1
|
Bencivenga D, Stampone E, Azhar J, Parente D, Ali W, Del Vecchio V, Della Ragione F, Borriello A. p27 Kip1 and Tumors: Characterization of CDKN1B Variants Identified in MEN4 and Breast Cancer. Cells 2025; 14:188. [PMID: 39936980 DOI: 10.3390/cells14030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/02/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
p27Kip1 is a key cell cycle gatekeeper governing the timing of Cyclin-dependent kinase (CDK) activation/inactivation and, consequently, cell proliferation. Structurally, the protein is largely unfolded, a feature that strongly increases its plasticity and interactors and enhances the number of regulated cellular processes. p27Kip1, like other intrinsically unstructured proteins, is post-translationally modified on several residues. These modifications affect its cellular localization and address p27Kip1 for specific interactions/functions. Several germline or somatic CDKN1B (the p27Kip1 encoding gene) mutations have been demonstrated to be associated with multiple endocrine neoplasia type 4 (MEN4), hairy cell leukemia, small-intestine neuroendocrine tumors, and breast and prostate cancers. Here, we analyzed the effect of four CDKN1B missense and nonsense mutations found in patients affected by MEN4 or cancers, namely, c.349C>T, p.P117S; c.397C>A, p.P133T; c.487C>T, p.Q163*; and c.511G>T, p.E171*. By transfecting breast cancer cell lines, we observed increased growth and cell motility for all the investigated mutants compared to wild-type p27Kip1 transfected cells. Furthermore, we discovered that the mutant forms exhibited altered phosphorylation on key residues and different localization or degradation mechanisms in comparison to the wild-type protein and suggested a possible region as crucial for the lysosome-dependent degradation of the protein. Finally, the loss of p27Kip1 ability in blocking cell proliferation was in part explained through the different binding efficiency that mutant p27Kip1 forms exhibited with Cyclin/Cyclin-dependent Kinase complexes (or proteins involved indirectly in that binding) with respect to the WT.
Collapse
Affiliation(s)
- Debora Bencivenga
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138 Naples, Italy
| | - Emanuela Stampone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138 Naples, Italy
| | - Jahanzaib Azhar
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138 Naples, Italy
| | - Daniela Parente
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138 Naples, Italy
| | - Waqar Ali
- Centre National de la Recherche Scientifique, University of Montpellier, UMR9002, 141 rue de la Cardonille, 34396 Montpellier, France
| | - Vitale Del Vecchio
- Department of Experimental Medicine, Section of Human Histology and Embryology, University of Campania "L. Vanvitelli", Via L. Armanni 5, 80128 Naples, Italy
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138 Naples, Italy
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138 Naples, Italy
| |
Collapse
|
2
|
Phillips AH, Kriwacki RW. The role of intrinsic protein disorder in regulation of cyclin-dependent kinases. Curr Opin Struct Biol 2024; 88:102906. [PMID: 39142260 DOI: 10.1016/j.sbi.2024.102906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
While the structure/function paradigm for folded domains was established decades ago, our understanding of how intrinsically disordered regions (IDRs) contribute to biological function is still evolving. IDRs exist as conformational ensembles that can range from highly compact to highly extended depending on their sequence composition. IDR sequences are less conserved than those of folded domains, but often display short, conserved segments termed short linear motifs (SLiMs), that often mediate protein-protein interactions and are often regulated by posttranslational modifications, giving rise to complex functionality when multiple, differently regulated SLiMs are combined. This combinatorial functionality was associated with signaling and regulation soon after IDRs were first recognized as functional elements within proteins. Here, we discuss roles for disorder in proteins that regulate cyclin-dependent kinases, the master timekeepers of the eukaryotic cell cycle. We illustrate the importance of intrinsic flexibility in the transmission of regulatory signals by these entirely disordered proteins.
Collapse
Affiliation(s)
- Aaron H Phillips
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard W Kriwacki
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
3
|
Wang Z, Zhang Y, Huang S, Liao Z, Huang M, Lei W, Shui X. UA influences the progression of breast cancer via the AhR/p27 Kip1/cyclin E pathway. FASEB J 2024; 38:e70058. [PMID: 39320969 DOI: 10.1096/fj.202400938r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
Uric acid (UA) is the end product of purine metabolism. In recent years, UA has been found to be associated with the prognosis of clinical cancer patients. However, the intricate mechanisms by which UA affects the development and prognosis of tumor patients has not been well elucidated. In this study, we explored the role of UA in breast cancer, scrutinizing its impact on breast cancer cell function by treating two types of breast cancer cell lines with UA. The role of UA in the cell cycle and proliferation of tumors and the underlying mechanisms were further investigated. We found that the antioxidant effect of UA facilitated the scavenging of reactive oxygen species (ROS) in breast cancer, thereby reducing aryl hydrocarbon receptor (AhR) expression and affecting the breast cancer cell cycle, driving the proliferation of breast cancer cells through the AhR/p27Kip1/cyclin E1 pathway. Moreover, in breast cancer patients, the expression of AhR and its downstream genes may be closely associated with cancer progression in patients. Therefore, an increase in UA could promote the proliferation of breast cancer cells through the AhR/p27Kip1/cyclin E1 pathway axis.
Collapse
Affiliation(s)
- Zhiying Wang
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yuanqi Zhang
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Shengchao Huang
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhihong Liao
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Mingzhang Huang
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wei Lei
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Precision Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
4
|
Zou H, Luo J, Guo Y, Deng L, Zeng L, Pan Y, Li P. Tyrosine phosphorylation-mediated YAP1-TFAP2A interactions coordinate transcription and trastuzumab resistance in HER2+ breast cancer. Drug Resist Updat 2024; 73:101051. [PMID: 38219531 DOI: 10.1016/j.drup.2024.101051] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Trastuzumab resistance in HER2+ breast cancer (BC) is the major reason leading to poor prognosis of BC patients. Oncogenic gene overexpression or aberrant activation of tyrosine kinase SRC is identified to be the key modulator of trastuzumab response. However, the detailed regulatory mechanisms underlying SRC activation-associated trastuzumab resistance remain poorly understood. In the present study, we discover that SRC-mediated YAP1 tyrosine phosphorylation facilitates its interaction with transcription factor AP-2 alpha (activating enhancer binding protein 2 alpha, TFAP2A), which in turn promotes YAP1/TEAD-TFAP2A (YTT) complex-associated transcriptional outputs, thereby conferring trastuzumab resistance in HER2+ BC. Inhibition of SRC kinase activity or disruption of YTT complex sensitizes cells to trastuzumab treatment in vitro and in vivo. Additionally, we also identify YTT complex co-occupies the regulatory regions of a series of genes related to trastuzumab resistance and directly regulates their transcriptions, including EGFR, HER2, H19 and CTGF. Moreover, YTT-mediated transcriptional regulation is coordinated by SRC kinase activity. Taken together, our study reveals that SRC-mediated YTT complex formation and transcriptions are responsible for multiple mechanisms associated with trastuzumab resistance. Therefore, targeting HER2 signaling in combination with the inhibition of YTT-associated transcriptional outputs could serve as the treatment strategy to overcome trastuzumab resistance caused by SRC activation.
Collapse
Affiliation(s)
- Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Yibo Guo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Liang Deng
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Leli Zeng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China.
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China.
| |
Collapse
|
5
|
Thakur A, Rana N, Kumar R. Altered hormone expression induced genetic changes leads to breast cancer. Curr Opin Oncol 2024; 36:115-122. [PMID: 38441060 DOI: 10.1097/cco.0000000000001019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
PURPOSE OF REVIEW Breast cancer ranks first among gynecological cancer in India. It is associated with urbanization, changes in lifestyle and obesity. Hormones also play a crucial role in the development of breast cancer. Steroid hormones play critical role in development of breast cancer. RECENT FINDING Breast cancer is caused due to alteration in different hormone expressions leading to genetic instability. Loss or gains of functions due to genetic instability were associated with the alterations in housekeeping genes. Up-regulation in c-myc, signal transducer and activator of transcription (STAT), CREB-regulated transcription coactivator (CRTC), and eukaryotic translation initiation factor 4E (eIF4E) may cause the development of breast cancer. Peptide hormones are commonly following the phosphoinositide 3-kinases (PI3K) pathway for activation of cell cycle causing uncontrolled proliferation. Although steroid hormones are following the Ras/Raf/mitogen-activated protein kinase (MEK) pathway, their hyper-activation of these pathways causes extracellular-signal-regulated kinase (ERK) and MAPK activation, leading to carcinogenesis. SUMMARY Alteration in cell cycle proteins, oncogenes, tumor suppressor genes, transcription and translation factors lead to breast cancer. Apoptosis plays a vital role in the elimination of abnormal cells but failure in any of these apoptotic pathways may cause tumorigenesis. Hence, a complex interplay of hormonal and genetic factors is required to maintain homeostasis in breast cells. Imbalance in homeostasis of these hormone and genes may lead to breast cancer.
Collapse
Affiliation(s)
- Anchal Thakur
- Department of Animal sciences, Central University of Himachal Pradesh, Dharamshala, H.P
| | - Navya Rana
- Department of Animal sciences, Central University of Himachal Pradesh, Dharamshala, H.P
| | - Ranjit Kumar
- Department of Zoology, Nagaland University, Lumami, Nagaland
| |
Collapse
|
6
|
Zornić S, Simović Marković B, Franich AA, Janjić GV, Jadranin MB, Avdalović J, Rajković S, Živković MD, Arsenijević NN, Radosavljević GD, Pantić J. Characterization, modes of interactions with DNA/BSA biomolecules and anti-tumor activity of newly synthesized dinuclear platinum(II) complexes with pyridazine bridging ligand. J Biol Inorg Chem 2024; 29:51-73. [PMID: 38099936 DOI: 10.1007/s00775-023-02030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/10/2023] [Indexed: 04/10/2024]
Abstract
Platinum-based drugs are widely recognized efficient anti-tumor agents, but faced with multiple undesirable effects. Here, four dinuclear platinum(II) complexes, [{Pt(1,2-pn)Cl}2(μ-pydz)]Cl2 (C1), [{Pt(ibn)Cl}2(μ-pydz)]Cl2 (C2), [{Pt(1,3-pn)Cl}2(μ-pydz)]Cl2 (C3) and [{Pt(1,3-pnd)Cl}2(μ-pydz)]Cl2 (C4), were designed (pydz is pyridazine, 1,2-pn is ( ±)-1,2-propylenediamine, ibn is 1,2-diamino-2-methylpropane, 1,3-pn is 1,3-propylenediamine, and 1,3-pnd is 1,3-pentanediamine). Interactions and binding ability of C1-C4 complexes with calf thymus DNA (CT-DNA) has been monitored by viscosity measurements, UV-Vis, fluorescence emission spectroscopy and molecular docking. Binding affinities of C1-C4 complexes to the bovine serum albumin (BSA) has been monitored by fluorescence emission spectroscopy. The tested complexes exhibit variable cytotoxicity toward different mouse and human tumor cell lines. C2 shows the most potent cytotoxicity, especially against mouse (4T1) and human (MDA-MD468) breast cancer cells in the dose- and time-dependent manner. C2 induces 4T1 and MDA-MD468 cells apoptosis, further documented by the accumulation of cells at sub-G1 phase of cell cycle and increase of executive caspase 3 and caspase 9 levels in 4T1 cells. C2 exhibits anti-proliferative effect through the reduction of cyclin D3 and cyclin E expression and elevation of inhibitor p27 level. Also, C2 downregulates c-Myc and phosphorylated AKT, oncogenes involved in the control of tumor cell proliferation and death. In order to measure the amount of platinum(II) complexes taken up by the cells, the cellular platinum content were quantified. However, C2 failed to inhibit mouse breast cancer growth in vivo. Chemical modifications of tested platinum(II) complexes might be a valuable approach for the improvement of their anti-tumor activity, especially effects in vivo.
Collapse
Affiliation(s)
- Sanja Zornić
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
- Department of Microbiology, University Clinical Center Kragujevac, Zmaj Jovina 30, 34000, Kragujevac, Serbia
| | - Bojana Simović Marković
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Andjela A Franich
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Goran V Janjić
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Milka B Jadranin
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Jelena Avdalović
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Snežana Rajković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Marija D Živković
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Nebojša N Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Gordana D Radosavljević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia.
| | - Jelena Pantić
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia.
| |
Collapse
|
7
|
Tomasin R, Rodrigues AM, Manucci AC, Bruni-Cardoso A. A molecular landscape of quiescence and proliferation highlights the role of Pten in mammary gland acinogenesis. J Cell Sci 2023; 136:jcs261178. [PMID: 37712332 DOI: 10.1242/jcs.261178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
Cell context is key for cell state. Using physiologically relevant models of laminin-rich extracellular matrix (lrECM) induction of mammary epithelial cell quiescence and differentiation, we provide a landscape of the key molecules for the proliferation-quiescence decision, identifying multiple layers of regulation at the mRNA and protein levels. Quiescence occurred despite activity of Fak (also known as PTK2), Src and phosphoinositide 3-kinases (PI3Ks), suggesting the existence of a disconnecting node between upstream and downstream proliferative signalling. Pten, a lipid and protein phosphatase, fulfils this role, because its inhibition increased proliferation and restored signalling via the Akt, mTORC1, mTORC2 and mitogen-activated protein kinase (MAPK) pathways. Pten and laminin levels were positively correlated in developing murine mammary epithelia, and Pten localized apicolaterally in luminal cells in ducts and near the nascent lumen in terminal end buds. Consistently, in three-dimensional acinogenesis models, Pten was required for triggering and sustaining quiescence, polarity and architecture. The multilayered regulatory circuitry that we uncovered provides an explanation for the robustness of quiescence within a growth-suppressive microenvironment, which could nonetheless be disrupted by perturbations in master regulators such as Pten.
Collapse
Affiliation(s)
- Rebeka Tomasin
- E-signal lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Ana Maria Rodrigues
- E-signal lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Antonio Carlos Manucci
- E-signal lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Alexandre Bruni-Cardoso
- E-signal lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
8
|
Samaddar S, Buckles D, Saha S, Zhang Q, Bansal A. Translating Molecular Biology Discoveries to Develop Targeted Cancer Interception in Barrett's Esophagus. Int J Mol Sci 2023; 24:11318. [PMID: 37511077 PMCID: PMC10379200 DOI: 10.3390/ijms241411318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is a rapidly increasing lethal tumor. It commonly arises from a metaplastic segment known as Barrett's esophagus (BE), which delineates the at-risk population. Ample research has elucidated the pathogenesis of BE and its progression from metaplasia to invasive carcinoma; and multiple molecular pathways have been implicated in this process, presenting several points of cancer interception. Here, we explore the mechanisms of action of various agents, including proton pump inhibitors, non-steroidal anti-inflammatory drugs, metformin, and statins, and explain their roles in cancer interception. Data from the recent AspECT trial are discussed to determine how viable a multipronged approach to cancer chemoprevention would be. Further, novel concepts, such as the repurposing of chemotherapeutic drugs like dasatinib and the prevention of post-ablation BE recurrence using itraconazole, are discussed.
Collapse
Affiliation(s)
- Sohini Samaddar
- Department of Internal Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Daniel Buckles
- Department of Gastroenterology and Hepatology, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Souvik Saha
- Department of Internal Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Qiuyang Zhang
- Center for Esophageal Diseases, Department of Medicine, Baylor University Medical Center, Dallas, TX 75246, USA
- Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, TX 75246, USA
| | - Ajay Bansal
- Department of Gastroenterology and Hepatology, University of Kansas Health System, Kansas City, KS 66160, USA
- University of Kansas Cancer Center, Kansas City, KS 66160, USA
| |
Collapse
|
9
|
Pegka F, Ben-Califa N, Neumann D, Jäkel H, Hengst L. EpoR Activation Stimulates Erythroid Precursor Proliferation by Inducing Phosphorylation of Tyrosine-88 of the CDK-Inhibitor p27 Kip1. Cells 2023; 12:1704. [PMID: 37443738 PMCID: PMC10340229 DOI: 10.3390/cells12131704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Erythrocyte biogenesis needs to be tightly regulated to secure oxygen transport and control plasma viscosity. The cytokine erythropoietin (Epo) governs erythropoiesis by promoting cell proliferation, differentiation, and survival of erythroid precursor cells. Erythroid differentiation is associated with an accumulation of the cyclin-dependent kinase inhibitor p27Kip1, but the regulation and role of p27 during erythroid proliferation remain largely unknown. We observed that p27 can bind to the erythropoietin receptor (EpoR). Activation of EpoR leads to immediate Jak2-dependent p27 phosphorylation of tyrosine residue 88 (Y88). This modification is known to impair its CDK-inhibitory activity and convert the inhibitor into an activator and assembly factor of CDK4,6. To investigate the physiological role of p27-Y88 phosphorylation in erythropoiesis, we analyzed p27Y88F/Y88F knock-in mice, where tyrosine-88 was mutated to phenylalanine. We observed lower red blood cell counts, lower hematocrit levels, and a reduced capacity for colony outgrowth of CFU-Es (colony-forming unit-erythroid), indicating impaired cell proliferation of early erythroid progenitors. Compensatory mechanisms of reduced p27 and increased Epo expression protect from stronger dysregulation of erythropoiesis. These observations suggest that p27-Y88 phosphorylation by EpoR pathway activation plays an important role in the stimulation of erythroid progenitor proliferation during the early stages of erythropoiesis.
Collapse
Affiliation(s)
- Fragka Pegka
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Nathalie Ben-Califa
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel (D.N.)
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel (D.N.)
| | - Heidelinde Jäkel
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ludger Hengst
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
10
|
Oswald AJ, Symeonides SN, Wheatley D, Chan S, Brunt AM, McAdam K, Schmid P, Waters S, Poole C, Twelves C, Perren T, Bartlett J, Piper T, Chisholm EM, Welsh M, Hill R, Hopcroft LEM, Barrett-Lee P, Cameron DA. Aromatase inhibition plus/minus Src inhibitor saracatinib (AZD0530) in advanced breast cancer therapy (ARISTACAT): a randomised phase II study. Breast Cancer Res Treat 2023; 199:35-46. [PMID: 36859649 PMCID: PMC10147753 DOI: 10.1007/s10549-023-06873-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE The development of oestrogen resistance is a major challenge in managing hormone-sensitive metastatic breast cancer. Saracatinib (AZD0530), an oral Src kinase inhibitor, prevents oestrogen resistance in animal models and reduces osteoclast activity. We aimed to evaluate the efficacy of saracatinib addition to aromatase inhibitors (AI) in patients with hormone receptor-positive metastatic breast cancer. METHODS This phase II multicentre double-blinded randomised trial allocated post-menopausal women to AI with either saracatinib or placebo (1:1 ratio). Patients were stratified into an "AI-sensitive/naïve" group who received anastrozole and "prior-AI" group who received exemestane. Primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival (OS), objective response rate (ORR) and toxicity. RESULTS 140 patients were randomised from 20 UK centres to saracatinib/AI (n = 69) or placebo/AI (n = 71). Saracatinib was not associated with an improved PFS (3.7 months v. 5.6 months placebo/AI) and did not reduce likelihood of bony progression. There was no benefit in OS or ORR. Effects were consistent in "AI-sensitive/naive" and "prior-AI" sub-groups. Saracatinib was well tolerated with dose reductions in 16% and the main side effects were gastrointestinal, hypophosphatemia and rash. CONCLUSION Saracatinib did not improve outcomes in post-menopausal women with metastatic breast cancer. There was no observed beneficial effect on bone metastases. CRUKE/11/023, ISRCTN23804370.
Collapse
Affiliation(s)
| | | | | | - Stephen Chan
- Nottingham University Hospitals NHS Trust, Nottingham, England, UK
| | - Adrian Murray Brunt
- University Hospitals of North Midlands NHS Trust, Stoke-On-Trent & University of Keele, Staffordshire, England, UK
| | - Karen McAdam
- Peterborough City Hospital, Peterborough, England, UK
| | | | - Simon Waters
- Velindre Hospital, Whitchurch, Cardiff, Wales, UK
| | | | - Chris Twelves
- University of Leeds and St James' Hospital, Leeds, England, UK
| | - Timothy Perren
- University of Leeds and St James' Hospital, Leeds, England, UK
| | | | - Tammy Piper
- University of Edinburgh, Edinburgh, Scotland, UK
| | | | - Michelle Welsh
- Scottish Clinical Trials Research Unit, Edinburgh, Scotland, UK
| | - Robert Hill
- Scottish Clinical Trials Research Unit, Edinburgh, Scotland, UK
| | | | | | | |
Collapse
|
11
|
Brooks RF. Commentary: locating the restriction point. Cell Div 2023; 18:2. [PMID: 36765359 PMCID: PMC9912616 DOI: 10.1186/s13008-023-00085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/12/2023] [Indexed: 02/12/2023] Open
Abstract
Attempts to map the Restriction Point in the mammalian cell cycle typically involve stimulating quiescent cells with mitogens for increasing intervals, removing the stimulus and then determining the proportion of cells that reach S phase at some point later. This "fixed point" estimate assumes that further cell cycle commitment ceases as soon as the stimulus is removed. In fact, kinetic analysis shows that the probability of cell cycle commitment does not fall back to its initial low value, immediately after a pulse of mitogens, but may instead remain slightly elevated for some while afterwards, compared to the starting quiescent population. Thus, cells entering S phase after a brief exposure to mitogens are not those that pass the Restriction Point early. Rather, they represent cells that continue on to S phase as a result of this residual, low probability of cell cycle commitment. Instead, the mitogen-regulated process(es) affecting the probability of cell cycle commitment are much closer to the start of S phase itself. Since the acquisition of (apparent) mitogen independence is such a poor indicator of the timing of cell cycle commitment, it is argued that a better measure is the point of insensitivity to CDK4,6 inhibitors such as palbociclib, which indicates when hyperphosphorylation of the Retinoblastoma Protein, RB, ceases to be dependent on mitogen-signalling pathways regulating CDK4,6/cyclin D activity.
Collapse
Affiliation(s)
- Robert F. Brooks
- grid.264200.20000 0000 8546 682XMolecular and Clinical Sciences Research Institute, St George’s University of London, Mailpoint J2A, Cranmer Terrace, SW17 0RE London, UK
| |
Collapse
|
12
|
Hope I, Endicott JA, Watt JE. Emerging approaches to CDK inhibitor development, a structural perspective. RSC Chem Biol 2023; 4:146-164. [PMID: 36794018 PMCID: PMC9906319 DOI: 10.1039/d2cb00201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Aberrant activity of the cyclin-dependent kinase family is frequently noted in a number of diseases identifying them as potential targets for drug development. However, current CDK inhibitors lack specificity owing to the high sequence and structural conservation of the ATP binding cleft across family members, highlighting the necessity of finding novel modes of CDK inhibition. The wealth of structural information regarding CDK assemblies and inhibitor complexes derived from X-ray crystallographic studies has been recently complemented through the use of cryo-electron microscopy. These recent advances have provided insights into the functional roles and regulatory mechanisms of CDKs and their interaction partners. This review explores the conformational malleability of the CDK subunit, the importance of SLiM recognition sites in CDK complexes, the progress made in chemically induced CDK degradation and how these studies can contribute to CDK inhibitor design. Additionally, fragment-based drug discovery can be utilised to identify small molecules that bind to allosteric sites on the CDK surface employing interactions which mimic those of native protein-protein interactions. These recent structural advances in CDK inhibitor mechanisms and in chemical probes which do not occupy the orthosteric ATP binding site can provide important insights for targeted CDK therapies.
Collapse
Affiliation(s)
- Ian Hope
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Jane A Endicott
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Jessica E Watt
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| |
Collapse
|
13
|
Zhao J, Xu Y, Wang J, Liu J, Zhang R, Yan X. Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1B Inhibition Promotes Megakaryocyte Polyploidization and Platelet Production. Thromb Haemost 2023; 123:192-206. [PMID: 36126948 DOI: 10.1055/a-1947-7615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Platelets are produced from mature megakaryocytes which undergo polyploidization and proplatelet formation. Cell-cycle regulation plays a crucial role in megakaryocyte terminal differentiation especially in polyploidization. Dual-specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B) controls cell-cycle progression in cancer cells. The objective of this study was to determine DYRK1B function in megakaryocyte maturation and platelet production. A DYRK1B knock-out mouse was generated with increased peripheral platelet count compared with the wild type mouse without affecting megakaryocyte numbers in bone marrow. Polyploidy and proplatelet formations were significantly enhanced when DYRK1B was depleted in vitro. DYRK1B inhibition promoted megakaryocyte maturation by simultaneously upregulating cyclin D1 and downregulating P27. Furthermore, there was platelet restoration in two mice disease models of transient thrombocytopenia. In summary, DYRK1B plays an important role in megakaryocyte maturation and platelet production by interacting with cyclin D1 and P27. DYRK1B inhibition has potential therapeutic value in transient thrombocytopenia treatment. Graphic Abstract.
Collapse
Affiliation(s)
- Jiaxin Zhao
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yanyan Xu
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Giri S, Park GH, Choi JS, Ma E, Chun KS, Joo SH. MS-5, a Naphthalene Derivative, Induces Apoptosis in Human Pancreatic Cancer BxPC-3 Cells by Modulating Reactive Oxygen Species. Biomol Ther (Seoul) 2023; 31:68-72. [PMID: 36380602 PMCID: PMC9810442 DOI: 10.4062/biomolther.2022.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Pancreatic cancer is one of the most fatal cancers with a poor prognosis. Standard chemotherapies have proven largely ineffective because of their toxicity and the development of resistance. Therefore, there is an urgent need to develop novel therapies. In this study, we investigated the antitumor activity of MS-5, a naphthalene derivative, on BxPC-3, a human pancreatic cancer cell line. We observed that MS-5 was cytotoxic to BxPC-3 cells, as well as inhibited the growth of cells in a concentration- and time- dependent manner. Flow cytometry analysis revealed that the percentage of annexin V-positive cells increased after MS-5 treatment. We also observed cleavage of caspases and poly (ADP-ribose) polymerase, and downregulation of Bcl-xL protein. Flow cytometry analysis of intracellular levels of reactive oxygen species (ROS) and mitochondrial superoxide suggested that MS-5 induced the generation of mitochondrial superoxide while lowering the overall intracellular ROS levels. Thus, MS-5 may be potential candidate for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Suman Giri
- Department of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Gyu Hwan Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Joon-Seok Choi
- Department of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Eunsook Ma
- Department of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea,Corresponding Authors E-mail: (Joo SH), (Chun KS), Tel: +82-53-850-3614 (Joo SH), +82-53-580-6647 (Chun KS), Fax: +82-53-359-6729 (Joo SH), +82-53-580-6645 (Chun KS)
| | - Sang Hoon Joo
- Department of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea,Corresponding Authors E-mail: (Joo SH), (Chun KS), Tel: +82-53-850-3614 (Joo SH), +82-53-580-6647 (Chun KS), Fax: +82-53-359-6729 (Joo SH), +82-53-580-6645 (Chun KS)
| |
Collapse
|
15
|
Papadimitriou MC, Pazaiti A, Iliakopoulos K, Markouli M, Michalaki V, Papadimitriou CA. Resistance to CDK4/6 inhibition: Mechanisms and strategies to overcome a therapeutic problem in the treatment of hormone receptor-positive metastatic breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119346. [PMID: 36030016 DOI: 10.1016/j.bbamcr.2022.119346] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Selective CDK4/6 inhibitors, such as palbociclib, ribociclib, and abemaciclib, have been approved in combination with hormone therapy for the treatment of patients with HR+, HER2-negative advanced or metastatic breast cancer (mBC). Despite their promising activity, approximately 10 % of patients have de novo resistance, while the rest of them will develop acquired resistance after 24-28 months when used as first-line therapy and after a shorter period when used as second-line therapy. Various mechanisms of resistance to CDK4/6 inhibitors have been described, including cell cycle-related mechanisms, such as RB loss, p16 amplification, CDK6 or CDK4 amplification, and cyclin E-CDK2 amplification. Other bypass mechanisms involve the activation of FGFR or PI3K/AKT/mTOR pathways. Identifying the different mechanisms by which resistance to CDK4/6 inhibitors occurs may help to design new treatment strategies to improve patient outcomes. This review presents the currently available knowledge on the mechanisms of resistance to CDK4/6 inhibitors, explores possible treatment strategies that could overcome this therapeutic problem, and summarizes relevant recent clinical trials.
Collapse
Affiliation(s)
- Marios C Papadimitriou
- Oncology Unit, Second Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 115 28 Athens, Greece
| | - Anastasia Pazaiti
- Breast Clinic of Oncologic and Reconstructive Surgery, Metropolitan General Hospital, Leoforos Mesogeion 264, 155 62 Cholargos, Greece.
| | - Konstantinos Iliakopoulos
- Second Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 115 28 Athens, Greece
| | - Mariam Markouli
- Second Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 115 28 Athens, Greece
| | - Vasiliki Michalaki
- Oncology Unit, Second Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 115 28 Athens, Greece
| | - Christos A Papadimitriou
- Oncology Unit, Second Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 115 28 Athens, Greece.
| |
Collapse
|
16
|
RGS16 regulated by let-7c-5p promotes glioma progression by activating PI3K-AKT pathway. Front Med 2022; 17:143-155. [PMID: 36414916 DOI: 10.1007/s11684-022-0929-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/21/2022] [Indexed: 11/24/2022]
Abstract
Gliomas are the most common central nervous system tumours; they are highly aggressive and have a poor prognosis. RGS16 belongs to the regulator of G-protein signalling (RGS) protein family, which plays an important role in promoting various cancers, such as breast cancer, pancreatic cancer, and colorectal cancer. Moreover, previous studies confirmed that let-7c-5p, a well-known microRNA, can act as a tumour suppressor to regulate the progression of various tumours by inhibiting the expression of its target genes. However, whether RGS16 can promote the progression of glioma and whether it is regulated by miR let-7c-5p are still unknown. Here, we confirmed that RGS16 is upregulated in glioma tissues and that high expression of RGS16 is associated with poor survival. Ectopic deletion of RGS16 significantly suppressed glioma cell proliferation and migration both in vitro and in vivo. Moreover, RGS16 was validated as a direct target gene of miR let-7c-5p. The overexpression of miR let-7c-5p obviously downregulated the expression of RGS16, and knocking down miR let-7c-5p had the opposite effect. Thus, we suggest that the suppression of RGS16 by miR let-7c-5p can promote glioma progression and may serve as a potential prognostic biomarker and therapeutic target in glioma.
Collapse
|
17
|
Chavkin NW, Genet G, Poulet M, Jeffery ED, Marziano C, Genet N, Vasavada H, Nelson EA, Acharya BR, Kour A, Aragon J, McDonnell SP, Huba M, Sheynkman GM, Walsh K, Hirschi KK. Endothelial cell cycle state determines propensity for arterial-venous fate. Nat Commun 2022; 13:5891. [PMID: 36202789 PMCID: PMC9537338 DOI: 10.1038/s41467-022-33324-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/09/2022] [Indexed: 12/15/2022] Open
Abstract
During blood vessel development, endothelial cells become specified toward arterial or venous fates to generate a circulatory network that provides nutrients and oxygen to, and removes metabolic waste from, all tissues. Arterial-venous specification occurs in conjunction with suppression of endothelial cell cycle progression; however, the mechanistic role of cell cycle state is unknown. Herein, using Cdh5-CreERT2;R26FUCCI2aR reporter mice, we find that venous endothelial cells are enriched for the FUCCI-Negative state (early G1) and BMP signaling, while arterial endothelial cells are enriched for the FUCCI-Red state (late G1) and TGF-β signaling. Furthermore, early G1 state is essential for BMP4-induced venous gene expression, whereas late G1 state is essential for TGF-β1-induced arterial gene expression. Pharmacologically induced cell cycle arrest prevents arterial-venous specification defects in mice with endothelial hyperproliferation. Collectively, our results show that distinct endothelial cell cycle states provide distinct windows of opportunity for the molecular induction of arterial vs. venous fate.
Collapse
Affiliation(s)
- Nicholas W Chavkin
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Mathilde Poulet
- Department of Medicine, Yale Cardiovascular Research Center Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Erin D Jeffery
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Corina Marziano
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Nafiisha Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Hema Vasavada
- Department of Medicine, Yale Cardiovascular Research Center Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Elizabeth A Nelson
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Bipul R Acharya
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Anupreet Kour
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Jordon Aragon
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Stephanie P McDonnell
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Mahalia Huba
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gloria M Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kenneth Walsh
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Hematovascular Biology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- Department of Medicine, Yale Cardiovascular Research Center Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
18
|
Beeken J, Kessels S, Rigo JM, Alpizar YA, Nguyen L, Brône B. p27 kip1 Modulates the Morphology and Phagocytic Activity of Microglia. Int J Mol Sci 2022; 23:10432. [PMID: 36142366 PMCID: PMC9499407 DOI: 10.3390/ijms231810432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
p27kip1 is a multifunctional protein that promotes cell cycle exit by blocking the activity of cyclin/cyclin-dependent kinase complexes as well as migration and motility via signaling pathways that converge on the actin and microtubule cytoskeleton. Despite the broad characterization of p27kip1 function in neural cells, little is known about its relevance in microglia. Here, we studied the role of p27kip1 in microglia using a combination of in vitro and in situ approaches. While the loss of p27kip1 did not affect microglial density in the cerebral cortex, it altered their morphological complexity in situ. However, despite the presence of p27kip1 in microglial processes, as shown by immunofluorescence in cultured cells, loss of p27kip1 did not change microglial process motility and extension after applying laser-induced brain damage in cortical brain slices. Primary microglia lacking p27kip1 showed increased phagocytic uptake of synaptosomes, while a cell cycle dead variant negatively affected phagocytosis. These findings indicate that p27kip1 plays specific roles in microglia.
Collapse
Affiliation(s)
- Jolien Beeken
- UHasselt, Hasselt University, BIOMED, 3500 Hasselt, Belgium
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sar-Tilman, 4000 Liège, Belgium
| | - Sofie Kessels
- UHasselt, Hasselt University, BIOMED, 3500 Hasselt, Belgium
| | | | | | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sar-Tilman, 4000 Liège, Belgium
| | - Bert Brône
- UHasselt, Hasselt University, BIOMED, 3500 Hasselt, Belgium
| |
Collapse
|
19
|
Zhang H, Lu J, Shang H, Chen J, Lin Z, Liu Y, Wang X, Song L, Jiang X, Jiang H, Shi J, Yan D, Wu S. Alterations of serine racemase expression determine proliferation and differentiation of neuroblastoma cells. FASEB J 2022; 36:e22473. [PMID: 35976172 DOI: 10.1096/fj.202200394rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/11/2022]
Abstract
Although the role of serine racemase (SR) in neuropsychiatric disorders has been extensively studied, its role in cell proliferation and differentiation remains unclear. Deletion of Srr, the encoding gene for SR, has been shown to reduce dendritic arborization and dendritic spine density in the brains of adult mice, whereas increased SR levels have been associated with differentiation in cell cultures. Previously, we demonstrated that valproic acid induces differentiation in the N2A neuroblastoma cell line, and that this differentiation is associated with increased SR expression. These observations suggest that SR may have a role in cell proliferation and differentiation. We herein found that both valproic acid and all-trans retinoic acid induced N2A differentiation. In contrast, knockdown of SR reduced levels of differentiation, increased N2A proliferation, promoted cell cycle entry, and modulated expression of cell cycle-related proteins. To further evaluate the effects of SR expression on cell proliferation and differentiation, we used an in vivo model of neuroblastoma in nude mice. N2A cells stably expressing scramble shRNA (Srrwt -N2A) or specific Srr shRNA (Srrkd -N2A) were subcutaneously injected into nude mice. The weights and volumes of Srrwt -N2A-derived tumors were lower than Srrkd -N2A-derived tumors. Furthermore, Srrwt -N2A-derived tumors were significantly mitigated by intraperitoneal injection of valproic acid, whereas Srrkd -N2A-derived tumors were unaffected. Taken together, our findings demonstrate for the first time that alterations in SR expression determine the transition between proliferation and differentiation in neural progenitor cells. Thus, in addition to its well-established roles in neuropsychiatric disorders, our study has highlighted a novel role for SR in cell proliferation and differentiation.
Collapse
Affiliation(s)
- He Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, P.R. China.,Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou, P.R. China.,School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Jinfang Lu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, P.R. China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, P.R. China
| | - Huiping Shang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Juan Chen
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Zhengxiu Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Yimei Liu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Xianwei Wang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Liping Song
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Xue Jiang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Haiyan Jiang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Jiandong Shi
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Dongsheng Yan
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| |
Collapse
|
20
|
Lohmüller M, Roeck BF, Szabo TG, Schapfl MA, Pegka F, Herzog S, Villunger A, Schuler F. The SKP2-p27 axis defines susceptibility to cell death upon CHK1 inhibition. Mol Oncol 2022; 16:2771-2787. [PMID: 35673965 PMCID: PMC9348596 DOI: 10.1002/1878-0261.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 11/07/2022] Open
Abstract
Checkpoint kinase 1 (CHK1; encoded by CHEK1) is an essential gene that monitors DNA replication fidelity and prevents mitotic entry in the presence of under-replicated DNA or exogenous DNA damage. Cancer cells deficient in p53 tumor suppressor function reportedly develop a strong dependency on CHK1 for proper cell cycle progression and maintenance of genome integrity, sparking interest in developing kinase inhibitors. Pharmacological inhibition of CHK1 triggers B-Cell CLL/Lymphoma 2 (BCL2)-regulated cell death in malignant cells largely independently of p53, and has been suggested to kill p53-deficient cancer cells even more effectively. Next to p53 status, our knowledge about factors predicting cancer cell responsiveness to CHK1 inhibitors is limited. Here, we conducted a genome-wide CRISPR/Cas9-based loss-of-function screen to identify genes defining sensitivity to chemical CHK1 inhibitors. Next to the proapoptotic BCL2 family member, BCL2 Binding Component 3 (BBC3; also known as PUMA), the F-box protein S-phase Kinase-Associated Protein 2 (SKP2) was validated to tune the cellular response to CHK1 inhibition. SKP2 is best known for degradation of the Cyclin-dependent Kinase Inhibitor 1B (CDKN1B; also known as p27), thereby promoting G1-S transition and cell cycle progression in response to mitogens. Loss of SKP2 resulted in the predicted increase in p27 protein levels, coinciding with reduced DNA damage upon CHK1-inhibitor treatment and reduced cell death in S-phase. Conversely, overexpression of SKP2, which consequently results in reduced p27 protein levels, enhanced cell death susceptibility to CHK1 inhibition. We propose that assessing SKP2 and p27 expression levels in human malignancies will help to predict the responsiveness to CHK1-inhibitor treatment.
Collapse
Affiliation(s)
- Michael Lohmüller
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Bernhard F Roeck
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Tamas G Szabo
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Marina A Schapfl
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Fragka Pegka
- Institute for Medical Biochemistry, Biocenter, Medical University of Innsbruck, Austria
| | - Sebastian Herzog
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Fabian Schuler
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| |
Collapse
|
21
|
Elson DJ, Nguyen BD, Wood R, Zhang Y, Puig-Sanvicens V, Kolluri SK. The cyclin-dependent kinase inhibitor p27 Kip1 interacts with the aryl hydrocarbon receptor and negatively regulates its transcriptional activity. FEBS Lett 2022; 596:2056-2071. [PMID: 35735777 DOI: 10.1002/1873-3468.14434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
Abstract
p27Kip1 functions to coordinate cell cycle progression through the inhibition of cyclin-dependent kinase (CDK) complexes. p27Kip1 also exerts distinct activities beyond CDK-inhibition, including functioning as a transcriptional regulator. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor with diverse biological roles. The regulatory inputs that control AhR-mediated transcriptional responses are an active area of investigation. AhR was previously established as a direct regulator of p27Kip1 transcription. Here, we report the physical interaction of AhR and p27Kip1 and show that p27Kip1 expression negatively regulates AhR-mediated transcription. p27Kip1 knockout cells display increased AhR nuclear localisation and significantly higher expression of AhR target genes. This work thus identifies new regulatory cross-talk between p27Kip1 and AhR.
Collapse
Affiliation(s)
- Daniel J Elson
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Bach D Nguyen
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Rhand Wood
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Yi Zhang
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Veronica Puig-Sanvicens
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Siva K Kolluri
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA.,Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
22
|
Gao L, Han B, Dong X. The Androgen Receptor and Its Crosstalk With the Src Kinase During Castrate-Resistant Prostate Cancer Progression. Front Oncol 2022; 12:905398. [PMID: 35832549 PMCID: PMC9271573 DOI: 10.3389/fonc.2022.905398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
While the androgen receptor (AR) signalling is the mainstay therapeutic target for metastatic prostate cancers, these tumours will inevitably develop therapy resistance to AR pathway inhibitors suggesting that prostate tumour cells possess the capability to develop mechanisms to bypass their dependency on androgens and/or AR to survive and progress. In many studies, protein kinases such as Src are reported to promote prostate tumour progression. Specifically, the pro-oncogene tyrosine Src kinase regulates prostate cancer cell proliferation, adhesion, invasion, and metastasis. Not only can Src be activated under androgen depletion, low androgen, and supraphysiological androgen conditions, but also through crosstalk with other oncogenic pathways. Reciprocal activations between Src and AR proteins had also been reported. These findings rationalize Src inhibitors to be used to treat castrate-resistant prostate tumours. Although several Src inhibitors had advanced to clinical trials, the failure to observe patient benefits from these studies suggests that further evaluation of the roles of Src in prostate tumours is required. Here, we summarize the interplay between Src and AR signalling during castrate-resistant prostate cancer progression to provide insights on possible approaches to treat prostate cancer patients.
Collapse
Affiliation(s)
- Lin Gao
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuesen Dong
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Xuesen Dong,
| |
Collapse
|
23
|
Swadling JB, Warnecke T, Morris KL, Barr AR. Conserved Cdk inhibitors show unique structural responses to tyrosine phosphorylation. Biophys J 2022; 121:2312-2329. [PMID: 35614852 PMCID: PMC9279356 DOI: 10.1016/j.bpj.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/01/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022] Open
Abstract
Balanced proliferation-quiescence decisions are vital during normal development and in tissue homeostasis, and their dysregulation underlies tumorigenesis. Entry into proliferative cycles is driven by Cyclin/Cyclin-dependent kinases (Cdks). Conserved Cdk inhibitors (CKIs) p21Cip1/Waf1, p27Kip1, and p57Kip2 bind to Cyclin/Cdks and inhibit Cdk activity. p27 tyrosine phosphorylation, in response to mitogenic signaling, promotes activation of CyclinD/Cdk4 and CyclinA/Cdk2. Tyrosine phosphorylation is conserved in p21 and p57, although the number of sites differs. We use molecular-dynamics simulations to compare the structural changes in Cyclin/Cdk/CKI trimers induced by single and multiple tyrosine phosphorylation in CKIs and their impact on CyclinD/Cdk4 and CyclinA/Cdk2 activity. Despite shared structural features, CKI binding induces distinct structural responses in Cyclin/Cdks and the predicted effects of CKI tyrosine phosphorylation on Cdk activity are not conserved across CKIs. Our analyses suggest how CKIs may have evolved to be sensitive to different inputs to give context-dependent control of Cdk activity.
Collapse
Affiliation(s)
- Jacob B Swadling
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom; MRC London Institute of Medical Sciences, London, United Kingdom.
| | - Tobias Warnecke
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom; MRC London Institute of Medical Sciences, London, United Kingdom
| | - Kyle L Morris
- MRC London Institute of Medical Sciences, London, United Kingdom
| | - Alexis R Barr
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom; MRC London Institute of Medical Sciences, London, United Kingdom.
| |
Collapse
|
24
|
Rampioni Vinciguerra GL, Sonego M, Segatto I, Dall’Acqua A, Vecchione A, Baldassarre G, Belletti B. CDK4/6 Inhibitors in Combination Therapies: Better in Company Than Alone: A Mini Review. Front Oncol 2022; 12:891580. [PMID: 35712501 PMCID: PMC9197541 DOI: 10.3389/fonc.2022.891580] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022] Open
Abstract
The cyclin D-CDK4/6 complexes play a pivotal role in controlling the cell cycle. Deregulation in cyclin D-CDK4/6 pathway has been described in many types of cancer and it invariably leads to uncontrolled cell proliferation. Many efforts have been made to develop a target therapy able to inhibit CDK4/6 activity. To date, three selective CDK4/6 small inhibitors have been introduced in the clinic for the treatment of hormone positive advanced breast cancer patients, following the impressive results obtained in phase III clinical trials. However, since their approval, clinical evidences have demonstrated that about 30% of breast cancer is intrinsically resistant to CDK4/6 inhibitors and that prolonged treatment eventually leads to acquired resistance in many patients. So, on one hand, clinical and preclinical studies fully support to go beyond breast cancer and expand the use of CDK4/6 inhibitors in other tumor types; on the other hand, the question of primary and secondary resistance has to be taken into account, since it is now very clear that neoplastic cells rapidly develop adaptive strategies under treatment, eventually resulting in disease progression. Resistance mechanisms so far discovered involve both cell-cycle and non-cell-cycle related escape strategies. Full understanding is yet to be achieved but many different pathways that, if targeted, may lead to reversion of the resistant phenotype, have been already elucidated. Here, we aim to summarize the knowledge in this field, focusing on predictive biomarkers, to recognize intrinsically resistant tumors, and therapeutic strategies, to overcome acquired resistance.
Collapse
Affiliation(s)
- Gian Luca Rampioni Vinciguerra
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Maura Sonego
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Alessandra Dall’Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant’Andrea Hospital, University of Rome “Sapienza”, Rome, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
- *Correspondence: Barbara Belletti,
| |
Collapse
|
25
|
Inability to phosphorylate Y88 of p27 Kip1 enforces reduced p27 protein levels and accelerates leukemia progression. Leukemia 2022; 36:1916-1925. [PMID: 35597806 PMCID: PMC9252907 DOI: 10.1038/s41375-022-01598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
The cyclin-dependent kinase (CDK) inhibitor p27Kip1 regulates cell proliferation. Phosphorylation of tyrosine residue 88 (Y88) converts the inhibitor into an assembly factor and activator of CDKs, since Y88-phosphorylation restores activity to cyclin E,A/CDK2 and enables assembly of active cyclin D/CDK4,6. To investigate the physiological significance of p27 tyrosine phosphorylation, we have generated a knock-in mouse model where Y88 was replaced by phenylalanine (p27-Y88F). Young p27-Y88F mice developed a moderately reduced body weight, indicative for robust CDK inhibition by p27-Y88F. When transformed with v-ABL or BCR::ABL1p190, primary p27-Y88F cells are refractory to initial transformation as evidenced by a diminished outgrowth of progenitor B-cell colonies. This indicates that p27-Y88 phosphorylation contributes to v-ABL and BCR::ABL1p190 induced transformation. Surprisingly, p27-Y88F mice succumbed to premature v-ABL induced leukemia/lymphoma compared to p27 wild type animals. This was accompanied by a robust reduction of p27-Y88F levels in v-ABL transformed cells. Reduced p27-Y88F levels seem to be required for efficient cell proliferation and may subsequently support accelerated leukemia progression. The potent downregulation p27-Y88F levels in all leukemia-derived cells could uncover a novel mechanism in human oncogenesis, where reduced p27 levels are frequently observed.
Collapse
|
26
|
Endo I, Amatya VJ, Kushitani K, Kambara T, Nakagiri T, Fujii Y, Takeshima Y. Insulin-Like Growth Factor 2 mRNA Binding Protein 3 Promotes Cell Proliferation of Malignant Mesothelioma Cells by Downregulating p27Kip1. Front Oncol 2022; 11:795467. [PMID: 35127504 PMCID: PMC8807558 DOI: 10.3389/fonc.2021.795467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
Malignant mesothelioma is a tumor with a poor prognosis, mainly caused by asbestos exposure and with no adequate treatment yet. To develop future therapeutic targets, we analyzed the microarray dataset GSE 29370 of malignant mesothelioma and reactive mesothelial hyperplasia, downloaded from the Gene Expression Omnibus (GEO) database. We identified insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) as one of the significantly upregulated genes in malignant mesothelioma. IGF2BP3 functions as an oncoprotein in many human cancers; however, to our knowledge, this is the first study on the biological function of IGF2BP3 in malignant mesothelioma cells. The knockdown of IGF2BP3 in malignant mesothelioma cells resulted in the suppression of cell proliferation with an increase in the proportion of cells in the G1 phase of the cell cycle. Furthermore, knockdown of IGF2BP3 inhibited cell migration and invasion. We focused on the cell cycle assay to investigate the role of IGF2BP3 in cell proliferation in malignant mesothelioma. Among the various proteins involved in cell cycle regulation, the expression of p27 Kip1 (p27) increased significantly upon IGF2BP3 knockdown. Next, p27 siRNA was added to suppress the increased expression of p27. The results showed that p27 knockdown attenuated the effects of IGF2BP3 knockdown on cell proliferation and G1 phase arrest. In conclusion, we found that IGF2BP3 promotes cell proliferation, a critical step in tumorigenesis, by suppressing the expression of p27 in malignant mesothelioma.
Collapse
|
27
|
Mao BH, Luo YK, Wang BJ, Chen CW, Cheng FY, Lee YH, Yan SJ, Wang YJ. Use of an in silico knowledge discovery approach to determine mechanistic studies of silver nanoparticles-induced toxicity from in vitro to in vivo. Part Fibre Toxicol 2022; 19:6. [PMID: 35031062 PMCID: PMC8759195 DOI: 10.1186/s12989-022-00447-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/29/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Silver nanoparticles (AgNPs) are considered a double-edged sword that demonstrates beneficial and harmful effects depending on their dimensions and surface coating types. However, mechanistic understanding of the size- and coating-dependent effects of AgNPs in vitro and in vivo remains elusive. We adopted an in silico decision tree-based knowledge-discovery-in-databases process to prioritize the factors affecting the toxic potential of AgNPs, which included exposure dose, cell type and AgNP type (i.e., size and surface coating), and exposure time. This approach also contributed to effective knowledge integration between cell-based phenomenological observations and in vitro/in vivo mechanistic explorations. RESULTS The consolidated cell viability assessment results were used to create a tree model for generalizing cytotoxic behavior of the four AgNP types: SCS, LCS, SAS, and LAS. The model ranked the toxicity-related parameters in the following order of importance: exposure dose > cell type > particle size > exposure time ≥ surface coating. Mechanistically, larger AgNPs appeared to provoke greater levels of autophagy in vitro, which occurred during the earlier phase of both subcytotoxic and cytotoxic exposures. Furthermore, apoptosis rather than necrosis majorly accounted for compromised cell survival over the above dosage range. Intriguingly, exposure to non-cytotoxic doses of AgNPs induced G2/M cell cycle arrest and senescence instead. At the organismal level, SCS following a single intraperitoneal injection was found more toxic to BALB/c mice as compared to SAS. Both particles could be deposited in various target organs (e.g., spleen, liver, and kidneys). Morphological observation, along with serum biochemical and histological analyses, indicated that AgNPs could produce pancreatic toxicity, apart from leading to hepatic inflammation. CONCLUSIONS Our integrated in vitro, in silico, and in vivo study revealed that AgNPs exerted toxicity in dose-, cell/organ type- and particle type-dependent manners. More importantly, a single injection of lethal-dose AgNPs (i.e., SCS and SAS) could incur severe damage to pancreas and raise blood glucose levels at the early phase of exposure.
Collapse
Affiliation(s)
- Bin-Hsu Mao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, 701, Taiwan
| | - Yi-Kai Luo
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, 701, Taiwan
| | - Bour-Jr Wang
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan City, 70403, Taiwan
| | - Chun-Wan Chen
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, No. 99, Lane 407, Hengke Road, Sijhih District, New Taipei City, 22143, Taiwan
| | - Fong-Yu Cheng
- Department of Chemistry, Chinese Culture University, No. 55, Hwa-Kang Road, Yang-Ming-Shan, Taipei City, 11114, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, No. 91, Hsueh-Shih Road, Taichung City, 40402, Taiwan
| | - Shian-Jang Yan
- Department of Physiology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, 701, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, 701, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91, Hsueh-Shih Road, Taichung City, 40402, Taiwan.
| |
Collapse
|
28
|
Nagy Z, Jeselsohn R. ESR1 fusions and therapeutic resistance in metastatic breast cancer. Front Oncol 2022; 12:1037531. [PMID: 36686845 PMCID: PMC9848494 DOI: 10.3389/fonc.2022.1037531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/22/2022] [Indexed: 01/06/2023] Open
Abstract
Breast cancer is the most frequent female malignant tumor, and the leading cause of cancer death in women worldwide. The most common subtype of breast cancer is hormone receptor positive that expresses the estrogen receptor (ER). Targeting ER with endocrine therapy (ET) is the current standard of care for ER positive (ER+) breast cancer, reducing mortality by up to 40% in early- stage disease. However, resistance to ET represents a major clinical challenge for ER+ breast cancer patients leading to disease recurrence or progression of metastatic disease. Salient drivers of ET resistance are missense mutations in the ER gene (ESR1) leading to constitutive transcriptional activity and reduced ET sensitivity. These mutations are particularly prominent and deleterious in metastatic breast cancer (MBC). In addition to activating ESR1 point mutations, emerging evidence imposes that chromosomal translocation involving the ESR1 gene can also drive ET resistance through the formation of chimeric transcription factors with constitutive transcriptional activity. Although these ESR1 gene fusions are relatively rare, they are enriched in ET resistant metastatic disease. This review discusses the characteristics of ER fusion proteins and their association with clinical outcomes in more aggressive and metastatic breast cancer. The structure and classification of ER fusion proteins based on function and clinical significance are also addressed. Finally, this review summarizes the metastatic phenotypes exhibited by the ER fusion proteins and their role in intrinsic ET resistance.
Collapse
Affiliation(s)
- Zsuzsanna Nagy
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- *Correspondence: Rinath Jeselsohn, ; Zsuzsanna Nagy,
| | - Rinath Jeselsohn
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Susan F. Smith Center for Women’s Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- *Correspondence: Rinath Jeselsohn, ; Zsuzsanna Nagy,
| |
Collapse
|
29
|
Luo J, Zou H, Guo Y, Tong T, Ye L, Zhu C, Deng L, Wang B, Pan Y, Li P. SRC kinase-mediated signaling pathways and targeted therapies in breast cancer. Breast Cancer Res 2022; 24:99. [PMID: 36581908 PMCID: PMC9798727 DOI: 10.1186/s13058-022-01596-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/17/2022] [Indexed: 12/30/2022] Open
Abstract
Breast cancer (BC) has been ranked the most common malignant tumor throughout the world and is also a leading cause of cancer-related deaths among women. SRC family kinases (SFKs) belong to the non-receptor tyrosine kinase (nRTK) family, which has eleven members sharing similar structure and function. Among them, SRC is the first identified proto-oncogene in mammalian cells. Oncogenic overexpression or activation of SRC has been revealed to play essential roles in multiple events of BC progression, including tumor initiation, growth, metastasis, drug resistance and stemness regulations. In this review, we will first give an overview of SRC kinase and SRC-relevant functions in various subtypes of BC and then systematically summarize SRC-mediated signaling transductions, with particular emphasis on SRC-mediated substrate phosphorylation in BC. Furthermore, we will discuss the progress of SRC-based targeted therapies in BC and the potential future direction.
Collapse
Affiliation(s)
- Juan Luo
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Hailin Zou
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Yibo Guo
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Tongyu Tong
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Liping Ye
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Chengming Zhu
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Liang Deng
- grid.511083.e0000 0004 7671 2506Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Bo Wang
- grid.511083.e0000 0004 7671 2506Department of Oncology, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Yihang Pan
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Peng Li
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| |
Collapse
|
30
|
Naudi-Fabra S, Blackledge M, Milles S. Synergies of Single Molecule Fluorescence and NMR for the Study of Intrinsically Disordered Proteins. Biomolecules 2021; 12:biom12010027. [PMID: 35053175 PMCID: PMC8773649 DOI: 10.3390/biom12010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Single molecule fluorescence and nuclear magnetic resonance spectroscopy (NMR) are two very powerful techniques for the analysis of intrinsically disordered proteins (IDPs). Both techniques have individually made major contributions to deciphering the complex properties of IDPs and their interactions, and it has become evident that they can provide very complementary views on the distance-dynamics relationships of IDP systems. We now review the first approaches using both NMR and single molecule fluorescence to decipher the molecular properties of IDPs and their interactions. We shed light on how these two techniques were employed synergistically for multidomain proteins harboring intrinsically disordered linkers, for veritable IDPs, but also for liquid–liquid phase separated systems. Additionally, we provide insights into the first approaches to use single molecule Förster resonance energy transfer (FRET) and NMR for the description of multiconformational models of IDPs.
Collapse
|
31
|
Yi YW, You KS, Park JS, Lee SG, Seong YS. Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? Int J Mol Sci 2021; 23:ijms23010048. [PMID: 35008473 PMCID: PMC8744729 DOI: 10.3390/ijms23010048] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ribosomal protein S6 (RPS6) is a component of the 40S small ribosomal subunit and participates in the control of mRNA translation. Additionally, phospho (p)-RPS6 has been recognized as a surrogate marker for the activated PI3K/AKT/mTORC1 pathway, which occurs in many cancer types. However, downstream mechanisms regulated by RPS6 or p-RPS remains elusive, and the therapeutic implication of RPS6 is underappreciated despite an approximately half a century history of research on this protein. In addition, substantial evidence from RPS6 knockdown experiments suggests the potential role of RPS6 in maintaining cancer cell proliferation. This motivates us to investigate the current knowledge of RPS6 functions in cancer. In this review article, we reviewed the current information about the transcriptional regulation, upstream regulators, and extra-ribosomal roles of RPS6, with a focus on its involvement in cancer. We also discussed the therapeutic potential of RPS6 in cancer.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| |
Collapse
|
32
|
Pennycook BR, Barr AR. Palbociclib-mediated cell cycle arrest can occur in the absence of the CDK inhibitors p21 and p27. Open Biol 2021; 11:210125. [PMID: 34784791 PMCID: PMC8596008 DOI: 10.1098/rsob.210125] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023] Open
Abstract
The use of CDK4/6 inhibitors in the treatment of a wide range of cancers is an area of ongoing investigation. Despite their increasing clinical use, there is limited understanding of the determinants of sensitivity and resistance to these drugs. Recent data have cast doubt on how CDK4/6 inhibitors arrest proliferation, provoking renewed interest in the role(s) of CDK4/6 in driving cell proliferation. As the use of CDK4/6 inhibitors in cancer therapies becomes more prominent, an understanding of their effect on the cell cycle becomes more urgent. Here, we investigate the mechanism of action of CDK4/6 inhibitors in promoting cell cycle arrest. Two main models explain how CDK4/6 inhibitors cause G1 cell cycle arrest, which differ in their dependence on the CDK inhibitor proteins p21 and p27. We have used live and fixed single-cell quantitative imaging, with inducible degradation systems, to address the roles of p21 and p27 in the mechanism of action of CDK4/6 inhibitors. We find that CDK4/6 inhibitors can initiate and maintain a cell cycle arrest without p21 or p27. This work clarifies our current understanding of the mechanism of action of CDK4/6 inhibitors and has implications for cancer treatment and patient stratification.
Collapse
Affiliation(s)
- Betheney R. Pennycook
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Alexis R. Barr
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
33
|
Rampioni Vinciguerra GL, Dall'Acqua A, Segatto I, Mattevi MC, Russo F, Favero A, Cirombella R, Mungo G, Viotto D, Karimbayli J, Pesce M, Vecchione A, Belletti B, Baldassarre G. p27kip1 expression and phosphorylation dictate Palbociclib sensitivity in KRAS-mutated colorectal cancer. Cell Death Dis 2021; 12:951. [PMID: 34654798 PMCID: PMC8519959 DOI: 10.1038/s41419-021-04241-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
In colorectal cancer, mutation of KRAS (RASMUT) reduces therapeutic options, negatively affecting prognosis of the patients. In this setting, administration of CDK4/6-inhibitors, alone or in combination with other drugs, is being tested as promising therapeutic strategy. Identifying sensitive patients and overcoming intrinsic and acquired resistance to CDK4/6 inhibition represent still open challenges, to obtain better clinical responses. Here, we investigated the role of the CDK inhibitor p27kip1 in the response to the selective CDK4/6-inhibitor Palbociclib, in colorectal cancer. Our results show that p27kip1 expression inversely correlated with Palbociclib response, both in vitro and in vivo. Generating a model of Palbociclib-resistant RASMUT colorectal cancer cells, we observed an increased expression of p27kip1, cyclin D, CDK4 and CDK6, coupled with an increased association between p27kip1 and CDK4. Furthermore, Palbociclib-resistant cells showed increased Src-mediated phosphorylation of p27kip1 on tyrosine residues and low doses of Src inhibitors re-sensitized resistant cells to Palbociclib. Since p27kip1 showed variable expression in RASMUT colorectal cancer samples, our study supports the possibility that p27kip1 could serve as biomarker to stratify patients who might benefit from CDK4/6 inhibition, alone or in combination with Src inhibitors.
Collapse
Affiliation(s)
- Gian Luca Rampioni Vinciguerra
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy.,Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "Sapienza", Santo Andrea Hospital, Rome, Italy
| | - Alessandra Dall'Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Maria Chiara Mattevi
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Francesca Russo
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Andrea Favero
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Roberto Cirombella
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "Sapienza", Santo Andrea Hospital, Rome, Italy
| | - Giorgia Mungo
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Davide Viotto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Javad Karimbayli
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Margherita Pesce
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "Sapienza", Santo Andrea Hospital, Rome, Italy
| | - Andrea Vecchione
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "Sapienza", Santo Andrea Hospital, Rome, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
34
|
Li Z, Xie X, Tan G, Xie F, Liu N, Li W, Sun X. Disulfiram Synergizes with SRC Inhibitors to Suppress the Growth of Pancreatic Ductal Adenocarcinoma Cells in Vitro and in Vivo. Biol Pharm Bull 2021; 44:1323-1331. [PMID: 34471060 DOI: 10.1248/bpb.b21-00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Disulfiram (DSF), an old anti-alcoholism drug, has emerged as a candidate for drug repurposing in oncology. In exploratory studies on its therapeutic effects, we unexpectedly discovered that DSF increased the phosphorylation of SRC, a proto-oncogene tyrosine-protein kinase elevated in 70% of pancreatic ductal adenocarcinoma (PDAC) cases. This serendipitous and novel finding led to our hypothesis for the current study which proposes DSF may synergize with SRC inhibitors in suppressing PDAC. Human PDAC PANC-1 and BXPC-3 cells were incubated with DSF chelated with copper (Cu2+), SRC inhibitors (PP2 and dasatinib), or transfected with lentiviral short hairpin RNA (shRNA), and their proliferation and apoptosis were analyzed. A xenograft model was employed to verify the in vitro results. The expression of key molecules was detected. DSF significantly inhibited cell proliferation and induced cell apoptosis by increasing the cleavage of poly ADP ribose polymerase (PARP), downregulating Bcl-2 and upregulating p27 in concentration- and time-dependent manners. DSF had little effect on signal transducer and activator of transcription 3 (STAT3) expression but inhibited its phosphorylation. DSF did not alter SRC expression but significantly increased its phosphorylation through upregulating actin filament associated protein 1 like 2 (AFAP1L2). DSF exhibited a synergistic effect, as analyzed by drug coefficient interactions, with either PP2, or dasatinib, or SRC depletion in suppressing PDAC cells in vitro and/or in vivo. The present results indicate DSF is a potential therapeutic drug, particularly when it is combined with SRC inhibitors, and warrant further studies on the pharmacological utility of DSF as a promising adjunct therapy for the treatment of PDAC.
Collapse
Affiliation(s)
- Ziyi Li
- Hepatosplenic Surgery Center, the First Affiliated Hospital of Harbin Medical University
| | - Xiangjun Xie
- Department of Gastroenterology, Qingdao Municipal Hospital Affiliated to Qingdao University
| | - Gang Tan
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University
| | - Fangyu Xie
- Department of Cardiology, Qingdao Municipal Hospital Affiliated to Qingdao University
| | - Nianjiao Liu
- Department of Endocrinology, the First Hospital Affiliated of Harbin Medical University
| | - Weidong Li
- Hepatosplenic Surgery Center, the First Affiliated Hospital of Harbin Medical University.,Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University
| | - Xueying Sun
- Hepatosplenic Surgery Center, the First Affiliated Hospital of Harbin Medical University
| |
Collapse
|
35
|
p27 Kip1, an Intrinsically Unstructured Protein with Scaffold Properties. Cells 2021; 10:cells10092254. [PMID: 34571903 PMCID: PMC8465030 DOI: 10.3390/cells10092254] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
The Cyclin-dependent kinase (CDK) regulator p27Kip1 is a gatekeeper of G1/S transition. It also regulates G2/M progression and cytokinesis completion, via CDK-dependent or -independent mechanisms. Recently, other important p27Kip1 functions have been described, including the regulation of cell motility and migration, the control of cell differentiation program and the activation of apoptosis/autophagy. Several factors modulate p27Kip1 activities, including its level, cellular localization and post-translational modifications. As a matter of fact, the protein is phosphorylated, ubiquitinated, SUMOylated, O-linked N-acetylglicosylated and acetylated on different residues. p27Kip1 belongs to the family of the intrinsically unstructured proteins and thus it is endowed with a large flexibility and numerous interactors, only partially identified. In this review, we look at p27Kip1 properties and ascribe part of its heterogeneous functions to the ability to act as an anchor or scaffold capable to participate in the construction of different platforms for modulating cell response to extracellular signals and allowing adaptation to environmental changes.
Collapse
|
36
|
Jilishitz I, Quiñones JL, Patel P, Chen G, Pasetsky J, VanInwegen A, Schoninger S, Jogalekar MP, Tsiperson V, Yan L, Wu Y, Gottesman SRS, Somma J, Blain SW. NP-ALT, a Liposomal:Peptide Drug, Blocks p27Kip1 Phosphorylation to Induce Oxidative Stress, Necroptosis, and Regression in Therapy-Resistant Breast Cancer Cells. Mol Cancer Res 2021; 19:1929-1945. [PMID: 34446542 DOI: 10.1158/1541-7786.mcr-21-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/14/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Resistance to cyclin D-CDK4/6 inhibitors (CDK4/6i) represents an unmet clinical need and is frequently caused by compensatory CDK2 activity. Here we describe a novel strategy to prevent CDK4i resistance by using a therapeutic liposomal:peptide formulation, NP-ALT, to inhibit the tyrosine phosphorylation of p27Kip1(CDKN1B), which in turn inhibits both CDK4/6 and CDK2. We find that NP-ALT blocks proliferation in HR+ breast cancer cells, as well as CDK4i-resistant cell types, including triple negative breast cancer (TNBC). The peptide ALT is not as stable in primary mammary epithelium, suggesting that NP-ALT has little effect in nontumor tissues. In HR+ breast cancer cells specifically, NP-ALT treatment induces ROS and RIPK1-dependent necroptosis. Estrogen signaling and ERα appear required. Significantly, NP-ALT induces necroptosis in MCF7 ESRY537S cells, which contain an ER gain of function mutation frequently detected in metastatic patients, which renders them resistant to endocrine therapy. Here we show that NP-ALT causes necroptosis and tumor regression in treatment naïve, palbociclib-resistant, and endocrine-resistant BC cells and xenograft models, demonstrating that p27 is a viable therapeutic target to combat drug resistance. IMPLICATIONS: This study reveals that blocking p27 tyrosine phosphorylation inhibits CDK4 and CDK2 activity and induces ROS-dependent necroptosis, suggesting a novel therapeutic option for endocrine and CDK4 inhibitor-resistant HR+ tumors.
Collapse
Affiliation(s)
- Irina Jilishitz
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Jason Luis Quiñones
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Priyank Patel
- Concarlo Holdings, LLC, Downstate Biotechnology Incubator, Brooklyn, New York
| | - Grace Chen
- Concarlo Holdings, LLC, Downstate Biotechnology Incubator, Brooklyn, New York
| | - Jared Pasetsky
- College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York
| | - Allison VanInwegen
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Scott Schoninger
- College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York
| | - Manasi P Jogalekar
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Vladislav Tsiperson
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Lingyue Yan
- Department of Biomedical Engineering, University at Buffalo, The State University at Buffalo, Buffalo, New York
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University at Buffalo, Buffalo, New York
| | - Susan R S Gottesman
- Department of Pathology and Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York
| | - Jonathan Somma
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, Los Angeles
| | - Stacy W Blain
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York.
| |
Collapse
|
37
|
Huynh TK, Huang CH, Chen JY, Yao JH, Yang YS, Wei YL, Chen HF, Chen CH, Tu CY, Hsu YM, Liu LC, Huang WC. MiR-221 confers lapatinib resistance by negatively regulating p27 kip1 in HER2-positive breast cancer. Cancer Sci 2021; 112:4234-4245. [PMID: 34382727 PMCID: PMC8486195 DOI: 10.1111/cas.15107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 12/02/2022] Open
Abstract
Development of acquired resistance to lapatinib, a dual epidermal growth factor receptor (EGFR)/human epidermal growth factor receptor 2 (HER2) tyrosine kinase inhibitor, severely limits the duration of clinical response in advanced HER2‐driven breast cancer patients. Although the compensatory activation of the PI3K/Akt survival signal has been proposed to cause acquired lapatinib resistance, comprehensive molecular mechanisms remain required to develop more efficient strategies to circumvent this therapeutic difficulty. In this study, we found that suppression of HER2 by lapatinib still led to Akt inactivation and elevation of FOX3a protein levels, but failed to induce the expression of their downstream pro‐apoptotic effector p27kip1, a cyclin‐dependent kinase inhibitor. Elevation of miR‐221 was found to contribute to the development of acquired lapatinib resistance by targeting p27kip1 expression. Furthermore, upregulation of miR‐221 was mediated by the lapatinib‐induced Src family tyrosine kinase and subsequent NF‐κB activation. The reversal of miR‐221 upregulation and p27kip1 downregulation by a Src inhibitor, dasatinib, can overcome lapatinib resistance. Our study not only identified miRNA‐221 as a pivotal factor conferring the acquired resistance of HER2‐positive breast cancer cells to lapatinib through negatively regulating p27kip1 expression, but also suggested Src inhibition as a potential strategy to overcome lapatinib resistance.
Collapse
Affiliation(s)
- Thanh Kieu Huynh
- Graduate Institute of Biomedical Sciences, Drug Development Center, China Medical University, Taichung, 404, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Chih-Hao Huang
- Graduate Institute of Biomedical Sciences, Drug Development Center, China Medical University, Taichung, 404, Taiwan.,Division of Breast Surgery, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Jhen-Yu Chen
- Graduate Institute of Biomedical Sciences, Drug Development Center, China Medical University, Taichung, 404, Taiwan
| | - Jin-Han Yao
- School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Yi-Shiang Yang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Ya-Ling Wei
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Hsiao-Fan Chen
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Chia-Hung Chen
- School of Medicine, China Medical University, Taichung, 404, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Chih-Yen Tu
- School of Medicine, China Medical University, Taichung, 404, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan.,Department of Animal Science and Technology, Agriculture College, Tunghai University, Taichung, 40704, Taiwan
| | - Liang-Chih Liu
- Division of Breast Surgery, China Medical University Hospital, Taichung, 40402, Taiwan.,School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Sciences, Drug Development Center, China Medical University, Taichung, 404, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan.,The Ph.D. program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, 404, Taiwan.,Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
38
|
Brooks RF. Cell Cycle Commitment and the Origins of Cell Cycle Variability. Front Cell Dev Biol 2021; 9:698066. [PMID: 34368148 PMCID: PMC8343065 DOI: 10.3389/fcell.2021.698066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Exit of cells from quiescence following mitogenic stimulation is highly asynchronous, and there is a great deal of heterogeneity in the response. Even in a single, clonal population, some cells re-enter the cell cycle after a sub-optimal mitogenic signal while other, seemingly identical cells, do not, though they remain capable of responding to a higher level of stimulus. This review will consider the origins of this variability and heterogeneity, both in cells re-entering the cycle from quiescence and in the context of commitment decisions in continuously cycling populations. Particular attention will be paid to the role of two interacting molecular networks, namely the RB-E2F and APC/CCDH1 "switches." These networks have the property of bistability and it seems likely that they are responsible for dynamic behavior previously described kinetically by Transition Probability models of the cell cycle. The relationship between these switches and the so-called Restriction Point of the cell cycle will also be considered.
Collapse
Affiliation(s)
- Robert F Brooks
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom.,Department of Anatomy, King's College London, London, United Kingdom
| |
Collapse
|
39
|
Alsherbiny MA, Bhuyan DJ, Radwan I, Chang D, Li CG. Metabolomic Identification of Anticancer Metabolites of Australian Propolis and Proteomic Elucidation of Its Synergistic Mechanisms with Doxorubicin in the MCF7 Cells. Int J Mol Sci 2021; 22:ijms22157840. [PMID: 34360606 PMCID: PMC8346082 DOI: 10.3390/ijms22157840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022] Open
Abstract
The combination of natural products with standard chemotherapeutic agents offers a promising strategy to enhance the efficacy or reduce the side effects of standard chemotherapy. Doxorubicin (DOX), a standard drug for breast cancer, has several disadvantages, including severe side effects and the development of drug resistance. Recently, we reported the potential bioactive markers of Australian propolis extract (AP-1) and their broad spectrum of pharmacological activities. In the present study, we explored the synergistic interactions between AP-1 and DOX in the MCF7 breast adenocarcinoma cells using different synergy quantitation models. Biochemometric and metabolomics-driven analysis was performed to identify the potential anticancer metabolites in AP-1. The molecular mechanisms of synergy were studied by analysing the apoptotic profile via flow cytometry, apoptotic proteome array and measuring the oxidative status of the MCF7 cells treated with the most synergistic combination. Furthermore, label-free quantification proteomics analysis was performed to decipher the underlying synergistic mechanisms. Five prenylated stilbenes were identified as the key metabolites in the most active AP-1 fraction. Strong synergy was observed when AP-1 was combined with DOX in the ratio of 100:0.29 (w/w) as validated by different synergy quantitation models implemented. AP-1 significantly enhanced the inhibitory effect of DOX against MCF7 cell proliferation in a dose-dependent manner with significant inhibition of the reactive oxygen species (p < 0.0001) compared to DOX alone. AP-1 enabled the reversal of DOX-mediated necrosis to programmed cell death, which may be advantageous to decline DOX-related side effects. AP-1 also significantly enhanced the apoptotic effect of DOX after 24 h of treatment with significant upregulation of catalase, HTRA2/Omi, FADD together with DR5 and DR4 TRAIL-mediated apoptosis (p < 0.05), contributing to the antiproliferative activity of AP-1. Significant upregulation of pro-apoptotic p27, PON2 and catalase with downregulated anti-apoptotic XIAP, HSP60 and HIF-1α, and increased antioxidant proteins (catalase and PON2) may be associated with the improved apoptosis and oxidative status of the synergistic combination-treated MCF7 cells compared to the mono treatments. Shotgun proteomics identified 21 significantly dysregulated proteins in the synergistic combination-treated cells versus the mono treatments. These proteins were involved in the TP53/ATM-regulated non-homologous end-joining pathway and double-strand breaks repairs, recruiting the overexpressed BRCA1 and suppressed RIF1 encoded proteins. The overexpression of UPF2 was noticed in the synergistic combination treatment, which could assist in overcoming doxorubicin resistance-associated long non-coding RNA and metastasis of the MCF7 cells. In conclusion, we identified the significant synergy and highlighted the key molecular pathways in the interaction between AP-1 and DOX in the MCF7 cells together with the AP-1 anticancer metabolites. Further in vivo and clinical studies are warranted on this synergistic combination.
Collapse
Affiliation(s)
- Muhammad A. Alsherbiny
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| | - Ibrahim Radwan
- Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia;
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Chun-Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| |
Collapse
|
40
|
Inhibition of CDK4/6 as Therapeutic Approach for Ovarian Cancer Patients: Current Evidences and Future Perspectives. Cancers (Basel) 2021; 13:cancers13123035. [PMID: 34204543 PMCID: PMC8235237 DOI: 10.3390/cancers13123035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary Altered regulation of the cell cycle is a hallmark of cancer. The recent clinical success of the inhibitors of CDK4 and CDK6 has convincingly demonstrated that targeting cell cycle components may represent an effective anti-cancer strategy, at least in some cancer types. However, possible applications of CDK4/6 inhibitors in patients with ovarian cancer is still under evaluation. Here, we describe the possible biological role of CDK4 and CDK6 complexes in ovarian cancer and provide the rationale for the use of CDK4/6 inhibitors in this pathology, alone or in combination with other drugs. This review, coupling basic, preclinical and clinical research studies, could be of great translational value for investigators attempting to design new clinical trials for the better management of ovarian cancer patients. Abstract Alterations in components of the cell-cycle machinery are present in essentially all tumor types. In particular, molecular alterations resulting in dysregulation of the G1 to S phase transition have been observed in almost all human tumors, including ovarian cancer. These alterations have been identified as potential therapeutic targets in several cancer types, thereby stimulating the development of small molecule inhibitors of the cyclin dependent kinases. Among these, CDK4 and CDK6 inhibitors confirmed in clinical trials that CDKs might indeed represent valid therapeutic targets in, at least some, types of cancer. CDK4 and CDK6 inhibitors are now used in clinic for the treatment of patients with estrogen receptor positive metastatic breast cancer and their clinical use is being tested in many other cancer types, alone or in combination with other agents. Here, we review the role of CDK4 and CDK6 complexes in ovarian cancer and propose the possible use of their inhibitors in the treatment of ovarian cancer patients with different types and stages of disease.
Collapse
|
41
|
McKay LK, White JP. The AMPK/p27 Kip1 Pathway as a Novel Target to Promote Autophagy and Resilience in Aged Cells. Cells 2021; 10:cells10061430. [PMID: 34201101 PMCID: PMC8229180 DOI: 10.3390/cells10061430] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Once believed to solely function as a cyclin-dependent kinase inhibitor, p27Kip1 is now emerging as a critical mediator of autophagy, cytoskeletal dynamics, cell migration and apoptosis. During periods of metabolic stress, the subcellular location of p27Kip1 largely dictates its function. Cytoplasmic p27Kip1 has been found to be promote cellular resilience through autophagy and anti-apoptotic mechanisms. Nuclear p27Kip1, however, inhibits cell cycle progression and makes the cell susceptible to quiescence, apoptosis, and/or senescence. Cellular location of p27Kip1 is regulated, in part, by phosphorylation by various kinases, including Akt and AMPK. Aging promotes nuclear localization of p27Kip1 and a predisposition to senescence or apoptosis. Here, we will review the role of p27Kip1 in healthy and aging cells with a particular emphasis on the interplay between autophagy and apoptosis.
Collapse
Affiliation(s)
- Lauren K. McKay
- Adams School of Dentistry, UNC Chapel Hill, Chapel Hill, NC 27599, USA;
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 N. Duke Street, Durham, NC 27701, USA
| | - James P. White
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 N. Duke Street, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, 300 N. Duke Street, Durham, NC 27701, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, 300 N. Duke Street, Durham, NC 27701, USA
- Correspondence:
| |
Collapse
|
42
|
Takayama KI, Honma T, Suzuki T, Kondoh Y, Osada H, Suzuki Y, Yoshida M, Inoue S. Targeting Epigenetic and Posttranscriptional Gene Regulation by PSF Impairs Hormone Therapy-Refractory Cancer Growth. Cancer Res 2021; 81:3495-3508. [PMID: 33975881 DOI: 10.1158/0008-5472.can-20-3819] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/05/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
RNA-binding protein PSF functions as an epigenetic modifier by interacting with long noncoding RNAs and the corepressor complex. PSF also promotes RNA splicing events to enhance oncogenic signals. In this study, we conducted an in vitro chemical array screen and identified multiple small molecules that interact with PSF. Several molecules inhibited RNA binding by PSF and decreased prostate cancer cell viability. Among these molecules and its derivatives was a promising molecule, No. 10-3 [7,8-dihydroxy-4-(4-methoxyphenyl)chromen-2-one], that was the most effective at blocking PSF RNA-binding ability and suppressing treatment-resistant prostate and breast cancer cell proliferation. Exposure to No. 10-3 inhibited PSF target gene expression at the mRNA level. Treatment with No. 10-3 reversed epigenetically repressed PSF downstream targets, such as cell-cycle inhibitors, at the transcriptional level. Chromatin immunoprecipitation sequencing in prostate cancer cells revealed that No. 10-3 enhances histone acetylation to induce expression of apoptosis as well as cell-cycle inhibitors. Furthermore, No. 10-3 exhibited antitumor efficacy in a hormone therapy-resistant prostate cancer xenograft mouse model, suppressing treatment-resistant tumor growth. Taken together, this study highlights the feasibility of targeting PSF-mediated epigenetic and RNA-splicing activities for the treatment of aggressive cancers. SIGNIFICANCE: This study identifies small molecules that target PSF-RNA interactions and suppress hormone therapy-refractory cancer growth, suggesting the potential of targeting PSF-mediated gene regulation for cancer treatment.
Collapse
Affiliation(s)
- Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | - Teruki Honma
- Drug Discovery Computational Chemistry Platform Unit, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Drug Discovery Chemical Bank Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Drug Discovery Chemical Bank Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, RIKEN, Wako, Saitama, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan. .,Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| |
Collapse
|
43
|
Qiu L, Liu H, Wang S, Dai XH, Shang JW, Lian XL, Wang GH, Zhang J. FKBP11 promotes cell proliferation and tumorigenesis via p53-related pathways in oral squamous cell carcinoma. Biochem Biophys Res Commun 2021; 559:183-190. [PMID: 33945996 DOI: 10.1016/j.bbrc.2021.04.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the causes of cancer-related death worldwide. The abnormal proliferation ability of OSCC has become one of the major reasons for its poor prognosis. FK-506 binding protein 11 (FKBP11) is abnormally expressed in malignant tumors and affects many biological processes. The purpose of this study is to investigate the effect of FKBP11 on cell proliferation in OSCC and explore the possible regulatory mechanism. The expression of FKBP11 was detected by western blotting (WB) and/or real-time PCR in OSCC and paracancerous normal tissues in tongue squamous cell carcinoma (TSCC) cell lines, revealing high expression in OSCC and CAL-27 cells. Furthermore, FKBP11 knockdown inhibited the proliferation of CAL-27 cells by CCK-8 and colony formation assays. G2/M arrest and induction of apoptosis were observed using flow cytometry, Hoechst 33258 and Calcein-AM/PI staining, accompanied by changes in some cell cycle- and apoptosis-related proteins, including CDK1, Cyclin B1, p21, p27, p53, Bax, Bcl-2 and Caspase-3. Additionally, the expression of these proteins can be reversed by the use of pifithrin-α (PFT-α), a p53 inhibitor. An in vivo xenograft model further confirmed that FKBP11 enhanced OSCC progression. In conclusion, FKBP11 could promote cell proliferation by regulating G2/M phase and apoptosis via the p53/p21/p27 and p53/Bcl-2/Bax pathways, respectively, which suggests that it may be a new candidate target for the treatment of OSCC.
Collapse
Affiliation(s)
- Lin Qiu
- School of Medicine, Nankai University, Tianjin, 300071, China; Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Han Liu
- School of Medicine, Nankai University, Tianjin, 300071, China; Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Shuang Wang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiao-Hua Dai
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China; Central Laboratory of Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
| | - Jian-Wei Shang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China; Department of Oral Histopathology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
| | - Xiao-Li Lian
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China; Central Laboratory of Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
| | - Guan-Hua Wang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China; Central Laboratory of Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
| | - Jun Zhang
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China.
| |
Collapse
|
44
|
Belachew EB, Sewasew DT. Molecular Mechanisms of Endocrine Resistance in Estrogen-Positive Breast Cancer. Front Endocrinol (Lausanne) 2021; 12:599586. [PMID: 33841325 PMCID: PMC8030661 DOI: 10.3389/fendo.2021.599586] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
The estrogen receptor is a vital receptor for therapeutic targets in estrogen receptor-positive breast cancer. The main strategy for the treatment of estrogen receptor-positive breast cancers is blocking the estrogen action on estrogen receptors by endocrine therapy but this can be restricted via endocrine resistance. Endocrine resistance occurs due to both de novo and acquired resistance. This review focuses on the mechanisms of the ligand-dependent and ligand-independent pathways and other coregulators, which are responsible for endocrine resistance. It concludes that combinatorial drugs that target different signaling pathways and coregulatory proteins together with endocrine therapy could be a novel therapeutic modality to stop endocrine resistance.
Collapse
Affiliation(s)
- Esmael Besufikad Belachew
- Biology, Mizan Tepi University, Addis Ababa, Ethiopia
- Microbial, Cellular and Molecular Biology Department, Addis Ababa University, Addis Ababa, Ethiopia
| | | |
Collapse
|
45
|
miR-203a suppresses cell proliferation by targeting RING-finger protein 6 in colorectal cancer. Anticancer Drugs 2021; 31:583-591. [PMID: 32282367 DOI: 10.1097/cad.0000000000000874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Colorectal cancer (CRC) is one of most common cancers worldwide. Although miR-203a is reported as a tumor suppressor involved in cell progression in some cancers, the role of miR-203a in CRC is still controversial and the underling mechanism of miR-203a in CRC remains unclear. Here, we demonstrated that low expression of miR-203a had poorer survival in CRC patients. miR-203a was down-regulated in most human colon cancer cells. Overexpression of miR-203a could inhibit colon cancer cell proliferation and arrest cell cycle in G1 phase. Bioinformatics and dual luciferase reporter assay confirmed that RING-finger protein 6 (RNF6) was a target gene of miR-203a. Silencing RNF6 inhibited cell proliferation and arrest cell cycle in G1 phase. RNF6 overexpression reversed the effects of miR-203a overexpression in colon cancer cells. Taken together, our data indicate that miR-203a inhibits colon cancer cell proliferation by targeting RNF6, offer novel insights into the regulatory network of miR-203a-modulated cell cycle and proliferation, and suggest that miR-203a a potential therapeutic target in CRC treatment.
Collapse
|
46
|
Medina E, R Latham D, Sanabria H. Unraveling protein's structural dynamics: from configurational dynamics to ensemble switching guides functional mesoscale assemblies. Curr Opin Struct Biol 2021; 66:129-138. [PMID: 33246199 PMCID: PMC7965259 DOI: 10.1016/j.sbi.2020.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
Evidence regarding protein structure and function manifest the imperative role that dynamics play in proteins, underlining reconsideration of the unanimated sequence-to-structure-to-function paradigm. Structural dynamics portray a heterogeneous energy landscape described by conformational ensembles where each structural representation can be responsible for unique functions or enable macromolecular assemblies. Using the human p27/Cdk2/Cyclin A ternary complex as an example, we highlight the vital role of intramolecular and intermolecular dynamics for target recognition, binding, and inhibition as a critical modulator of cell division. Rapidly sampling configurations is critical for the population of different conformational ensembles encoding functional roles. To garner this knowledge, we present how the integration of (sub)ensemble and single-molecule fluorescence spectroscopy with molecular dynamic simulations can characterize structural dynamics linking the heterogeneous ensembles to function. The incorporation of dynamics into the sequence-to-structure-to-function paradigm promises to assist in tackling various challenges, including understanding the formation and regulation of mesoscale assemblies inside cells.
Collapse
Affiliation(s)
- Exequiel Medina
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile; Department of Physics and Astronomy, Clemson University, Clemson 29634, United States
| | - Danielle R Latham
- Department of Physics and Astronomy, Clemson University, Clemson 29634, United States
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson 29634, United States.
| |
Collapse
|
47
|
Hernández-Zazueta MS, García-Romo JS, Noguera-Artiaga L, Luzardo-Ocampo I, Carbonell-Barrachina ÁA, Taboada-Antelo P, Campos-Vega R, Rosas-Burgos EC, Burboa-Zazueta MG, Ezquerra-Brauer JM, Martínez-Soto JM, Santacruz-Ortega HDC, Burgos-Hernández A. Octopus vulgaris ink extracts exhibit antioxidant, antimutagenic, cytoprotective, antiproliferative, and proapoptotic effects in selected human cancer cell lines. J Food Sci 2021; 86:587-601. [PMID: 33462812 DOI: 10.1111/1750-3841.15591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 01/17/2023]
Abstract
Cancer is a noncommunicable disease of rising worldwide concern. Marine food products such as Octopus vulgaris ink (OI) could be sources of compounds addressing these concerns. This study aimed to evaluate the antimutagenic, cytoprotective, antiproliferative, proapoptotic, and antioxidant capacity of OI extracts on human cancer cell lines (22Rv1, HeLa, A549). The ARPE-19 cell line was used as a reference human cell line to evaluate the ink's cytotoxicity. The water extract exhibited the highest antimutagenic and cytoprotective effect, but the dichloromethane extract (DM) showed the lowest half lethal concentration against 22Rv1 cells. Structural elucidation of purified DM fractions (F1, F2, F3) identified an unreported compound, N-(2-ozoazepan-3-yl)-pyrrolidine-2-carboxamide (OPC). DM-F2 showed high antiproliferative effect (LC50 = 27.6 µg/mL), reactive species modulation, early-apoptosis induction (42.9%), and nuclei disruption in 22Rv1 cells. In silico analysis predicted high OPC affinity with Cyclin D1 (-6.70 kcal/mol), suggesting its potential impact on cell cycle arrest. These results highlight the antimutagenic, cytoprotective, and antiproliferative potential health benefits derived from underutilized marine food products such as OI. Further investigations at in vitro or in vivo levels are required to elucidate mechanisms and health benefits from OI. PRACTICAL APPLICATION: O. vulgaris ink is an underutilized marine natural product that could be a source of biological compounds with potential health benefits such as antioxidant activity and cancer prevention.
Collapse
Affiliation(s)
| | - Joel Said García-Romo
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, 83000, México
| | - Luis Noguera-Artiaga
- Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández de Elche, Orihuela, Alicante, 03312, España
| | - Iván Luzardo-Ocampo
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, 76010, México
| | | | - Pablo Taboada-Antelo
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Universidad de Santiago de Compostela, Santiago de Compostela, Galicia, 15782, España
| | - Rocio Campos-Vega
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, 76010, México
| | - Ema Carina Rosas-Burgos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, 83000, México
| | | | | | - Juan Manuel Martínez-Soto
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo, Sonora, 83000, México
| | | | - Armando Burgos-Hernández
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, 83000, México
| |
Collapse
|
48
|
Hume S, Dianov GL, Ramadan K. A unified model for the G1/S cell cycle transition. Nucleic Acids Res 2020; 48:12483-12501. [PMID: 33166394 PMCID: PMC7736809 DOI: 10.1093/nar/gkaa1002] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023] Open
Abstract
Efficient S phase entry is essential for development, tissue repair, and immune defences. However, hyperactive or expedited S phase entry causes replication stress, DNA damage and oncogenesis, highlighting the need for strict regulation. Recent paradigm shifts and conflicting reports demonstrate the requirement for a discussion of the G1/S transition literature. Here, we review the recent studies, and propose a unified model for the S phase entry decision. In this model, competition between mitogen and DNA damage signalling over the course of the mother cell cycle constitutes the predominant control mechanism for S phase entry of daughter cells. Mitogens and DNA damage have distinct sensing periods, giving rise to three Commitment Points for S phase entry (CP1-3). S phase entry is mitogen-independent in the daughter G1 phase, but remains sensitive to DNA damage, such as single strand breaks, the most frequently-occurring lesions that uniquely threaten DNA replication. To control CP1-3, dedicated hubs integrate the antagonistic mitogenic and DNA damage signals, regulating the stoichiometric cyclin: CDK inhibitor ratio for ultrasensitive control of CDK4/6 and CDK2. This unified model for the G1/S cell cycle transition combines the findings of decades of study, and provides an updated foundation for cell cycle research.
Collapse
Affiliation(s)
- Samuel Hume
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Grigory L Dianov
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentieva 10, 630090 Novosibirsk, Russian Federation
- Novosibirsk State University, 630090 Novosibirsk, Russian Federation
| | - Kristijan Ramadan
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
49
|
Zaghloul MS, Zaghloul TM, Bishr MK, Baumann BC. Urinary schistosomiasis and the associated bladder cancer: update. J Egypt Natl Canc Inst 2020; 32:44. [DOI: 10.1186/s43046-020-00055-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Abstract
Background
Urinary schistosomiasis and its severe complications, mainly bladder cancer, are scarce in non-endemic areas. The deficiency in knowledge and clinical experience of schistosomiasis may lead to inadequate management. Highlighting these topics may be of value, especially with the increased immigration from endemic low-/middle-income countries (LMIC) to non-endemic high-income countries (HIC). Schistosomiasis is a parasitic infection endemic in many low- and middle-income countries. It can affect various systems but is best known for its effect on the urinary system.
Main Body
PubMed, Scopus, Google Scholar, and the Cochrane Library databases were searched for urinary schistosomiasis and its related bladder cancer published from 1980 till 2020.
Schistosoma haematobium (SH) infecting the urinary bladder was considered by the IARC as group 1 definitive biological carcinogenic agent. Several carcinogenic pathways have been postulated but the exact mechanism(s) are not defined yet. A more thorough understanding of the parasite life cycle was explored to help eradicate the infection especially for the immigrants from endemic areas. This may prevent or slow down the process of carcinogenesis that leads to Schistosoma-associated bladder cancer (SA-BC), which is usually, but not conclusively, squamous cell carcinoma. Treatment of SA-BC generally follows the same guidelines as urothelial Schistosoma-non-associated bladder cancer (SNA-BC) management; however, prospective trials to confirm and refine the treatment approach for SA-BC have been relatively limited.
Conclusion
The available data showed that despite some etiologic and carcinogenic differences, the oncologic outcomes are generally comparable for SA-BC and NSA-BC when adjusting for stage, risk status, and comorbidities.
Collapse
|
50
|
Protein Dynamics Enables Phosphorylation of Buried Residues in Cdk2/Cyclin-A-Bound p27. Biophys J 2020; 119:2010-2018. [PMID: 33147476 DOI: 10.1016/j.bpj.2020.06.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 11/21/2022] Open
Abstract
Proteins carry out a wide range of functions that are tightly regulated in space and time. Protein phosphorylation is the most common post-translation modification of proteins and plays a key role in the regulation of many biological processes. The finding that many phosphorylated residues are not solvent exposed in the unphosphorylated state opens several questions for understanding the mechanism that underlies phosphorylation and how phosphorylation may affect protein structures. First, because kinases need access to the phosphorylated residue, how do such buried residues become modified? Second, once phosphorylated, what are the structural effects of phosphorylation of buried residues, and do they lead to changed conformational dynamics? We have used the ternary complex between p27Kip1 (p27), Cdk2, and cyclin A to study these questions using enhanced sampling molecular dynamics simulations. In line with previous NMR and single-molecule fluorescence experiments, we observe transient exposure of Tyr88 in p27, even in its unphosphorylated state. Once Tyr88 is phosphorylated, we observe a coupling to a second site, thus making Tyr74 more easily exposed and thereby the target for a second phosphorylation step. Our observations provide atomic details on how protein dynamics plays a role in modulating multisite phosphorylation in p27, thus supplementing previous experimental observations. More generally, we discuss how the observed phenomenon of transient exposure of buried residues may play a more general role in regulating protein function.
Collapse
|