1
|
Harman A, Bryan TM. Telomere maintenance and the DNA damage response: a paradoxical alliance. Front Cell Dev Biol 2024; 12:1472906. [PMID: 39483338 PMCID: PMC11524846 DOI: 10.3389/fcell.2024.1472906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Telomeres are the protective caps at the ends of linear chromosomes of eukaryotic organisms. Telomere binding proteins, including the six components of the complex known as shelterin, mediate the protective function of telomeres. They do this by suppressing many arms of the canonical DNA damage response, thereby preventing inappropriate fusion, resection and recombination of telomeres. One way this is achieved is by facilitation of DNA replication through telomeres, thus protecting against a "replication stress" response and activation of the master kinase ATR. On the other hand, DNA damage responses, including replication stress and ATR, serve a positive role at telomeres, acting as a trigger for recruitment of the telomere-elongating enzyme telomerase to counteract telomere loss. We postulate that repression of telomeric replication stress is a shared mechanism of control of telomerase recruitment and telomere length, common to several core telomere binding proteins including TRF1, POT1 and CTC1. The mechanisms by which replication stress and ATR cause recruitment of telomerase are not fully elucidated, but involve formation of nuclear actin filaments that serve as anchors for stressed telomeres. Perturbed control of telomeric replication stress by mutations in core telomere binding proteins can therefore cause the deregulation of telomere length control characteristic of diseases such as cancer and telomere biology disorders.
Collapse
Affiliation(s)
| | - Tracy M. Bryan
- Cell Biology Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
2
|
Liang F, Rai R, Sodeinde T, Chang S. TRF2-RAP1 represses RAD51-dependent homology-directed telomere repair by promoting BLM-mediated D-loop unwinding and inhibiting BLM-DNA2-dependent 5'-end resection. Nucleic Acids Res 2024; 52:9695-9709. [PMID: 39082275 PMCID: PMC11381343 DOI: 10.1093/nar/gkae642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 09/10/2024] Open
Abstract
Inappropriate homology-directed repair (HDR) of telomeres results in catastrophic telomere loss and aberrant chromosome fusions, leading to genome instability. We have previously shown that the TRF2-RAP1 heterodimer protects telomeres from engaging in aberrant telomere HDR. Cells lacking the basic domain of TRF2 and functional RAP1 display HDR-mediated telomere clustering, resulting in the formation of ultrabright telomeres (UTs) and massive chromosome fusions. Using purified proteins, we uncover three distinct molecular pathways that the TRF2-RAP1 heterodimer utilizes to protect telomeres from engaging in aberrant HDR. We show mechanistically that TRF2-RAP1 inhibits RAD51-initiated telomeric D-loop formation. Both the TRF2 basic domain and RAP1-binding to TRF2 are required to block RAD51-mediated homology search. TRF2 recruits the BLM helicase to telomeres through its TRFH domain to promote BLM-mediated unwinding of telomere D-loops. In addition, TRF2-RAP1 inhibits BLM-DNA2-mediated 5' telomere end resection, preventing the generation of 3' single-stranded telomere overhangs necessary for RAD51-dependent HDR. Importantly, cells expressing BLM mutants unable to interact with TRF2 accumulate telomere D-loops and UTs. Our findings uncover distinct molecular mechanisms coordinated by TRF2-RAP1 to protect telomeres from engaging in aberrant HDR.
Collapse
Affiliation(s)
- Fengshan Liang
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
| | - Rekha Rai
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
| | - Tori Sodeinde
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
| | - Sandy Chang
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
- Pathology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
| |
Collapse
|
3
|
Deb S, Berei J, Miliavski E, Khan MJ, Broder TJ, Akurugo TA, Lund C, Fleming SE, Hillwig R, Ross J, Puri N. The Effects of Smoking on Telomere Length, Induction of Oncogenic Stress, and Chronic Inflammatory Responses Leading to Aging. Cells 2024; 13:884. [PMID: 38891017 PMCID: PMC11172003 DOI: 10.3390/cells13110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
Telomeres, potential biomarkers of aging, are known to shorten with continued cigarette smoke exposure. In order to further investigate this process and its impact on cellular stress and inflammation, we used an in vitro model with cigarette smoke extract (CSE) and observed the downregulation of telomere stabilizing TRF2 and POT1 genes after CSE treatment. hTERT is a subunit of telomerase and a well-known oncogenic marker, which is overexpressed in over 85% of cancers and may contribute to lung cancer development in smokers. We also observed an increase in hTERT and ISG15 expression levels after CSE treatment, as well as increased protein levels revealed by immunohistochemical staining in smokers' lung tissue samples compared to non-smokers. The effects of ISG15 overexpression were further studied by quantifying IFN-γ, an inflammatory protein induced by ISG15, which showed greater upregulation in smokers compared to non-smokers. Similar changes in gene expression patterns for TRF2, POT1, hTERT, and ISG15 were observed in blood and buccal swab samples from smokers compared to non-smokers. The results from this study provide insight into the mechanisms behind smoking causing telomere shortening and how this may contribute to the induction of inflammation and/or tumorigenesis, which may lead to comorbidities in smokers.
Collapse
Affiliation(s)
- Shreya Deb
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (S.D.); (J.B.); (E.M.); (M.J.K.); (T.J.B.); (T.A.A.); (C.L.)
| | - Joseph Berei
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (S.D.); (J.B.); (E.M.); (M.J.K.); (T.J.B.); (T.A.A.); (C.L.)
| | - Edward Miliavski
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (S.D.); (J.B.); (E.M.); (M.J.K.); (T.J.B.); (T.A.A.); (C.L.)
| | - Muhammad J. Khan
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (S.D.); (J.B.); (E.M.); (M.J.K.); (T.J.B.); (T.A.A.); (C.L.)
| | - Taylor J. Broder
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (S.D.); (J.B.); (E.M.); (M.J.K.); (T.J.B.); (T.A.A.); (C.L.)
| | - Thomas A. Akurugo
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (S.D.); (J.B.); (E.M.); (M.J.K.); (T.J.B.); (T.A.A.); (C.L.)
| | - Cody Lund
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (S.D.); (J.B.); (E.M.); (M.J.K.); (T.J.B.); (T.A.A.); (C.L.)
| | - Sara E. Fleming
- Department of Pathology, UW Health SwedishAmerican Hospital, Rockford, IL 61107, USA;
| | - Robert Hillwig
- Department of Health Sciences Education, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA;
| | - Joseph Ross
- Department of Family and Community Medicine, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA;
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (S.D.); (J.B.); (E.M.); (M.J.K.); (T.J.B.); (T.A.A.); (C.L.)
| |
Collapse
|
4
|
Liu D, Aziz NA, Imtiaz MA, Pehlivan G, Breteler MMB. Associations of measured and genetically predicted leukocyte telomere length with vascular phenotypes: a population-based study. GeroScience 2024; 46:1947-1970. [PMID: 37782440 PMCID: PMC10828293 DOI: 10.1007/s11357-023-00914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023] Open
Abstract
Shorter leukocyte telomere length (LTL) is associated with cardiovascular dysfunction. Whether this association differs between measured and genetically predicted LTL is still unclear. Moreover, the molecular processes underlying the association remain largely unknown. We used baseline data of the Rhineland Study, an ongoing population-based cohort study in Bonn, Germany [56.2% women, age: 55.5 ± 14.0 years (range 30 - 95 years)]. We calculated genetically predicted LTL in 4180 participants and measured LTL in a subset of 1828 participants with qPCR. Using multivariable regression, we examined the association of measured and genetically predicted LTL, and the difference between measured and genetically predicted LTL (ΔLTL), with four vascular functional domains and the overall vascular health. Moreover, we performed epigenome-wide association studies of three LTL measures. Longer measured LTL was associated with better microvascular and cardiac function. Longer predicted LTL was associated with better cardiac function. Larger ΔLTL was associated with better microvascular and cardiac function and overall vascular health, independent of genetically predicted LTL. Several CpGs were associated (p < 1e-05) with measured LTL (n = 5), genetically predicted LTL (n = 8), and ΔLTL (n = 27). Genes whose methylation status was associated with ΔLTL were enriched in vascular endothelial signaling pathways and have been linked to environmental exposures, cardiovascular diseases, and mortality. Our findings suggest that non-genetic causes of LTL contribute to microvascular and cardiac function and overall vascular health, through an effect on the vascular endothelial signaling pathway. Interventions that counteract LTL may thus improve vascular function.
Collapse
Affiliation(s)
- Dan Liu
- German Center for Neurodegenerative Diseases (DZNE), Population Health Sciences, Bonn, Germany
| | - N Ahmad Aziz
- German Center for Neurodegenerative Diseases (DZNE), Population Health Sciences, Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Mohammed Aslam Imtiaz
- German Center for Neurodegenerative Diseases (DZNE), Population Health Sciences, Bonn, Germany
| | - Gökhan Pehlivan
- German Center for Neurodegenerative Diseases (DZNE), Population Health Sciences, Bonn, Germany
| | - Monique M B Breteler
- German Center for Neurodegenerative Diseases (DZNE), Population Health Sciences, Bonn, Germany.
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
5
|
Spano L, Marie-Claire C, Godin O, Lebras A, Courtin C, Laplanche JL, Leboyer M, Aouizerate B, Lefrere A, Belzeaux R, Courtet P, Olié E, Dubertret C, Schwan R, Aubin V, Roux P, Polosan M, Samalin L, Haffen E, Bellivier F, Etain B. Decreased telomere length in a subgroup of young individuals with bipolar disorders: replication in the FACE-BD cohort and association with the shelterin component POT1. Transl Psychiatry 2024; 14:131. [PMID: 38429270 PMCID: PMC10907586 DOI: 10.1038/s41398-024-02824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024] Open
Abstract
Bipolar disorder (BD) has been associated with premature cellular aging with shortened telomere length (TL) as compared to the general population. We recently identified a subgroup of young individuals with prematurely shortened TL. The aims of the present study were to replicate this observation in a larger sample and analyze the expression levels of genes associated with age or TL in a subsample of these individuals. TL was measured on peripheral blood DNA using quantitative polymerase chain reaction in a sample of 542 individuals with BD and clustering analyses were performed. Gene expression level of 29 genes, associated with aging or with telomere maintenance, was analyzed in RNA samples from a subsample of 129 individuals. Clustering analyses identified a group of young individuals (mean age 29.64 years), with shorter TL. None of the tested clinical variables were significantly associated with this subgroup. Gene expression level analyses showed significant downregulation of MYC, POT1, and CD27 in the prematurely aged young individuals compared to the young individuals with longer TL. After adjustment only POT1 remained significantly differentially expressed between the two groups of young individuals. This study confirms the existence of a subgroup of young individuals with BD with shortened TL. The observed decrease of POT1 expression level suggests a newly described cellular mechanism in individuals with BD, that may contribute to telomere shortening.
Collapse
Affiliation(s)
- Luana Spano
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France
| | - Cynthia Marie-Claire
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France.
| | - Ophélia Godin
- Fondation FondaMental, Créteil, France
- Université Paris Est Créteil, INSERM U955, IMRB, Translational NeuroPsychiatry Laboratory, Créteil, France
| | - Apolline Lebras
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France
| | - Cindie Courtin
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France
| | - Jean-Louis Laplanche
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France
- Département de Biochimie et Biologie Moléculaire, DMU BioGeM, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| | - Marion Leboyer
- Fondation FondaMental, Créteil, France
- Université Paris Est Créteil, INSERM U955, IMRB, Translational NeuroPsychiatry Laboratory, Créteil, France
- AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMUIMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France
| | - Bruno Aouizerate
- Fondation FondaMental, Créteil, France
- Centre Hospitalier Charles Perrens, Laboratoire NutriNeuro (UMR INRA 1286), Université de Bordeaux, Bordeaux, France
| | - Antoine Lefrere
- Fondation FondaMental, Créteil, France
- Pôle de Psychiatrie, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Raoul Belzeaux
- Fondation FondaMental, Créteil, France
- INT-UMR7289, CNRS Aix-Marseille Université, Marseille, France
- Université Montpellier, Montpellier, France
| | - Philippe Courtet
- Fondation FondaMental, Créteil, France
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Emilie Olié
- Fondation FondaMental, Créteil, France
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Caroline Dubertret
- Fondation FondaMental, Créteil, France
- AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, DMU ESPRIT, Service de Psychiatrie et Addictologie, Hôpital Louis Mourier, Colombes, France
- Université de Paris, Inserm UMR1266, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Raymund Schwan
- Fondation FondaMental, Créteil, France
- Université de Lorraine, Centre Psychothérapique de Nancy, Inserm U1254, Nancy, France
| | - Valérie Aubin
- Fondation FondaMental, Créteil, France
- Pôle de Psychiatrie, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Paul Roux
- Fondation FondaMental, Créteil, France
- Centre Hospitalier de Versailles, Service Universitaire de Psychiatrie d'Adulte et d'Addictologie, Le Chesnay, France
- Equipe DisAP-PsyDev, CESP, Université Versailles Saint- Quentin-en-Yvelines - Paris-Saclay, Inserm, Villejuif, France
| | - Mircea Polosan
- Fondation FondaMental, Créteil, France
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Ludovic Samalin
- Fondation FondaMental, Créteil, France
- Centre Hospitalier et Universitaire, Département de Psychiatrie, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal (UMR 6602), Clermont-Ferrand, France
| | - Emmanuel Haffen
- Fondation FondaMental, Créteil, France
- Service de Psychiatrie de l'Adultre, CIC-1431 INSERM, CHU de Besançon, Laboratoire de Neurosciences, UFC, UBFC, Besançon, France
| | - Frank Bellivier
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France
- Fondation FondaMental, Créteil, France
- AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, DMU Neurosciences, Hôpital Fernand Widal, Département de Psychiatrie et de Médecine Addictologique, Paris, France
| | - Bruno Etain
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France
- Fondation FondaMental, Créteil, France
- AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, DMU Neurosciences, Hôpital Fernand Widal, Département de Psychiatrie et de Médecine Addictologique, Paris, France
| |
Collapse
|
6
|
Rai R, Sodeinde T, Boston A, Chang S. Telomeres cooperate with the nuclear envelope to maintain genome stability. Bioessays 2024; 46:e2300184. [PMID: 38047499 DOI: 10.1002/bies.202300184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023]
Abstract
Mammalian telomeres have evolved safeguards to prevent their recognition as DNA double-stranded breaks by suppressing the activation of various DNA sensing and repair proteins. We have shown that the telomere-binding proteins TRF2 and RAP1 cooperate to prevent telomeres from undergoing aberrant homology-directed recombination by mediating t-loop protection. Our recent findings also suggest that mammalian telomere-binding proteins interact with the nuclear envelope to maintain chromosome stability. RAP1 interacts with nuclear lamins through KU70/KU80, and disruption of RAP1 and TRF2 function result in nuclear envelope rupture, promoting telomere-telomere recombination to form structures termed ultrabright telomeres. In this review, we discuss the importance of the interactions between shelterin components and the nuclear envelope to maintain telomere homeostasis and genome stability.
Collapse
Affiliation(s)
- Rekha Rai
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tori Sodeinde
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ava Boston
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sandy Chang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Tire B, Talibova G, Ozturk S. The crosstalk between telomeres and DNA repair mechanisms: an overview to mammalian somatic cells, germ cells, and preimplantation embryos. J Assist Reprod Genet 2024; 41:277-291. [PMID: 38165506 PMCID: PMC10894803 DOI: 10.1007/s10815-023-03008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Telomeres are located at the ends of linear chromosomes and play a critical role in maintaining genomic stability by preventing premature activation of DNA repair mechanisms. Because of exposure to various genotoxic agents, telomeres can undergo shortening and genetic changes. In mammalian cells, the basic DNA repair mechanisms, including base excision repair, nucleotide excision repair, double-strand break repair, and mismatch repair, function in repairing potential damages in telomeres. If these damages are not repaired correctly in time, the unfavorable results such as apoptosis, cell cycle arrest, and cancerous transition may occur. During lifespan, mammalian somatic cells, male and female germ cells, and preimplantation embryos experience a number of telomeric damages. Herein, we comprehensively reviewed the crosstalk between telomeres and the DNA repair mechanisms in the somatic cells, germ cells, and embryos. Infertility development resulting from possible defects in this crosstalk is also discussed in the light of existing studies.
Collapse
Affiliation(s)
- Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
8
|
Nassour J, Przetocka S, Karlseder J. Telomeres as hotspots for innate immunity and inflammation. DNA Repair (Amst) 2024; 133:103591. [PMID: 37951043 PMCID: PMC10842095 DOI: 10.1016/j.dnarep.2023.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/05/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Aging is marked by the gradual accumulation of deleterious changes that disrupt organ function, creating an altered physiological state that is permissive for the onset of prevalent human diseases. While the exact mechanisms governing aging remain a subject of ongoing research, there are several cellular and molecular hallmarks that contribute to this biological process. This review focuses on two factors, namely telomere dysfunction and inflammation, which have emerged as crucial contributors to the aging process. We aim to discuss the mechanistic connections between these two distinct hallmarks and provide compelling evidence highlighting the loss of telomere protection as a driver of pro-inflammatory states associated with aging. By reevaluating the interplay between telomeres, innate immunity, and inflammation, we present novel perspectives on the etiology of aging and its associated diseases.
Collapse
Affiliation(s)
- Joe Nassour
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, 12801 E. 17th Ave, Aurora, CO 80045, USA; The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Sara Przetocka
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
9
|
Cai SW, Takai H, Walz T, de Lange T. POT1 recruits and regulates CST-Polα/Primase at human telomeres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539880. [PMID: 37215005 PMCID: PMC10197580 DOI: 10.1101/2023.05.08.539880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Telomere maintenance requires extension of the G-rich telomeric repeat strand by telomerase and fill-in synthesis of the C-rich strand by Polα/Primase. Telomeric Polα/Primase is bound to Ctc1-Stn1-Ten1 (CST), a single-stranded DNA-binding complex. Like mutations in telomerase, mutations affecting CST-Polα/Primase result in pathological telomere shortening and cause a telomere biology disorder, Coats plus (CP). We determined cryogenic electron microscopy structures of human CST bound to the shelterin heterodimer POT1/TPP1 that reveal how CST is recruited to telomeres by POT1. Phosphorylation of POT1 is required for CST recruitment, and the complex is formed through conserved interactions involving several residues mutated in CP. Our structural and biochemical data suggest that phosphorylated POT1 holds CST-Polα/Primase in an inactive auto-inhibited state until telomerase has extended the telomere ends. We propose that dephosphorylation of POT1 releases CST-Polα/Primase into an active state that completes telomere replication through fill-in synthesis.
Collapse
Affiliation(s)
- Sarah W. Cai
- Laboratory of Cell Biology and Genetics, The Rockefeller University; New York, NY, USA
- Laboratory of Molecular Electron Microscopy, The Rockefeller University; New York, NY, USA
| | - Hiroyuki Takai
- Laboratory of Cell Biology and Genetics, The Rockefeller University; New York, NY, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University; New York, NY, USA
| | - Titia de Lange
- Laboratory of Cell Biology and Genetics, The Rockefeller University; New York, NY, USA
- Lead contact
| |
Collapse
|
10
|
Nakashima K, Kunisaki Y, Hosokawa K, Gotoh K, Yao H, Yuta R, Semba Y, Nogami J, Kikushige Y, Stumpf PS, MacArthur BD, Kang D, Akashi K, Ohga S, Arai F. POT1a deficiency in mesenchymal niches perturbs B-lymphopoiesis. Commun Biol 2023; 6:996. [PMID: 37773433 PMCID: PMC10541440 DOI: 10.1038/s42003-023-05374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
Protection of telomeres 1a (POT1a) is a telomere binding protein. A decrease of POT1a is related to myeloid-skewed haematopoiesis with ageing, suggesting that protection of telomeres is essential to sustain multi-potency. Since mesenchymal stem cells (MSCs) are a constituent of the hematopoietic niche in bone marrow, their dysfunction is associated with haematopoietic failure. However, the importance of telomere protection in MSCs has yet to be elucidated. Here, we show that genetic deletion of POT1a in MSCs leads to intracellular accumulation of fatty acids and excessive ROS and DNA damage, resulting in impaired osteogenic-differentiation. Furthermore, MSC-specific POT1a deficient mice exhibited skeletal retardation due to reduction of IL-7 producing bone lining osteoblasts. Single-cell gene expression profiling of bone marrow from POT1a deficient mice revealed that B-lymphopoiesis was selectively impaired. These results demonstrate that bone marrow microenvironments composed of POT1a deficient MSCs fail to support B-lymphopoiesis, which may underpin age-related myeloid-bias in haematopoiesis.
Collapse
Affiliation(s)
- Kentaro Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Kunisaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan.
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | - Kentaro Hosokawa
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhito Gotoh
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hisayuki Yao
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryosuke Yuta
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichiro Semba
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Jumpei Nogami
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshikane Kikushige
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Patrick S Stumpf
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Ben D MacArthur
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, UK
- Mathematical Sciences, University of Southampton, Southampton, UK
- The Alan Turing Institute, London, UK
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumio Arai
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
11
|
Takasugi T, Gu P, Liang F, Staco I, Chang S. Pot1b -/- tumors activate G-quadruplex-induced DNA damage to promote telomere hyper-elongation. Nucleic Acids Res 2023; 51:9227-9247. [PMID: 37560909 PMCID: PMC10516629 DOI: 10.1093/nar/gkad648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/11/2023] Open
Abstract
Malignant cancers must activate telomere maintenance mechanisms to achieve replicative immortality. Mutations in the human Protection of Telomeres 1 (POT1) gene are frequently detected in cancers with abnormally long telomeres, suggesting that the loss of POT1 function disrupts the regulation of telomere length homeostasis to promote telomere elongation. However, our understanding of the mechanisms leading to elongated telomeres remains incomplete. The mouse genome encodes two POT1 proteins, POT1a and POT1b possessing separation of hPOT1 functions. We performed serial transplantation of Pot1b-/- sarcomas to better understand the role of POT1b in regulating telomere length maintenance. While early-generation Pot1b-/- sarcomas initially possessed shortened telomeres, late-generation Pot1b-/- cells display markedly hyper-elongated telomeres that were recognized as damaged DNA by the Replication Protein A (RPA) complex. The RPA-ATR-dependent DNA damage response at telomeres promotes telomerase recruitment to facilitate telomere hyper-elongation. POT1b, but not POT1a, was able to unfold G-quadruplex present in hyper-elongated telomeres to repress the DNA damage response. Our findings demonstrate that the repression of the RPA-ATR DDR is conserved between POT1b and human POT1, suggesting that similar mechanisms may underly the phenotypes observed in human cancers harboring human POT1 mutations.
Collapse
Affiliation(s)
- Taylor Takasugi
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peili Gu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fengshan Liang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Isabelle Staco
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sandy Chang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
12
|
Tesmer VM, Brenner KA, Nandakumar J. Human POT1 protects the telomeric ds-ss DNA junction by capping the 5' end of the chromosome. Science 2023; 381:771-778. [PMID: 37590346 PMCID: PMC10666826 DOI: 10.1126/science.adi2436] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Protection of telomeres 1 (POT1) is the 3' single-stranded overhang-binding telomeric protein that prevents an ataxia telangiectasia and Rad3-related (ATR) DNA damage response (DDR) at chromosome ends. What precludes the DDR machinery from accessing the telomeric double-stranded-single-stranded junction is unknown. We demonstrate that human POT1 binds this junction by recognizing the phosphorylated 5' end of the chromosome. High-resolution crystallographic structures reveal that the junction is capped by POT1 through a "POT-hole" surface, the mutation of which compromises junction protection in vitro and telomeric 5'-end definition and DDR suppression in human cells. Whereas both mouse POT1 paralogs bind the single-stranded overhang, POT1a, not POT1b, contains a POT-hole and binds the junction, which explains POT1a's sufficiency for end protection. Our study shifts the paradigm for DDR suppression at telomeres by highlighting the importance of protecting the double-stranded-single-stranded junction.
Collapse
Affiliation(s)
- Valerie M. Tesmer
- Department of Molecular, Cellular and Developmental Biology, University of Michigan; Ann Arbor, 48109, USA
| | - Kirsten A. Brenner
- Department of Molecular, Cellular and Developmental Biology, University of Michigan; Ann Arbor, 48109, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan; Ann Arbor, 48109, USA
| |
Collapse
|
13
|
Abstract
It has been known for decades that telomerase extends the 3' end of linear eukaryotic chromosomes and dictates the telomeric repeat sequence based on the template in its RNA. However, telomerase does not mitigate sequence loss at the 5' ends of chromosomes, which results from lagging strand DNA synthesis and nucleolytic processing. Therefore, a second enzyme is needed to keep telomeres intact: DNA polymerase α/Primase bound to Ctc1-Stn1-Ten1 (CST). CST-Polα/Primase maintains telomeres through a fill-in reaction that replenishes the lost sequences at the 5' ends. CST not only serves to maintain telomeres but also determines their length by keeping telomerase from overelongating telomeres. Here we discuss recent data on the evolution, structure, function, and recruitment of mammalian CST-Polα/Primase, highlighting the role of this complex and telomere length control in human disease.
Collapse
Affiliation(s)
- Sarah W Cai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
14
|
Padmanaban S, Tesmer VM, Nandakumar J. Interaction hub critical for telomerase recruitment and primer-template handling for catalysis. Life Sci Alliance 2023; 6:e202201727. [PMID: 36963832 PMCID: PMC10055720 DOI: 10.26508/lsa.202201727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
Telomerase processively adds telomeric DNA repeats to chromosome ends using catalytic protein subunit TERT and a template on its RNA subunit TR. Mammalian telomerase is recruited to telomeres by the TEL patch and NOB regions of shelterin component TPP1. Recent cryo-EM structures of human telomerase reveal that a composite TERT TEN-(IFD-TRAP) domain interacts with TPP1. Here, we generate TERT mutants to demonstrate that a three-way TEN-(IFD-TRAP)-TPP1 interaction is critical for telomerase recruitment to telomeres and processive telomere repeat addition. Single mutations of IFD-TRAP at its interface with TR or the DNA primer impair telomerase catalysis. We further reveal the importance of TERT motif 3N and TEN domain loop 99FGF101 in telomerase action. Finally, we demonstrate that TPP1 TEL patch loop residue F172, which undergoes a structural rearrangement to bind telomerase, contributes to the human-mouse species specificity of the telomerase-TPP1 interaction. Our study provides insights into the multiple functions of TERT IFD-TRAP, reveals novel TERT and TPP1 elements critical for function, and helps explain how TPP1 binding licenses robust telomerase action at natural chromosome ends.
Collapse
Affiliation(s)
- Shilpa Padmanaban
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Valerie M Tesmer
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Yu X, Gray S, Ferreira H. POT-3 preferentially binds the terminal DNA-repeat on the telomeric G-overhang. Nucleic Acids Res 2023; 51:610-618. [PMID: 36583365 PMCID: PMC9881156 DOI: 10.1093/nar/gkac1203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic chromosomes typically end in 3' telomeric overhangs. The safeguarding of telomeric single-stranded DNA overhangs is carried out by factors related to the protection of telomeres 1 (POT1) protein in humans. Of the three POT1-like proteins in Caenorhabditis elegans, POT-3 was the only member thought to not play a role at telomeres. Here, we provide evidence that POT-3 is a bona fide telomere-binding protein. Using a new loss-of-function mutant, we show that the absence of POT-3 causes telomere lengthening and increased levels of telomeric C-circles. We find that POT-3 directly binds the telomeric G-strand in vitro and map its minimal DNA binding site to the six-nucleotide motif, GCTTAG. We further show that the closely related POT-2 protein binds the same motif, but that POT-3 shows higher sequence selectivity. Crucially, in contrast to POT-2, POT-3 prefers binding sites immediately adjacent to the 3' end of DNA. These differences are significant as genetic analyses reveal that pot-2 and pot-3 do not function redundantly with each other in vivo. Our work highlights the rapid evolution and specialisation of telomere binding proteins and places POT-3 in a unique position to influence activities that control telomere length.
Collapse
Affiliation(s)
- Xupeng Yu
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, UK
| | - Sean Gray
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, UK
| | - Helder C Ferreira
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, UK
| |
Collapse
|
16
|
Maas EJ, Betz-Stablein B, Aoude LG, Soyer HP, McInerney-Leo AM. Unusual suspects in hereditary melanoma: POT1, POLE, BAP1. Trends Genet 2022; 38:1204-1207. [PMID: 35811174 DOI: 10.1016/j.tig.2022.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 01/24/2023]
Abstract
Systematic literature searches on POT1/POLE/BAP1 found that limited skin phenotypic characteristics have been documented in mutation carriers; 248 variants were annotated, and high-cluster variant regions associated with cutaneous melanoma were found in all three genes. Genotype-phenotype correlations can be used to identify patient disease predisposition based on mutation position and cluster regions.
Collapse
Affiliation(s)
- Ellie J Maas
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia.
| | - Brigid Betz-Stablein
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| | - Lauren G Aoude
- The University of Queensland Diamantina Institute, The University of Queensland, Surgical Oncology Group, Queensland, Australia
| | - H Peter Soyer
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia; Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Aideen M McInerney-Leo
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia.
| |
Collapse
|
17
|
Abstract
Shelterin is a multiprotein complex that plays central roles in telomere biology. Mutations in shelterin result in premature aging diseases and familial cancer predisposition. Mechanistic understanding of these so-called telomereopathies is hampered by our lack of knowledge regarding the structure and stoichiometry of shelterin. Here, we use multiple methods to probe the stoichiometry and conformational states of shelterin and reveal that it forms a fully dimeric complex with extensive conformational heterogeneity. Our results highlight the dynamic nature of this essential complex and explain why its high-resolution structure determination has yet to be achieved. Human shelterin is a six-subunit complex—composed of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1—that binds telomeres, protects them from the DNA-damage response, and regulates the maintenance of telomeric DNA. Although high-resolution structures have been generated of the individual structured domains within shelterin, the architecture and stoichiometry of the full complex are currently unknown. Here, we report the purification of shelterin subcomplexes and reconstitution of the entire complex using full-length, recombinant subunits. By combining negative-stain electron microscopy (EM), cross-linking mass spectrometry (XLMS), AlphaFold modeling, mass photometry, and native mass spectrometry (MS), we obtain stoichiometries as well as domain-scale architectures of shelterin subcomplexes and determine that they feature extensive conformational heterogeneity. For POT1/TPP1 and POT1/TPP1/TIN2, we observe high variability in the positioning of the POT1 DNA-binding domain, the TPP1 oligonucleotide/oligosaccharide–binding (OB) fold, and the TIN2 TRFH domain with respect to the C-terminal domains of POT1. Truncation of unstructured linker regions in TIN2, TPP1, and POT1 did not reduce the conformational variability of the heterotrimer. Shelterin and TRF1-containing subcomplexes form fully dimeric stoichiometries, even in the absence of DNA substrates. Shelterin and its subcomplexes showed extensive conformational variability, regardless of the presence of DNA substrates. We conclude that shelterin adopts a multitude of conformations and argue that its unusual architectural variability is beneficial for its many functions at telomeres.
Collapse
|
18
|
Martínez P, Sánchez-Vázquez R, Ferrara-Romeo I, Serrano R, Flores JM, Blasco MA. A mouse model for Li-Fraumeni-Like Syndrome with cardiac angiosarcomas associated to POT1 mutations. PLoS Genet 2022; 18:e1010260. [PMID: 35727838 PMCID: PMC9212151 DOI: 10.1371/journal.pgen.1010260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
The shelterin protein POT1 has been found mutated in many different familial and sporadic cancers, however, no mouse models to understand the pathobiology of these mutations have been developed so far. To address the molecular mechanisms underlying the tumorigenic effects of POT1 mutant proteins in humans, we have generated a mouse model for the human POT1R117C mutation found in Li-Fraumeni-Like families with cases of cardiac angiosarcoma by introducing this mutation in the Pot1a endogenous locus, knock-in for Pot1aR117C. We find here that both mouse embryonic fibroblasts (MEFs) and tissues from Pot1a+/ki mice show longer telomeres than wild-type controls. Longer telomeres in Pot1a+/ki MEFs are dependent on telomerase activity as they are not found in double mutant Pot1a+/kiTert-/- telomerase-deficient MEFs. By using complementation assays we further show that POT1a pR117C exerts dominant-negative effects at telomeres. As in human Li-Fraumeni patients, heterozygous Pot1a+/ki mice spontaneously develop a high incidence of angiosarcomas, including cardiac angiosarcomas, and this is associated to the presence of abnormally long telomeres in endothelial cells as well as in the tumors. The Pot1a+/R117C mouse model constitutes a useful tool to understand human cancers initiated by POT1 mutations. We have generated a mouse model for the human POT1R117C mutation found in Li-Fraumeni-Like (LFL) families with cases of cardiac angiosarcoma by introducing this mutation in the Pot1a endogenous locus, knock-in for Pot1aR117C. The Pot1a+/ki mice show longer telomeres than wild-type controls. Longer telomeres in mutant mice are dependent on telomerase activity as they are not found in a telomerase deficient background. As in human Li-Fraumeni patients, heterozygous Pot1a+/ki mice spontaneously develop a high incidence of angiosarcomas, including cardiac angiosarcomas, and this is associated to the presence of abnormally long telomeres in endothelial cells as well as in the tumors. The ki-Pot1aR117C mouse constitutes a potential pre-clinical mouse model for LFL syndrome presenting with high angiosarcoma incidence that could provide in the future a very useful tool for the study of treatments for these tumors.
Collapse
Affiliation(s)
- Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Raúl Sánchez-Vázquez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Iole Ferrara-Romeo
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Rosa Serrano
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Juana M. Flores
- Animal Surgery and Medicine Department, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
- * E-mail:
| |
Collapse
|
19
|
Zahid S, Aloe S, Sutherland JH, Holloman WK, Lue NF. Ustilago maydis telomere protein Pot1 harbors an extra N-terminal OB fold and regulates homology-directed DNA repair factors in a dichotomous and context-dependent manner. PLoS Genet 2022; 18:e1010182. [PMID: 35587917 PMCID: PMC9119445 DOI: 10.1371/journal.pgen.1010182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/02/2022] [Indexed: 01/11/2023] Open
Abstract
The telomere G-strand binding protein Pot1 plays multifaceted roles in telomere maintenance and protection. We examined the structure and activities of Pot1 in Ustilago maydis, a fungal model that recapitulates key features of mammalian telomere regulation. Compared to the well-characterized primate and fission yeast Pot1 orthologs, UmPot1 harbors an extra N-terminal OB-fold domain (OB-N), which was recently shown to be present in most metazoans. UmPot1 binds directly to Rad51 and regulates the latter's strand exchange activity. Deleting the OB-N domain, which is implicated in Rad51-binding, caused telomere shortening, suggesting that Pot1-Rad51 interaction facilitates telomere maintenance. Depleting Pot1 through transcriptional repression triggered growth arrest as well as rampant recombination, leading to multiple telomere aberrations. In addition, telomere repeat RNAs transcribed from both the G- and C-strand were dramatically up-regulated, and this was accompanied by elevated levels of telomere RNA-DNA hybrids. Telomere abnormalities of pot1-deficient cells were suppressed, and cell viability was restored by the deletion of genes encoding Rad51 or Brh2 (the BRCA2 ortholog), indicating that homology-directed repair (HDR) proteins are key mediators of telomere aberrations and cellular toxicity. Together, these observations underscore the complex physical and functional interactions between Pot1 and DNA repair factors, leading to context-dependent and dichotomous effects of HDR proteins on telomere maintenance and protection.
Collapse
Affiliation(s)
- Syed Zahid
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Sarah Aloe
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Jeanette H. Sutherland
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - William K. Holloman
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Neal F. Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Kelich J, Aramburu T, van der Vis JJ, Showe L, Kossenkov A, van der Smagt J, Massink M, Schoemaker A, Hennekam E, Veltkamp M, van Moorsel CH, Skordalakes E. Telomere dysfunction implicates POT1 in patients with idiopathic pulmonary fibrosis. J Exp Med 2022; 219:e20211681. [PMID: 35420632 PMCID: PMC9014792 DOI: 10.1084/jem.20211681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/28/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
Exonic sequencing identified a family with idiopathic pulmonary fibrosis (IPF) containing a previously unreported heterozygous mutation in POT1 p.(L259S). The family displays short telomeres and genetic anticipation. We found that POT1(L259S) is defective in binding the telomeric overhang, nuclear accumulation, negative regulation of telomerase, and lagging strand maintenance. Patient cells containing the mutation display telomere loss, lagging strand defects, telomere-induced DNA damage, and premature senescence with G1 arrest. Our data suggest POT1(L259S) is a pathogenic driver of IPF and provide insights into gene therapy options.
Collapse
Affiliation(s)
| | | | - Joanne J. van der Vis
- Department of Pulmonology, Interstitial Lung Disease Center of Excellence, St Antonius Hospital, Nieuwegein, Netherlands
| | | | | | - Jasper van der Smagt
- Department of Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Maarten Massink
- Department of Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Angela Schoemaker
- Department of Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eric Hennekam
- Department of Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marcel Veltkamp
- Department of Pulmonology, Interstitial Lung Disease Center of Excellence, St Antonius Hospital, Nieuwegein, Netherlands
| | - Coline H.M. van Moorsel
- Department of Pulmonology, Interstitial Lung Disease Center of Excellence, St Antonius Hospital, Nieuwegein, Netherlands
| | | |
Collapse
|
21
|
Telomeric Repeat-Containing RNA (TERRA): A Review of the Literature and First Assessment in Cutaneous T-Cell Lymphomas. Genes (Basel) 2022; 13:genes13030539. [PMID: 35328092 PMCID: PMC8953746 DOI: 10.3390/genes13030539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 01/11/2023] Open
Abstract
Telomeric Repeat-containing RNA (TERRA) are long non-coding RNAs transcribed from telomeric DNA sequences from multiple chromosome ends. Major research efforts have been made to understand TERRA roles and functions in several physiological and pathological processes. We summarize herein available data regarding TERRA’s roles in human cells and we report the first investigation in cutaneous T-cells lymphomas (CTCL) using real-time PCR. Among the TERRA analysed, our data suggest a particular role for TERRA 16p downregulation and TERRA 11q upregulation in CTCL lymphomagenesis.
Collapse
|
22
|
Lister-Shimauchi EH, McCarthy B, Lippincott M, Ahmed S. Genetic and Epigenetic Inheritance at Telomeres. EPIGENOMES 2022; 6:9. [PMID: 35323213 PMCID: PMC8947350 DOI: 10.3390/epigenomes6010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 12/17/2022] Open
Abstract
Transgenerational inheritance can occur at telomeres in distinct contexts. Deficiency for telomerase or telomere-binding proteins in germ cells can result in shortened or lengthened chromosome termini that are transmitted to progeny. In human families, altered telomere lengths can result in stem cell dysfunction or tumor development. Genetic inheritance of altered telomeres as well as mutations that alter telomeres can result in progressive telomere length changes over multiple generations. Telomeres of yeast can modulate the epigenetic state of subtelomeric genes in a manner that is mitotically heritable, and the effects of telomeres on subtelomeric gene expression may be relevant to senescence or other human adult-onset disorders. Recently, two novel epigenetic states were shown to occur at C. elegans telomeres, where very low or high levels of telomeric protein foci can be inherited for multiple generations through a process that is regulated by histone methylation.Together, these observations illustrate that information relevant to telomere biology can be inherited via genetic and epigenetic mechanisms, although the broad impact of epigenetic inheritance to human biology remains unclear.
Collapse
Affiliation(s)
- Evan H. Lister-Shimauchi
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-3280, USA; (E.H.L.-S.); (B.M.); (M.L.)
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Benjamin McCarthy
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-3280, USA; (E.H.L.-S.); (B.M.); (M.L.)
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Michael Lippincott
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-3280, USA; (E.H.L.-S.); (B.M.); (M.L.)
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-3280, USA; (E.H.L.-S.); (B.M.); (M.L.)
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
23
|
Telomeres and Cancer. Life (Basel) 2021; 11:life11121405. [PMID: 34947936 PMCID: PMC8704776 DOI: 10.3390/life11121405] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes and are indispensable chromatin structures for genome protection and replication. Telomere length maintenance has been attributed to several functional modulators, including telomerase, the shelterin complex, and the CST complex, synergizing with DNA replication, repair, and the RNA metabolism pathway components. As dysfunctional telomere maintenance and telomerase activation are associated with several human diseases, including cancer, the molecular mechanisms behind telomere length regulation and protection need particular emphasis. Cancer cells exhibit telomerase activation, enabling replicative immortality. Telomerase reverse transcriptase (TERT) activation is involved in cancer development through diverse activities other than mediating telomere elongation. This review describes the telomere functions, the role of functional modulators, the implications in cancer development, and the future therapeutic opportunities.
Collapse
|
24
|
Paul T, Liou W, Cai X, Opresko PL, Myong S. TRF2 promotes dynamic and stepwise looping of POT1 bound telomeric overhang. Nucleic Acids Res 2021; 49:12377-12393. [PMID: 34850123 PMCID: PMC8643667 DOI: 10.1093/nar/gkab1123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022] Open
Abstract
Human telomeres are protected by shelterin proteins, but how telomeres maintain a dynamic structure remains elusive. Here, we report an unexpected activity of POT1 in imparting conformational dynamics of the telomere overhang, even at a monomer level. Strikingly, such POT1-induced overhang dynamics is greatly enhanced when TRF2 engages with the telomere duplex. Interestingly, TRF2, but not TRF2ΔB, recruits POT1-bound overhangs to the telomere ds/ss junction and induces a discrete stepwise movement up and down the axis of telomere duplex. The same steps are observed regardless of the length of the POT1-bound overhang, suggesting a tightly regulated conformational dynamic coordinated by TRF2 and POT1. TPP1 and TIN2 which physically connect POT1 and TRF2 act to generate a smooth movement along the axis of the telomere duplex. Our results suggest a plausible mechanism wherein telomeres maintain a dynamic structure orchestrated by shelterin.
Collapse
Affiliation(s)
- Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wilson Liou
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xinyi Cai
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh, Hillman Cancer Center, 5117 Centre Avenue, Suite 2.6a, Pittsburgh, PA 15213, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA
| |
Collapse
|
25
|
Myler LR, Kinzig CG, Sasi NK, Zakusilo G, Cai SW, de Lange T. The evolution of metazoan shelterin. Genes Dev 2021; 35:1625-1641. [PMID: 34764137 PMCID: PMC8653790 DOI: 10.1101/gad.348835.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
In this study, Myler et al. investigated the evolutionary origins of shelterin complex, which is comprised of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1; blocks the DNA damage response at chromosome ends; and interacts with telomerase and the CST complex to regulate telomere length. They describe the evolution of metazoan shelterin, showing that TRF1 emerged in vertebrates upon duplication of a TRF2-like ancestor, and providing insights into the biology of shelterin and its evolution from ancestral telomeric DNA-binding proteins. The mammalian telomeric shelterin complex—comprised of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1—blocks the DNA damage response at chromosome ends and interacts with telomerase and the CST complex to regulate telomere length. The evolutionary origins of shelterin are unclear, partly because unicellular organisms have distinct telomeric proteins. Here, we describe the evolution of metazoan shelterin, showing that TRF1 emerged in vertebrates upon duplication of a TRF2-like ancestor. TRF1 and TRF2 diverged rapidly during vertebrate evolution through the acquisition of new domains and interacting factors. Vertebrate shelterin is also distinguished by the presence of an HJRL domain in the split C-terminal OB fold of POT1, whereas invertebrate POT1s carry inserts of variable nature. Importantly, the data reveal that, apart from the primate and rodent POT1 orthologs, all metazoan POT1s are predicted to have a fourth OB fold at their N termini. Therefore, we propose that POT1 arose from a four-OB-fold ancestor, most likely an RPA70-like protein. This analysis provides insights into the biology of shelterin and its evolution from ancestral telomeric DNA-binding proteins.
Collapse
Affiliation(s)
- Logan R Myler
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - Charles G Kinzig
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - Nanda K Sasi
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - George Zakusilo
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - Sarah W Cai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| |
Collapse
|
26
|
Distinct functions of POT1 proteins contribute to the regulation of telomerase recruitment to telomeres. Nat Commun 2021; 12:5514. [PMID: 34535663 PMCID: PMC8448735 DOI: 10.1038/s41467-021-25799-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/27/2021] [Indexed: 01/07/2023] Open
Abstract
Human shelterin components POT1 and TPP1 form a stable heterodimer that protects telomere ends from ATR-dependent DNA damage responses and regulates telomerase-dependent telomere extension. Mice possess two functionally distinct POT1 proteins. POT1a represses ATR/CHK1 DNA damage responses and the alternative non-homologous end-joining DNA repair pathway while POT1b regulates C-strand resection and recruits the CTC1-STN1-TEN1 (CST) complex to telomeres to mediate C-strand fill-in synthesis. Whether POT1a and POT1b are involved in regulating the length of the telomeric G-strand is unclear. Here we demonstrate that POT1b, independent of its CST function, enhances recruitment of telomerase to telomeres through three amino acids in its TPP1 interacting C-terminus. POT1b thus coordinates the synthesis of both telomeric G- and C-strands. In contrast, POT1a negatively regulates telomere length by inhibiting telomerase recruitment to telomeres. The identification of unique amino acids between POT1a and POT1b helps us understand mechanistically how human POT1 switches between end protective functions and promoting telomerase recruitment.
Collapse
|
27
|
Wang Z, Wu X. Abnormal function of telomere protein TRF2 induces cell mutation and the effects of environmental tumor‑promoting factors (Review). Oncol Rep 2021; 46:184. [PMID: 34278498 PMCID: PMC8273685 DOI: 10.3892/or.2021.8135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/14/2021] [Indexed: 01/30/2023] Open
Abstract
Recent studies have found that somatic gene mutations and environmental tumor-promoting factors are both indispensable for tumor formation. Telomeric repeat-binding factor (TRF)2 is the core component of the telomere shelterin complex, which plays an important role in chromosome stability and the maintenance of normal cell physiological states. In recent years, TRF2 and its role in tumor formation have gradually become a research hot topic, which has promoted in-depth discussions into tumorigenesis and treatment strategies, and has achieved promising results. Some cells bypass elimination, due to either aging, apoptosis via mutations or abnormal prolongation of the mitotic cycle, and enter the telomere crisis period, where large-scale DNA reorganization occurs repeatedly, which manifests as the precancerous cell cycle. Finally, at the end of the crisis cycle, the mutation activates either the expression level of telomerase or activates the alternative lengthening of telomere mechanism to extend the local telomeres. Under the protection of TRF2, chromosomes are gradually stabilized, immortal cells are formed and the stagewise mutation-driven transformation of normal cells to cancer cells is completed. In addition, TRF2 also shares the characteristics of environmental tumor-promoting factors. It acts on multiple signal transduction pathway-related proteins associated with cell proliferation, and affects peripheral angiogenesis, inhibits the immune recognition and killing ability of the microenvironment, and maintains the stemness characteristics of tumor cells. TRF2 levels are abnormally elevated by a variety of tumor control proteins, which are more conducive to the protection of telomeres and the survival of tumor cells. In brief, the various regulatory mechanisms which tumor cells rely on to survive are organically integrated around TRF2, forming a regulatory network, which is conducive to the optimization of the survival direction of heterogeneous tumor cells, and promotes their survival and adaptability. In terms of clinical application, TRF2 is expected to become a new type of cancer prognostic marker and a new tumor treatment target. Inhibition of TRF2 overexpression could effectively cut off the core network regulating tumor cell survival, reduce drug resistance, or bypass the mutation under the pressure of tumor treatment selection, which may represent a promising therapeutic strategy for the complete eradication of tumors in the clinical setting. Based on recent research, the aim of the present review was to systematically elaborate on the basic structure and functional characteristics of TRF2 and its role in tumor formation, and to analyze the findings indicating that TRF2 deficiency or overexpression could cause severe damage to telomere function and telomere shortening, and induce DNA damage response and chromosomal instability.
Collapse
Affiliation(s)
- Zhengyi Wang
- Good Clinical Practice Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610071, P.R. China
| | - Xiaoying Wu
- Ministry of Education and Training, Chengdu Second People's Hospital, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
28
|
Ackerson SM, Romney C, Schuck PL, Stewart JA. To Join or Not to Join: Decision Points Along the Pathway to Double-Strand Break Repair vs. Chromosome End Protection. Front Cell Dev Biol 2021; 9:708763. [PMID: 34322492 PMCID: PMC8311741 DOI: 10.3389/fcell.2021.708763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023] Open
Abstract
The regulation of DNA double-strand breaks (DSBs) and telomeres are diametrically opposed in the cell. DSBs are considered one of the most deleterious forms of DNA damage and must be quickly recognized and repaired. Telomeres, on the other hand, are specialized, stable DNA ends that must be protected from recognition as DSBs to inhibit unwanted chromosome fusions. Decisions to join DNA ends, or not, are therefore critical to genome stability. Yet, the processing of telomeres and DSBs share many commonalities. Accordingly, key decision points are used to shift DNA ends toward DSB repair vs. end protection. Additionally, DSBs can be repaired by two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ). The choice of which repair pathway is employed is also dictated by a series of decision points that shift the break toward HR or NHEJ. In this review, we will focus on these decision points and the mechanisms that dictate end protection vs. DSB repair and DSB repair choice.
Collapse
Affiliation(s)
- Stephanie M Ackerson
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Carlan Romney
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - P Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Jason A Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
29
|
Li B. Keeping Balance Between Genetic Stability and Plasticity at the Telomere and Subtelomere of Trypanosoma brucei. Front Cell Dev Biol 2021; 9:699639. [PMID: 34291053 PMCID: PMC8287324 DOI: 10.3389/fcell.2021.699639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Telomeres, the nucleoprotein complexes at chromosome ends, are well-known for their essential roles in genome integrity and chromosome stability. Yet, telomeres and subtelomeres are frequently less stable than chromosome internal regions. Many subtelomeric genes are important for responding to environmental cues, and subtelomeric instability can facilitate organismal adaptation to extracellular changes, which is a common theme in a number of microbial pathogens. In this review, I will focus on the delicate and important balance between stability and plasticity at telomeres and subtelomeres of a kinetoplastid parasite, Trypanosoma brucei, which causes human African trypanosomiasis and undergoes antigenic variation to evade the host immune response. I will summarize the current understanding about T. brucei telomere protein complex, the telomeric transcript, and telomeric R-loops, focusing on their roles in maintaining telomere and subtelomere stability and integrity. The similarities and differences in functions and underlying mechanisms of T. brucei telomere factors will be compared with those in human and yeast cells.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
30
|
Khodadadi E, Mir SM, Memar MY, Sadeghi H, Kashiri M, Faeghiniya M, Jamalpoor Z, Sheikh Arabi M. Shelterin complex at telomeres: Roles in cancers. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Telomere damage promotes vascular smooth muscle cell senescence and immune cell recruitment after vessel injury. Commun Biol 2021; 4:611. [PMID: 34021256 PMCID: PMC8140103 DOI: 10.1038/s42003-021-02123-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
Accumulation of vascular smooth muscle cells (VSMCs) is a hallmark of multiple vascular pathologies, including following neointimal formation after injury and atherosclerosis. However, human VSMCs in advanced atherosclerotic lesions show reduced cell proliferation, extensive and persistent DNA damage, and features of premature cell senescence. Here, we report that stress-induced premature senescence (SIPS) and stable expression of a telomeric repeat-binding factor 2 protein mutant (TRF2T188A) induce senescence of human VSMCs, associated with persistent telomeric DNA damage. VSMC senescence is associated with formation of micronuclei, activation of cGAS-STING cytoplasmic sensing, and induction of multiple pro-inflammatory cytokines. VSMC-specific TRF2T188A expression in a multicolor clonal VSMC-tracking mouse model shows no change in VSMC clonal patches after injury, but an increase in neointima formation, outward remodeling, senescence and immune/inflammatory cell infiltration or retention. We suggest that persistent telomere damage in VSMCs inducing cell senescence has a major role in driving persistent inflammation in vascular disease. Anna Uryga and Mandy Grootaert et al. combine cell culture and animal models to examine how senescence of human vascular smooth muscle cells (VSMCs) and persistent telomere damage drive inflammation. Their results suggest that telomere injury can be the primary cause of premature senescence in VSMCs, and that DNA damage can be a major cause of persistent inflammation in vascular disease.
Collapse
|
32
|
Grill S, Padmanaban S, Friedman A, Perkey E, Allen F, Tesmer VM, Chase J, Khoriaty R, Keegan CE, Maillard I, Nandakumar J. TPP1 mutagenesis screens unravel shelterin interfaces and functions in hematopoiesis. JCI Insight 2021; 6:138059. [PMID: 33822766 PMCID: PMC8262337 DOI: 10.1172/jci.insight.138059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Telomerase catalyzes chromosome end replication in stem cells and other long-lived cells. Mutations in telomerase or telomere-related genes result in diseases known as telomeropathies. Telomerase is recruited to chromosome ends by the ACD/TPP1 protein (TPP1 hereafter), a component of the shelterin complex that protects chromosome ends from unwanted end joining. TPP1 facilitates end protection by binding shelterin proteins POT1 and TIN2. TPP1 variants have been associated with telomeropathies but remain poorly characterized in vivo. Disease variants and mutagenesis scans provide efficient avenues to interrogate the distinct physiological roles of TPP1. Here, we conduct mutagenesis in the TIN2- and POT1-binding domains of TPP1 to discover mutations that dissect TPP1's functions. Our results extend current structural data to reveal that the TPP1-TIN2 interface is more extensive than previously thought and highlight the robustness of the POT1-TPP1 interface. Introduction of separation-of-function mutants alongside known TPP1 telomeropathy mutations in mouse hematopoietic stem cells (mHSCs) lacking endogenous TPP1 demonstrated a clear phenotypic demarcation. TIN2- and POT1-binding mutants were unable to rescue mHSC failure resulting from end deprotection. In contrast, TPP1 telomeropathy mutations sustained mHSC viability, consistent with their selectively impacting end replication. These results highlight the power of scanning mutagenesis in revealing structural interfaces and dissecting multifunctional genes.
Collapse
Affiliation(s)
- Sherilyn Grill
- Department of Molecular, Cellular, and Developmental Biology
| | | | - Ann Friedman
- Life Sciences Institute,,Department of Internal Medicine
| | - Eric Perkey
- Life Sciences Institute,,Graduate Program in Cellular and Molecular Biology, and,Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Frederick Allen
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Jennifer Chase
- Life Sciences Institute,,Graduate Program in Cellular and Molecular Biology, and
| | - Rami Khoriaty
- Department of Internal Medicine,,Department of Cell and Developmental Biology
| | - Catherine E. Keegan
- Department of Pediatrics, and,Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ivan Maillard
- Life Sciences Institute,,Department of Internal Medicine,,Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Cell and Developmental Biology,,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
33
|
Jalali A, Yu K, Beechar V, Bosquez Huerta NA, Grichuk A, Mehra D, Lozzi B, Kong K, Scott KL, Rao G, Bainbridge MN, Bondy ML, Deneen B. POT1 Regulates Proliferation and Confers Sexual Dimorphism in Glioma. Cancer Res 2021; 81:2703-2713. [PMID: 33782098 DOI: 10.1158/0008-5472.can-20-3755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/10/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022]
Abstract
Germline POT1 mutations are found in a spectrum of cancers and confer increased risk. Recently, we identified a series of novel germline POT1 mutations that predispose carrier families to the development of glioma. Despite these strong associations, how these glioma-associated POT1 mutations contribute to glioma tumorigenesis remains undefined. Here we show that POT1-G95C increases proliferation in glioma-initiating cells in vitro and in progenitor populations in the developing brain. In a native mouse model of glioma, loss of Pot1a/b resulted in decreased survival in females compared with males. These findings were corroborated in human glioma, where low POT1 expression correlated with decreased survival in females. Transcriptomic and IHC profiling of Pot1a/b-deficient glioma revealed that tumors in females exhibited decreased expression of immune markers and increased expression of cell-cycle signatures. Similar sex-dependent trends were observed in human gliomas that had low expression of POT1. Together, our studies demonstrate context-dependent functions for POT1 mutation or loss in driving progenitor proliferation in the developing brain and sexual dimorphism in glioma. SIGNIFICANCE: This study shows that manipulation of POT1 expression in glioma has sex-specific effects on tumorigenesis and associated immune signatures.
Collapse
Affiliation(s)
- Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Kwanha Yu
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Vivek Beechar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Navish A Bosquez Huerta
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas
| | - Anthony Grichuk
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Deepika Mehra
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Kathleen Kong
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Kenneth L Scott
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Matthew N Bainbridge
- Rady Children's Institute of Genomic Medicine, Rady Children's Hospital-San Diego, California
| | - Melissa L Bondy
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, California
| | - Benjamin Deneen
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas. .,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
34
|
Akincilar SC, Chan CHT, Ng QF, Fidan K, Tergaonkar V. Non-canonical roles of canonical telomere binding proteins in cancers. Cell Mol Life Sci 2021; 78:4235-4257. [PMID: 33599797 PMCID: PMC8164586 DOI: 10.1007/s00018-021-03783-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Reactivation of telomerase is a major hallmark observed in 90% of all cancers. Yet paradoxically, enhanced telomerase activity does not correlate with telomere length and cancers often possess short telomeres; suggestive of supplementary non-canonical roles that telomerase might play in the development of cancer. Moreover, studies have shown that aberrant expression of shelterin proteins coupled with their release from shortening telomeres can further promote cancer by mechanisms independent of their telomeric role. While targeting telomerase activity appears to be an attractive therapeutic option, this approach has failed in clinical trials due to undesirable cytotoxic effects on stem cells. To circumvent this concern, an alternative strategy could be to target the molecules involved in the non-canonical functions of telomeric proteins. In this review, we will focus on emerging evidence that has demonstrated the non-canonical roles of telomeric proteins and their impact on tumorigenesis. Furthermore, we aim to address current knowledge gaps in telomeric protein functions and propose future research approaches that can be undertaken to achieve this.
Collapse
Affiliation(s)
- Semih Can Akincilar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Claire Hian Tzer Chan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Qin Feng Ng
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Kerem Fidan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
35
|
Kosebent EG, Ozturk S. The spatiotemporal expression of TERT and telomere repeat binding proteins in the postnatal mouse testes. Andrologia 2021; 53:e13976. [PMID: 33544428 DOI: 10.1111/and.13976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/06/2020] [Accepted: 01/01/2021] [Indexed: 12/31/2022] Open
Abstract
Telomeres consist of repetitive DNA sequences and telomere-associated proteins. Telomeres located at the ends of eukaryotic chromosomes undergo shortening due to DNA replication, genotoxic factors and reactive oxygen species. The short telomeres are elongated by the enzyme telomerase expressed in the germ line, embryonic and stem cells. Telomerase is in the structure of ribonucleoprotein composed of telomerase reverse transcriptase (TERT), telomerase RNA component (Terc) and other components. Among telomere-associated proteins, telomeric repeat binding factor 1 (TRF1) and 2 (TRF2) exclusively bind to the double-stranded telomeric DNA to regulate its length. However, protection of telomeres 1 (POT1) interacts with the single-stranded telomeric DNA to protect from DNA damage response. Herein, we characterised the spatial and temporal expression of the TERT, TRF1, TRF2 and POT1 proteins in the postnatal mouse testes at the ages of 6, 8, 16, 20, 29, 32 and 88 days by using immunohistochemistry. Significant differences in the spatiotemporal expression patterns and levels of these proteins were determined in the postnatal testes (p < .05). These findings indicate that TERT and telomere repeat binding proteins seem to be required for maintaining the length and structural integrity of telomeres in the spermatogenic cells from newborn to adult terms.
Collapse
Affiliation(s)
- Esra G Kosebent
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
36
|
Lister-Shimauchi EH, Dinh M, Maddox P, Ahmed S. Gametes deficient for Pot1 telomere binding proteins alter levels of telomeric foci for multiple generations. Commun Biol 2021; 4:158. [PMID: 33542458 PMCID: PMC7862594 DOI: 10.1038/s42003-020-01624-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
Deficiency for telomerase results in transgenerational shortening of telomeres. However, telomeres have no known role in transgenerational epigenetic inheritance. C. elegans Protection Of Telomeres 1 (Pot1) proteins form foci at the telomeres of germ cells that disappear at fertilization and gradually accumulate during development. We find that gametes from mutants deficient for Pot1 proteins alter levels of telomeric foci for multiple generations. Gametes from pot-2 mutants give rise to progeny with abundant POT-1::mCherry and mNeonGreen::POT-2 foci throughout development, which persists for six generations. In contrast, gametes from pot-1 mutants or pot-1; pot-2 double mutants induce diminished Pot1 foci for several generations. Deficiency for MET-2, SET-25, or SET-32 methyltransferases, which promote heterochromatin formation, results in gametes that induce diminished Pot1 foci for several generations. We propose that C. elegans POT-1 may interact with H3K9 methyltransferases during pot-2 mutant gametogenesis to induce a persistent form of transgenerational epigenetic inheritance that causes constitutively high levels of heterochromatic Pot1 foci.
Collapse
Affiliation(s)
- Evan H Lister-Shimauchi
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Michael Dinh
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Paul Maddox
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
37
|
Uysal F, Kosebent EG, Toru HS, Ozturk S. Decreased expression of TERT and telomeric proteins as human ovaries age may cause telomere shortening. J Assist Reprod Genet 2021; 38:429-441. [PMID: 32856217 PMCID: PMC7884544 DOI: 10.1007/s10815-020-01932-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Telomeres are repetitive sequences localized at the ends of eukaryotic chromosomes comprising noncoding DNA and telomere-binding proteins. TRF1 and TRF2 both bind to the double-stranded telomeric DNA to regulate its length throughout the lifespan of eukaryotic cells. POT1 interacts with single-stranded telomeric DNA and contributes to protecting genomic integrity. Previous studies have shown that telomeres gradually shorten as ovaries age, coinciding with fertility loss. However, the molecular background of telomere shortening with ovarian aging is not fully understood. METHODS The present study aimed to determine the spatial and temporal expression levels of the TERT, TRF1, TRF2, and POT1 proteins in different groups of human ovaries: fetal (n = 11), early postnatal (n = 10), premenopausal (n = 12), and postmenopausal (n = 14). Also, the relative telomere signal intensity of each group was measured using the Q-FISH method. RESULTS We found that the telomere signal intensities decreased evenly and significantly from fetal to postmenopausal groups (P < 0.05). The TERT, TRF1, TRF2, and POT1 proteins were localized in the cytoplasmic and nuclear regions of the oocytes, granulosa and stromal cells. Furthermore, the expression levels of these proteins reduced significantly from fetal to postmenopausal groups (P < 0.05). CONCLUSION These findings suggest that decreased TERT and telomere-binding protein expression may underlie the telomere shortening of ovaries with age, which may be associated with female fertility loss. Further investigations are required to elicit the molecular mechanisms regulating the gradual decrease in the expression of TERT and telomere-binding proteins in human oocytes and granulosa cells during ovarian aging.
Collapse
Affiliation(s)
- Fatma Uysal
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Esra Gozde Kosebent
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Havva Serap Toru
- Department of Pathology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
38
|
Markiewicz-Potoczny M, Lobanova A, Loeb AM, Kirak O, Olbrich T, Ruiz S, Lazzerini Denchi E. TRF2-mediated telomere protection is dispensable in pluripotent stem cells. Nature 2021; 589:110-115. [PMID: 33239785 PMCID: PMC9161009 DOI: 10.1038/s41586-020-2959-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Abstract
In mammals, telomere protection is mediated by the essential protein TRF2, which binds chromosome ends and ensures genome integrity1,2. TRF2 depletion results in end-to-end chromosome fusions in all cell types that have been tested so far. Here we find that TRF2 is dispensable for the proliferation and survival of mouse embryonic stem (ES) cells. Trf2-/- (also known as Terf2) ES cells do not exhibit telomere fusions and can be expanded indefinitely. In response to the deletion of TRF2, ES cells exhibit a muted DNA damage response that is characterized by the recruitment of γH2AX-but not 53BP1-to telomeres. To define the mechanisms that control this unique DNA damage response in ES cells, we performed a CRISPR-Cas9-knockout screen. We found a strong dependency of TRF2-null ES cells on the telomere-associated protein POT1B and on the chromatin remodelling factor BRD2. Co-depletion of POT1B or BRD2 with TRF2 restores a canonical DNA damage response at telomeres, resulting in frequent telomere fusions. We found that TRF2 depletion in ES cells activates a totipotent-like two-cell-stage transcriptional program that includes high levels of ZSCAN4. We show that the upregulation of ZSCAN4 contributes to telomere protection in the absence of TRF2. Together, our results uncover a unique response to telomere deprotection during early development.
Collapse
Affiliation(s)
| | | | - Anisha M Loeb
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Oktay Kirak
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Teresa Olbrich
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Sergio Ruiz
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | | |
Collapse
|
39
|
Engin AB, Engin A. The Connection Between Cell Fate and Telomere. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:71-100. [PMID: 33539012 DOI: 10.1007/978-3-030-49844-3_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abolition of telomerase activity results in telomere shortening, a process that eventually destabilizes the ends of chromosomes, leading to genomic instability and cell growth arrest or death. Telomere shortening leads to the attainment of the "Hayflick limit", and the transition of cells to state of senescence. If senescence is bypassed, cells undergo crisis through loss of checkpoints. This process causes massive cell death concomitant with further telomere shortening and spontaneous telomere fusions. In functional telomere of mammalian cells, DNA contains double-stranded tandem repeats of TTAGGG. The Shelterin complex, which is composed of six different proteins, is required for the regulation of telomere length and stability in cells. Telomere protection by telomeric repeat binding protein 2 (TRF2) is dependent on DNA damage response (DDR) inhibition via formation of T-loop structures. Many protein kinases contribute to the DDR activated cell cycle checkpoint pathways, and prevent DNA replication until damaged DNA is repaired. Thereby, the connection between cell fate and telomere length-associated telomerase activity is regulated by multiple protein kinase activities. Contrarily, inactivation of DNA damage checkpoint protein kinases in senescent cells can restore cell-cycle progression into S phase. Therefore, telomere-initiated senescence is a DNA damage checkpoint response that is activated with a direct contribution from dysfunctional telomeres. In this review, in addition to the above mentioned, the choice of main repair pathways, which comprise non-homologous end joining and homologous recombination in telomere uncapping telomere dysfunctions, are discussed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
40
|
Aguilar M, Prieto P. Telomeres and Subtelomeres Dynamics in the Context of Early Chromosome Interactions During Meiosis and Their Implications in Plant Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:672489. [PMID: 34149773 PMCID: PMC8212018 DOI: 10.3389/fpls.2021.672489] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/06/2021] [Indexed: 05/08/2023]
Abstract
Genomic architecture facilitates chromosome recognition, pairing, and recombination. Telomeres and subtelomeres play an important role at the beginning of meiosis in specific chromosome recognition and pairing, which are critical processes that allow chromosome recombination between homologs (equivalent chromosomes in the same genome) in later stages. In plant polyploids, these terminal regions are even more important in terms of homologous chromosome recognition, due to the presence of homoeologs (equivalent chromosomes from related genomes). Although telomeres interaction seems to assist homologous pairing and consequently, the progression of meiosis, other chromosome regions, such as subtelomeres, need to be considered, because the DNA sequence of telomeres is not chromosome-specific. In addition, recombination operates at subtelomeres and, as it happens in rye and wheat, homologous recognition and pairing is more often correlated with recombining regions than with crossover-poor regions. In a plant breeding context, the knowledge of how homologous chromosomes initiate pairing at the beginning of meiosis can contribute to chromosome manipulation in hybrids or interspecific genetic crosses. Thus, recombination in interspecific chromosome associations could be promoted with the aim of transferring desirable agronomic traits from related genetic donor species into crops. In this review, we summarize the importance of telomeres and subtelomeres on chromatin dynamics during early meiosis stages and their implications in recombination in a plant breeding framework.
Collapse
Affiliation(s)
- Miguel Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- *Correspondence: Pilar Prieto, ; orcid.org/0000-0002-8160-808X
| |
Collapse
|
41
|
Abstract
In this perspective, we introduce shelterin and the mechanisms of ATM activation and NHEJ at telomeres, before discussing the following questions: How are t-loops proposed to protect chromosome ends and what is the evidence for this model? Can other models explain how TRF2 mediates end protection? Could t-loops be pathological structures? How is end protection achieved in pluripotent cells? What do the insights into telomere end protection in pluripotent cells mean for the t-loop model of end protection? Why might different cell states have evolved different mechanisms of end protection? Finally, we offer support for an updated t-loop model of end protection, suggesting that the data is supportive of a critical role for t-loops in protecting chromosome ends from NHEJ and ATM activation, but that other mechanisms are involved. Finally, we propose that t-loops are likely dynamic, rather than static, structures.
Collapse
Affiliation(s)
- Phil Ruis
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | | |
Collapse
|
42
|
Glousker G, Briod A, Quadroni M, Lingner J. Human shelterin protein POT1 prevents severe telomere instability induced by homology-directed DNA repair. EMBO J 2020; 39:e104500. [PMID: 33073402 PMCID: PMC7705456 DOI: 10.15252/embj.2020104500] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 01/05/2023] Open
Abstract
The evolutionarily conserved POT1 protein binds single-stranded G-rich telomeric DNA and has been implicated in contributing to telomeric DNA maintenance and the suppression of DNA damage checkpoint signaling. Here, we explore human POT1 function through genetics and proteomics, discovering that a complete absence of POT1 leads to severe telomere maintenance defects that had not been anticipated from previous depletion studies in human cells. Conditional deletion of POT1 in HEK293E cells gives rise to rapid telomere elongation and length heterogeneity, branched telomeric DNA structures, telomeric R-loops, and telomere fragility. We determine the telomeric proteome upon POT1-loss, implementing an improved telomeric chromatin isolation protocol. We identify a large set of proteins involved in nucleic acid metabolism that engage with telomeres upon POT1-loss. Inactivation of the homology-directed repair machinery suppresses POT1-loss-mediated telomeric DNA defects. Our results unravel as major function of human POT1 the suppression of telomere instability induced by homology-directed repair.
Collapse
Affiliation(s)
- Galina Glousker
- School of Life SciencesSwiss Institute for Experimental Cancer Research (ISREC)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Anna‐Sophia Briod
- School of Life SciencesSwiss Institute for Experimental Cancer Research (ISREC)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | | | - Joachim Lingner
- School of Life SciencesSwiss Institute for Experimental Cancer Research (ISREC)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
43
|
Cicconi A, Rai R, Xiong X, Broton C, Al-Hiyasat A, Hu C, Dong S, Sun W, Garbarino J, Bindra RS, Schildkraut C, Chen Y, Chang S. Microcephalin 1/BRIT1-TRF2 interaction promotes telomere replication and repair, linking telomere dysfunction to primary microcephaly. Nat Commun 2020; 11:5861. [PMID: 33203878 PMCID: PMC7672075 DOI: 10.1038/s41467-020-19674-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/22/2020] [Indexed: 01/07/2023] Open
Abstract
Telomeres protect chromosome ends from inappropriately activating the DNA damage and repair responses. Primary microcephaly is a key clinical feature of several human telomere disorder syndromes, but how microcephaly is linked to dysfunctional telomeres is not known. Here, we show that the microcephalin 1/BRCT-repeats inhibitor of hTERT (MCPH1/BRIT1) protein, mutated in primary microcephaly, specifically interacts with the TRFH domain of the telomere binding protein TRF2. The crystal structure of the MCPH1-TRF2 complex reveals that this interaction is mediated by the MCPH1 330YRLSP334 motif. TRF2-dependent recruitment of MCPH1 promotes localization of DNA damage factors and homology directed repair of dysfunctional telomeres lacking POT1-TPP1. Additionally, MCPH1 is involved in the replication stress response, promoting telomere replication fork progression and restart of stalled telomere replication forks. Our work uncovers a previously unrecognized role for MCPH1 in promoting telomere replication, providing evidence that telomere replication defects may contribute to the onset of microcephaly.
Collapse
Affiliation(s)
- Alessandro Cicconi
- grid.47100.320000000419368710Department of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA
| | - Rekha Rai
- grid.47100.320000000419368710Department of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA
| | - Xuexue Xiong
- grid.507739.fState Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Cayla Broton
- grid.47100.320000000419368710Department of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA ,grid.5386.8000000041936877XTri- Institutional MD/PhD Program, Weill Cornell Medical College, New York, NY 10065 USA
| | - Amer Al-Hiyasat
- grid.47100.320000000419368710Department of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA ,grid.47100.320000000419368710Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA
| | - Chunyi Hu
- grid.507739.fState Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Siying Dong
- grid.507739.fState Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Wenqi Sun
- grid.507739.fState Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Jennifer Garbarino
- grid.47100.320000000419368710Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA ,grid.47100.320000000419368710Department of Therapeutic Radiology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA
| | - Ranjit S. Bindra
- grid.47100.320000000419368710Department of Therapeutic Radiology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA ,grid.47100.320000000419368710Department of Experimental Pathology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA
| | - Carl Schildkraut
- grid.251993.50000000121791997Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Yong Chen
- grid.507739.fState Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Sandy Chang
- grid.47100.320000000419368710Department of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA ,grid.47100.320000000419368710Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA ,grid.47100.320000000419368710Department of Pathology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA
| |
Collapse
|
44
|
Replication stress conferred by POT1 dysfunction promotes telomere relocalization to the nuclear pore. Genes Dev 2020; 34:1619-1636. [PMID: 33122293 PMCID: PMC7706707 DOI: 10.1101/gad.337287.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022]
Abstract
In this study, Pinzaru et al. set out to uncover the pathways that enable the proliferation of cells expressing cancer-associated POT1 mutations. Using complementary genetic and proteomic approaches, the authors identify a conserved function for the NPC in resolving replication defects at telomere loci. Mutations in the telomere-binding protein POT1 are associated with solid tumors and leukemias. POT1 alterations cause rapid telomere elongation, ATR kinase activation, telomere fragility, and accelerated tumor development. Here, we define the impact of mutant POT1 alleles through complementary genetic and proteomic approaches based on CRISPR interference and biotin-based proximity labeling, respectively. These screens reveal that replication stress is a major vulnerability in cells expressing mutant POT1, which manifests as increased telomere mitotic DNA synthesis at telomeres. Our study also unveils a role for the nuclear pore complex in resolving replication defects at telomeres. Depletion of nuclear pore complex subunits in the context of POT1 dysfunction increases DNA damage signaling, telomere fragility and sister chromatid exchanges. Furthermore, we observed telomere repositioning to the nuclear periphery driven by nuclear F-actin polymerization in cells with POT1 mutations. In conclusion, our study establishes that relocalization of dysfunctional telomeres to the nuclear periphery is critical to preserve telomere repeat integrity.
Collapse
|
45
|
Wu Y, Poulos RC, Reddel RR. Role of POT1 in Human Cancer. Cancers (Basel) 2020; 12:cancers12102739. [PMID: 32987645 PMCID: PMC7598640 DOI: 10.3390/cancers12102739] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The segmentation of eukaryotic genomes into discrete linear chromosomes requires processes to solve several major biological problems, including prevention of the chromosome ends being recognized as DNA breaks and compensation for the shortening that occurs when linear DNA is replicated. A specialized set of six proteins, collectively referred to as shelterin, is involved in both of these processes, and mutations in several of these are now known to be involved in cancer. Here, we focus on Protection of Telomeres 1 (POT1), the shelterin protein that appears to be most commonly involved in cancer, and consider the clinical significance of findings about its biological functions and the prevalence of inherited and acquired mutations in the POT1 gene. Abstract Telomere abnormalities facilitate cancer development by contributing to genomic instability and cellular immortalization. The Protection of Telomeres 1 (POT1) protein is an essential subunit of the shelterin telomere binding complex. It directly binds to single-stranded telomeric DNA, protecting chromosomal ends from an inappropriate DNA damage response, and plays a role in telomere length regulation. Alterations of POT1 have been detected in a range of cancers. Here, we review the biological functions of POT1, the prevalence of POT1 germline and somatic mutations across cancer predisposition syndromes and tumor types, and the dysregulation of POT1 expression in cancers. We propose a framework for understanding how POT1 abnormalities may contribute to oncogenesis in different cell types. Finally, we summarize the clinical implications of POT1 alterations in the germline and in cancer, and possible approaches for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Yangxiu Wu
- Cancer Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead NSW 2145, Australia;
- ProCan® Cancer Data Science Group, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead NSW 2145, Australia;
| | - Rebecca C. Poulos
- ProCan® Cancer Data Science Group, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead NSW 2145, Australia;
| | - Roger R. Reddel
- Cancer Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead NSW 2145, Australia;
- Correspondence: ; Tel.: +61-2-8865-2901
| |
Collapse
|
46
|
The altered expression of telomerase components and telomere-linked proteins may associate with ovarian aging in mouse. Exp Gerontol 2020; 138:110975. [DOI: 10.1016/j.exger.2020.110975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 12/27/2022]
|
47
|
MiR-185 targets POT1 to induce telomere dysfunction and cellular senescence. Aging (Albany NY) 2020; 12:14791-14807. [PMID: 32687062 PMCID: PMC7425516 DOI: 10.18632/aging.103541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
Protection of telomere 1 (POT1), the telomeric single-stranded DNA (ssDNA)-binding protein in the shelterin complex, has been implicated in the DNA damage response, tumorigenesis and aging. Telomere dysfunction induced by telomere deprotection could accelerate cellular senescence in primary human cells. While previous work demonstrated the biological mechanism of POT1 in aging and cancer, how POT1 is posttranscriptionally regulated remains largely unknown. To better understand the POT1 regulatory axis, we performed bioinformatic prediction, and selected candidates were further confirmed by dual-luciferase reporter assay. Collectively, our results revealed that miR-185 can significantly reduce POT1 mRNA and protein levels by directly targeting the POT1 3’-untranslated region (3’-UTR). Overexpression of miR-185 increased telomere dysfunction-induced foci (TIF) signals in both cancer cells and primary human fibroblasts. Elevated miR-185 led to telomere elongation in the telomerase-positive cell line HTC75, which was phenotypically consistent with POT1 knocking down. Moreover, miR-185 accelerated the replicative senescence process in primary human fibroblasts in a POT1-dependent manner. Interestingly, increased serum miR-185 could represent a potential aging-related biomarker. Taken together, our findings reveal miR-185 as a novel aging-related miRNA that targets POT1 and provide insight into the telomere and senescence regulatory network at both the intracellular and extracellular levels.
Collapse
|
48
|
Aramburu T, Plucinsky S, Skordalakes E. POT1-TPP1 telomere length regulation and disease. Comput Struct Biotechnol J 2020; 18:1939-1946. [PMID: 32774788 PMCID: PMC7385035 DOI: 10.1016/j.csbj.2020.06.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/27/2022] Open
Abstract
Telomeres are DNA repeats at the ends of linear chromosomes and are replicated by telomerase, a ribonucleoprotein reverse transcriptase. Telomere length regulation and chromosome end capping are essential for genome stability and are mediated primarily by the shelterin and CST complexes. POT1-TPP1, a subunit of shelterin, binds the telomeric overhang, suppresses ATR-dependent DNA damage response, and recruits telomerase to telomeres for DNA replication. POT1 localization to telomeres and chromosome end protection requires its interaction with TPP1. Therefore, the POT1-TPP1 complex is critical to telomere maintenance and full telomerase processivity. The aim of this mini-review is to summarize recent POT1-TPP1 structural studies and discuss how the complex contributes to telomere length regulation. In addition, we review how disruption of POT1-TPP1 function leads to human disease.
Collapse
Key Words
- ATM, Ataxia Telangiectasia Mutated protein
- ATR, Ataxia Telangiectasia and Rad3-related Protein
- CST, CTC1, Stn1 and Ten1
- CTC1, Conserved Telomere Capping Protein 1
- POT1
- POT1, Protection of telomere 1
- RAP1, Repressor/Activator Protein 1
- RPA, Replication Protein A
- SMCHD1, Structural Maintenance Of Chromosomes Flexible Hinge Domain Containing 1
- Shelterin
- Stn1, Suppressor of Cdc Thirteen
- TERC, Telomerase RNA
- TERT, Telomerase Reverse Transcriptase
- TIN2, TRF1- and TRF2-Interacting Nuclear Protein 2
- TPP1
- TPP1 also known as ACD, Adrenocortical Dysplasia Protein Homolog
- TRF1, Telomere Repeat binding Factor 1
- TRF2, Telomere Repeat binding Factor 2
- TSPYL5, Testis-specific Y-encoded-like protein 5
- Telomerase
- Telomeres
- Ten1, Telomere Length Regulation Protein
- USP7, ubiquitin-specific-processing protease 7
Collapse
|
49
|
Mir SM, Samavarchi Tehrani S, Goodarzi G, Jamalpoor Z, Asadi J, Khelghati N, Qujeq D, Maniati M. Shelterin Complex at Telomeres: Implications in Ageing. Clin Interv Aging 2020; 15:827-839. [PMID: 32581523 PMCID: PMC7276337 DOI: 10.2147/cia.s256425] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Different factors influence the development and control of ageing. It is well known that progressive telomere shorting is one of the molecular mechanisms underlying ageing. The shelterin complex consists of six telomere-specific proteins which are involved in the protection of chromosome ends. More particularly, this vital complex protects the telomeres from degradation, prevents from activation of unwanted repair systems, regulates the activity of telomerase, and has a crucial role in cellular senescent and ageing-related pathologies. This review explores the organization and function of telomeric DNA along with the mechanism of telomeres during ageing, followed by a discussion of the critical role of shelterin components and their changes during ageing.
Collapse
Affiliation(s)
- Seyed Mostafa Mir
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nafiseh Khelghati
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Durdi Qujeq
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahmood Maniati
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
50
|
Luo M, Teng X, Wang B, Zhang J, Liu Y, Liu D, Li H, Lu H. Protection of telomeres 1 (POT1) of Pinus tabuliformis bound the telomere ssDNA. TREE PHYSIOLOGY 2020; 40:119-127. [PMID: 31860719 DOI: 10.1093/treephys/tpz125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Protection of telomeres 1 (POT1) is a telomeric protein that binds to the telomere single-stranded (ss) region. It plays an essential role in maintaining genomic stability in both plants and animals. In this study, we investigated the properties of POT1 in Pinus tabuliformis Carr. (PtPOT1) through electrophoretic mobility shift assay. PtPOT1 harbored affinity for telomeric ssDNA and could bind plant- and mammalian-type ssDNA sequences. Notably, there were two oligonucleotide/oligosaccharide binding (OB) folds, and OB1 or OB2 alone, or both together, could bind ssDNA, which is significantly different from human POT1. Based on our data, we hypothesized that the two OB folds of PtPOT1 bound the same ssDNA. This model not only provides new insight into the ssDNA binding of PtPOT1 but also sheds light on the functional divergence of POT1 proteins in gymnosperms and humans.
Collapse
Affiliation(s)
- Mei Luo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No.35, Qinghua East road, Haidian District, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaotong Teng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Bing Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jiaxue Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yadi Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Di Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No.35, Qinghua East road, Haidian District, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|