest that mitochondrial dysfunction is commonly involved in the unknown pathogenesis of pituitary dwarfism.
Collapse
Affiliation(s)
- Keigo Matsuno
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392
| | - Shun Nagashima
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392
| | - Isshin Shiiba
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392
| | - Keito Taniwaka
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392
| | - Keisuke Takeda
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392
| | - Takeshi Tokuyama
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392
| | - Naoki Ito
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392
| | - Nobuko Matsushita
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392
| | - Toshifumi Fukuda
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya 663-8501, Japan
| | - Ryoko Inatome
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392
| |
Collapse
|
22
|
Bosch i Ara L, Katugampola H, Dattani MT. Congenital Hypopituitarism During the Neonatal Period: Epidemiology, Pathogenesis, Therapeutic Options, and Outcome. Front Pediatr 2021; 8:600962. [PMID: 33634051 PMCID: PMC7902025 DOI: 10.3389/fped.2020.600962] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Congenital hypopituitarism (CH) is characterized by a deficiency of one or more pituitary hormones. The pituitary gland is a central regulator of growth, metabolism, and reproduction. The anterior pituitary produces and secretes growth hormone (GH), adrenocorticotropic hormone, thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone, and prolactin. The posterior pituitary hormone secretes antidiuretic hormone and oxytocin. Epidemiology: The incidence is 1 in 4,000-1 in 10,000. The majority of CH cases are sporadic; however, a small number of familial cases have been identified. In the latter, a molecular basis has frequently been identified. Between 80-90% of CH cases remain unsolved in terms of molecular genetics. Pathogenesis: Several transcription factors and signaling molecules are involved in the development of the pituitary gland. Mutations in any of these genes may result in CH including HESX1, PROP1, POU1F1, LHX3, LHX4, SOX2, SOX3, OTX2, PAX6, FGFR1, GLI2, and FGF8. Over the last 5 years, several novel genes have been identified in association with CH, but it is likely that many genes remain to be identified, as the majority of patients with CH do not have an identified mutation. Clinical manifestations: Genotype-phenotype correlations are difficult to establish. There is a high phenotypic variability associated with different genetic mutations. The clinical spectrum includes severe midline developmental disorders, hypopituitarism (in isolation or combined with other congenital abnormalities), and isolated hormone deficiencies. Diagnosis and treatment: Key investigations include MRI and baseline and dynamic pituitary function tests. However, dynamic tests of GH secretion cannot be performed in the neonatal period, and a diagnosis of GH deficiency may be based on auxology, MRI findings, and low growth factor concentrations. Once a hormone deficit is confirmed, hormone replacement should be started. If onset is acute with hypoglycaemia, cortisol deficiency should be excluded, and if identified this should be rapidly treated, as should TSH deficiency. This review aims to give an overview of CH including management of this complex condition.
Collapse
Affiliation(s)
- Laura Bosch i Ara
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Harshini Katugampola
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Mehul T. Dattani
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
23
|
MicroRNA-194: a novel regulator of glucagon-like peptide-1 synthesis in intestinal L cells. Cell Death Dis 2021; 12:113. [PMID: 33479193 PMCID: PMC7820456 DOI: 10.1038/s41419-020-03366-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/18/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022]
Abstract
In the status of obesity, the glucagon-like peptide-1 (GLP-1) level usually declines and results in metabolic syndrome. This study aimed to investigate the intracellular mechanism of GLP-1 synthesis in L cells from the perspective of microRNA (miRNA). In the present study, we found that GLP-1 level was down-regulated in the plasma and ileum tissues of obese mice, while the ileac miR-194 expression was up-regulated. In vitro experiments indicated that miR-194 overexpression down-regulated GLP-1 level, mRNA levels of proglucagon gene (gcg) and prohormone convertase 1/3 gene (pcsk1), and the nuclear protein level of beta-catenin (β-catenin). Further investigation confirmed that β-catenin could promote gcg transcription through binding to transcription factor 7-like 2 (TCF7L2). miR-194 suppressed gcg mRNA level via negatively regulating TCF7L2 expression. What’s more, forkhead box a1 (Foxa1) could bind to the promoter of pcsk1 and enhanced its transcription. miR-194 suppressed pcsk1 transcription through targeting Foxa1. Besides, the interference of miR-194 reduced palmitate (PA)-induced cell apoptosis and the anti-apoptosis effect of miR-194 inhibitor was abolished by TCF7L2 knockdown. Finally, in HFD-induced obese mice, the silence of miR-194 significantly elevated GLP-1 level and improved the metabolic symptoms caused by GLP-1 deficiency. To sum up, our study found that miR-194 suppressed GLP-1 synthesis in L cells via inhibiting TCF7L2-mediated gcg transcription and Foxa1-mediated pcsk1 transcription. Meanwhile, miR-194 took part in the PA-induced apoptosis of L cells.
Collapse
|
24
|
Söderholm S, Cantù C. The WNT/β‐catenin dependent transcription: A tissue‐specific business. WIREs Mech Dis 2020; 13:e1511. [PMID: 33085215 PMCID: PMC9285942 DOI: 10.1002/wsbm.1511] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
β‐catenin‐mediated Wnt signaling is an ancient cell‐communication pathway in which β‐catenin drives the expression of certain genes as a consequence of the trigger given by extracellular WNT molecules. The events occurring from signal to transcription are evolutionarily conserved, and their final output orchestrates countless processes during embryonic development and tissue homeostasis. Importantly, a dysfunctional Wnt/β‐catenin pathway causes developmental malformations, and its aberrant activation is the root of several types of cancer. A rich literature describes the multitude of nuclear players that cooperate with β‐catenin to generate a transcriptional program. However, a unified theory of how β‐catenin drives target gene expression is still missing. We will discuss two types of β‐catenin interactors: transcription factors that allow β‐catenin to localize at target regions on the DNA, and transcriptional co‐factors that ultimately activate gene expression. In contrast to the presumed universality of β‐catenin's action, the ensemble of available evidence suggests a view in which β‐catenin drives a complex system of responses in different cells and tissues. A malleable armamentarium of players might interact with β‐catenin in order to activate the right “canonical” targets in each tissue, developmental stage, or disease context. Discovering the mechanism by which each tissue‐specific β‐catenin response is executed will be crucial to comprehend how a seemingly universal pathway fosters a wide spectrum of processes during development and homeostasis. Perhaps more importantly, this could ultimately inform us about which are the tumor‐specific components that need to be targeted to dampen the activity of oncogenic β‐catenin. This article is categorized under:Cancer > Molecular and Cellular Physiology Cancer > Genetics/Genomics/Epigenetics Cancer > Stem Cells and Development
Collapse
Affiliation(s)
- Simon Söderholm
- Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science Linköping University Linköping Sweden
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science Linköping University Linköping Sweden
| |
Collapse
|
25
|
Recent Progress in Stem Cell Research of the Pituitary Gland and Pituitary Adenoma. ENDOCRINES 2020. [DOI: 10.3390/endocrines1010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Regenerative medicine and anti-tumoral therapy have been developed through understanding tissue stem cells and cancer stem cells (CSCs). The concept of tissue stem cells has been applied to the pituitary gland (PG). Recently, PG stem cells (PGSCs) were successfully differentiated from human embryonic stem cells and induced pluripotent stem cells, showing an in vivo therapeutic effect in a hypopituitary model. Pituitary adenomas (PAs) are common intracranial neoplasms that are generally benign, but treatment resistance remains a major concern. The concept of CSCs applies to PA stem cells (PASCs). Genetic alterations in human PGSCs result in PASC development, leading to treatment-resistant PAs. To determine an efficient treatment against refractory PAs, it is of paramount importance to understand the relationship between PGSCs, PASCs and PAs. The goal of this review is to discuss several new findings about PGSCs and the roles of PASCs in PA tumorigenesis.
Collapse
|
26
|
Cangiano B, Swee DS, Quinton R, Bonomi M. Genetics of congenital hypogonadotropic hypogonadism: peculiarities and phenotype of an oligogenic disease. Hum Genet 2020; 140:77-111. [PMID: 32200437 DOI: 10.1007/s00439-020-02147-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/04/2020] [Indexed: 12/30/2022]
Abstract
A genetic basis of congenital isolated hypogonadotropic hypogonadism (CHH) can be defined in almost 50% of cases, albeit not necessarily the complete genetic basis. Next-generation sequencing (NGS) techniques have led to the discovery of a great number of loci, each of which has illuminated our understanding of human gonadotropin-releasing hormone (GnRH) neurons, either in respect of their embryonic development or their neuroendocrine regulation as the "pilot light" of human reproduction. However, because each new gene linked to CHH only seems to underpin another small percentage of total patient cases, we are still far from achieving a comprehensive understanding of the genetic basis of CHH. Patients have generally not benefited from advances in genetics in respect of novel therapies. In most cases, even genetic counselling is limited by issues of apparent variability in expressivity and penetrance that are likely underpinned by oligogenicity in respect of known and unknown genes. Robust genotype-phenotype relationships can generally only be established for individuals who are homozygous, hemizygous or compound heterozygotes for the same gene of variant alleles that are predicted to be deleterious. While certain genes are purely associated with normosmic CHH (nCHH) some purely with the anosmic form (Kallmann syndrome-KS), other genes can be associated with both nCHH and KS-sometimes even within the same kindred. Even though the anticipated genetic overlap between CHH and constitutional delay in growth and puberty (CDGP) has not materialised, previously unanticipated genetic relationships have emerged, comprising conditions of combined (or multiple) pituitary hormone deficiency (CPHD), hypothalamic amenorrhea (HA) and CHARGE syndrome. In this review, we report the current evidence in relation to phenotype and genetic peculiarities regarding 60 genes whose loss-of-function variants can disrupt the central regulation of reproduction at many levels: impairing GnRH neurons migration, differentiation or activation; disrupting neuroendocrine control of GnRH secretion; preventing GnRH neuron migration or function and/or gonadotropin secretion and action.
Collapse
Affiliation(s)
- Biagio Cangiano
- Department of Clinical Sciences and Community Health, University of Milan, 20100, Milan, Italy.,Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
| | - Du Soon Swee
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Richard Quinton
- Endocrine Unit, Royal Victoria Infirmary, Department of Endocrinology, Diabetes and Metabolism, Newcastle-Upon-Tyne Hospitals, Newcastle-Upon-Tyne, NE1 4LP, UK. .,Translational and Clinical Research Institute, University of Newcastle-Upon-Tyne, Newcastle-Upon-Tyne, UK.
| | - Marco Bonomi
- Department of Clinical Sciences and Community Health, University of Milan, 20100, Milan, Italy. .,Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy.
| |
Collapse
|
27
|
Abstract
The development of the anterior pituitary gland occurs in distinct sequential developmental steps, leading to the formation of a complex organ containing five different cell types secreting six different hormones. During this process, the temporal and spatial expression of a cascade of signaling molecules and transcription factors plays a crucial role in organ commitment, cell proliferation, patterning, and terminal differentiation. The morphogenesis of the gland and the emergence of distinct cell types from a common primordium are governed by complex regulatory networks involving transcription factors and signaling molecules that may be either intrinsic to the developing pituitary or extrinsic, originating from the ventral diencephalon, the oral ectoderm, and the surrounding mesenchyme. Endocrine cells of the pituitary gland are organized into structural and functional networks that contribute to the coordinated response of endocrine cells to stimuli; these cellular networks are formed during embryonic development and are maintained or may be modified in adulthood, contributing to the plasticity of the gland. Abnormalities in any of the steps of pituitary development may lead to congenital hypopituitarism that includes a spectrum of disorders from isolated to combined hormone deficiencies including syndromic disorders such as septo-optic dysplasia. Over the past decade, the acceleration of next-generation sequencing has allowed for rapid analysis of the patient genome to identify novel mutations and novel candidate genes associated with hypothalmo-pituitary development. Subsequent functional analysis using patient fibroblast cells, and the generation of stem cells derived from patient cells, is fast replacing the need for animal models while providing a more physiologically relevant characterization of novel mutations. Furthermore, CRISPR-Cas9 as the method for gene editing is replacing previous laborious and time-consuming gene editing methods that were commonly used, thus yielding knockout cell lines in a fraction of the time. © 2020 American Physiological Society. Compr Physiol 10:389-413, 2020.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Louise C Gregory
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Mehul T Dattani
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| |
Collapse
|
28
|
Cha B, Geng X, Mahamud MR, Zhang JY, Chen L, Kim W, Jho EH, Kim Y, Choi D, Dixon JB, Chen H, Hong YK, Olson L, Kim TH, Merrill BJ, Davis MJ, Srinivasan RS. Complementary Wnt Sources Regulate Lymphatic Vascular Development via PROX1-Dependent Wnt/β-Catenin Signaling. Cell Rep 2019; 25:571-584.e5. [PMID: 30332639 PMCID: PMC6264919 DOI: 10.1016/j.celrep.2018.09.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/16/2018] [Accepted: 09/14/2018] [Indexed: 11/24/2022] Open
Abstract
Wnt/β-catenin signaling is necessary for lymphatic vascular development. Oscillatory shear stress (OSS) enhances Wnt/β-catenin signaling in cultured lymphatic endothelial cells (LECs) to induce expression of the lymphedema-associated transcription factors GATA2 and FOXC2. However, the mechanisms by which OSS regulates Wnt/β-catenin signaling and GATA2 and FOXC2 expression are unknown. We show that OSS activates autocrine Wnt/β-catenin signaling in LECs in vitro. Tissue-specific deletion of Wntless, which is required for the secretion of Wnt ligands, reveals that LECs and vascular smooth muscle cells are complementary sources of Wnt ligands that regulate lymphatic vascular development in vivo. Further, the LEC master transcription factor PROX1 forms a complex with β-catenin and the TCF/LEF transcription factor TCF7L1 to enhance Wnt/β-catenin signaling and promote FOXC2 and GATA2 expression in LECs. Thus, our work defines Wnt sources, reveals that PROX1 directs cell fate by acting as a Wnt signaling component, and dissects the mechanisms of PROX1 and Wnt synergy.
Collapse
Affiliation(s)
- Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jenny Y Zhang
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, USA
| | - Lijuan Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Wantae Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Deajeon, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Yeunhee Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, USA
| | - Dongwon Choi
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - J Brandon Dixon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Young-Kwon Hong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lorin Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tae Hoon Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, USA
| | - Bradley J Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, USA
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
29
|
Vineeth MR, Gupta ID, Verma A, Kumari S. Identification of SNPs in coding sequence of PROP1 gene and their association with bull fertility in Sahiwal cattle. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1629092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- M. R. Vineeth
- Molecular Genetics Lab, Animal Genetics and Breeding Division, ICAR-NDRI, Karnal, India
| | - I. D. Gupta
- Molecular Genetics Lab, Animal Genetics and Breeding Division, ICAR-NDRI, Karnal, India
| | - Archana Verma
- Molecular Genetics Lab, Animal Genetics and Breeding Division, ICAR-NDRI, Karnal, India
| | - Santosh Kumari
- Molecular Genetics Lab, Animal Genetics and Breeding Division, ICAR-NDRI, Karnal, India
| |
Collapse
|
30
|
Mariniello K, Ruiz-Babot G, McGaugh EC, Nicholson JG, Gualtieri A, Gaston-Massuet C, Nostro MC, Guasti L. Stem Cells, Self-Renewal, and Lineage Commitment in the Endocrine System. Front Endocrinol (Lausanne) 2019; 10:772. [PMID: 31781041 PMCID: PMC6856655 DOI: 10.3389/fendo.2019.00772] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
The endocrine system coordinates a wide array of body functions mainly through secretion of hormones and their actions on target tissues. Over the last decades, a collective effort between developmental biologists, geneticists, and stem cell biologists has generated a wealth of knowledge related to the contribution of stem/progenitor cells to both organogenesis and self-renewal of endocrine organs. This review provides an up-to-date and comprehensive overview of the role of tissue stem cells in the development and self-renewal of endocrine organs. Pathways governing crucial steps in both development and stemness maintenance, and that are known to be frequently altered in a wide array of endocrine disorders, including cancer, are also described. Crucially, this plethora of information is being channeled into the development of potential new cell-based treatment modalities for endocrine-related illnesses, some of which have made it through clinical trials.
Collapse
Affiliation(s)
- Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Emily C. McGaugh
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - James G. Nicholson
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Angelica Gualtieri
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
31
|
Huo R, Hu C, Zhao L, Sun L, Wang N, Lu Y, Ye B, Deb A, Li F, Xu H. Enhancement of β-catenin/T-cell factor 4 signaling causes susceptibility to cardiac arrhythmia by suppressing Na V1.5 expression in mice. Heart Rhythm 2019; 16:1720-1728. [PMID: 31125668 PMCID: PMC7027965 DOI: 10.1016/j.hrthm.2019.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND β-Catenin/T-cell factor 4 (TCF4) signaling is enhanced in ischemic heart disease in which ventricular tachycardia (VT)/ventricular fibrillation occurs frequently. How this signaling links to arrhythmogenesis remains unclear. OBJECTIVE The purpose of this study was to investigate the role of β-catenin gain of function in the development of arrhythmia. METHODS A mouse model with a conditional deletion of CTNNB1 exon 3 resulting in cardiac exon 3-deleted and stabilized β-catenin (β-catΔE3) was used to determine the role of β-catenin gain of function in the regulation of cardiac rhythm. RESULTS Western blotting showed β-catΔE3 expression and significantly decreased NaV1.5 protein in CTNNB1 E3-/- and CTNNB1 E3+/- mouse hearts. Real-time qRT-PCR revealed significantly decreased NaV1.5 messenger RNA with no changes in Na+ channel β1 to β4 expression in these hearts. Immunofluorescence revealed accumulation of β-catΔE3 in the nuclei of CTNNB1 E3-/- cardiomyocytes. Immunohistochemistry demonstrated nuclear localization of β-catenin in cardiomyocytes, which was associated with significantly decreased NaV1.5 messenger RNA in human ischemic hearts. Immunoprecipitation revealed that β-catΔE3 interacted with TCF4 in CTNNB1 E3-/- cardiomyocytes. Whole-cell recordings showed that Na+ currents and depolarization and amplitude of action potentials were significantly decreased in CTNNB1 E3-/- ventricular myocytes. Electrocardiographic recordings demonstrated that in mice with cardiac CTNNB1 E3-/-, the QRS complex was prolonged and VT was induced by the Na+ channel blocker flecainide. However, cardiac function, as determined by echocardiography and heart/body weight ratios, remained unchanged. CONCLUSION Enhancement of β-catenin/TCF4 signaling led to the prolongation of the QRS complex and increase in susceptibility to VT by suppression of NaV1.5 expression and Na+ channel activity in mice.
Collapse
Affiliation(s)
- Rong Huo
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Chaowei Hu
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Limei Zhao
- Department of Pathology, Center for Cardiovascular Biology and Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Lihua Sun
- Department of Pathology, Center for Cardiovascular Biology and Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Ning Wang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Yan Lu
- Department of Pathology, Center for Cardiovascular Biology and Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington; Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Bo Ye
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Arjun Deb
- Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Faqian Li
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Haodong Xu
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California; Department of Pathology, Center for Cardiovascular Biology and Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
32
|
Fletcher PA, Smiljanic K, Maso Prévide R, Iben JR, Li T, Rokic MB, Sherman A, Coon SL, Stojilkovic SS. Cell Type- and Sex-Dependent Transcriptome Profiles of Rat Anterior Pituitary Cells. Front Endocrinol (Lausanne) 2019; 10:623. [PMID: 31620083 PMCID: PMC6760010 DOI: 10.3389/fendo.2019.00623] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/28/2019] [Indexed: 01/14/2023] Open
Abstract
Understanding the physiology and pathology of an organ composed of a variety of cell populations depends critically on genome-wide information on each cell type. Here, we report single-cell transcriptome profiling of over 6,800 freshly dispersed anterior pituitary cells from postpubertal male and female rats. Six pituitary-specific cell types were identified based on known marker genes and characterized: folliculostellate cells and hormone-producing corticotrophs, gonadotrophs, thyrotrophs, somatotrophs, and lactotrophs. Also identified were endothelial and blood cells from the pituitary capillary network. The expression of numerous developmental and neuroendocrine marker genes in both folliculostellate and hormone-producing cells supports that they have a common origin. For several genes, the validity of transcriptome analysis was confirmed by qRT-PCR and single cell immunocytochemistry. Folliculostellate cells exhibit impressive transcriptome diversity, indicating their major roles in production of endogenous ligands and detoxification enzymes, and organization of extracellular matrix. Transcriptome profiles of hormone-producing cells also indicate contributions toward those functions, while also clearly demonstrating their endocrine function. This survey highlights many novel genetic markers contributing to pituitary cell type identity, sexual dimorphism, and function, and points to relationships between hormone-producing and folliculostellate cells.
Collapse
Affiliation(s)
- Patrick A. Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Kosara Smiljanic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Rafael Maso Prévide
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - James R. Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tianwei Li
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Milos B. Rokic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Steven L. Coon
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
33
|
Edwards W, Raetzman LT. Complex integration of intrinsic and peripheral signaling is required for pituitary gland development. Biol Reprod 2019; 99:504-513. [PMID: 29757344 DOI: 10.1093/biolre/ioy081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022] Open
Abstract
The coordination of pituitary development is complicated and requires input from multiple cellular processes. Recent research has provided insight into key molecular determinants that govern cell fate specification in the pituitary. Moreover, increasing research aimed to identify, characterize, and functionally describe the presumptive pituitary stem cell population has allowed for a better understanding of the processes that govern endocrine cell differentiation in the developing pituitary. The culmination of this research has led to the ability of investigators to recapitulate some of embryonic pituitary development in vitro, the first steps to developing novel regenerative therapies for pituitary diseases. In this current review, we cover the major players in pituitary stem/progenitor cell function and maintenance, and the key molecular determinants of endocrine cell specification. In addition, we discuss the contribution of peripheral hormonal regulation of pituitary gland development, an understudied area of research.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
34
|
Almars A, Chondrou PS, Onyido EK, Almozyan S, Seedhouse C, Babaei-Jadidi R, Nateri AS. Increased FLYWCH1 Expression is Negatively Correlated with Wnt/β-catenin Target Gene Expression in Acute Myeloid Leukemia Cells. Int J Mol Sci 2019; 20:ijms20112739. [PMID: 31167387 PMCID: PMC6600431 DOI: 10.3390/ijms20112739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous clonal malignancy of hematopoietic progenitor cells. The Wnt pathway and its downstream targets are tightly regulated by β-catenin. We recently discovered a new protein, FLYWCH1, which can directly bind nuclear β-catenin. Herein, we studied the FLYWCH1/β-catenin pathway in AML cells using qRT-PCR, Western blot, and immunofluorescence assays. In addition, the stemness activity and cell cycle were analysed by the colony-forming unit (CFU) using methylcellulose-based and Propidium iodide/flow cytometry assays. We found that FLYWCH1 mRNA and protein were differentially expressed in the AML cell lines. C-Myc, cyclin D1, and c-Jun expression decreased in the presence of higher FLYWCH1 expression, and vice versa. There appeared to be the loss of FLYWCH1 expression in dividing cells. The sub-G0 phase was prolonged and shortened in the low and high FLYWCH1 expression cell lines, respectively. The G0/G1 arrest correlated with FLYWCH1-expression, and these cell lines also formed colonies, whereas the low FLYWCH1 expression cell lines could not. Thus, FLYWCH1 functions as a negative regulator of the Wnt/β-catenin pathway in AML.
Collapse
Affiliation(s)
- Amany Almars
- Cancer Genetics & Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Panagiota S Chondrou
- Cancer Genetics & Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Emenike K Onyido
- Cancer Genetics & Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Sheema Almozyan
- Cancer Genetics & Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Claire Seedhouse
- Haematology, Nottingham City Hospital, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK.
| | - Roya Babaei-Jadidi
- Cancer Genetics & Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
- Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Abdolrahman S Nateri
- Cancer Genetics & Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
35
|
Correa FA, Nakaguma M, Madeira JLO, Nishi MY, Abrão MG, Jorge AAL, Carvalho LR, Arnhold IJP, Mendonça BB. Combined pituitary hormone deficiency caused by PROP1 mutations: update 20 years post-discovery. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:167-174. [PMID: 31090814 PMCID: PMC10522137 DOI: 10.20945/2359-3997000000139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 03/12/2019] [Indexed: 11/23/2022]
Abstract
The first description of patients with combined pituitary hormone deficiencies (CPHD) caused by PROP1 mutations was made 20 years ago. Here we updated the clinical and genetic characteristics of patients with PROP1 mutations and summarized the phenotypes of 14 patients with 7 different pathogenic PROP1 mutations followed at the Hospital das Clínicas of the University of Sao Paulo. In addition to deficiencies in GH, TSH, PRL and gonadotropins some patients develop late ACTH deficiency. Therefore, patients with PROP1 mutations require permanent surveillance. On magnetic resonance imaging, the pituitary stalk is normal, and the posterior lobe is in the normal position. The anterior lobe in patients with PROP1 mutations is usually hypoplastic but may be normal or even enlarged. Bi-allelic PROP1 mutations are currently the most frequently recognized genetic cause of CPHD worldwide. PROP1 defects occur more frequently among offspring of consanguineous parents and familial cases, but they also occur in sporadic cases, especially in countries in which the prevalence of PROP1 mutations is relatively high. We classified all reported PROP1 variants described to date according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) guidelines: 29 were pathogenic, 2 were likely pathogenic, and 2 were of unknown significance. An expansion of the phenotype of patients with PROP1 mutations was observed since the first description 20 years ago: variable anterior pituitary size, different pathogenic mutations, and late development of ACTH deficiency. PROP1 mutations are the most common cause of autosomal recessive CPHD with a topic posterior pituitary lobe. Arch Endocrinol Metab. 2019;63(2):167-74.
Collapse
Affiliation(s)
- Fernanda A Correa
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marilena Nakaguma
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - João L O Madeira
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Mirian Y Nishi
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Milena G Abrão
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Luciani R Carvalho
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ivo J P Arnhold
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Berenice B Mendonça
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
36
|
Chenlo M, Rodriguez-Gomez IA, Serramito R, Garcia-Rendueles AR, Villar-Taibo R, Fernandez-Rodriguez E, Perez-Romero S, Suarez-Fariña M, Garcia-Allut A, Cabezas-Agricola JM, Rodriguez-Garcia J, Lear PV, Alvarez-San Martin RM, Alvarez-Escola C, Bernabeu I, Alvarez CV. Unmasking a new prognostic marker and therapeutic target from the GDNF-RET/PIT1/p14ARF/p53 pathway in acromegaly. EBioMedicine 2019; 43:537-552. [PMID: 30975543 PMCID: PMC6562173 DOI: 10.1016/j.ebiom.2019.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/29/2022] Open
Abstract
Background Acromegaly is produced by excess growth hormone secreted by a pituitary adenoma of somatotroph cells (ACRO). First-line therapy, surgery and adjuvant therapy with somatostatin analogs, fails in 25% of patients. There is no predictive factor of resistance to therapy. New therapies are investigated using few dispersed tumor cells in acute primary cultures in standard conditions where the cells do not grow, or using rat pituitary cell lines that do not maintain the full somatotroph phenotype. The RET/PIT1/p14ARF/p53 pathway regulates apoptosis in normal pituitary somatotrophs whereas the RET/GDNF pathway regulates survival, controlling PIT1 levels and blocking p14ARF (ARF) and p53 expression. Methods We investigated these two RET pathways in a prospective series of 32 ACRO and 63 non-functioning pituitary adenomas (NFPA), studying quantitative RNA and protein gene expression for molecular-clinical correlations and how the RET pathway might be implicated in therapeutic success. Clinical data was collected during post-surgical follow-up. We also established new'humanized’ pituitary cultures, allowing 20 repeated passages and maintaining the pituitary secretory phenotype, and tested five multikinase inhibitors (TKI: Vandetanib, Lenvatinib, Sunitinib, Cabozantinib and Sorafenib) potentially able to act on the GDNF-induced RET dimerization/survival pathway. Antibody arrays investigated intracellular molecular pathways. Findings In ACRO, there was specific enrichment of all genes in both RET pathways, especially GDNF. ARF and GFRA4 gene expression were found to be opposing predictors of response to first-line therapy. ARF cut-off levels, calculated categorizing by GNAS mutation, were predictive of good response (above) or resistance (below) to therapy months later. Sorafenib, through AMPK, blocked the GDNF/AKT survival action without altering the RET apoptotic pathway. Interpretation Tumor ARF mRNA expression measured at the time of the surgery is a prognosis factor in acromegaly. The RET inhibitor, Sorafenib, is proposed as a potential treatment for resistant ACRO. Fund This project was supported by national grants from Agencia Estatal de Investigación (AEI) and Instituto Investigación Carlos III, with participation of European FEDER funds, to IB (PI150056) and CVA (BFU2016-76973-R). It was also supported initially by a grant from the Investigator Initiated Research (IIR) Program (WI177773) and by a non-restricted Research Grant from Pfizer Foundation to IB. Some of the pituitary acromegaly samples were collected in the framework of the Spanish National Registry of Acromegaly (REMAH), partially supported by an unrestricted grant from Novartis to the Spanish Endocrine Association (SEEN). CVA is also supported from a grant of Medical Research Council UK MR/M018539/1.
Collapse
Affiliation(s)
- Miguel Chenlo
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Iria A Rodriguez-Gomez
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, Santiago de Compostela, Spain; Servicio de Endocrinología y Nutrición, Hospital HM Modelo, A Coruña, Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Ramon Serramito
- Servicio de Neurocirugía, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Angela R Garcia-Rendueles
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Rocío Villar-Taibo
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Eva Fernandez-Rodriguez
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario de Ourense, Spain
| | - Sihara Perez-Romero
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Maria Suarez-Fariña
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Alfredo Garcia-Allut
- Servicio de Neurocirugía, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Jose M Cabezas-Agricola
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Javier Rodriguez-Garcia
- Servicio de Análisis Clínicos, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Pamela V Lear
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, United Kingdom
| | | | | | - Ignacio Bernabeu
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain.
| | - Clara V Alvarez
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
37
|
Yu T, Chang G, Cheng Q, Yao R, Li J, Xu Y, Li G, Ding Y, Qing Y, Li N, Shen Y, Wang X, Wang J. Increased transactivation and impaired repression of β-catenin-mediated transcription associated with a novel SOX3 missense mutation in an X-linked hypopituitarism pedigree with modest growth failure. Mol Cell Endocrinol 2018; 478:133-140. [PMID: 30125608 DOI: 10.1016/j.mce.2018.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 01/01/2023]
Abstract
SOX3, a transcription factor of the SRY-related high mobility group box family, has been implicated in the etiology of X-linked hypopituitarism. Here, we report a Chinese pedigree of X-linked hypopituitarism with variable phenotypes. Despite the complete growth hormone deficiency, the growth failure of the patients was relatively modest. A rare point variant of SOX3 (c.424C > A; p. P142T) was identified in the pedigree via target panel sequencing. An in vitro study showed that both the expression and nuclear targeting of SOX3 remained unaffected by the variant. However, increased transcriptional activation and impaired repression of β-catenin-mediated transcription were noticed as a result of the SOX3 variant. This is the first study to report that the rare SOX3 missense variant associated with hypopituitarism possibly due to increased activation of SOX3 target genes and disregulation of β-catenin target genes. In addition, we have expanded the phenotypic spectrum associated with SOX3 mutations.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoying Chang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Cheng
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juan Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yufei Xu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoqiang Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Ding
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanrong Qing
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiping Shen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
38
|
Allensworth-James ML, Odle A, Haney A, MacNicol M, MacNicol A, Childs G. Sex-specific changes in postnatal GH and PRL secretion in somatotrope LEPR-null mice. J Endocrinol 2018; 238:221-230. [PMID: 29929987 PMCID: PMC6354591 DOI: 10.1530/joe-18-0238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 12/24/2022]
Abstract
The developing pituitary is a rapidly changing environment that is constantly meeting the physiological demands of the growing organism. During early postnatal development, the anterior pituitary is refining patterns of anterior hormone secretion in response to numerous genetic factors. Our laboratory previously developed a somatotrope leptin receptor (LEPR) deletion mouse model that had decreased lean body mass, disrupted metabolism, decreased GH stores and was GH deficient as an adult. To understand how deletion of LEPR in somatotropes altered GH, we turned our attention to postnatal development. The current study examines GH, PRL, TSH, ACTH, LH and FSH secretion during postnatal days 4, 5, 8, 10 and 15 and compares age and sex differences. The LEPR mutants have dysregulation of GH (P < 0.03) and a reduced developmental prolactin peak in males (P < 0.04) and females (P < 0.002). There were no differences in weight between groups, and the postnatal leptin surge appeared to be normal. Percentages of immunolabeled GH cells were reduced in mutants compared with controls in all age groups by 35-61% in males and 41-44% in females. In addition, we measured pituitary expression of pituitary transcription factors, POU1F1 and PROP1. POU1F1 was reduced in mutant females at PND 10 (P < 0.009) and PND 15 (P < 0.02) but increased in males at PND 10 (P < 0.01). PROP1 was unchanged in female mutants but showed developmental increases at PND 5 (P < 0.02) and PND 15 (P < 0.01). These studies show that the dysfunction caused by LEPR deletion in somatotropes begins as early as neonatal development and involves developing GH and prolactin cells (somatolactotropes).
Collapse
Affiliation(s)
- Melody L Allensworth-James
- Department of Neurobiology and Developmental SciencesCollege of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Angela Odle
- Department of Neurobiology and Developmental SciencesCollege of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Anessa Haney
- Department of Neurobiology and Developmental SciencesCollege of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Melanie MacNicol
- Department of Neurobiology and Developmental SciencesCollege of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Angus MacNicol
- Department of Neurobiology and Developmental SciencesCollege of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Gwen Childs
- Department of Neurobiology and Developmental SciencesCollege of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
39
|
Youngblood JL, Coleman TF, Davis SW. Regulation of Pituitary Progenitor Differentiation by β-Catenin. Endocrinology 2018; 159:3287-3305. [PMID: 30085028 DOI: 10.1210/en.2018-00563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
The pituitary gland is a critical organ that is necessary for many physiological processes, including growth, reproduction, and stress response. The secretion of pituitary hormones from specific cell types regulates these essential processes. Pituitary hormone cell types arise from a common pool of pituitary progenitors, and mutations that disrupt the formation and differentiation of pituitary progenitors result in hypopituitarism. Canonical WNT signaling through CTNNB1 (β-catenin) is known to regulate the formation of the POU1F1 lineage of pituitary cell types. When β-catenin is deleted during the initial formation of the pituitary progenitors, Pou1f1 is not transcribed, which leads to the loss of the POU1F1 lineage. However, when β-catenin is deleted after lineage specification, there is no observable effect. Similarly, the generation of a β-catenin gain-of-function allele in early pituitary progenitors or stem cells results in the formation of craniopharyngiomas, whereas stimulating β-catenin in differentiated cell types has no effect. PROP1 is a pituitary-specific transcription factor, and the peak of PROP1 expression coincides with a critical time point in pituitary organogenesis-that is, after pituitary progenitor formation but before lineage specification. We used a Prop1-cre to conduct both loss- and gain-of-function studies on β-catenin during this critical time point. Our results demonstrate that pituitary progenitors remain sensitive to both loss and gain of β-catenin at this time point, and that either manipulation results in hypopituitarism.
Collapse
Affiliation(s)
- Julie L Youngblood
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Tanner F Coleman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
40
|
Muhammad BA, Almozyan S, Babaei-Jadidi R, Onyido EK, Saadeddin A, Kashfi SH, Spencer-Dene B, Ilyas M, Lourdusamy A, Behrens A, Nateri AS. FLYWCH1, a Novel Suppressor of Nuclear β-Catenin, Regulates Migration and Morphology in Colorectal Cancer. Mol Cancer Res 2018; 16:1977-1990. [PMID: 30097457 DOI: 10.1158/1541-7786.mcr-18-0262] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/29/2018] [Accepted: 08/01/2018] [Indexed: 12/24/2022]
Abstract
Wnt/β-catenin signaling plays a critical role during development of both normal and malignant colorectal cancer tissues. Phosphorylation of β-catenin protein alters its trafficking and function. Such conventional allosteric regulation usually involves a highly specialized set of molecular interactions, which may specifically turn on a particular cell phenotype. This study identifies a novel transcription modulator with an FLYWCH/Zn-finger DNA-binding domain, called "FLYWCH1." Using a modified yeast-2-hybrid based Ras-Recruitment system, it is demonstrated that FLYWCH1 directly binds to unphosphorylated (nuclear) β-catenin efficiently suppressing the transcriptional activity of Wnt/β-catenin signaling that cannot be rescued by TCF4. FLYWCH1 rearranges the transcriptional activity of β-catenin/TCF4 to selectively block the expression of specific downstream genes associated with colorectal cancer cell migration and morphology, including ZEB1, EPHA4, and E-cadherin. Accordingly, overexpression of FLYWCH1 reduces cell motility and increases cell attachment. The expression of FLYWCH1 negatively correlates with the expression level of ZEB1 and EPHA4 in normal versus primary and metastatic colorectal cancer tissues in patients. Thus, FLYWCH1 antagonizes β-catenin/TCF4 signaling during cell polarity/migration in colorectal cancer. IMPLICATIONS: This study uncovers a new molecular mechanism by which FLYWCH1 with a possible tumor suppressive role represses β-catenin-induced ZEB1 and increases cadherin-mediated cell attachment preventing colorectal cancer metastasis.
Collapse
Affiliation(s)
- Belal A Muhammad
- Cancer Genetics and Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
- Division of Experimental Haematology and Cancer Biology, Cincinnati Children's Hospital Medical Centre, Cincinnati, Ohio
| | - Sheema Almozyan
- Cancer Genetics and Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Roya Babaei-Jadidi
- Cancer Genetics and Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Emenike K Onyido
- Cancer Genetics and Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Anas Saadeddin
- Cancer Genetics and Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Cantos, Madrid, Spain
| | - Seyed Hossein Kashfi
- Cancer Genetics and Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Bradley Spencer-Dene
- Experimental Histopathology Laboratory, the Francis Crick Institute, London, United Kingdom
- Advanced Cell Diagnostics, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Mohammad Ilyas
- Molecular Pathology Unit, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Anbarasu Lourdusamy
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Axel Behrens
- Adult Stem Cell Laboratory, the Francis Crick Institute, London, United Kingdom
| | - Abdolrahman S Nateri
- Cancer Genetics and Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
41
|
Suga H. Application of pluripotent stem cells for treatment of human neuroendocrine disorders. Cell Tissue Res 2018; 375:267-278. [PMID: 30078102 DOI: 10.1007/s00441-018-2880-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/28/2018] [Indexed: 10/28/2022]
Abstract
The neuroendocrine system is composed of many types of functional cells. Matured cells are generally irreversible to progenitor cells and it is difficult to obtain enough from our body. Therefore, studying specific subtypes of human neuroendocrine cells in vitro has not been feasible. One of the solutions is pluripotent stem cells, such as embryonic stem (ES) cells and induced pluripotent stem (iPS) cells. These are unlimited sources and, in theory, are able to give rise to all cell types of our body. Therefore, we can use them for regenerative medicine, developmental basic research and disease modeling. Based on this idea, differentiation methods have been studied for years. Recent studies have successfully induced hypothalamic-like progenitors from mouse and human ES/iPS cells. The induced hypothalamic-like progenitors generated hypothalamic neurons, for instance, vasopressin neurons. Induction to adenohypophysis was also reported in the manner of self-formation by three-dimensional floating cultures. Rathke's pouch-like structures, i.e., pituitary anlage, were self-organized in accordance with pituitary development in embryo. Pituitary hormone-producing cells were subsequently differentiated. The induced corticotrophs secreted adrenocorticotropic hormone in response to corticotropin-releasing hormone. When engrafted in vivo, these cells rescued systemic glucocorticoid levels in hypopituitary mice. These culture methods were characterized by replication of stepwise embryonic differentiation. It is based on the idea of mimicking the molecular environment of embryogenesis. Thanks to these improvements, these days, we can generate hormone-secreting neuroendocrine cells from pluripotent stem cells. The next problems that need to be solved are improving differentiation efficiency even further and structuring networks.
Collapse
Affiliation(s)
- Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
42
|
Caffarini M, Orciani M, Trementino L, Di Primio R, Arnaldi G. Pituitary adenomas, stem cells, and cancer stem cells: what's new? J Endocrinol Invest 2018; 41:745-753. [PMID: 29222642 DOI: 10.1007/s40618-017-0803-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE To clarify the existence of pituitary stem cells (SCs) both in the embryonic and the postnatal gland and the role for SCs in pituitary adenomas. METHODS This work, which does not address the pathogenesis of pituitary adenomas, reviews the latest research findings and discoveries on SCs in pituitary and cancer SCs (CSCs) in pituitary adenomas and discusses the involvement of the EMT. RESULTS Several groups using different approaches and techniques have demonstrated the existence of SCs and CSCs and as they are major players in pituitary adenoma onset. CONCLUSIONS As in other benign and malignant tumors, the hypothesis that CSCs play a pivotal role in pituitary adenoma onset has been confirmed as well as the existence of a link between the epithelial-to-mesenchymal transition (EMT) process and CSC formation in epithelial tumors.
Collapse
Affiliation(s)
- M Caffarini
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, via Tronto 10/A, 60126, Ancona, Italy
| | - M Orciani
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, via Tronto 10/A, 60126, Ancona, Italy
| | - L Trementino
- Department of Clinical and Molecular Sciences-Endocrinology, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
| | - R Di Primio
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, via Tronto 10/A, 60126, Ancona, Italy.
| | - G Arnaldi
- Department of Clinical and Molecular Sciences-Endocrinology, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
| |
Collapse
|
43
|
Ellsworth BS, Stallings CE. Molecular Mechanisms Governing Embryonic Differentiation of Pituitary Somatotropes. Trends Endocrinol Metab 2018; 29:510-523. [PMID: 29759686 DOI: 10.1016/j.tem.2018.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023]
Abstract
Pituitary somatotropes secrete growth hormone (GH), which is essential for normal growth and metabolism. Somatotrope defects result in GH deficiency (GHD), leading to short stature in childhood and increased cardiovascular morbidity and mortality in adulthood. Current hormone replacement therapies fail to recapitulate normal pulsatile GH secretion. Stem cell therapies could overcome this problem but are dependent on a thorough understanding of somatotrope differentiation. Although several transcription factors, signaling pathways, and hormones that regulate this process have been identified, the mechanisms of action are not well understood. The purpose of this review is to highlight the known players in somatotrope differentiation while emphasizing the need to better understand these pathways to serve patients with GHD.
Collapse
Affiliation(s)
- Buffy S Ellsworth
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901-6523, USA.
| | - Caitlin E Stallings
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901-6523, USA
| |
Collapse
|
44
|
Abstract
The pathogenesis of non functioning pituitary adenomas (NFPA) is a complex process involving several factors, from molecular to genetic and epigenetic modifications, where tumor suppressor genes, oncogenes, cell cycle derangements have been demonstrated to play an important role. MicroRNAs (miRNAs) have also been identified as possible players in NFPA tumorigenesis and pituitary stem cells have been investigated for their potential role in pituitary tumor initiation. However, a critical role for paracrine signalling has also been highlighted. This review focuses on the current knowledge on the involvement of these factors in NFPA pathogenesis.
Collapse
Affiliation(s)
- Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Via Ariosto 35, 44100, Ferrara, Italy.
| |
Collapse
|
45
|
Abstract
Transcriptional control of oxytocinergic cell development influences social, sexual, and appetite related behaviors and is implicated in disorders such as autism and Prader-Willi syndrome. Mediator 12 (Med12) is a transcriptional coactivator required for multiple facets of brain development including subsets of serotonergic and dopaminergic neurons. We surveyed hormone gene expression within the hypothalamo-pituitary axis of med12 mutant zebrafish embryos with a focus on oxytocin (oxt) expression. Some transcripts, such as oxt, vasopressin (avp) and corticotrophin releasing hormone (crh) are undetectable in the med12 mutant, while others are upregulated or downregulated to varying degrees. In med12 mutants, the expression patterns of upstream transcriptional regulators of oxytocinergic cell development remain largely intact in the pre-optic area, suggesting a more direct influence of Med12 on oxt expression. We show that Med12 is required for Wnt signaling in zebrafish. However, oxt expression is unaffected in Wnt-inhibited embryos indicating independence of Wnt signaling. In fact, overactive Wnt signaling inhibits oxt expression, and we identify a Wnt-sensitive period starting at 24 h post fertilization (hpf). Thus, Med12 and repression of Wnt signaling display critical but unrelated roles in regulating oxt expression. Summary: Mediator 12, a transcriptional coactivator, greatly enhances Wnt signaling in the developing embryo. Separate from its role in Wnt signaling, Mediator 12 is required for oxytocin expression.
Collapse
Affiliation(s)
- Emma D Spikol
- Department of Oncology, Georgetown University, 4000 Reservoir Rd., Washington, DC 20057, USA
| | - Eric Glasgow
- Department of Oncology, Georgetown University, 4000 Reservoir Rd., Washington, DC 20057, USA
| |
Collapse
|
46
|
Yoshida S, Fujiwara K, Nishihara H, Kato T, Yashiro T, Kato Y. Retinoic acid signalling is a candidate regulator of the expression of pituitary-specific transcription factor Prop1 in the developing rodent pituitary. J Neuroendocrinol 2018; 30:e12570. [PMID: 29356182 DOI: 10.1111/jne.12570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/18/2017] [Accepted: 01/10/2018] [Indexed: 12/17/2022]
Abstract
Development of the anterior pituitary proceeds via spatiotemporal patterning of transcription factors and signalling molecules. Among them, retinoic acid (RA) functions as an important signalling molecule for vertebrate organogenesis in many tissues. However, little is known regarding the target genes in the developing pituitary. The present study aimed to clarify the relationship between endogenous RA signalling and mRNA expression of the pituitary-specific transcription factor Prop1 in the pituitary primordium of Rathke's pouch. Gene expression analysis and in situ hybridisation demonstrated that retinaldehyde dehydrogenases (Raldhs) and all types of RA receptors (Rars) are expressed at the level of transcription in the rat Rathke's pouch. Ex vivo organ culture using Rathke's pouch and an in vitro reporter assay demonstrated that RA signalling increases the expression level of Prop1 via RARα. Moreover, a reporter assay using serial truncated constructs of the 5'-upstream region of mouse Prop1 revealed a predicted cis-regulatory element of RARα. This is the first report of a relationship between RA signalling and Prop1-expression during early pituitary development.
Collapse
Affiliation(s)
- S Yoshida
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
- Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki, Kanagawa, Japan
- Institute for Reproduction and Endocrinology, Meiji University, Kawasaki, Kanagawa, Japan
| | - K Fujiwara
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
| | - H Nishihara
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - T Kato
- Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki, Kanagawa, Japan
- Institute for Reproduction and Endocrinology, Meiji University, Kawasaki, Kanagawa, Japan
| | - T Yashiro
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Y Kato
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
- Institute for Reproduction and Endocrinology, Meiji University, Kawasaki, Kanagawa, Japan
- Department of Life Science, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| |
Collapse
|
47
|
Zimmer B, Piao J, Ramnarine K, Tomishima MJ, Tabar V, Studer L. Derivation of Diverse Hormone-Releasing Pituitary Cells from Human Pluripotent Stem Cells. Stem Cell Reports 2017; 6:858-872. [PMID: 27304916 PMCID: PMC4912387 DOI: 10.1016/j.stemcr.2016.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 12/27/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) provide an unlimited cell source for regenerative medicine. Hormone-producing cells are particularly suitable for cell therapy, and hypopituitarism, a defect in pituitary gland function, represents a promising therapeutic target. Previous studies have derived pituitary lineages from mouse and human ESCs using 3D organoid cultures that mimic the complex events underlying pituitary gland development in vivo. Instead of relying on unknown cellular signals, we present a simple and efficient strategy to derive human pituitary lineages from hPSCs using monolayer culture conditions suitable for cell manufacturing. We demonstrate that purified placode cells can be directed into pituitary fates using defined signals. hPSC-derived pituitary cells show basal and stimulus-induced hormone release in vitro and engraftment and hormone release in vivo after transplantation into a murine model of hypopituitarism. This work lays the foundation for future cell therapy applications in patients with hypopituitarism. Defined, cGMP-ready protocol to derive anterior pituitary-lineage cells from hPSCs FGF8 and BMP2 patterning enables enrichment for specific hormone-producing cells Pituitary cells secrete multiple hormones and respond to physiological stimuli hPSC-pituitary cells partially rescue a rat model of hypopituitarism
Collapse
Affiliation(s)
- Bastian Zimmer
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA; Developmental Biology Program, Sloan Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | - Jinghua Piao
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kiran Ramnarine
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA; SKI Stem Cell Research Facility, 1275 York Avenue, New York, NY 10065, USA
| | - Mark J Tomishima
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA; SKI Stem Cell Research Facility, 1275 York Avenue, New York, NY 10065, USA
| | - Viviane Tabar
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA; Developmental Biology Program, Sloan Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
48
|
Wierinckx A, Roche M, Legras-Lachuer C, Trouillas J, Raverot G, Lachuer J. MicroRNAs in pituitary tumors. Mol Cell Endocrinol 2017; 456:51-61. [PMID: 28089822 DOI: 10.1016/j.mce.2017.01.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/14/2016] [Accepted: 01/12/2017] [Indexed: 01/01/2023]
Abstract
Since the presence of microRNAs was first observed in normal pituitary, the majority of scientific publications addressing their role and the function of microRNAs in the pituitary have been based on pituitary tumor studies. In this review, we briefly describe the involvement of microRNAs in the synthesis of pituitary hormones and we present a comprehensive inventory of microRNA suppressors and inducers of pituitary tumors. Finally, we summarize the functional role of microRNAs in tumorigenesis, progression and aggressiveness of pituitary tumors, mechanisms contributing to the regulation (transcription factors, genomic modifications or epigenetic) or modulation (pharmacological treatment) of microRNAs in these tumors, and the interest of thoroughly studying the expression of miRNAs in body fluids.
Collapse
Affiliation(s)
- Anne Wierinckx
- Université Lyon 1, Université de Lyon, Lyon, France; Institut Universitaire de Technologie Lyon1, Université de Lyon, F-69622 Villeurbanne Cedex, France; INSERM U1052, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; CNRS UMR 5286, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, F-69373 Lyon Cedex 08, France.
| | | | - Catherine Legras-Lachuer
- Université Lyon 1, Université de Lyon, Lyon, France; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, F-69373 Lyon Cedex 08, France; ViroScan3D, F-01600 Trévoux, France; UMR CNRS 5557 UCBL USC INRA 1193 ENVL, Dynamique Microbienne et Transmission Virale, F-69100 Villeurbanne Cedex, France
| | - Jacqueline Trouillas
- Université Lyon 1, Université de Lyon, Lyon, France; Centre de Pathologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron F-69677, France
| | - Gérald Raverot
- Université Lyon 1, Université de Lyon, Lyon, France; INSERM U1052, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; CNRS UMR 5286, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, F-69677, France Université Lyon 1, Université de Lyon, Lyon, France
| | - Joël Lachuer
- Université Lyon 1, Université de Lyon, Lyon, France; Institut Universitaire de Technologie Lyon1, Université de Lyon, F-69622 Villeurbanne Cedex, France; INSERM U1052, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; CNRS UMR 5286, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, F-69373 Lyon Cedex 08, France
| |
Collapse
|
49
|
Cox B, Roose H, Vennekens A, Vankelecom H. Pituitary stem cell regulation: who is pulling the strings? J Endocrinol 2017; 234:R135-R158. [PMID: 28615294 DOI: 10.1530/joe-17-0083] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/14/2017] [Indexed: 12/28/2022]
Abstract
The pituitary gland plays a pivotal role in the endocrine system, steering fundamental processes of growth, metabolism, reproduction and coping with stress. The adult pituitary contains resident stem cells, which are highly quiescent in homeostatic conditions. However, the cells show marked signs of activation during processes of increased cell remodeling in the gland, including maturation at neonatal age, adaptation to physiological demands, regeneration upon injury and growth of local tumors. Although functions of pituitary stem cells are slowly but gradually uncovered, their regulation largely remains virgin territory. Since postnatal stem cells in general reiterate embryonic developmental pathways, attention is first being given to regulatory networks involved in pituitary embryogenesis. Here, we give an overview of the current knowledge on the NOTCH, WNT, epithelial-mesenchymal transition, SHH and Hippo pathways in the pituitary stem/progenitor cell compartment during various (activation) conditions from embryonic over neonatal to adult age. Most information comes from expression analyses of molecular components belonging to these networks, whereas functional extrapolation is still very limited. From this overview, it emerges that the 'big five' embryonic pathways are indeed reiterated in the stem cells of the 'lazy' homeostatic postnatal pituitary, further magnified en route to activation in more energetic, physiological and pathological remodeling conditions. Increasing the knowledge on the molecular players that pull the regulatory strings of the pituitary stem cells will not only provide further fundamental insight in postnatal pituitary homeostasis and activation, but also clues toward the development of regenerative ideas for improving treatment of pituitary deficiency and tumors.
Collapse
Affiliation(s)
- Benoit Cox
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Heleen Roose
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Annelies Vennekens
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Hugo Vankelecom
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
50
|
Cheung LYM, Davis SW, Brinkmeier ML, Camper SA, Pérez-Millán MI. Regulation of pituitary stem cells by epithelial to mesenchymal transition events and signaling pathways. Mol Cell Endocrinol 2017; 445:14-26. [PMID: 27650955 PMCID: PMC5590650 DOI: 10.1016/j.mce.2016.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022]
Abstract
The anterior pituitary gland is comprised of specialized cell-types that produce and secrete polypeptide hormones in response to hypothalamic input and feedback from target organs. These specialized cells arise from stem cells that express SOX2 and the pituitary transcription factor PROP1, which is necessary to establish the stem cell pool and promote an epithelial to mesenchymal-like transition, releasing progenitors from the niche. The adult anterior pituitary responds to physiological challenge by mobilizing the SOX2-expressing progenitor pool and producing additional hormone-producing cells. Knowledge of the role of signaling pathways and extracellular matrix components in these processes may lead to improvements in the efficiency of differentiation of embryonic stem cells or induced pluripotent stem cells into hormone producing cells in vitro. Advances in our basic understanding of pituitary stem cell regulation and differentiation may lead to improved diagnosis and treatment for patients with hypopituitarism.
Collapse
Affiliation(s)
- Leonard Y M Cheung
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA.
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208-0001, USA.
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA.
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA.
| | - María Inés Pérez-Millán
- Institute of Biomedical Investgations (UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|