1
|
Ma X, Yang A, Fan X, Liu H, Gu Y, Wang Z, Guo H, Fang J, Cui H, Gou L, Deng J, Cai D, Zuo Z. Resistin alleviates lipopolysaccharide-induced inflammation in bovine alveolar macrophages by activating the AMPK/mTOR signaling pathway and autophagy. Heliyon 2024; 10:e38026. [PMID: 39386884 PMCID: PMC11462211 DOI: 10.1016/j.heliyon.2024.e38026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Objective Resistin (RETN) is an adipocyte-specific hormone that participates in metabolism and modulates cellular inflammation. Our study aimed to assess the effects of RETN treatment on autophagy and the underlying molecular and biological mechanisms in bovine alveolar macrophages (BAMs). Methods The optimal concentration of RETN + lipopolysaccharide (LPS) on macrophages was screened and then used to co-culture with alveolar macrophages. Autophagosomes in BAMs were examined using a transmission electron microscope (TEM). Quantitative real-time PCR (qRT-PCR) was used to detect the mRNA expression of microtubule-associated protein light chain 3 (LC3) and p62. Western blot (WB) was used to detect the protein expressions of LC3 and p62. The distribution of LC3 and p62 proteins in the cells was observed by immunofluorescence (IF). The concentrations of interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) were detected using enzyme-linked immunosorbent assay (ELISA). The protein expression of adenosine-monophosphate-activated protein kinase (AMPK), p-AMPK, mammalian target of rapamycin (mTOR), and p-mTOR was detected using WB. Results The treatment of BAMs with RETN or LPS increased the number of autophagosomes and the ratio of LC3II/LC3I and decreased the expression level of p62 protein. RETN treatment significantly triggered autophagy compared to LPS treatment. Moreover, the ratios of p-AMPK/AMPK and p-mTOR/mTOR were upregulated and downregulated, respectively, after RETN treatment, suggesting that AMPK/mTOR signaling pathway activation is required for RETN-mediated autophagy in BAMs. Additionally, the ratio of LC3-II/LC3-I was lower, and the concentrations of IL-1β, IL-6, and TNF-α significantly decreased in the LPS and RETN co-treatment groups compared to the single LPS treatment group. However, both autophagy- and LPS-induced inflammation were partially alleviated by RETN treatment. Conclusion RETN can promote autophagy in BAMs by activating the AMPK/mTOR signaling pathway, it may help prevent LPS-induced inflammation.
Collapse
Affiliation(s)
- Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Aining Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaoben Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hong Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhisheng Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Liping Gou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dongjie Cai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
2
|
Liao Y, Zhang W, Liu Y, Zhu C, Zou Z. The role of ubiquitination in health and disease. MedComm (Beijing) 2024; 5:e736. [PMID: 39329019 PMCID: PMC11424685 DOI: 10.1002/mco2.736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Ubiquitination is an enzymatic process characterized by the covalent attachment of ubiquitin to target proteins, thereby modulating their degradation, transportation, and signal transduction. By precisely regulating protein quality and quantity, ubiquitination is essential for maintaining protein homeostasis, DNA repair, cell cycle regulation, and immune responses. Nevertheless, the diversity of ubiquitin enzymes and their extensive involvement in numerous biological processes contribute to the complexity and variety of diseases resulting from their dysregulation. The ubiquitination process relies on a sophisticated enzymatic system, ubiquitin domains, and ubiquitin receptors, which collectively impart versatility to the ubiquitination pathway. The widespread presence of ubiquitin highlights its potential to induce pathological conditions. Ubiquitinated proteins are predominantly degraded through the proteasomal system, which also plays a key role in regulating protein localization and transport, as well as involvement in inflammatory pathways. This review systematically delineates the roles of ubiquitination in maintaining protein homeostasis, DNA repair, genomic stability, cell cycle regulation, cellular proliferation, and immune and inflammatory responses. Furthermore, the mechanisms by which ubiquitination is implicated in various pathologies, alongside current modulators of ubiquitination are discussed. Enhancing our comprehension of ubiquitination aims to provide novel insights into diseases involving ubiquitination and to propose innovative therapeutic strategies for clinical conditions.
Collapse
Affiliation(s)
- Yan Liao
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Wangzheqi Zhang
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Yang Liu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Chenglong Zhu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Zui Zou
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| |
Collapse
|
3
|
Ohashi K, Otomo T. Structural Analyses of a GABARAP~ATG3 Conjugate Uncover a Novel Non-covalent Ubl-E2 Backside Interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607425. [PMID: 39185234 PMCID: PMC11343110 DOI: 10.1101/2024.08.14.607425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Members of the ATG8 family of ubiquitin-like proteins (Ubls) are conjugated to phosphatidylethanolamine (PE) in the autophagosomal membrane, where they recruit degradation substrates and facilitate membrane biogenesis. Despite this well-characterized function, the mechanisms underlying the lipidation process, including the action of the E2 enzyme ATG3, remain incompletely understood. Here, we report the crystal structure of human ATG3 conjugated to the mammalian ATG8 protein GABARAP via an isopeptide bond, mimicking the Ubl~E2 thioester intermediate. In this structure, the GABARAP~ATG3 conjugate adopts an open configuration with minimal contacts between the two proteins. Notably, the crystal lattice reveals non-covalent contacts between GABARAP and the backside of ATG3's E2 catalytic center, resulting in the formation of a helical filament of the GABARAP~ATG3 conjugate. While similar filament formations have been observed with canonical Ub~E2 conjugates, the E2 backside-binding interface of GABARAP is distinct from those of Ub/Ubl proteins and overlaps with the binding site for LC3 interacting region (LIR) peptides. NMR analysis confirms the presence of this non-covalent interaction in solution, and mutagenesis experiments demonstrate the involvement of the E2 backside in PE conjugation. These findings highlight the critical role of the E2 backside in the lipidation process and suggest evolutionary adaptations in the unique E2 enzyme ATG3.
Collapse
Affiliation(s)
- Kazuto Ohashi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
- Institute for Molecular and Cellular Regulation, Gunma University, 371-8512 Gunma, Japan
| | - Takanori Otomo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
- San Diego Biomedical Research Institute, 3525 John Hopkins Ct, San Diego, CA 92121, USA
| |
Collapse
|
4
|
Wang Y, Zeng J, Yu Y, Ni Z. Silencing of GhSINAT5 Reduces Drought Resistance and Salt Tolerance in Cotton. Genes (Basel) 2024; 15:1063. [PMID: 39202423 PMCID: PMC11353778 DOI: 10.3390/genes15081063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
The SEVEN IN ABSENTIA (SINA) E3 ubiquitin ligase is widely involved in drought and salt stress in plants. However, the biological function of the SINA proteins in cotton is still unknown. This study aimed to reveal the function of GhSINAT5 through biochemical, genetic and molecular approaches. GhSINAT5 is expressed in several tissues of cotton plants, including roots, stems, leaves and cotyledons, and its expression levels are significantly affected by polyethylene glycol, abscisic acid and sodium chloride. When GhSINAT5 was silenced in cotton plants, drought and salinity stress occurred, and the length, area and volume of the roots significantly decreased. Under drought stress, the levels of proline, superoxide dismutase, peroxidase and catalase in the GhSINAT5-silenced cotton plants were significantly lower than those in the non-silenced control plants, whereas the levels of hydrogen peroxide and malondialdehyde were greater. Moreover, the expression of stress-related genes in silenced plants under drought stress suggested that GhSINAT5 may play a positive role in the plant response to drought and salt stress by regulating these stress response-related genes. These findings not only deepen our understanding of the mechanisms of drought resistance in cotton but also provide potential targets for future improvements in crop stress resistance through genetic engineering.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Ecological Adaptation and Evolution of Extreme Environment in Xinjiang, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (Y.W.); (J.Z.)
| | - Jiacong Zeng
- Key Laboratory of Ecological Adaptation and Evolution of Extreme Environment in Xinjiang, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (Y.W.); (J.Z.)
| | - Yuehua Yu
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Zhiyong Ni
- Key Laboratory of Ecological Adaptation and Evolution of Extreme Environment in Xinjiang, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (Y.W.); (J.Z.)
| |
Collapse
|
5
|
Lu H, Niu X, Fan Y, Yuan Y, Huang L, Zhao B, Liu Y, Xiao F. The extensin protein SAE1 plays a role in leaf senescence and is targeted by the ubiquitin ligase SINA4 in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5635-5652. [PMID: 37368909 DOI: 10.1093/jxb/erad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/25/2023] [Indexed: 06/29/2023]
Abstract
Extensins are hydroxyproline-rich glycoproteins and generally play a structural role in cell wall integrity. In this study, we determined a novel role of tomato (Solanum lycopersicum) SENESCENCE-ASSOCIATED EXTENSIN1 (SAE1) in leaf senescence. Both gain- and loss-of-function analyses suggest that SAE1 plays a positive role in leaf senescence in tomato. Transgenic plants overexpressing SAE1 (SAE1-OX) exhibited premature leaf senescence and enhanced dark-induced senescence, whereas SAE1 knockout (SAE1-KO) plants displayed delayed development-dependent and dark-induced leaf senescence. Heterologous overexpression of SlSAE1 in Arabidopsis also led to premature leaf senescence and enhanced dark-induced senescence. In addition, the SAE1 protein was found to interact with the tomato ubiquitin ligase SlSINA4, and SlSINA4 promoted SAE1 degradation in a ligase-dependent manner when co-expressed in Nicotiana benthamiana leaves, suggesting that SlSINA4 controls SAE1 protein levels via the ubiquitin-proteasome pathway. Introduction of an SlSINA4-overexpression construct into the SAE1-OX tomato plants consistently completely eliminated accumulation of the SAE1 protein and suppressed the phenotypes conferred by overexpression of SAE1. Taken together, our results suggest that the tomato extensin SAE1 plays a positive role in leaf senescence and is regulated by the ubiquitin ligase SINA4.
Collapse
Affiliation(s)
- Han Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- Department of Plant Sciences, University of Idaho, Moscow, Idaho, 83844, USA
| | - Xiangli Niu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- Department of Plant Sciences, University of Idaho, Moscow, Idaho, 83844, USA
| | - Youhong Fan
- Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yulin Yuan
- Department of Plant Sciences, University of Idaho, Moscow, Idaho, 83844, USA
| | - Li Huang
- Department of Plant Sciences, University of Idaho, Moscow, Idaho, 83844, USA
| | - Bingyu Zhao
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| | - Yongsheng Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- School of Horticulture, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, Idaho, 83844, USA
| |
Collapse
|
6
|
Lu H, Fan Y, Yuan Y, Niu X, Zhao B, Liu Y, Xiao F. Tomato SlSTK is involved in glucose response and regulated by the ubiquitin ligase SlSINA4. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111672. [PMID: 36921631 DOI: 10.1016/j.plantsci.2023.111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Glucose signaling plays an essential role in plant growth, development and stress response. Previous studies have shown that STOREKEEPER (STK) is a new class of DNA binding protein that regulates patatin expression in potato tubers and confers elevated sensitivity to glucose response in Arabidopsis thaliana. However, the biological functions of STK gene in tomato (Solanum lycopersicum) have not been studied. Here, we characterized the tomato SlSTK and determined its role in glucose signaling. The SlSTK protein was localized in the nucleus and the expression of the SlSTK gene was induced by the glucose treatment. Overexpression of SlSTK in tomato enhanced glucose sensitivity, as manifested by reduced seed germination rate and arrested growth at the early seedling stage. In contrast, the SlSTK-knockout plants generated via the clustered regularly interspaced short palindromic repeats (CRISPR) - CRISPR-associated protein 9 (CRISPR-Cas9) technique attenuated the sensitivity to glucose. In addition, SlSTK was ubiquitinated in plant cells and interacted with the tomato ubiquitin ligase SEVEN IN ABSENTIA4 (SlSINA4) that degrades SlSTK in a ligase-dependent manner. Taken together, these results suggest that SlSTK is involved in glucose signaling and its stability is regulated by the ubiquitin ligase SlSINA4.
Collapse
Affiliation(s)
- Han Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Department of Plant Sciences, University of Idaho, Moscow, ID 83844-2339, USA
| | - Youhong Fan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Department of Plant Sciences, University of Idaho, Moscow, ID 83844-2339, USA
| | - Yulin Yuan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xiangli Niu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Department of Plant Sciences, University of Idaho, Moscow, ID 83844-2339, USA
| | - Bingyu Zhao
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Yongsheng Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; School of Horticulture, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844-2339, USA.
| |
Collapse
|
7
|
Okano K, Otsuka H, Nakagawa M, Okano T. Molecular functions of the double-sided and inverted ubiquitin-interacting motif found in Xenopus tropicalis cryptochrome 6. Dev Growth Differ 2023; 65:203-214. [PMID: 37127930 PMCID: PMC11520951 DOI: 10.1111/dgd.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Cryptochromes (CRYs) are multifunctional molecules that act as a circadian clock oscillating factor, a blue-light sensor, and a light-driven magnetoreceptor. Cry genes are classified into several groups based on the evolutionary relationships. Cryptochrome 6 gene (Cry6) is present in invertebrates and lower vertebrates such as amphibians and fishes. Here we identified a Cry6 ortholog in Xenopus tropicalis (XtCry6). XtCRY6 retains a conserved long N-terminal extension (termed CRY N-terminal extension; CNE) that is not found in any CRY in the other groups. A structural prediction suggested that CNE contained unique structures; a tetrahelical fold structure topologically related to KaiA/RbsU domain, overlapping nuclear- and nucleolar-localizing signals (NLS/NoLS), and a novel motif (termed DI-UIM) overlapping a double-sided ubiquitin-interacting motif (DUIM) and an inverted ubiquitin-interacting motif (IUIM). Potential activities of the NLS/NoLS and DI-UIM were examined to infer the molecular function of XtCRY6. GFP-NLS/NoLS fusion protein exogenously expressed in HEK293 cells was mostly observed in the nucleolus, while GFP-XtCRY6 was observed in the cytoplasm. A glutathione S-transferase (GST) pull-down assay suggested that the DI-UIM physically interacts with polyubiquitin. Consistently, protein docking simulations implied that XtCRY6 DI-UIM binds two ubiquitin molecules in a relationship of a twofold rotational symmetry with the symmetry axis parallel or perpendicular to the DI-UIM helix. These results strongly suggested that XtCRY6 does not function as a circadian transcriptional repressor and that it might have another function such as photoreceptive molecule regulating light-dependent protein degradation or gene expression through a CNE-mediated interaction with ubiquitinated proteins in the cytoplasm and/or nucleolus.
Collapse
Affiliation(s)
- Keiko Okano
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and EngineeringWaseda University, TWInsTokyoJapan
| | - Hiroaki Otsuka
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and EngineeringWaseda University, TWInsTokyoJapan
| | - Marika Nakagawa
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and EngineeringWaseda University, TWInsTokyoJapan
| | - Toshiyuki Okano
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and EngineeringWaseda University, TWInsTokyoJapan
| |
Collapse
|
8
|
Abstract
Our understanding of the ubiquitin code has greatly evolved from conventional E1, E2 and E3 enzymes that modify Lys residues on specific substrates with a single type of ubiquitin chain to more complex processes that regulate and mediate ubiquitylation. In this Review, we discuss recently discovered endogenous mechanisms and unprecedented pathways by which pathogens rewrite the ubiquitin code to promote infection. These processes include unconventional ubiquitin modifications involving ester linkages with proteins, lipids and sugars, or ubiquitylation through a phosphoribosyl bridge involving Arg42 of ubiquitin. We also introduce the enzymatic pathways that write and reverse these modifications, such as the papain-like proteases of severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. Furthermore, structural studies have revealed that the ultimate functions of ubiquitin are mediated not simply by straightforward recognition by ubiquitin-binding domains. Instead, elaborate multivalent interactions between ubiquitylated targets or ubiquitin chains and their readers (for example, the proteasome, the MLL1 complex or DOT1L) can elicit conformational changes that regulate protein degradation or transcription. The newly discovered mechanisms provide opportunities for innovative therapeutic interventions for diseases such as cancer and infectious diseases.
Collapse
Affiliation(s)
- Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.
| | | |
Collapse
|
9
|
Yang J, Mao T, Geng Z, Xue W, Ma L, Jin Y, Guo P, Qiu Z, Wang L, Yu C, Sheng Y, Zhang J, Zhang H. Constitutive expression of AtSINA2 from Arabidopsis improves grain yield, seed oil and drought tolerance in transgenic soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:444-453. [PMID: 36758291 DOI: 10.1016/j.plaphy.2023.01.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The SEVEN IN Absentia (SINA), a typical member of the RING E3 ligase family, plays a crucial role in plant growth, development and response to abiotic stress. However, its biological functions in oil crops are still unknown. Previously, we reported that overexpression of AtSINA2 in Arabidopsis positively regulated the drought tolerance of transgenic plants. In this work, we demonstrate that ectopic expression of AtSINA2 in soybean improved the shoot growth, grain yield, drought tolerance and seed oil content in transgenic plants. Compared to wild type, transgenic soybean produced greater shoot biomass and grain yield, and showed improved seed oil and drought tolerance. Physiological analyses exhibited that the increased drought tolerance of transgenic plants was accompanied with a higher chlorophyll content, and a lower malondialdehyde accumulation and water loss during drought stress. Further transcriptomic analyses revealed that the expressions of genes related to plant growth, flowering and stress response were up- or down-regulated in transgenic soybean under both normal and drought stress conditions. Our findings imply that AtSINA2 improved both agricultural production and drought tolerance, and it can be used as a candidate gene for the genetic engineering of new soybean cultivars with improved grain yield and drought resistance.
Collapse
Affiliation(s)
- Jin Yang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Tingting Mao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co, Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China
| | - Zigui Geng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Wenwen Xue
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Lan Ma
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai, 264001, China
| | - Yu Jin
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Pan Guo
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Zitong Qiu
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co, Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China
| | - Chunyan Yu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co, Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China
| | - Yuting Sheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co, Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China
| | - Juan Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai, 264001, China; Zhaoyuan Shenghui Agricultural Technology Development Co, Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China.
| |
Collapse
|
10
|
Crystallographic mining of ASK1 regulators to unravel the intricate PPI interfaces for the discovery of small molecule. Comput Struct Biotechnol J 2022; 20:3734-3754. [PMID: 35891784 PMCID: PMC9294202 DOI: 10.1016/j.csbj.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
Protein seldom performs biological activities in isolation. Understanding the protein–protein interactions’ physical rewiring in response to pathological conditions or pathogen infection can help advance our comprehension of disease etiology, progression, and pathogenesis, which allow us to explore the alternate route to control the regulation of key target interactions, timely and effectively. Nonalcoholic steatohepatitis (NASH) is now a global public health problem exacerbated due to the lack of appropriate treatments. The most advanced anti-NASH lead compound (selonsertib) is withdrawn, though it is able to inhibit its target Apoptosis signal-regulating kinase 1 (ASK1) completely, indicating the necessity to explore alternate routes rather than complete inhibition. Understanding the interaction fingerprints of endogenous regulators at the molecular level that underpin disease formation and progression may spur the rationale of designing therapeutic strategies. Based on our analysis and thorough literature survey of the various key regulators and PTMs, the current review emphasizes PPI-based drug discovery’s relevance for NASH conditions. The lack of structural detail (interface sites) of ASK1 and its regulators makes it challenging to characterize the PPI interfaces. This review summarizes key regulators interaction fingerprinting of ASK1, which can be explored further to restore the homeostasis from its hyperactive states for therapeutics intervention against NASH.
Collapse
Key Words
- ASK1
- ASK1, Apoptosis signal-regulating kinase 1
- CFLAR, CASP8 and FADD-like apoptosis regulator
- CREG, Cellular repressor of E1A-stimulated genes
- DKK3, Dickkopf-related protein 3
- Interaction fingerprint
- NAFLD, Non-alcoholic fatty liver disease
- NASH
- NASH, Nonalcoholic steatohepatitis
- PPI, Protein-protein interaction
- PTM, Post-trancriptional modification
- PTMs
- Protein-protein interaction
- TNFAIP3, TNF Alpha Induced Protein 3
- TRAF2/6, Tumor necrosis factor receptor (TNFR)-associated factor2/6
- TRIM48, Tripartite Motif Containing 48
- TRX, Thioredoxin
- USP9X, Ubiquitin Specific Peptidase 9 X-Linked
Collapse
|
11
|
Jayaweera SPE, Wanigasinghe Kanakanamge SP, Rajalingam D, Silva GN. Carfilzomib: A Promising Proteasome Inhibitor for the Treatment of Relapsed and Refractory Multiple Myeloma. Front Oncol 2021; 11:740796. [PMID: 34858819 PMCID: PMC8631731 DOI: 10.3389/fonc.2021.740796] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/21/2021] [Indexed: 01/04/2023] Open
Abstract
The proteasome is crucial for the degradation of intracellular proteins and plays an important role in mediating a number of cell survival and progression events by controlling the levels of key regulatory proteins such as cyclins and caspases in both normal and tumor cells. However, compared to normal cells, cancer cells are more dependent on the ubiquitin proteasome pathway (UPP) due to the accumulation of proteins in response to uncontrolled gene transcription, allowing proteasome to become a potent therapeutic target for human cancers such as multiple myeloma (MM). Up to date, three proteasome inhibitors namely bortezomib (2003), carfilzomib (2012) and ixazomib (2015) have been approved by the US Food and Drug Administration (FDA) for the treatment of patients with relapsed and/or refractory MM. This review mainly focuses on the biochemical properties, mechanism of action, toxicity profile and pivotal clinical trials related to carfilzomib, a second-generation proteasome inhibitor that binds irreversibly with proteasome to overcome the major toxicities and resistance associated with bortezomib.
Collapse
Affiliation(s)
| | | | - Dharshika Rajalingam
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Gayathri N Silva
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
12
|
Ren Z, Liu W, Wang X, Chen M, Zhao J, Zhang F, Feng H, Liu J, Yang D, Ma X, Li W. SEVEN IN ABSENTIA Ubiquitin Ligases Positively Regulate Defense Against Verticillium dahliae in Gossypium hirsutum. FRONTIERS IN PLANT SCIENCE 2021; 12:760520. [PMID: 34777442 PMCID: PMC8586545 DOI: 10.3389/fpls.2021.760520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/06/2021] [Indexed: 05/16/2023]
Abstract
Ubiquitination is a post-translational regulatory mechanism that controls a variety of biological processes in plants. The E3 ligases confer specificity by recognizing target proteins for ubiquitination. Here, we identified SEVEN IN ABSENTIA (SINA) ubiquitin ligases, which belong to the RING-type E3 ligase family, in upland cotton (Gossypium hirsutum). Twenty-four GhSINAs were characterized, and the expression levels of GhSINA7, GhSINA8, and GhSINA9 were upregulated at 24 h after inoculation with Verticillium dahliae. In vitro ubiquitination assays indicated that the three GhSINAs possessed E3 ubiquitin ligase activities. Transient expression in Nicotiana benthamiana leaves showed that they localized to the nucleus. And yeast two-hybrid (Y2H) screening revealed that they could interact with each other. The ectopic overexpression of GhSINA7, GhSINA8, and GhSINA9 independently in Arabidopsis thaliana resulted in increased tolerance to V. dahliae, while individual knockdowns of GhSINA7, GhSINA8, and GhSINA9 compromised cotton resistance to the pathogen. Thus, GhSINA7, GhSINA8, and GhSINA9 act as positive regulators of defense responses against V. dahliae in cotton plants.
Collapse
Affiliation(s)
- Zhongying Ren
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wei Liu
- Collaborative Innovation Center of Henan Grain Crops, Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Mingjiang Chen
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Junjie Zhao
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Daigang Yang,
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Xiongfeng Ma,
| | - Wei Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Wei Li,
| |
Collapse
|
13
|
Defective mitophagy in Alzheimer's disease. Ageing Res Rev 2020; 64:101191. [PMID: 33022416 DOI: 10.1016/j.arr.2020.101191] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive, mental illness without cure. Several years of intense research on postmortem AD brains, cell and mouse models of AD have revealed that multiple cellular changes are involved in the disease process, including mitochondrial abnormalities, synaptic damage, and glial/astrocytic activation, in addition to age-dependent accumulation of amyloid beta (Aβ) and hyperphosphorylated tau (p-tau). Synaptic damage and mitochondrial dysfunction are early cellular changes in the disease process. Healthy and functionally active mitochondria are essential for cellular functioning. Dysfunctional mitochondria play a central role in aging and AD. Mitophagy is a cellular process whereby damaged mitochondria are selectively removed from cell and mitochondrial quality and biogenesis. Mitophagy impairments cause the progressive accumulation of defective organelle and damaged mitochondria in cells. In AD, increased levels of Aβ and p-tau can induce reactive oxygen species (ROS) production, causing excessive fragmentation of mitochondria and promoting defective mitophagy. The current article discusses the latest developments of mitochondrial research and also highlights multiple types of mitophagy, including Aβ and p-tau-induced mitophagy, stress-induced mitophagy, receptor-mediated mitophagy, ubiquitin mediated mitophagy and basal mitophagy. This article also discusses the physiological states of mitochondria, including fission-fusion balance, Ca2+ transport, and mitochondrial transport in normal and diseased conditions. Our article summarizes current therapeutic interventions, like chemical or natural mitophagy enhancers, that influence mitophagy in AD. Our article discusses whether a partial reduction of Drp1 can be a mitophagy enhancer and a therapeutic target for mitophagy in AD and other neurological diseases.
Collapse
|
14
|
Zhao J, Yang Y, Fan Y, Yi J, Zhang C, Gu Z, Pan W, Gu J, Liao W, Fang W. Ribosomal Protein L40e Fused With a Ubiquitin Moiety Is Essential for the Vegetative Growth, Morphological Homeostasis, Cell Cycle Progression, and Pathogenicity of Cryptococcus neoformans. Front Microbiol 2020; 11:570269. [PMID: 33224112 PMCID: PMC7674629 DOI: 10.3389/fmicb.2020.570269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
Ubiquitin is a highly conserved protein required for various fundamental cellular processes in eukaryotes. Herein, we first report the contribution of the ubiquitin fusion protein Ubi1 (a ubiquitin monomer fused with the ribosome protein L40e, Rpl40e) in the growth and pathogenicity of Cryptococcus neoformans. UBI1 deletion resulted in severe growth restriction of C. neoformans, whose growth rate was positively correlated with UBI1 expression level. The growth defect of the ubi1Δ strain could be closely associated with its morphological abnormalities, such as its reduced ribosome particles. In addition, the ubi1Δ mutant also displayed increased cell ploidy, cell cycle arrest, and decreased intracellular survival inside macrophages. All these phenotypes were reversed by the reconstitution of the full-length UBI1 gene or RPL40a domain. Mouse survival and fungal burden assays further revealed a severely attenuated pathogenicity for the ubi1Δ mutant, which is probably associated with its reduced stress tolerance and the induction of T-helper 1-type immune response. Taken together, Ubi1 is required for maintaining the vegetative growth, morphological homeostasis, cell cycle progression, and pathogenicity in vivo of C. neoformans. The pleiotropic roles of Ubi1 are dependent on the presence of Rpl40e and associated with its regulation of cryptococcal ribosome biogenesis.
Collapse
Affiliation(s)
- Jingyu Zhao
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Department of Dermatology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yali Yang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Department of Dermatology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yibin Fan
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jiu Yi
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chao Zhang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhongkai Gu
- The Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Julin Gu
- Department of Dermatology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
15
|
Zhu Y, Qian X, Li J, Lin X, Luo J, Huang J, Jin Z. Astragaloside-IV protects H9C2(2-1) cardiomyocytes from high glucose-induced injury via miR-34a-mediated autophagy pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4172-4181. [PMID: 31713440 DOI: 10.1080/21691401.2019.1687492] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetic cardiomyopathy (DCM) is an important cardiac disorder in patients with diabetes. High glucose (HG) levels lead to inflammation of cardiomyocytes, oxidative stress, and long-term activation of autophagy, resulting in myocardial fibrosis and remodelling. Astragaloside-IV (AS-IV) has a wide range of pharmacological effects. This study aimed to investigate the effects of AS-IV on injury induced by HG in rat cardiomyocytes (H9C2(2-1)) and the involvement of the miR-34a-mediated autophagy pathway. An AS-IV concentration of 100 μM was selected based on H9C2(2-1) cell viability using the cell counting kit-8 (CCK-8). We found that 33 mM HG induced a morphologic change in cells and caused excessive oxidative stress, whereas AS-IV inhibited lipid peroxidation and increased superoxide dismutase activity. In terms of mRNA expression, HG increased miR-34a and inhibited Bcl2 and Sirt1, whereas AS-IV and miR-34a-inhibitor reversed the above effects. Further, LC3-GFP adenovirus infection and western blotting showed that HG increased autophagy, which was reversed synergistically by AS-IV and miR-34a-inhibitor. Bcl2 and pAKT/AKT protein expressions in the HG group was significantly lower than that in controls, but AS-IV and miR-34a-inhibitor antagonized the process. Thus, AS-IV inhibits HG-induced oxidative stress and autophagy and protects cardiomyocytes from injury via the miR-34a/Bcl2/(LC3II/LC3I) and pAKT/Bcl2/(LC3II/LC3I) pathways.
Collapse
Affiliation(s)
- Yaobin Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P. R. China
| | - Xin Qian
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| | - Jingjing Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| | - Xing Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| | - Jiewei Luo
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China.,Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, P. R. China
| | - Jianbin Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| | - Zhao Jin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| |
Collapse
|
16
|
Ai H, Guo Y, Sun D, Liu S, Qi Y, Guo J, Qu Q, Gong Q, Zhao S, Li J, Liu L. Examination of the Deubiquitylation Site Selectivity of USP51 by Using Chemically Synthesized Ubiquitylated Histones. Chembiochem 2018; 20:221-229. [PMID: 30192049 DOI: 10.1002/cbic.201800432] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Indexed: 12/25/2022]
Abstract
Histone ubiquitylation and deubiquitylation processes and the mechanisms of their regulation are closely relevant to the field of epigenetics. Recently, the deubiquitylating enzyme USP51 was reported to selectively cleave ubiquitylation on histone H2A at K13 or K15 (i.e., H2AK13Ub and H2AK15Ub), but not at K119 (i.e., H2AK119Ub), in nucleosomes in vivo. To elucidate the mechanism for the selectivity of USP51, we constructed structurally well-defined in vitro protein systems with a ubiquitin modification at precise sites. A total chemical protein synthesis procedure was developed, wherein hydrazide-based native chemical ligation was used to efficiently generate five ubiquitylated histones (H2AK13Ub, H2AK15Ub, H2AK119Ub, H2BK34Ub, and H2BK120Ub). These synthetic ubiquitylated histones were assembled into nucleosomes and subjected to in vitro USP51 deubiquitylation assays. Surprisingly, USP51 did not show preference between H2AK13/15Ub and H2AK119Ub, in contrast to previous in vivo observations. Accordingly, an understanding of the selectivity of USP51 may require consideration of other factors, such as alternative pre-existing histone modifications, competitive reader proteins, or different nucleosome quality among the in vivo extraction nucleosome and the in vitro reconstitution one. Further experiments established that USP51 in vitro could deubiquitylate a nucleosome carrying H2BK120Ub, but not H2BK34Ub. Molecular dynamics simulations suggested that USP51-catalyzed hydrolysis of ubiquitylated nucleosomes was affected by steric hindrance of the isopeptide bond.
Collapse
Affiliation(s)
- Huasong Ai
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Yu Guo
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P.R. China.,Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Demeng Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Sanling Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Yunkun Qi
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Jing Guo
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Qian Qu
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Qingyue Gong
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Suwen Zhao
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Jiabin Li
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
17
|
Alegre F, Moragrega ÁB, Polo M, Marti‐Rodrigo A, Esplugues JV, Blas‐Garcia A, Apostolova N. Role of p62/SQSTM1 beyond autophagy: a lesson learned from drug-induced toxicity in vitro. Br J Pharmacol 2018; 175:440-455. [PMID: 29148034 PMCID: PMC5773949 DOI: 10.1111/bph.14093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 10/02/2017] [Accepted: 11/07/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE SQSTM1/p62 is a multifunctional, stress-induced, scaffold protein involved in multiple cellular processes including autophagic clearance, regulation of inflammatory responses and redox homeostasis. Its altered function has been associated with different human pathologies, such as neurodegenerative, metabolic and bone diseases (down-regulation), and cancerogenesis (up-regulation). However, its role in the off-target effects of clinically used drugs is still not understood. EXPERIMENTAL APPROACH We evaluated the expression of p62 in cultured Hep3B cells and their derived ρ° cells (lacking mitochondria), along with markers of autophagy and mitochondrial dysfunction. The effects of efavirenz were compared with those of known pharmacological stressors, rotenone, thapsigargin and CCCP, and we also used transient silencing with siRNA and p62 overexpression. Western blotting, quantRT-PCR and fluorescence microscopy were used to assay these effects and their underlying mechanisms. KEY RESULTS In Hep3B cells, efavirenz augmented p62 protein content, an effect not observed in the corresponding ρ° cells. p62 up-regulation followed enhanced SQSTM1 expression mediated through the transcription factor CHOP/DDIT3, while other well-known regulators (NF-kB and Nrf2) were not involved. Inhibition of autophagy with 3MA or with transient silencing of Atg5 did not affect SQSTM1 expression in efavirenz-treated cells while p62 overexpression ameliorated the deleterious effect of efavirenz on cell viability. CONCLUSION AND IMPLICATIONS In our model, p62 exerted a specific, autophagy-independent role and protected against efavirenz-induced mitochondrial ROS generation and activation of the NLRP3 inflammasome. These findings add to the multifunctional nature of p62 and may help to understand the off-target effects of clinically useful drugs.
Collapse
Affiliation(s)
- Fernando Alegre
- Departamento de Farmacología, Facultad de MedicinaUniversidad de ValenciaValenciaSpain
- FISABIO–Hospital Universitario Dr. PesetValenciaSpain
| | - Ángela B Moragrega
- Departamento de Farmacología, Facultad de MedicinaUniversidad de ValenciaValenciaSpain
| | - Miriam Polo
- Departamento de Farmacología, Facultad de MedicinaUniversidad de ValenciaValenciaSpain
- FISABIO–Hospital Universitario Dr. PesetValenciaSpain
| | - Alberto Marti‐Rodrigo
- Departamento de Farmacología, Facultad de MedicinaUniversidad de ValenciaValenciaSpain
| | - Juan V Esplugues
- Departamento de Farmacología, Facultad de MedicinaUniversidad de ValenciaValenciaSpain
- FISABIO–Hospital Universitario Dr. PesetValenciaSpain
- CIBERehdValenciaSpain
| | - Ana Blas‐Garcia
- Departamento de Farmacología, Facultad de MedicinaUniversidad de ValenciaValenciaSpain
- CIBERehdValenciaSpain
| | - Nadezda Apostolova
- Departamento de Farmacología, Facultad de MedicinaUniversidad de ValenciaValenciaSpain
- CIBERehdValenciaSpain
| |
Collapse
|
18
|
Molecular finds of pressure ulcer: A bioinformatics approach in pressure ulcer. J Tissue Viability 2017; 26:119-124. [PMID: 28188042 DOI: 10.1016/j.jtv.2017.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/29/2016] [Accepted: 01/26/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Understanding the biological processes underlying Pressure Ulcer (PU) is an important strategy to identify new molecular targets. Bioinformatics has emerged as an important screening tool for a broad range of diseases. OBJECTIVE This study aim of the current study is to investigate the protein-protein interaction in the PU context by bioinformatics. METHODS We performed a search in gene databases, and bioinformatics algorithms were used to generate molecular targets for PU based in silico investigation. Interactions networks between protein-coding genes were built and compared to skin. RESULTS TNFA, MMP9, and IL10 genes have higher disease-related connectivity than a connectivity general global. MAGOH, UBC, and PTCH1 as were leader genes related to skin. Ontological analysis demonstrated different mechanisms associated, such as response to oxidase stress. CONCLUSION TNFA, MMP9, and IL10 are possible therapeutic targets for pressure ulcer. Additional investigation of cell post-transcriptional machinery should be investigated in PU.
Collapse
|
19
|
Gao Y, Li Y, Zhang C, Zhao M, Deng C, Lan Q, Liu Z, Su N, Wang J, Xu F, Xu Y, Ping L, Chang L, Gao H, Wu J, Xue Y, Deng Z, Peng J, Xu P. Enhanced Purification of Ubiquitinated Proteins by Engineered Tandem Hybrid Ubiquitin-binding Domains (ThUBDs). Mol Cell Proteomics 2016; 15:1381-96. [PMID: 27037361 DOI: 10.1074/mcp.o115.051839] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Indexed: 11/06/2022] Open
Abstract
Ubiquitination is one of the most common post-translational modifications, regulating protein stability and function. However, the proteome-wide profiling of ubiquitinated proteins remains challenging due to their low abundance in cells. In this study, we systematically evaluated the affinity of ubiquitin-binding domains (UBDs) to different types of ubiquitin chains. By selecting UBDs with high affinity and evaluating various UBD combinations with different lengths and types, we constructed two artificial tandem hybrid UBDs (ThUBDs), including four UBDs made of DSK2p-derived ubiquitin-associated (UBA) and ubiquilin 2-derived UBA (ThUDQ2) and of DSK2p-derived UBA and RABGEF1-derived A20-ZnF (ThUDA20). ThUBD binds to ubiquitinated proteins, with markedly higher affinity than naturally occurring UBDs. Furthermore, it displays almost unbiased high affinity to all seven lysine-linked chains. Using ThUBD-based profiling with mass spectrometry, we identified 1092 and 7487 putative ubiquitinated proteins from yeast and mammalian cells, respectively, of which 362 and 1125 proteins had ubiquitin-modified sites. These results demonstrate that ThUBD is a refined and promising approach for enriching the ubiquitinated proteome while circumventing the need to overexpress tagged ubiquitin variants and use antibodies to recognize ubiquitin remnants, thus providing a readily accessible tool for the protein ubiquitination research community.
Collapse
Affiliation(s)
- Yuan Gao
- From the ‡State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine, Beijing 102206,China
| | - Yanchang Li
- From the ‡State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine, Beijing 102206,China
| | - Chengpu Zhang
- From the ‡State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine, Beijing 102206,China
| | - Mingzhi Zhao
- From the ‡State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine, Beijing 102206,China
| | - Chen Deng
- From the ‡State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine, Beijing 102206,China
| | - Qiuyan Lan
- the ¶School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zexian Liu
- the ‖Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; and
| | - Na Su
- From the ‡State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine, Beijing 102206,China
| | - Jingwei Wang
- the ¶School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Feng Xu
- From the ‡State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine, Beijing 102206,China
| | - Yongru Xu
- From the ‡State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine, Beijing 102206,China
| | - Lingyan Ping
- the ¶School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Lei Chang
- From the ‡State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine, Beijing 102206,China
| | - Huiying Gao
- From the ‡State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine, Beijing 102206,China
| | - Junzhu Wu
- the ¶School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu Xue
- the ‖Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; and
| | - Zixin Deng
- the ¶School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Junmin Peng
- the **Departments of Structural Biology and Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Ping Xu
- From the ‡State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine, Beijing 102206,China; the ¶School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China;
| |
Collapse
|
20
|
|
21
|
Abstract
It is well-established that dynamics are central to protein function; their importance is implicitly acknowledged in the principles of the Monod, Wyman and Changeux model of binding cooperativity, which was originally proposed in 1965. Nowadays the concept of protein dynamics is formulated in terms of the energy landscape theory, which can be used to understand protein folding and conformational changes in proteins. Because protein dynamics are so important, a key to understanding protein function at the molecular level is to design experiments that allow their quantitative analysis. Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited for this purpose because major advances in theory, hardware, and experimental methods have made it possible to characterize protein dynamics at an unprecedented level of detail. Unique features of NMR include the ability to quantify dynamics (i) under equilibrium conditions without external perturbations, (ii) using many probes simultaneously, and (iii) over large time intervals. Here we review NMR techniques for quantifying protein dynamics on fast (ps-ns), slow (μs-ms), and very slow (s-min) time scales. These techniques are discussed with reference to some major discoveries in protein science that have been made possible by NMR spectroscopy.
Collapse
|
22
|
Yedidi RS, Fatehi AK, Enenkel C. Proteasome dynamics between proliferation and quiescence stages of Saccharomyces cerevisiae. Crit Rev Biochem Mol Biol 2016; 51:497-512. [PMID: 27677933 DOI: 10.1080/10409238.2016.1230087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a critical role in cellular protein homeostasis and is required for the turnover of short-lived and unwanted proteins, which are targeted by poly-ubiquitination for degradation. Proteasome is the key protease of UPS and consists of multiple subunits, which are organized into a catalytic core particle (CP) and a regulatory particle (RP). In Saccharomyces cerevisiae, proteasome holo-enzymes are engaged in degrading poly-ubiquitinated substrates and are mostly localized in the nucleus during cell proliferation. While in quiescence, the RP and CP are sequestered into motile and reversible storage granules in the cytoplasm, called proteasome storage granules (PSGs). The reversible nature of PSGs allows the proteasomes to be transported back into the nucleus upon exit from quiescence. Nuclear import of RP and CP through nuclear pores occurs via the canonical pathway that includes the importin-αβ heterodimer and takes advantage of the Ran-GTP gradient across the nuclear membrane. Dependent on the growth stage, either inactive precursor complexes or mature holo-enzymes are imported into the nucleus. The present review discusses the dynamics of proteasomes including their assembly, nucleo-cytoplasmic transport during proliferation and the sequestration of proteasomes into PSGs during quiescence. [Formula: see text].
Collapse
Affiliation(s)
| | | | - Cordula Enenkel
- a Department of Biochemistry , University of Toronto , Toronto , Canada
| |
Collapse
|
23
|
|
24
|
Miao M, Niu X, Kud J, Du X, Avila J, Devarenne TP, Kuhl JC, Liu Y, Xiao F. The ubiquitin ligase SEVEN IN ABSENTIA (SINA) ubiquitinates a defense-related NAC transcription factor and is involved in defense signaling. THE NEW PHYTOLOGIST 2016; 211:138-48. [PMID: 26879496 DOI: 10.1111/nph.13890] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/10/2016] [Indexed: 05/18/2023]
Abstract
We recently identified a defense-related tomato (Solanum lycopersicum) NAC (NAM, ATAF1,2, CUC2) transcription factor, NAC1, that is subjected to ubiquitin-proteasome system-dependent degradation in plant cells. In this study, we identified a tomato ubiquitin ligase (termed SEVEN IN ABSENTIA3; SINA3) that ubiquitinates NAC1, promoting its degradation. We conducted coimmunoprecipitation and bimolecular fluorescence complementation to determine that SINA3 specifically interacts with the NAC1 transcription factor in the nucleus. Moreover, we found that SINA3 ubiquitinates NAC1 in vitro and promotes NAC1 degradation via polyubiquitination in vivo, indicating that SINA3 is a ubiquitin ligase that ubiquitinates NAC1, promoting its degradation. Our real-time PCR analysis indicated that, in contrast to our previous finding that NAC1 mRNA abundance increases upon Pseudomonas infection, the SINA3 mRNA abundance decreases in response to Pseudomonas infection. Moreover, using Agrobacterium-mediated transient expression, we found that overexpression of SINA3 interferes with the hypersensitive response cell death triggered by multiple plant resistance proteins. These results suggest that SINA3 ubiquitinates a defense-related NAC transcription factor for degradation and plays a negative role in defense signaling.
Collapse
Affiliation(s)
- Min Miao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339, USA
| | - Xiangli Niu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Joanna Kud
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339, USA
| | - Xinran Du
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339, USA
| | - Julian Avila
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 83844-2339, USA
| | - Timothy P Devarenne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 83844-2339, USA
| | - Joseph C Kuhl
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339, USA
| | - Yongsheng Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Fangming Xiao
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339, USA
| |
Collapse
|
25
|
Kang JH, Lee JS, Hong D, Lee SH, Kim N, Lee WK, Sung TW, Gong YD, Kim SY. Renal cell carcinoma escapes death by p53 depletion through transglutaminase 2-chaperoned autophagy. Cell Death Dis 2016; 7:e2163. [PMID: 27031960 PMCID: PMC4823929 DOI: 10.1038/cddis.2016.14] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 12/17/2022]
Abstract
In renal cell carcinoma, transglutaminase 2 (TGase 2) crosslinks p53 in autophagosomes, resulting in p53 depletion and the tumor's evasion of apoptosis. Inhibition of TGase 2 stabilizes p53 and induces tumor cells to enter apoptosis. This study explored the mechanism of TGase 2-dependent p53 degradation. We found that TGase 2 competes with human double minute 2 homolog (HDM2) for binding to p53; promotes autophagy-dependent p53 degradation in renal cell carcinoma (RCC) cell lines under starvation; and binds to p53 and p62 simultaneously without ubiquitin-dependent recognition of p62. The bound complex does not have crosslinking activity. A binding assay using a series of deletion mutants of p62, p53 and TGase 2 revealed that the PB1 (Phox and Bem1p-1) domain of p62 (residues 85-110) directly interacts with the β-barrel domains of TGase 2 (residues 592-687), whereas the HDM2-binding domain (transactivation domain, residues 15-26) of p53 interacts with the N terminus of TGase 2 (residues 1-139). In addition to the increase in p53 stability due to TGase 2 inhibition, the administration of a DNA-damaging anti-cancer drug such as doxorubicin-induced apoptosis in RCC cell lines and synergistically reduced tumor volume in a xenograft model. Combination therapy with a TGase 2 inhibitor and a DNA-damaging agent may represent an effective therapeutic approach for treating RCC.
Collapse
Affiliation(s)
- J H Kang
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - J-S Lee
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - D Hong
- Cancer Immunology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - S-H Lee
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - N Kim
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea.,Center for Innovative Drug Library Research, Dongguk University, Seoul, Korea
| | - W-K Lee
- Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea
| | - T-W Sung
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Y-D Gong
- Center for Innovative Drug Library Research, Dongguk University, Seoul, Korea
| | - S-Y Kim
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| |
Collapse
|
26
|
Abstract
The ubiquitin-proteasome system is the major degradation pathway for short-lived proteins in eukaryotic cells. Targets of the ubiquitin-proteasome-system are proteins regulating a broad range of cellular processes including cell cycle progression, gene expression, the quality control of proteostasis and the response to geno- and proteotoxic stress. Prior to degradation, the proteasomal substrate is marked with a poly-ubiquitin chain. The key protease of the ubiquitin system is the proteasome. In dividing cells, proteasomes exist as holo-enzymes composed of regulatory and core particles. The regulatory complex confers ubiquitin-recognition and ATP dependence on proteasomal protein degradation. The catalytic sites are located in the proteasome core particle. Proteasome holo-enzymes are predominantly nuclear suggesting a major requirement for proteasomal proteolysis in the nucleus. In cell cycle arrested mammalian or quiescent yeast cells, proteasomes deplete from the nucleus and accumulate in granules at the nuclear envelope (NE) / endoplasmic reticulum ( ER) membranes. In prolonged quiescence, proteasome granules drop off the nuclear envelopeNE / ER membranes and migrate as droplet-like entitiesstable organelles throughout the cytoplasm, as thoroughly investigated in yeast. When quiescence yeast cells are allowed to resume growth, proteasome granules clear and proteasomes are rapidly imported into the nucleus. Here, we summarize our knowledge about the enigmatic structure of proteasome storage granules and the trafficking of proteasomes and their substrates between the cyto- and nucleoplasm. Most of our current knowledge is based on studies in yeast. Their translation to mammalian cells promises to provide keen insight into protein degradation in non-dividing cells, which comprise the majority of our body’s cells.
Collapse
Affiliation(s)
- Maisha Chowdhury
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
27
|
Abstract
The ubiquitin-proteasome system is the major degradation pathway for short-lived proteins in eukaryotic cells. Targets of the ubiquitin-proteasome-system are proteins regulating a broad range of cellular processes including cell cycle progression, gene expression, the quality control of proteostasis and the response to geno- and proteotoxic stress. Prior to degradation, the proteasomal substrate is marked with a poly-ubiquitin chain. The key protease of the ubiquitin system is the proteasome. In dividing cells, proteasomes exist as holo-enzymes composed of regulatory and core particles. The regulatory complex confers ubiquitin-recognition and ATP dependence on proteasomal protein degradation. The catalytic sites are located in the proteasome core particle. Proteasome holo-enzymes are predominantly nuclear suggesting a major requirement for proteasomal proteolysis in the nucleus. In cell cycle arrested mammalian or quiescent yeast cells, proteasomes deplete from the nucleus and accumulate in granules at the nuclear envelope (NE) / endoplasmic reticulum ( ER) membranes. In prolonged quiescence, proteasome granules drop off the nuclear envelopeNE / ER membranes and migrate as droplet-like entitiesstable organelles throughout the cytoplasm, as thoroughly investigated in yeast. When quiescence yeast cells are allowed to resume growth, proteasome granules clear and proteasomes are rapidly imported into the nucleus. Here, we summarize our knowledge about the enigmatic structure of proteasome storage granules and the trafficking of proteasomes and their substrates between the cyto- and nucleoplasm. Most of our current knowledge is based on studies in yeast. Their translation to mammalian cells promises to provide keen insight into protein degradation in non-dividing cells, which comprise the majority of our body's cells.
Collapse
Affiliation(s)
- Maisha Chowdhury
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
28
|
Xiong Y, Liu C, Zhao Y. Decoding Ci: from partial degradation to inhibition. Dev Growth Differ 2014; 57:98-108. [PMID: 25495033 DOI: 10.1111/dgd.12187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 11/28/2022]
Abstract
Hedgehog is a morphogen, which is widely involved in the regulation of cell proliferation, differentiation and tissue patterning during development in both vertebrate and invertebrate, such as in coordination of eye, brain, gonad, gut and tracheal development. In invertebrate, Cubitus interruptus (Ci) modification process is the last identified step before transcriptional activation in the Hh signaling pathway. Ci can form a truncated repressor (Ci(R) /Ci75) or act as an activator (Ci(A) /Ci155) based on Hh gradient to regulate the expressions of target genes. The activity of Ci is mediated by different mechanisms, including processing, trafficking and degradation. While in vertebrate, Glioblastomas (Glis), homologs of Ci, play similar but more complex roles in the regulation of mammals Hh pathway. Hh signaling is responsible for a wide variety of processes during embryonic development and adult tissue homeostasis. Malfunction of Hh signaling could cause various diseases including birth defects and cancers. Enormous efforts were made in the past decades to explore the Hh pathway regulation and the results have provided us important insights into disease diagnosis and therapeutic treatment. In this review, we focus on a small branch of Hh pathway regulation based on studies in the Drosophila system, mainly about Ci degradation, aiming to explain how Ci is modified by different ubiquitin ligases due to the strong or moderate Hh signals and then been subjected to complete or partial degradation by proteasomes. Overall, we intend to offer an overview on how Ci responds to and relays Hh signals in a precise manner to control target genes expressions and ensures proper Hh signal transduction.
Collapse
Affiliation(s)
- Yue Xiong
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | |
Collapse
|
29
|
Ren RJ, Dammer EB, Wang G, Seyfried NT, Levey AI. Proteomics of protein post-translational modifications implicated in neurodegeneration. Transl Neurodegener 2014; 3:23. [PMID: 25671099 PMCID: PMC4323146 DOI: 10.1186/2047-9158-3-23] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022] Open
Abstract
Mass spectrometry (MS)-based proteomics has developed into a battery of approaches that is exceedingly adept at identifying with high mass accuracy and precision any of the following: oxidative damage to proteins (redox proteomics), phosphorylation (phosphoproteomics), ubiquitination (diglycine remnant proteomics), protein fragmentation (degradomics), and other posttranslational modifications (PTMs). Many studies have linked these PTMs to pathogenic mechanisms of neurodegeneration. To date, identifying PTMs on specific pathology-associated proteins has proven to be a valuable step in the evaluation of functional alteration of proteins and also elucidates biochemical and structural explanations for possible pathophysiological mechanisms of neurodegenerative diseases. This review provides an overview of methods applicable to the identification and quantification of PTMs on proteins and enumerates historic, recent, and potential future research endeavours in the field of proteomics furthering the understanding of PTM roles in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Ru-Jing Ren
- />Department of Neurology,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Eric B Dammer
- />Department of Biochemistry, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Gang Wang
- />Department of Pharmacology, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Nicholas T Seyfried
- />Department of Neurology,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
- />Department of Biochemistry, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
- />Emory Proteomics Service Center, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Allan I Levey
- />Department of Neurology,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
30
|
Doshi A, Mishra P, Sharma M, Prabha CR. Functional characterization of dosage-dependent lethal mutation of ubiquitin in Saccharomyces cerevisiae. FEMS Yeast Res 2014; 14:1080-9. [PMID: 25195938 DOI: 10.1111/1567-1364.12209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 08/20/2014] [Accepted: 08/25/2014] [Indexed: 11/28/2022] Open
Abstract
Ubiquitin is a eukaryotic protein with 96% sequence conservation from yeast to human. Ubiquitin plays a central role in protein homeostasis and regulation of protein function. We have reported on the generation of variants of ubiquitin by in vitro evolution in Saccharomyces cerevisiae to advance our understanding of the role of the invariant amino acid residues of ubiquitin in relation to its function. One of the mutants generated, namely UbEP42, was a dosage-dependent lethal form of the ubiquitin gene, causing lethality to UBI4-deficient cells but not to ubiquitin wild-type cells. In the present study we investigated the functional reasons for the observed lethality. Expression of UbEP42 in a UBI4-deleted stress-sensitive strain resulted in an increased generation time due to a delayed S phase caused by decreased levels of Cdc28 protein kinase. Cells expressing UbEP42 displayed heightened sensitivity towards heat stress and exposure to cycloheximide. Furthermore, its expression had a negative effect on the degradation of substrates of the ubiquitin fusion degradation pathway. However, UbEP42 is incorporated into polyubiquitin chains. Collectively, our results establish that the effects seen with the mutant ubiquitin protein UbEP42 are not due to malfunction at the stage of polyubiquitination.
Collapse
Affiliation(s)
- Ankita Doshi
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | | | | | | |
Collapse
|
31
|
Arrigoni A, Bertini L, De Gioia L, Papaleo E. Inhibitors of the Cdc34 acidic loop: A computational investigation integrating molecular dynamics, virtual screening and docking approaches. FEBS Open Bio 2014; 4:473-84. [PMID: 24918063 PMCID: PMC4050183 DOI: 10.1016/j.fob.2014.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 11/20/2022] Open
Abstract
Cdc34 is an E2 enzyme involved in protein ubiquitination and associated with some cancers. Cdc34 activity is modulated by phosphorylation-induced conformational changes of the acidic loop. We used computational approaches to identify potential inhibitory compounds for Cdc34. These inhibitors as molecular hinges stabilizing the acid loop in its inactive, closed conformation.
Among the different classes of enzymes involved in the ubiquitin pathway, E2 ubiquitin-conjugating enzymes occupy a central role in the ubiquitination cascade. Cdc34-like E2 enzymes are characterized by a 12–14 residue insertion in the proximity of the catalytic site, known as the acidic loop. Cdc34 ubiquitin-charging activity is regulated by CK2-dependent phosphorylation and the regulatory mechanism involves the acidic loop. Indeed, the phosphorylation stabilizes the loop in an open conformation that is competent for ubiquitin charging. Cdc34 is associated with a variety of diseases, such as hepatocellular carcinomas and prostatic adenocarcinomas. In light of its role, the discovery of potential inhibitory compounds would provide the mean to effectively modulate its activity. Here, we carried out a computational study based on molecular dynamics, virtual screening and docking to identify potential inhibitory compounds of Cdc34, modulating the acidic loop conformation. The molecules identified in this study have been designed to act as molecular hinges that can bind the acidic loop in its closed conformation, thus inhibiting the Cdc34-mediated ubiquitination cascade at the ubiquitin-charging step. In particular, we proposed a pharmacophore model featuring two amino groups in the central part of the model and two lateral aromatic chains, which respectively establish electrostatic interactions with the acidic loop (Asp 108 and Glu 109) and a hydrogen bond with Ser 139, which is one of the key residues for Cdc34 activity.
Collapse
Affiliation(s)
- Alberto Arrigoni
- Corresponding authors. Current address: Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark (E. Papaleo).
| | | | | | - Elena Papaleo
- Corresponding authors. Current address: Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark (E. Papaleo).
| |
Collapse
|
32
|
Differential ubiquitination and degradation of huntingtin fragments modulated by ubiquitin-protein ligase E3A. Proc Natl Acad Sci U S A 2014; 111:5706-11. [PMID: 24706802 DOI: 10.1073/pnas.1402215111] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ubiquitination of misfolded proteins, a common feature of many neurodegenerative diseases, is mediated by different lysine (K) residues in ubiquitin and alters the levels of toxic proteins. In Huntington disease, polyglutamine expansion causes N-terminal huntingtin (Htt) to misfold, inducing neurodegeneration. Here we report that shorter N-terminal Htt fragments are more stable than longer fragments and find differential ubiquitination via K63 of ubiquitin. Aging decreases proteasome-mediated Htt degradation, at the same time increasing K63-mediated ubiquitination and subsequent Htt aggregation in HD knock-in mice. The association of Htt with the K48-specific E3 ligase, Ube3a, is decreased in aged mouse brain. Overexpression of Ube3a in HD mouse brain reduces K63-mediated ubiquitination and Htt aggregation, enhancing its degradation via the K48 ubiquitin-proteasome system. Our findings suggest that aging-dependent Ube3a levels result in differential ubiquitination and degradation of Htt fragments, thereby contributing to the age-related neurotoxicity of mutant Htt.
Collapse
|
33
|
Lim KH, Kim SR, Ramakrishna S, Baek KH. Critical lysine residues of Klf4 required for protein stabilization and degradation. Biochem Biophys Res Commun 2014; 443:1206-10. [PMID: 24388984 DOI: 10.1016/j.bbrc.2013.12.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/22/2013] [Indexed: 11/26/2022]
Abstract
The transcription factor, Krüppel-like factor 4 (Klf4) plays a crucial role in generating induced pluripotent stem cells (iPSCs). As the ubiquitination and degradation of the Klf4 protein have been suggested to play an important role in its function, the identification of specific lysine sites that are responsible for protein degradation is of prime interest to improve protein stability and function. However, the molecular mechanism regulating proteasomal degradation of the Klf4 is poorly understood. In this study, both the analysis of Klf4 ubiquitination sites using several Klf4 deletion fragments and bioinformatics predictions showed that the lysine sites which are signaling for Klf4 protein degradation lie in its N-terminal domain (aa 1-296). The results also showed that Lys32, 52, 232, and 252 of Klf4 are responsible for the proteolysis of the Klf4 protein. These results suggest that Klf4 undergoes proteasomal degradation and that these lysine residues are critical for Klf4 ubiquitination.
Collapse
Affiliation(s)
- Key-Hwan Lim
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-840, Republic of Korea
| | - So-Ra Kim
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-840, Republic of Korea
| | - Suresh Ramakrishna
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-840, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-840, Republic of Korea.
| |
Collapse
|
34
|
Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12. Proc Natl Acad Sci U S A 2013; 110:18844-9. [PMID: 24191030 DOI: 10.1073/pnas.1314755110] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The autophagic ubiquitin-like protein (ublp) autophagy-related (ATG)12 is a component of the ATG12∼ATG5-ATG16L1 E3 complex that promotes lipid conjugation of members of the LC3 ublp family. A role of ATG12 in the E3 complex is to recruit the E2 enzyme ATG3. Here we report the identification of the ATG12 binding sequence in the flexible region of human ATG3 and the crystal structure of the minimal E3 complexed with the identified binding fragment of ATG3. The structure shows that 13 residues of the ATG3 fragment form a short β-strand followed by an α-helix on a surface area that is exclusive to ATG12. Mutational analyses of ATG3 confirm that four residues whose side chains make contacts with ATG12 are important for E3 interaction as well as LC3 lipidation. Conservation of these four critical residues is high in metazoan organisms and plants but lower in fungi. A structural comparison reveals that the ATG3 binding surface on ATG12 contains a hydrophobic pocket corresponding to the binding pocket of LC3 that accommodates the leucine of the LC3-interacting region motif. These findings establish the mechanism of ATG3 recruitment by ATG12 in higher eukaryotes and place ATG12 among the members of signaling ublps that bind liner sequences.
Collapse
|
35
|
Fuchs SY. Hope and fear for interferon: the receptor-centric outlook on the future of interferon therapy. J Interferon Cytokine Res 2013; 33:211-25. [PMID: 23570388 DOI: 10.1089/jir.2012.0117] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
After several decades of intense clinical research, the great promise of Type I interferons (IFN1) as the anticancer wonder drugs that could cure or, at the very least, curb the progression of various oncological diseases has regrettably failed to deliver. Severe side effects and low efficacy of IFN1-based pharmaceutics greatly limited use of these drugs and further reduced the enthusiasm of clinical oncologists for future optimization of IFN1-based therapeutic modalities. Incredibly, extensive clinical studies to assess the efficacy of IFN1 alone or in combination with other anticancer drugs have not been paralleled by an equal scope in defining the determinants that confer cell sensitivity or refractoriness to IFN1. Given that all effects of IFN1 on malignant and benign cells alike are mediated by its receptor, the mechanisms regulating these receptor cell surface levels should play a paramount role in shaping the magnitude and duration of IFN1-elicited effects. These mechanisms and their role in controlling IFN1 responses, as well as an ability of a growing tumor to commandeer these events, are the focus of our review. We postulate that activation of numerous signaling pathways leading to elimination of IFN1 receptor occurs in cancer cells and benign cells that contribute to tumor tissue. We further hypothesize that activation of these eliminative pathways enables the escape from IFN1-driven suppression of tumorigenesis and elicits the primary refractoriness of tumor to the pharmaceutical IFN1.
Collapse
Affiliation(s)
- Serge Y Fuchs
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, PA 19104-4539, USA.
| |
Collapse
|
36
|
Gotesman M, Soliman H, El-Matbouli M. Antibody screening identifies 78 putative host proteins involved in Cyprinid herpesvirus 3 infection or propagation in common carp, Cyprinus carpio L. JOURNAL OF FISH DISEASES 2013; 36:721-33. [PMID: 23347276 PMCID: PMC3961710 DOI: 10.1111/jfd.12073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/16/2012] [Accepted: 11/17/2012] [Indexed: 05/15/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a serious and notifiable disease afflicting common and koi carp, Cyprinus carpio L., termed koi herpesvirus disease (KHVD). Significant progress has been achieved in the last 15 years, since the initial reports surfaced from Germany, USA and Israel of the CyHV-3 virus, in terms of pathology and detection. However, relatively few studies have been carried out in understanding viral replication and propagation. Antibody-based affinity has been used for detection of CyHV-3 in enzyme-linked immunosorbent assay and PCR-based techniques, and immunohistological assays have been used to describe a CyHV-3 membrane protein, termed ORF81. In this study, monoclonal antibodies linked to N-hydroxysuccinimide (NHS)-activated spin columns were used to purify CyHV-3 and host proteins from tissue samples originating in either CyHV-3 symptomatic or asymptomatic fish. The samples were next analysed either by polyacrylamide gel electrophoresis (PAGE) and subsequently by electrospray ionization coupled to mass spectrometry (ESI-MS) or by ESI-MS analysis directly after purification. A total of 78 host proteins and five CyHV-3 proteins were identified in the two analyses. These data can be used to develop novel control methods for CyHV-3, based on pathways or proteins identified in this study.
Collapse
Affiliation(s)
- M Gotesman
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | | | | |
Collapse
|
37
|
|
38
|
Kim DY, Scalf M, Smith LM, Vierstra RD. Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis. THE PLANT CELL 2013; 25:1523-40. [PMID: 23667124 PMCID: PMC3694690 DOI: 10.1105/tpc.112.108613] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 05/18/2023]
Abstract
The posttranslational addition of ubiquitin (Ub) profoundly controls the half-life, interactions, and/or trafficking of numerous intracellular proteins. Using stringent two-step affinity methods to purify Ub-protein conjugates followed by high-sensitivity mass spectrometry, we identified almost 950 ubiquitylation substrates in whole Arabidopsis thaliana seedlings. The list includes key factors regulating a wide range of biological processes, including metabolism, cellular transport, signal transduction, transcription, RNA biology, translation, and proteolysis. The ubiquitylation state of more than half of the targets increased after treating seedlings with the proteasome inhibitor MG132 (carbobenzoxy-Leu-Leu-Leu-al), strongly suggesting that Ub addition commits many to degradation by the 26S proteasome. Ub-attachment sites were resolved for a number of targets, including six of the seven Lys residues on Ub itself with a Lys-48>Lys-63>Lys-11>>>Lys-33/Lys-29/Lys-6 preference. However, little sequence consensus was detected among conjugation sites, indicating that the local environment has little influence on global ubiquitylation. Intriguingly, the level of Lys-11-linked Ub polymers increased substantially upon MG132 treatment, revealing that they might be important signals for proteasomal breakdown. Taken together, this proteomic analysis illustrates the breadth of plant processes affected by ubiquitylation and provides a deep data set of individual targets from which to explore the roles of Ub in various physiological and developmental pathways.
Collapse
Affiliation(s)
- Do-Young Kim
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Mark Scalf
- Department of Chemistry,University of Wisconsin, Madison, Wisconsin 53706
| | - Lloyd M. Smith
- Department of Chemistry,University of Wisconsin, Madison, Wisconsin 53706
| | - Richard D. Vierstra
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
- Address correspondence to
| |
Collapse
|
39
|
Ma T, Chen Y, Zhang F, Yang CY, Wang S, Yu X. RNF111-dependent neddylation activates DNA damage-induced ubiquitination. Mol Cell 2013; 49:897-907. [PMID: 23394999 DOI: 10.1016/j.molcel.2013.01.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 09/24/2012] [Accepted: 01/04/2013] [Indexed: 11/30/2022]
Abstract
Ubiquitin-like proteins have been shown to be covalently conjugated to targets. However, the functions of these ubiquitin-like proteins are largely unknown. Here, we have screened most known ubiquitin-like proteins after DNA damage and found that NEDD8 is involved in the DNA damage response. Following various DNA damage stimuli, NEDD8 accumulated at DNA damage sites; this accumulation was dependent on an E2 enzyme (UBE2M) and an E3 ubiquitin ligase (RNF111). We further found that histone H4 was polyneddylated in response to DNA damage, and NEDD8 was conjugated to the N-terminal lysine residues of H4. Interestingly, the DNA damage-induced polyneddylation chain could be recognized by the MIU (motif interacting with ubiquitin) domain of RNF168. Loss of DNA damage-induced neddylation negatively regulated DNA damage-induced foci formation of RNF168 and its downstream functional partners, such as 53BP1 and BRCA1, thus affecting the normal DNA damage repair process.
Collapse
Affiliation(s)
- Teng Ma
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
40
|
Subramani S, Malhotra V. Non-autophagic roles of autophagy-related proteins. EMBO Rep 2013; 14:143-51. [PMID: 23337627 PMCID: PMC3566844 DOI: 10.1038/embor.2012.220] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/10/2012] [Indexed: 01/10/2023] Open
Abstract
Autophagy and autophagy-related processes are fundamentally important in human health and disease. These processes are viewed primarily as cellular degradative pathways that recycle macromolecules and dysfunctional or redundant organelles into amino acids, sugars and lipids, especially during starvation. However, the ubiquitin-like autophagy proteins and other components of the autophagic machinery additionally participate in cellular reprogramming. We highlight these non-autophagic roles of autophagy proteins with the aim of drawing attention to this growing, but unexplored, research topic. We focus on the non-autophagic functions of autophagy proteins in cell survival and apoptosis, modulation of cellular traffic, protein secretion, cell signalling, transcription, translation and membrane reorganization.
Collapse
Affiliation(s)
- Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, California 92093-0322, USA.
| | | |
Collapse
|
41
|
Neddylation pathway regulates T-cell function by targeting an adaptor protein Shc and a protein kinase Erk signaling. Proc Natl Acad Sci U S A 2012; 110:624-9. [PMID: 23267066 DOI: 10.1073/pnas.1213819110] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NEDD8 (neural precursor cell expressed, developmentally down-regulated 8) is a ubiquitin-like molecule whose action on modifying protein substrates is critical in various cellular functions but whose importance in the immune system is not well understood. Here we investigated the role of protein neddylation in regulating T-cell function using an in vivo knockdown technique. We found that reduced expression of Ubc12 in CD4(+) T cells led to impaired T-cell receptor/CD28-induced proliferation and cytokine production both in vitro and in vivo, accompanied by reduced Erk activation. These findings were recapitulated by treatment with MLN4924, an inhibitor of NEDD8-activating enzyme. Furthermore, Shc, an adaptor molecule between antigen receptors and the Ras/Erk pathway, was identified as a target for neddylation. Importantly, mice adoptively transferred with Ubc12 knockdown CD4(+) T cells showed markedly ameliorated allergic responses. This study thus identifies an important role for protein neddylation in T-cell function, which may serve as a therapeutic target for inflammatory diseases.
Collapse
|
42
|
Lu CS, Truong LN, Aslanian A, Shi LZ, Li Y, Hwang PYH, Koh KH, Hunter T, Yates JR, Berns MW, Wu X. The RING finger protein RNF8 ubiquitinates Nbs1 to promote DNA double-strand break repair by homologous recombination. J Biol Chem 2012; 287:43984-94. [PMID: 23115235 DOI: 10.1074/jbc.m112.421545] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ubiquitination plays an important role in the DNA damage response. We identified a novel interaction of the E3 ubiquitin ligase RNF8 with Nbs1, a key regulator of DNA double-strand break (DSB) repair. We found that Nbs1 is ubiquitinated both before and after DNA damage and is a direct ubiquitination substrate of RNF8. We also identified key residues on Nbs1 that are ubiquitinated by RNF8. By using laser microirradiation and live-cell imaging, we observed that RNF8 and its ubiquitination activity are important for promoting optimal binding of Nbs1 to DSB-containing chromatin. We also demonstrated that RNF8-mediated ubiquitination of Nbs1 contributes to the efficient and stable binding of Nbs1 to DSBs and is important for HR-mediated DSB repair. Taken together, these studies suggest that Nbs1 is one important target of RNF8 to regulate DNA DSB repair.
Collapse
Affiliation(s)
- Chi-Sheng Lu
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Aikawa Y, Hirakawa H, Lee S. Spatiotemporal regulation of the ubiquitinated cargo-binding activity of Rabex-5 in the endocytic pathway. J Biol Chem 2012; 287:40586-97. [PMID: 23048039 DOI: 10.1074/jbc.m112.411793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The regulatory mechanism underlying the interaction of the Rabex-5 MIU domain with ubiquitinated cargos remains unclear. RESULTS Rabex-5 guanine nucleotide exchange factor (GEF) mutants affected interactions of ubiquitinated cargos. CONCLUSION GDP/GTP exchange in the GEF domain controls the MIU domain interactions with the ubiquitinated cargos. SIGNIFICANCE Rabex-5 GEF activity acts as an intramolecular switch for spatiotemporal trafficking of the ubiquitinated cargos. Ubiquitin (Ub)-dependent endocytosis of membrane proteins requires precise molecular recognition of ubiquitinated cargo by Ub-binding proteins (UBPs). Many UBPs are often themselves monoubiquitinated, a mechanism referred to as coupled monoubiquitination, which prevents them from binding in trans to the ubiquitinated cargo. However, the spatiotemporal regulatory mechanism underlying the interaction of UBPs with the ubiquitinated cargo, via their Ub-binding domains (UBDs) remains unclear. Previously, we reported the interaction of Rabex-5, a UBP and guanine nucleotide exchange factor (GEF) for Rab5, with ubiquitinated neural cell adhesion molecule L1, via its motif interacting with Ub (MIU) domain. This interaction is critical for the internalization and sorting of the ubiquitinated L1 into endosomal/lysosomal compartments. The present study demonstrated that the interaction of Rabex-5 with Rab5 depends specifically on interaction of the MIU domain with the ubiquitinated L1 to drive its internalization. Notably, impaired GEF mutants and the Rabex-5(E213A) mutant increased the flexibility of the hinge region in the HB-VPS9 tandem domain, which significantly affected their interactions with the ubiquitinated L1. In addition, GEF mutants increased the catalytic efficiency, which resulted in a reduced interaction with the ubiquitinated L1. Furthermore, the coupled monoubiquitination status of Rabex-5 was found to be significantly associated with interaction of Rabex-5 and the ubiquitinated L1. Collectively, our study reveals a novel mechanism, wherein the GEF activity of Rabex-5 acts as an intramolecular switch orchestrating ubiquitinated cargo-binding activity and coupled monoubiquitination to permit the spatiotemporal dynamic exchange of the ubiquitinated cargos.
Collapse
Affiliation(s)
- Yoshikatsu Aikawa
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, 1-3 Miyakodani, Kyotanabe, Kyoto 610-0394, Japan.
| | | | | |
Collapse
|
44
|
Vierstra RD. The expanding universe of ubiquitin and ubiquitin-like modifiers. PLANT PHYSIOLOGY 2012; 160:2-14. [PMID: 22693286 PMCID: PMC3440198 DOI: 10.1104/pp.112.200667] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 06/09/2012] [Indexed: 05/18/2023]
Affiliation(s)
- Richard D Vierstra
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA.
| |
Collapse
|
45
|
The multifaceted oncoprotein Tax: subcellular localization, posttranslational modifications, and NF-κB activation. Adv Cancer Res 2012; 113:85-120. [PMID: 22429853 DOI: 10.1016/b978-0-12-394280-7.00003-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human T-cell lymphotropic virus type-I (HTLV-I) is the etiologic agent of adult T-cell leukemia/lymphoma (ATL) and of tropical spastic paraparesis/HTLV-I-associated myelopathy. Constitutive NF-κB activation by the viral oncoprotein Tax plays a crucial role in the induction and maintenance of cellular proliferation, transformation, and inhibition of apoptosis. In an attempt to provide a general view of the molecular mechanisms of constitutive Tax-induced NF-κB activation, we summarize in this review the recent body of literature that supports a major role for Tax posttranslational modifications, chiefly ubiquitination, and SUMOylation, in the NF-κB activity of Tax. These modifications indeed participate in the control of Tax subcellular localization and modulate its protein-protein interaction potential. Tax posttranslational modifications, which highlight the ability of HTLV-I to optimize its limited viral genome size, might represent an attractive target for the design of new therapies for ATL.
Collapse
|
46
|
Structural insights into specificity and diversity in mechanisms of ubiquitin recognition by ubiquitin-binding domains. Biochem Soc Trans 2012; 40:404-8. [PMID: 22435820 DOI: 10.1042/bst20110729] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UBDs [Ub (ubiquitin)-binding domains], which are typically small protein motifs of <50 residues, are used by receptor proteins to transduce post-translational Ub modifications in a wide range of biological processes, including NF-κB (nuclear factor κB) signalling and proteasomal degradation pathways. More than 20 families of UBDs have now been characterized in structural detail and, although many recognize the canonical Ile44/Val70-binding patch on Ub, a smaller number have alternative Ub-recognition sites. The A20 Znf (A20-like zinc finger) of the ZNF216 protein is one of the latter and binds with high affinity to a polar site on Ub centred around Asp58/Gln62. ZNF216 shares some biological function with p62, with both linked to NF-κB signal activation and as shuttle proteins in proteasomal degradation pathways. The UBA domain (Ub-associated domain) of p62, although binding to Ub through the Ile44/Val70 patch, is unique in forming a stable dimer that negatively regulates Ub recognition. We show that the A20 Znf and UBA domain are able to form a ternary complex through independent interactions with a single Ub molecule, supporting functional models for Ub as a 'hub' for mediating multi-protein complex assembly and for enhancing signalling specificity.
Collapse
|
47
|
Yagi H, Ishimoto K, Hiromoto T, Fujita H, Mizushima T, Uekusa Y, Yagi-Utsumi M, Kurimoto E, Noda M, Uchiyama S, Tokunaga F, Iwai K, Kato K. A non-canonical UBA-UBL interaction forms the linear-ubiquitin-chain assembly complex. EMBO Rep 2012; 13:462-8. [PMID: 22430200 DOI: 10.1038/embor.2012.24] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/29/2012] [Accepted: 02/10/2012] [Indexed: 12/25/2022] Open
Abstract
HOIL-1L and its binding partner HOIP are essential components of the E3-ligase complex that generates linear ubiquitin (Ub) chains, which are critical regulators of NF-κB activation. Using crystallographic and mutational approaches, we characterize the unexpected structural basis for the specific interaction between the Ub-like domain (UBL) of HOIL-1L and the Ub-associated domain (UBA) of HOIP. Our data indicate the functional significance of this non-canonical mode of UBA-UBL interaction in E3 complex formation and subsequent NF-κB activation. This study highlights the versatility and specificity of protein-protein interactions involving Ub/UBLs and their cognate proteins.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Receptor proteins in selective autophagy. Int J Cell Biol 2012; 2012:673290. [PMID: 22536250 PMCID: PMC3320096 DOI: 10.1155/2012/673290] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 12/17/2011] [Indexed: 01/07/2023] Open
Abstract
Autophagy has long been thought to be an essential but unselective bulk degradation pathway. However, increasing evidence suggests selective autophagosomal turnover of a broad range of substrates. Bifunctional autophagy receptors play a key role in selective autophagy by tethering cargo to the site of autophagosomal engulfment. While the identity of molecular components involved in selective autophagy has been revealed at least to some extent, we are only beginning to understand how selectivity is achieved in this process. Here, we summarize the mechanistic and structural basis of receptor-mediated selective autophagy.
Collapse
|
49
|
Walczak H, Iwai K, Dikic I. Generation and physiological roles of linear ubiquitin chains. BMC Biol 2012; 10:23. [PMID: 22420778 PMCID: PMC3305636 DOI: 10.1186/1741-7007-10-23] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/15/2012] [Indexed: 12/11/2022] Open
Abstract
Ubiquitination now ranks with phosphorylation as one of the best-studied post-translational modifications of proteins with broad regulatory roles across all of biology. Ubiquitination usually involves the addition of ubiquitin chains to target protein molecules, and these may be of eight different types, seven of which involve the linkage of one of the seven internal lysine (K) residues in one ubiquitin molecule to the carboxy-terminal diglycine of the next. In the eighth, the so-called linear ubiquitin chains, the linkage is between the amino-terminal amino group of methionine on a ubiquitin that is conjugated with a target protein and the carboxy-terminal carboxy group of the incoming ubiquitin. Physiological roles are well established for K48-linked chains, which are essential for signaling proteasomal degradation of proteins, and for K63-linked chains, which play a part in recruitment of DNA repair enzymes, cell signaling and endocytosis. We focus here on linear ubiquitin chains, how they are assembled, and how three different avenues of research have indicated physiological roles for linear ubiquitination in innate and adaptive immunity and suppression of inflammation.
Collapse
Affiliation(s)
- Henning Walczak
- Tumour Immunology Unit, Department of Medicine, Imperial College London, 10N5 Commonwealth Building, Du Cane Road, London W12 0NN, UK.
| | | | | |
Collapse
|
50
|
Babour A, Dargemont C, Stutz F. Ubiquitin and assembly of export competent mRNP. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:521-30. [PMID: 22240387 DOI: 10.1016/j.bbagrm.2011.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 11/24/2022]
Abstract
The production of mature and export competent mRNP (mRNA ribonucleoprotein) complexes depends on a series of highly coordinated processing reactions. RNA polymerase II (RNAPII) plays a central role in this process by mediating the sequential recruitment of mRNA maturation and export factors to transcribing genes, thereby establishing a strong functional link between transcription and export through nuclear pore complexes (NPC). Growing evidence indicates that post-translational modifications participate in the dynamic association of processing and export factors with mRNAs ensuring that the transitions and rearrangements undergone by the mRNP occur at the right time and place. This review mainly focuses on the role of ubiquitin conjugation in controlling mRNP assembly and quality control from transcription down to export through the NPC. It emphasizes the central role of ubiquitylation in organizing the chronology of events along this highly dynamic pathway. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Anna Babour
- Institut Jacques Monod, Université Paris Diderot, CNRS, Bâtiment Buffon, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | |
Collapse
|