1
|
Mystek P, Singh V, Horváth M, Honzejková K, Riegerová P, Evci H, Hof M, Obšil T, Šachl R. The minimal membrane requirements for BAX-induced pore opening upon exposure to oxidative stress. Biophys J 2024; 123:3519-3532. [PMID: 39188056 PMCID: PMC11494524 DOI: 10.1016/j.bpj.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
Perforation of the outer mitochondrial membrane triggered by BAX and facilitated by its main activator cBID is a fundamental process in cell apoptosis. Here, we employ a newly designed correlative approach based on a combination of a fluorescence cross correlation binding with a calcein permeabilization assay to understand the involvement of BAX in pore formation under oxidative stress conditions. To mimic the oxidative stress, we enriched liposomal membranes by phosphatidylcholines with truncated sn-2 acyl chains terminated by a carboxyl or aldehyde moiety. Our observations revealed that oxidative stress enhances proapoptotic conditions involving accelerated pore-opening kinetics. This enhancement is achieved through increased recruitment of BAX to the membrane and facilitation of BAX membrane insertion. Despite these effects, the fundamental mechanism of pore formation remained unchanged, suggesting an all-or-none mechanism. In line with this mechanism, we demonstrated that the minimal number of BAX molecules at the membrane necessary for pore formation remains constant regardless of BAX activation by cBID or the presence of oxidized lipids. Overall, our findings give a comprehensive picture of the molecular mechanisms underlying apoptotic pore formation and highlight the selective amplifying role of oxidized lipids in triggering formation of membrane pores.
Collapse
Affiliation(s)
- Paweł Mystek
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vandana Singh
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Matěj Horváth
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Karolína Honzejková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Riegerová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hüseyin Evci
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic; Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Obšil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Shamsudin NF, Leong SW, Koeberle A, Suriya U, Rungrotmongkol T, Chia SL, Taher M, Haris MS, Alshwyeh HA, Alosaimi AA, Mediani A, Ilowefah MA, Islami D, Mohd Faudzi SM, Fasihi Mohd Aluwi MF, Wai LK, Rullah K. A novel chromone-based as a potential inhibitor of ULK1 that modulates autophagy and induces apoptosis in colon cancer. Future Med Chem 2024; 16:1499-1517. [PMID: 38949858 PMCID: PMC11370956 DOI: 10.1080/17568919.2024.2363668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Aim: Chromones are promising for anticancer drug development.Methods & results: 12 chromone-based compounds were synthesized and tested against cancer cell lines. Compound 8 showed the highest cytotoxicity (LC50 3.2 μM) against colorectal cancer cells, surpassing 5-fluorouracil (LC50 4.2 μM). It suppressed colony formation, induced cell cycle arrest and triggered apoptotic cell death, confirmed by staining and apoptosis markers. Cell death was accompanied by enhanced reactive oxygen species formation and modulation of the autophagic machinery (autophagy marker light chain 3B (LC3B); adenosine monophosphate-activated protein kinase (AMPK); protein kinase B (PKB); UNC-51-like kinase (ULK)-1; and ULK2). Molecular docking and dynamic simulations revealed that compound 8 directly binds to ULK1.Conclusion: Compound 8 is a promising lead for autophagy-modulating anti-colon cancer drugs.
Collapse
Affiliation(s)
- Nur Farisya Shamsudin
- Drug Discovery & Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan25200, Pahang, Malaysia
| | - Sze-Wei Leong
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur50603, Malaysia
| | - Andreas Koeberle
- Michael Popp Institute & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck6020, Austria
| | - Utid Suriya
- Structural & Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Thanyada Rungrotmongkol
- Structural & Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Suet Lin Chia
- UPM – MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang43400, Selangor, Malaysia
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan25200, Pahang, Malaysia
| | - Muhammad Salahuddin Haris
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan25200, Pahang, Malaysia
| | - Hussah Abdullah Alshwyeh
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam31441, Saudi Arabia
| | - Areej A Alosaimi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam31441, Saudi Arabia
| | - Ahmed Mediani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi43600, Malaysia
| | | | - Deri Islami
- Faculty of Pharmacy & Health Sciences, Universitas Abdurrab, Jalan Riau Ujung, Pekanbaru28292, Riau, Indonesia
| | - Siti Munirah Mohd Faudzi
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang43400, Selangor, Malaysia
| | | | - Lam Kok Wai
- Drugs & Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur50300, Malaysia
| | - Kamal Rullah
- Drug Discovery & Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan25200, Pahang, Malaysia
| |
Collapse
|
3
|
Nguyen D, Osterlund E, Kale J, Andrews DW. The C-terminal sequences of Bcl-2 family proteins mediate interactions that regulate cell death. Biochem J 2024; 481:903-922. [PMID: 38985308 PMCID: PMC11346437 DOI: 10.1042/bcj20210352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Programmed cell death via the both intrinsic and extrinsic pathways is regulated by interactions of the Bcl-2 family protein members that determine whether the cell commits to apoptosis via mitochondrial outer membrane permeabilization (MOMP). Recently the conserved C-terminal sequences (CTSs) that mediate localization of Bcl-2 family proteins to intracellular membranes, have been shown to have additional protein-protein binding functions that contribute to the functions of these proteins in regulating MOMP. Here we review the pivotal role of CTSs in Bcl-2 family interactions including: (1) homotypic interactions between the pro-apoptotic executioner proteins that cause MOMP, (2) heterotypic interactions between pro-apoptotic and anti-apoptotic proteins that prevent MOMP, and (3) heterotypic interactions between the pro-apoptotic executioner proteins and the pro-apoptotic direct activator proteins that promote MOMP.
Collapse
Affiliation(s)
- Dang Nguyen
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
- Biological Sciences Platform, Odette Cancer Program, Sunnybrook Research Institute, Toronto, Canada
| | - Elizabeth Osterlund
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Science, McMaster University, Hamilton, Canada
| | - Justin Kale
- Biological Sciences Platform, Odette Cancer Program, Sunnybrook Research Institute, Toronto, Canada
| | - David W. Andrews
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
- Biological Sciences Platform, Odette Cancer Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Zhang L, Xia J. N6-Methyladenosine Methylation of mRNA in Cell Apoptosis. Mol Neurobiol 2024; 61:3934-3948. [PMID: 38040996 DOI: 10.1007/s12035-023-03813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Apoptosis, a highly controlled homeostatic mechanism that eliminates single cells without destroying tissue function, occurs during growing development and senescence. N6-methyladenosine (m6A), as the most common internal modification of eukaryotic mRNA, fine-tunes gene expression by regulating many aspects of mRNA metabolism, such as splicing, nucleation, stability, translation, and degradation. Remarkably, recent reports have indicated that aberrant methylation of m6A-related RNA may directly or indirectly influence the expression of apoptosis-related genes, thus regulating the process of cell apoptosis. In this review, we summarized the relationship between m6A modification and cell apoptosis, especially its role in the nervous system, and analyzed the limitations of the current research.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Dadsena S, Cuevas Arenas R, Vieira G, Brodesser S, Melo MN, García-Sáez AJ. Lipid unsaturation promotes BAX and BAK pore activity during apoptosis. Nat Commun 2024; 15:4700. [PMID: 38830851 PMCID: PMC11148036 DOI: 10.1038/s41467-024-49067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
BAX and BAK are proapoptotic members of the BCL2 family that directly mediate mitochondrial outer membrane permeabilition (MOMP), a central step in apoptosis execution. However, the molecular architecture of the mitochondrial apoptotic pore remains a key open question and especially little is known about the contribution of lipids to MOMP. By performing a comparative lipidomics analysis of the proximal membrane environment of BAK isolated in lipid nanodiscs, we find a significant enrichment of unsaturated species nearby BAK and BAX in apoptotic conditions. We then demonstrate that unsaturated lipids promote BAX pore activity in model membranes, isolated mitochondria and cellular systems, which is further supported by molecular dynamics simulations. Accordingly, the fatty acid desaturase FADS2 not only enhances apoptosis sensitivity, but also the activation of the cGAS/STING pathway downstream mtDNA release. The correlation of FADS2 levels with the sensitization to apoptosis of different lung and kidney cancer cell lines by co-treatment with unsaturated fatty acids supports the relevance of our findings. Altogether, our work provides an insight on how local lipid environment affects BAX and BAK function during apoptosis.
Collapse
Affiliation(s)
- Shashank Dadsena
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Rodrigo Cuevas Arenas
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584CG, Utrecht, The Netherlands
| | - Gonçalo Vieira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Susanne Brodesser
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana J García-Sáez
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany.
- Department of Membrane Dynamics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Miller MS, Cowan AD, Brouwer JM, Smyth ST, Peng L, Wardak AZ, Uren RT, Luo C, Roy MJ, Shah S, Tan Z, Reid GE, Colman PM, Czabotar PE. Sequence differences between BAX and BAK core domains manifest as differences in their interactions with lipids. FEBS J 2024; 291:2335-2353. [PMID: 38088212 DOI: 10.1111/febs.17031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 12/11/2023] [Indexed: 01/21/2024]
Abstract
The B-cell lymphoma 2 (BCL2) family members, BCL2-associated protein X (BAX) and BCL2 homologous antagonist killer (BAK), are required for programmed cell death via the mitochondrial pathway. When cells are stressed, damaged or redundant, the balance of power between the BCL2 family of proteins shifts towards BAX and BAK, allowing their transition from an inactive, monomeric state to a membrane-active oligomeric form that releases cytochrome c from the mitochondrial intermembrane space. That oligomeric state has an essential intermediate, a symmetric homodimer of BAX or BAK. Here we describe crystal structures of dimers of the core domain of BAX, comprising its helices α2-α5. These structures provide an atomic resolution description of the interactions that drive BAX homo-dimerisation and insights into potential interaction between core domain dimers and membrane lipids. The previously identified BAK lipid-interacting sites are not conserved with BAX and are likely to determine the differences between them in their interactions with lipids. We also describe structures of heterodimers of BAK/BAX core domains, yielding further insight into the differences in lipid binding between BAX and BAK.
Collapse
Affiliation(s)
- Michelle S Miller
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Angus D Cowan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Jason M Brouwer
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Sean T Smyth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Liuyu Peng
- School of Chemistry, University of Melbourne, Parkville, Vic., Australia
| | - Ahmad Z Wardak
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Rachel T Uren
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Cindy Luo
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Michael J Roy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Sayali Shah
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Ziwen Tan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Gavin E Reid
- School of Chemistry, University of Melbourne, Parkville, Vic., Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Vic., Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic., Australia
| | - Peter M Colman
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
7
|
Zhang Z, Hou L, Liu D, Luan S, Huang M, Zhao L. Directly targeting BAX for drug discovery: Therapeutic opportunities and challenges. Acta Pharm Sin B 2024; 14:2378-2401. [PMID: 38828138 PMCID: PMC11143528 DOI: 10.1016/j.apsb.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 06/05/2024] Open
Abstract
For over two decades, the development of B-cell lymphoma-2 (Bcl-2) family therapeutics has primarily focused on anti-apoptotic proteins, resulting in the first-in-class drugs called BH3 mimetics, especially for Bcl-2 inhibitor Venetoclax. The pro-apoptotic protein Bcl-2-associated X protein (BAX) plays a crucial role as the executioner protein of the mitochondrial regulated cell death, contributing to organismal development, tissue homeostasis, and immunity. The dysregulation of BAX is closely associated with the onset and progression of diseases characterized by pathologic cell survival or death, such as cancer, neurodegeneration, and heart failure. In addition to conducting thorough investigations into the physiological modulation of BAX, research on the regulatory mechanisms of small molecules identified through biochemical screening approaches has prompted the identification of functional and potentially druggable binding sites on BAX, as well as diverse all-molecule BAX modulators. This review presents recent advancements in elucidating the physiological and pharmacological modulation of BAX and in identifying potentially druggable binding sites on BAX. Furthermore, it highlights the structural and mechanistic insights into small-molecule modulators targeting diverse binding surfaces or conformations of BAX, offering a promising avenue for developing next-generation apoptosis modulators to treat a wide range of diseases associated with dysregulated cell death by directly targeting BAX.
Collapse
Affiliation(s)
- Zhenwei Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linghui Hou
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shenglin Luan
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen 518000, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
8
|
Patil D, Raut S, Joshi M, Bhatt P, Bhatt LK. PAQR4 oncogene: a novel target for cancer therapy. Med Oncol 2024; 41:161. [PMID: 38767705 DOI: 10.1007/s12032-024-02382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/06/2024] [Indexed: 05/22/2024]
Abstract
Despite decades of basic and clinical research and trials of promising new therapies, cancer remains a major cause of morbidity and mortality due to the emergence of drug resistance to anticancer drugs. These resistance events have a very well-understood underlying mechanism, and their therapeutic relevance has long been recognized. Thus, drug resistance continues to be a major obstacle to providing cancer patients with the intended "cure". PAQR4 (Progestin and AdipoQ Receptor Family Member 4) gene is a recently identified novel protein-coding gene associated with various human cancers and acts through different signaling pathways. PAQR4 has a significant influence on multiple proteins that may regulate various gene expressions and may develop chemoresistance. This review discusses the roles of PAQR4 in tumor immunity, carcinogenesis, and chemoresistance. This paper is the first review, discussing PAQR4 in the pathogenesis of cancer. The review further explores the PAQR4 as a potential target in various malignancies.
Collapse
Affiliation(s)
- Dipti Patil
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Swapnil Raut
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Mitesh Joshi
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be University), Vile Parle (West), Mumbai, India
| | - Purvi Bhatt
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be University), Vile Parle (West), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
9
|
Fowler-Shorten DJ, Hellmich C, Markham M, Bowles KM, Rushworth SA. BCL-2 inhibition in haematological malignancies: Clinical application and complications. Blood Rev 2024; 65:101195. [PMID: 38523032 DOI: 10.1016/j.blre.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
B-cell lymphoma-2 (BCL-2) family proteins are fundamental regulators of the intrinsic apoptotic pathway which modulate cellular fate. In many haematological malignancies, overexpression of anti-apoptotic factors (BCL-2, BCL-XL and MCL-1) circumvent apoptosis. To address this cancer hallmark, a concerted effort has been made to induce apoptosis by inhibiting BCL-2 family proteins. A series of highly selective BCL-2 homology 3 (BH3) domain mimetics are in clinical use and in ongoing clinical trials for acute myeloid leukaemia (AML), chronic myeloid leukaemia (CML), chronic lymphocytic leukaemia (CLL), and multiple myeloma (MM). These inhibitors serve as promising candidates, both as single agents or in combination therapy to improve patient outcomes. In other diseases such as follicular lymphoma, efficacy has been notably limited. There are also clinical problems with BCL-2 family inhibition, including drug resistance, disease relapse, tumour lysis syndrome, and clinically relevant cytopenias. Here, we provide a balanced view on both the clinical benefits of BCL-2 inhibition as well as the associated challenges.
Collapse
Affiliation(s)
- Dominic J Fowler-Shorten
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Charlotte Hellmich
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK; Department of Haematology, Norfolk and Norwich University Hospital NHS Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Matthew Markham
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Kristian M Bowles
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK; Department of Haematology, Norfolk and Norwich University Hospital NHS Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Stuart A Rushworth
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK.
| |
Collapse
|
10
|
Wei F, Nian Q, Zhao M, Wen Y, Yang Y, Wang J, He Z, Chen X, Yin X, Wang J, Ma X, Chen Y, Feng P, Zeng J. Natural products and mitochondrial allies in colorectal cancer therapy. Biomed Pharmacother 2023; 167:115473. [PMID: 37713992 DOI: 10.1016/j.biopha.2023.115473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Colorectal cancer (CRC) is a globally prevalent malignancy with a high potential for metastasis. Existing cancer treatments have limitations, including drug resistance and adverse effects. Researchers are striving to develop effective therapies to address these challenges. Impressively, contemporary research has discovered that many natural products derived from foods, plants, insects, and marine invertebrates can suppress the progression, metastasis, and invasion of CRC. In this review, we conducted a comprehensive search of the CNKI, PubMed, Embase, and Web of Science databases from inception to April 2023 to evaluate the efficacy of natural products targeting mitochondria to fight against CRC. Mitochondria are intracellular energy factories involved in cell differentiation, signal transduction, cell cycle regulation, apoptosis, and tumorigenesis. The identified natural products have been classified and summarized based on their mechanisms of action. These findings indicate that natural products can induce apoptosis in colorectal cancer cells by inhibiting the mitochondrial respiratory chain, ROS elevation, disruption of mitochondrial membrane potential, the release of pro-apoptotic factors, modulation of the Bcl-2 protein family to facilitate cytochrome c release, induction of apoptotic vesicle activity by activating the caspase protein family, and selective targeting of mitochondrial division. Furthermore, diverse apoptotic signaling pathways targeting mitochondria, such as the MAPK, p53, STAT3, JNK and AKT pathway, have been triggered by natural products. Natural products such as diosgenin, allopurinol, and clausenidin have demonstrated low toxicity, high efficacy, and multi-targeted properties. Mitochondria-targeting natural products have great potential for overcoming the challenges of CRC therapy.
Collapse
Affiliation(s)
- Feng Wei
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Maoyuan Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Yang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jundong Wang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Zhelin He
- Endoscopy center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiaoyan Chen
- Endoscopy center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiang Yin
- Endoscopy center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Jian Wang
- Endoscopy center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Peimin Feng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
11
|
Walther J, Kirsch EM, Hellwig L, Schmerbeck SS, Holloway PM, Buchan AM, Mergenthaler P. Reinventing the Penumbra - the Emerging Clockwork of a Multi-modal Mechanistic Paradigm. Transl Stroke Res 2023; 14:643-666. [PMID: 36219377 PMCID: PMC10444697 DOI: 10.1007/s12975-022-01090-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
The concept of the ischemic penumbra was originally defined as the area around a necrotic stroke core and seen as the tissue at imminent risk of further damage. Today, the penumbra is generally considered as time-sensitive hypoperfused brain tissue with decreased oxygen and glucose availability, salvageable tissue as treated by intervention, and the potential target for neuroprotection in focal stroke. The original concept entailed electrical failure and potassium release but one short of neuronal cell death and was based on experimental stroke models, later confirmed in clinical imaging studies. However, even though the basic mechanisms have translated well, conferring brain protection, and improving neurological outcome after stroke based on the pathophysiological mechanisms in the penumbra has yet to be achieved. Recent findings shape the modern understanding of the penumbra revealing a plethora of molecular and cellular pathophysiological mechanisms. We now propose a new model of the penumbra, one which we hope will lay the foundation for future translational success. We focus on the availability of glucose, the brain's central source of energy, and bioenergetic failure as core pathophysiological concepts. We discuss the relation of mitochondrial function in different cell types to bioenergetics and apoptotic cell death mechanisms, autophagy, and neuroinflammation, to glucose metabolism in what is a dynamic ischemic penumbra.
Collapse
Affiliation(s)
- Jakob Walther
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Elena Marie Kirsch
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Lina Hellwig
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sarah S Schmerbeck
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul M Holloway
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Alastair M Buchan
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| | - Philipp Mergenthaler
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
12
|
Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Biol 2023; 24:732-748. [PMID: 37438560 DOI: 10.1038/s41580-023-00629-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
The proteins of the BCL-2 family are key regulators of mitochondrial apoptosis, acting as either promoters or inhibitors of cell death. The functional interplay and balance between the opposing BCL-2 family members control permeabilization of the outer mitochondrial membrane, leading to the release of activators of the caspase cascade into the cytosol and ultimately resulting in cell death. Despite considerable research, our knowledge about the mechanisms of the BCL-2 family of proteins remains insufficient, which complicates cell fate predictions and does not allow us to fully exploit these proteins as targets for drug discovery. Detailed understanding of the formation and molecular architecture of the apoptotic pore in the outer mitochondrial membrane remains a holy grail in the field, but new studies allow us to begin constructing a structural model of its arrangement. Recent literature has also revealed unexpected activities for several BCL-2 family members that challenge established concepts of how they regulate mitochondrial permeabilization. In this Review, we revisit the most important advances in the field and integrate them into a new structure-function-based classification of the BCL-2 family members that intends to provide a comprehensive model for BCL-2 action in apoptosis. We close this Review by discussing the potential of drugging the BCL-2 family in diseases characterized by aberrant apoptosis.
Collapse
Affiliation(s)
- Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Ana J Garcia-Saez
- Membrane Biophysics, Institute of Genetics, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Liu Z, Liu W, Wang W, Ma Y, Wang Y, Drum DL, Cai J, Blevins H, Lee E, Shah S, Fisher PB, Wang X, Fang X, Guo C, Wang XY. CPT1A-mediated fatty acid oxidation confers cancer cell resistance to immune-mediated cytolytic killing. Proc Natl Acad Sci U S A 2023; 120:e2302878120. [PMID: 37722058 PMCID: PMC10523454 DOI: 10.1073/pnas.2302878120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/14/2023] [Indexed: 09/20/2023] Open
Abstract
Although tumor-intrinsic fatty acid β-oxidation (FAO) is implicated in multiple aspects of tumorigenesis and progression, the impact of this metabolic pathway on cancer cell susceptibility to immunotherapy remains unknown. Here, we report that cytotoxicity of killer T cells induces activation of FAO and upregulation of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme of FAO in cancer cells. The repression of CPT1A activity or expression renders cancer cells more susceptible to destruction by cytotoxic T lymphocytes. Our mechanistic studies reveal that FAO deficiency abrogates the prosurvival signaling in cancer cells under immune cytolytic stress. Furthermore, we identify T cell-derived IFN-γ as a major factor responsible for induction of CPT1A and FAO in an AMPK-dependent manner, indicating a dynamic interplay between immune effector cells and tumor targets. While cancer growth in the absence of CPT1A remains largely unaffected, established tumors upon FAO inhibition become significantly more responsive to cellular immunotherapies including chimeric antigen receptor-engineered human T cells. Together, these findings uncover a mode of cancer resistance and immune editing that can facilitate immune escape and limit the benefits of immunotherapies.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA23298
| | - Wenjie Liu
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA23298
| | - Wei Wang
- Department of Biochemistry, Virginia Commonwealth University School of Medicine, Richmond, VA23298
| | - Yibao Ma
- Department of Biochemistry, Virginia Commonwealth University School of Medicine, Richmond, VA23298
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA23298
| | - Yufeng Wang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - David L. Drum
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - Jinyang Cai
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA23298
| | - Hallie Blevins
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA23298
| | - Eun Lee
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA23298
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA23298
| | - Syed Shah
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA23298
- Hunter Holmes McGuire VA Medical Center, Richmond, VA23249
| | - Paul B. Fisher
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA23298
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA23298
| | - Xinhui Wang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - Xianjun Fang
- Department of Biochemistry, Virginia Commonwealth University School of Medicine, Richmond, VA23298
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA23298
| | - Chunqing Guo
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA23298
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA23298
| | - Xiang-Yang Wang
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA23298
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA23298
- Hunter Holmes McGuire VA Medical Center, Richmond, VA23249
- Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA23298
| |
Collapse
|
14
|
Li N, Gu X, Liu F, Zhang Y, Sun Y, Gao S, Wang B, Zhang C. Network pharmacology-based analysis of potential mechanisms of myocardial ischemia-reperfusion injury by total salvianolic acid injection. Front Pharmacol 2023; 14:1202718. [PMID: 37680709 PMCID: PMC10482107 DOI: 10.3389/fphar.2023.1202718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
In this review, we investigated the potential mechanism of Total Salvianolic Acid Injection (TSI) in protecting against myocardial ischemia reperfusion injury (MI/RI). To achieve this, we predicted the component targets of TSI using Pharmmapper and identified the disease targets of MI/RI through GeneCards, DisGenNET, and OMIM databases. We constructed protein-protein interaction networks by analyzing the overlapping targets and performed functional enrichment analyses using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Our analysis yielded 90 targets, which were implicated in the potential therapeutic effects of TSI on MI/RI. Seven critical signaling pathways significantly contributed to TSI's protective effects, namely, PI3K signaling, JAK-STAT signaling, Calcium signaling, HIF-1 signaling, Nuclear receptor signaling, Cell Cycle, and Apoptosis. Subsequently, we conducted a comprehensive literature review of these seven key signaling pathways to gain further insights into their role in the TSI-mediated treatment of MI/RI. By establishing these connections, our study lays a solid foundation for future research endeavours to elucidate the molecular mechanisms through which TSI exerts its beneficial effects on MI/RI.
Collapse
Affiliation(s)
- Nan Li
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Xufang Gu
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fanqi Liu
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yao Zhang
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjun Sun
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Shengwei Gao
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Baohe Wang
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen Zhang
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
15
|
Gao P, Zhang Z, Wang R, Huang L, Wu H, Qiao Z, Wang X, Jin H, Peng J, Liu L, Chen Q, Lin J. Structure-destabilizing mutations unleash an intrinsic perforation activity of antiapoptotic Bcl-2 in the mitochondrial membrane enabling apoptotic cell death. MITOCHONDRIAL COMMUNICATIONS 2023; 1:48-61. [PMID: 39239250 PMCID: PMC11375749 DOI: 10.1016/j.mitoco.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Bcl-2 and Bax share a similar structural fold in solution, yet function oppositely in the mitochondrial outer membrane (MOM) during apoptosis. The proapoptotic Bax forms pores in the MOM to trigger cell death, whereas Bcl-2 inhibits the Bax pore formation to prevent cell death. Intriguingly both proteins can switch to a similar conformation after activation by BH3-only proteins, with multiple regions embedded in the MOM. Here we tested a hypothesis that destabilization of the Bcl-2 structure might convert Bcl-2 to a Bax-like perforator. We discovered that mutations of glutamate 152 which eliminate hydrogen bonds in the protein core and thereby reduce the Bcl-2 structural stability. These Bcl-2 mutants induced apoptosis by releasing cytochrome c from the mitochondria in the cells that lack Bax and Bak, the other proapoptotic perforator. Using liposomal membranes made with typical mitochondrial lipids and reconstituted with purified proteins we revealed this perforation activity was intrinsic to Bcl-2 and could be unleashed by a BH3-only protein, similar to the perforation activity of Bax. Our study thus demonstrated a structural conversion of antiapoptotic Bcl-2 to a proapoptotic perforator through a simple molecular manipulation or interaction that is worthy to explore further for eradicating cancer cells that are resistant to a current Bcl-2-targeting drug.
Collapse
Affiliation(s)
- Ping Gao
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhi Zhang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73126, USA
| | - Rui Wang
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Huang
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Wu
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenzhen Qiao
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaohui Wang
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haijing Jin
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Peng
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73126, USA
| | - Lei Liu
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Quan Chen
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jialing Lin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73126, USA
- Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
16
|
Lim D, Choe SH, Jin S, Lee S, Kim Y, Shin HC, Choi JS, Oh DB, Kim SJ, Seo J, Ku B. Structural basis for proapoptotic activation of Bak by the noncanonical BH3-only protein Pxt1. PLoS Biol 2023; 21:e3002156. [PMID: 37315086 DOI: 10.1371/journal.pbio.3002156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Bak is a critical executor of apoptosis belonging to the Bcl-2 protein family. Bak contains a hydrophobic groove where the BH3 domain of proapoptotic Bcl-2 family members can be accommodated, which initiates its activation. Once activated, Bak undergoes a conformational change to oligomerize, which leads to mitochondrial destabilization and the release of cytochrome c into the cytosol and eventual apoptotic cell death. In this study, we investigated the molecular aspects and functional consequences of the interaction between Bak and peroxisomal testis-specific 1 (Pxt1), a noncanonical BH3-only protein exclusively expressed in the testis. Together with various biochemical approaches, this interaction was verified and analyzed at the atomic level by determining the crystal structure of the Bak-Pxt1 BH3 complex. In-depth biochemical and cellular analyses demonstrated that Pxt1 functions as a Bak-activating proapoptotic factor, and its BH3 domain, which mediates direct intermolecular interaction with Bak, plays a critical role in triggering apoptosis. Therefore, this study provides a molecular basis for the Pxt1-mediated novel pathway for the activation of apoptosis and expands our understanding of the cell death signaling coordinated by diverse BH3 domain-containing proteins.
Collapse
Affiliation(s)
- Dahwan Lim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - So-Hui Choe
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Sein Jin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Seulgi Lee
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - Younjin Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - Ho-Chul Shin
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - Doo-Byoung Oh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
| | - Jinho Seo
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
17
|
Shoshan-Barmatz V, Arif T, Shteinfer-Kuzmine A. Apoptotic proteins with non-apoptotic activity: expression and function in cancer. Apoptosis 2023; 28:730-753. [PMID: 37014578 PMCID: PMC10071271 DOI: 10.1007/s10495-023-01835-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Apoptosis is a process of programmed cell death in which a cell commits suicide while maintaining the integrity and architecture of the tissue as a whole. Apoptosis involves activation of one of two major pathways: the extrinsic pathway, where extracellular pro-apoptotic signals, transduced through plasma membrane death receptors, activate a caspase cascade leading to apoptosis. The second, the intrinsic apoptotic pathway, where damaged DNA, oxidative stress, or chemicals, induce the release of pro-apoptotic proteins from the mitochondria, leading to the activation of caspase-dependent and independent apoptosis. However, it has recently become apparent that proteins involved in apoptosis also exhibit non-cell death-related physiological functions that are related to the cell cycle, differentiation, metabolism, inflammation or immunity. Such non-conventional activities were predominantly reported in non-cancer cells although, recently, such a dual function for pro-apoptotic proteins has also been reported in cancers where they are overexpressed. Interestingly, some apoptotic proteins translocate to the nucleus in order to perform a non-apoptotic function. In this review, we summarize the unconventional roles of the apoptotic proteins from a functional perspective, while focusing on two mitochondrial proteins: VDAC1 and SMAC/Diablo. Despite having pro-apoptotic functions, these proteins are overexpressed in cancers and this apparent paradox and the associated pathophysiological implications will be discussed. We will also present possible mechanisms underlying the switch from apoptotic to non-apoptotic activities although a deeper investigation into the process awaits further study.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
- National Institute for Biotechnology in the Negev, Beer Sheva, Israel.
| | - Tasleem Arif
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | |
Collapse
|
18
|
Pro-Apoptotic and Anti-Cancer Activity of the Vernonanthura Nudiflora Hydroethanolic Extract. Cancers (Basel) 2023; 15:cancers15051627. [PMID: 36900417 PMCID: PMC10000589 DOI: 10.3390/cancers15051627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
The mitochondrial voltage-dependent anion channel 1 (VDAC1) protein is involved in several essential cancer hallmarks, including energy and metabolism reprogramming and apoptotic cell death evasion. In this study, we demonstrated the ability of hydroethanolic extracts from three different plants, Vernonanthura nudiflora (Vern), Baccharis trimera (Bac), and Plantago major (Pla), to induce cell death. We focused on the most active Vern extract. We demonstrated that it activates multiple pathways that lead to impaired cell energy and metabolism homeostasis, elevated ROS production, increased intracellular Ca2+, and mitochondria-mediated apoptosis. The massive cell death generated by this plant extract's active compounds involves the induction of VDAC1 overexpression and oligomerization and, thereby, apoptosis. Gas chromatography of the hydroethanolic plant extract identified dozens of compounds, including phytol and ethyl linoleate, with the former producing similar effects as the Vern hydroethanolic extract but at 10-fold higher concentrations than those found in the extract. In a xenograft glioblastoma mouse model, both the Vern extract and phytol strongly inhibited tumor growth and cell proliferation and induced massive tumor cell death, including of cancer stem cells, inhibiting angiogenesis and modulating the tumor microenvironment. Taken together, the multiple effects of Vern extract make it a promising potential cancer therapeutic.
Collapse
|
19
|
Maiuolo J, Miceli N, Davì F, Bava I, Tucci L, Ragusa S, Taviano MF, Musolino V, Gliozzi M, Carresi C, Macrì R, Scarano F, Coppoletta AR, Cardamone A, Muscoli C, Bombardelli E, Palma E, Mollace V. Ferula communis Root Extract: In Vitro Evaluation of the Potential Additive Effect with Chemotherapy Tamoxifen in Breast Cancer (MCF-7) Cells Part II. PLANTS (BASEL, SWITZERLAND) 2023; 12:1194. [PMID: 36904054 PMCID: PMC10005481 DOI: 10.3390/plants12051194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Ferula L., belonging to the Apiaceae family, is represented by about 170 species predominantly present in areas with a mild-warm-arid climate, including the Mediterranean region, North Africa and Central Asia. Numerous beneficial activities have been reported for this plant in traditional medicine, including antidiabetic, antimicrobial, antiproliferative, anti-dysentery, stomachache with diarrhea and cramps remedies. FER-E was obtained from the plant F. communis, and precisely from the root, collected in Sardinia, Italy. A total of 25 g of root was mixed with 125 g of acetone (ratio 1:5, room temperature). The solution was filtered, and the liquid fraction was subjected to high pressure liquid chromatographic separation (HPLC). In particular, 10 mg of dry root extract powder, from F. communis, was dissolved in 10.0 mL of methanol, filtered with a 0.2 µm PTFE filter and subjected to HPLC analysis. The net dry powder yield obtained was 2.2 g. In addition, to reduce the toxicity of FER-E, the component ferulenol was removed. High concentrations of FER-E have demonstrated a toxic effect against breast cancer, with a mechanism independent of the oxidative potential, which is absent in this extract. In fact, some in vitro tests were used and showed little or no oxidizing activity by the extract. In addition, we appreciated less damage on the respective healthy cell lines (breast), assuming that this extract could be used for its potential role against uncontrolled cancer growth. The results of this research have also shown that F. communis extract could be used together with tamoxifen, increasing its effectiveness, and reducing side effects. However, further confirmatory experiments should be carried out.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Laboratoy of Pharmaceutical Biology, IRC-FSH Center, Department of Health Sciences, School of Pharmacy and Nutraceutical, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Federica Davì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Irene Bava
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Luigi Tucci
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Salvatore Ragusa
- PLANTA/Research, Documentation and Training Center, 90121 Palermo, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Vincenzo Musolino
- Laboratoy of Pharmaceutical Biology, IRC-FSH Center, Department of Health Sciences, School of Pharmacy and Nutraceutical, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Laboratoy of Pharmaceutical Biology, IRC-FSH Center, Department of Health Sciences, School of Pharmacy and Nutraceutical, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Laboratoy of Pharmaceutical Biology, IRC-FSH Center, Department of Health Sciences, School of Pharmacy and Nutraceutical, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Rita Coppoletta
- Laboratoy of Pharmaceutical Biology, IRC-FSH Center, Department of Health Sciences, School of Pharmacy and Nutraceutical, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Laboratoy of Pharmaceutical Biology, IRC-FSH Center, Department of Health Sciences, School of Pharmacy and Nutraceutical, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Ezio Bombardelli
- Laboratoy of Pharmaceutical Biology, IRC-FSH Center, Department of Health Sciences, School of Pharmacy and Nutraceutical, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Faculty of Pharmacy, San Raffaele Telematic University, 00042 Rome, Italy
| |
Collapse
|
20
|
Barisch C, Holthuis JCM, Cosentino K. Membrane damage and repair: a thin line between life and death. Biol Chem 2023; 404:467-490. [PMID: 36810295 DOI: 10.1515/hsz-2022-0321] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Bilayered membranes separate cells from their surroundings and form boundaries between intracellular organelles and the cytosol. Gated transport of solutes across membranes enables cells to establish vital ion gradients and a sophisticated metabolic network. However, an advanced compartmentalization of biochemical reactions makes cells also particularly vulnerable to membrane damage inflicted by pathogens, chemicals, inflammatory responses or mechanical stress. To avoid potentially lethal consequences of membrane injuries, cells continuously monitor the structural integrity of their membranes and readily activate appropriate pathways to plug, patch, engulf or shed the damaged membrane area. Here, we review recent insights into the cellular mechanisms that underly an effective maintenance of membrane integrity. We discuss how cells respond to membrane lesions caused by bacterial toxins and endogenous pore-forming proteins, with a primary focus on the intimate crosstalk between membrane proteins and lipids during wound formation, detection and elimination. We also discuss how a delicate balance between membrane damage and repair determines cell fate upon bacterial infection or activation of pro-inflammatory cell death pathways.
Collapse
Affiliation(s)
- Caroline Barisch
- Molecular Infection Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Katia Cosentino
- Molecular Cell Biophysics Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| |
Collapse
|
21
|
Zhao M, Yang Y, Nian Q, Shen C, Xiao X, Liao W, Zheng Q, Zhang G, Chen N, Gong D, Tang J, Wen Y, Zeng J. Phytochemicals and mitochondria: Therapeutic allies against gastric cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154608. [PMID: 36586205 DOI: 10.1016/j.phymed.2022.154608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Mitochondria are the energy factories of cells with the ability to modulate the cell cycle, cellular differentiation, signal transduction, growth, and apoptosis. Existing drugs targeting mitochondria in cancer treatment have disadvantages of drug resistance and side effects. Phytochemicals, which are widely found in plants, are bioactive compounds that could facilitate the development of new drugs for gastric cancer. Studies have shown that some phytochemicals can suppress the development of gastric cancer. METHODS We searched for data from PubMed, China National Knowledge Infrastructure, Web of Science, and Embase databases from initial establishment to December 2021 to review the mechanism by which phytochemicals suppress gastric cancer cell growth by modulating mitochondrial function. Phytochemicals were classified and summarized by their mechanisms of action. RESULTS Phytochemicals can interfere with mitochondria through several mechanisms to reach the goal of promoting apoptosis in gastric cancer cells. Some phytochemicals, e.g., daidzein and tetrandrine promoted cytochrome c spillover into the cytoplasm by modulating the members of the B-cell lymphoma-2 protein family and induced apoptotic body activity by activating the caspase protein family. Phytochemicals (e.g., celastrol and shikonin) could promote the accumulation of reactive oxygen species and reduce the mitochondrial membrane potential. Several phytochemicals (e.g., berberine and oleanolic acid) activated mitochondrial apoptotic submission via the phosphatidylinositol-3-kinase/Akt signaling pathway, thereby triggering apoptosis in gastric cancer cells. Several well-known phytochemicals that target mitochondria, including berberine, ginsenoside, and baicalein, showed the advantages of multiple targets, high efficacy, and fewer side effects. CONCLUSIONS Phytochemicals could target the mitochondria in the treatment of gastric cancer, providing potential directions and evidence for clinical translation. Drug discovery focused on phytochemicals has great potential to break barriers in cancer treatment.
Collapse
Affiliation(s)
- Maoyuan Zhao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Yi Yang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, PR China
| | - Caifei Shen
- Department of Endoscopy center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Xiaolin Xiao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Wenhao Liao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Qiao Zheng
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Gang Zhang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Daoyin Gong
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China; Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| |
Collapse
|
22
|
Osterlund EJ, Hirmiz N, Nguyen D, Pemberton JM, Fang Q, Andrews DW. Endoplasmic reticulum protein BIK binds to and inhibits mitochondria-localized antiapoptotic proteins. J Biol Chem 2023; 299:102863. [PMID: 36603764 PMCID: PMC9932132 DOI: 10.1016/j.jbc.2022.102863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
The proapoptotic BCL-2 homology (BH3)-only endoplasmic reticulum (ER)-resident protein BCL-2 interacting killer (BIK) positively regulates mitochondrial outer membrane permeabilization, the point of no return in apoptosis. It is generally accepted that BIK functions at a distance from mitochondria by binding and sequestering antiapoptotic proteins at the ER, thereby promoting ER calcium release. Although BIK is predominantly localized to the ER, we detect by fluorescence lifetime imaging microscopy-FRET microscopy, BH3 region-dependent direct binding between BIK and mitochondria-localized chimeric mutants of the antiapoptotic proteins BCL-XL and BCL-2 in both baby mouse kidney (BMK) and MCF-7 cells. Direct binding was accompanied by cell type-specific differential relocalization in response to coexpression of either BIK or one of its target binding partners, BCL-XL, when coexpressed in cells. In BMK cells with genetic deletion of both BAX and BAK (BMK-double KO), our data suggest that a fraction of BIK protein moves toward mitochondria in response to the expression of a mitochondria-localized BCL-XL mutant. In contrast, in MCF-7 cells, our data suggest that BIK is localized at both ER and mitochondria-associated ER membranes and binds to the mitochondria-localized BCL-XL mutant via relocalization of BCL-XL to ER and mitochondria-associated ER membrane. Rather than functioning at a distance, our data suggest that BIK initiates mitochondrial outer membrane permeabilization via direct interactions with ER and mitochondria-localized antiapoptotic proteins, which occur via ER-mitochondria contact sites, and/or by relocalization of either BIK or antiapoptotic proteins in cells.
Collapse
Affiliation(s)
- Elizabeth J Osterlund
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Nehad Hirmiz
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Dang Nguyen
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - James M Pemberton
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Qiyin Fang
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
23
|
Mai Z, Sun H, Yang F, Du M, Cheng X, Chen H, Sun B, Wen J, Wang X, Chen T. Bad is essential for Bcl-xL-enhanced Bax shuttling between mitochondria and cytosol. Int J Biochem Cell Biol 2023; 155:106359. [PMID: 36586532 DOI: 10.1016/j.biocel.2022.106359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/17/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Although Bcl-xL has been shown to retrotranslocate Bax from mitochondria to cytosol, other studies have found that Bcl-xL also stabilizes the mitochondrial localization of Bax. It is still unclear what causes the difference in Bcl-xL-regulated Bax localization. Bad, a BH3-only protein with a high affinity for Bcl-xL, may play an important role in Bcl-xL-regulated Bax shuttling. Here, we found that Bcl-xL enhanced both translocalization and retrotranslocation of mitochondrial Bax, as evidenced by quantitative co-localization, western blots and fluorescence loss in photobleaching (FLIP) analyses. Notably, Bad knockdown prevented Bcl-xL-mediated Bax retrotranslocation, indicating Bad was essential for this process. Quantitative fluorescence resonance energy transfer (FRET) imaging in living cells and co-immunoprecipitation analyses showed that the interaction of Bcl-xL with Bad was stronger than that with Bax. The Bad mimetic ABT-737 dissociated Bax from Bcl-xL on isolated mitochondria, suggesting that mitochondrial Bax was directly liberated to cytosol due to Bad binding to Bcl-xL. In addition, MK-2206, an Akt inhibitor, decreased Bad phosphorylation while increasing cytosolic Bax proportion. Our data firmly demonstrate a notion that Bad binds to mitochondrial Bcl-xL to release Bax, resulting in retrotranslocation of Bax to cytosol, and that the amount of Bad involved is regulated by Akt signaling.
Collapse
Affiliation(s)
- Zihao Mai
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Han Sun
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Fangfang Yang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Mengyan Du
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xuecheng Cheng
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Hongce Chen
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Beini Sun
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Junlin Wen
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xiaoping Wang
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
24
|
Nössing C, Ryan KM. 50 years on and still very much alive: 'Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics'. Br J Cancer 2023; 128:426-431. [PMID: 36369364 PMCID: PMC9938139 DOI: 10.1038/s41416-022-02020-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Cell death is part of the lifecycle of every multicellular organism. Nineteenth-century pathologists already recognised that organised forms of cell death must exist to explain the demise and turnover of cells during metamorphosis (of insects), embryogenesis and normal tissue homoeostasis [1]. Nevertheless, Kerr, Wyllie and Currie in their seminal paper of 1972, were the first to collate and define the distinct morphological features of controlled cell death in different contexts [2]. To describe the processes of cell deletion observed under both physiological and pathological conditions, they coined the term 'Apoptosis' (derived from the Greek word 'ἀπόπτωσις', meaning 'dropping off or falling off' of petals from flowers). Kerr, Wyllie and Currie defined apoptosis as a mechanism 'complementary to mitosis in the regulation of animal cell populations'. In addition, they already recognised the potential to use this programmed form of cell death for cancer therapy, but they also emphasised the occurrence of apoptosis during cancer development. In this article, some 50 years after its initial publication in The British Journal of Cancer, we revaluate and put the authors initial assumptions and general concepts about apoptosis into the context of modern-day biology.
Collapse
Affiliation(s)
- Christoph Nössing
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
25
|
Li Y, Pang J, Wang J, Dai G, Bo Q, Wang X, Wang W. Knockdown of PDCD4 ameliorates neural cell apoptosis and mitochondrial injury through activating the PI3K/AKT/mTOR signal in Parkinson's disease. J Chem Neuroanat 2023; 129:102239. [PMID: 36736747 DOI: 10.1016/j.jchemneu.2023.102239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a complex neurodegenerative disorder and hampers normal living. It has been reported that programmed cell death 4 (PDCD4) is associated with tumor suppression, inflammatory response, and apoptosis. OBJECTIVE The aim of this study was to investigate the role of PDCD4 in PD. METHODS The in vivo and in vitro PD models were established by MPTP-induced mice and MMP+ stimulated MN9D cells, respectively. The expression of PDCD4 was detected by western blot. The MN9D cell viability and apoptosis were determined by MTT and flow cytometry assay. Moreover, the MN9D cell mitochondrial injury was evaluated by JC-1 staining. RESULTS In this study, PDCD4 was highly expressed in brain tissue of MPTP-induced PD mouse model. In a loss-function experiments, knockdown of PDCD4 promoted MN9D cell viability and allayed MPP+-triggered MN9D cell apoptosis. Furthermore, knockdown of PDCD4 ameliorated MPP+-evoked MN9D cell mitochondrial injury. Mechanically, knockdown of PDCD4 abolished the effect of MMP+ stimulation via activating phosphoinositide 3-kinase(PI3K)/AKT/mammalian target of rapamycin (mTOR) signal. Notably, the protective effects of shPDCD4 on cell apoptosis and mitochondrial injury were suppressed by PI3K inhibitor LY294002. CONCLUSION In summary,knockdown of PDCD4 ameliorates neural cell apoptosis and mitochondrial injury through activating the PI3K/AKT/mTOR signal, providing a novel target for PD treatment. AVAILABILITY OF DATA AND MATERIALS All data generated or analyzed during this study are included in this published article.
Collapse
Affiliation(s)
- Yanmin Li
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiangzhuang, Hebei 050031, China; Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, 050031, China.
| | - Jianmin Pang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiangzhuang, Hebei 050031, China
| | - Jing Wang
- Department of Respiratory Medicine, Harrison International Peace Hospital, Hengshui, Hebei 053000, China
| | - Guining Dai
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiangzhuang, Hebei 050031, China; Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, 050031, China
| | - Qianlan Bo
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiangzhuang, Hebei 050031, China; Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, 050031, China
| | - Xiayue Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiangzhuang, Hebei 050031, China; Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, 050031, China
| | - Wei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiangzhuang, Hebei 050031, China; Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, 050031, China
| |
Collapse
|
26
|
Li MC, Tian Q, Liu S, Han SM, Zhang W, Qin XY, Chen JH, Liu CL, Guo YJ. The mechanism and relevant mediators associated with neuronal apoptosis and potential therapeutic targets in subarachnoid hemorrhage. Neural Regen Res 2023; 18:244-252. [PMID: 35900398 PMCID: PMC9396483 DOI: 10.4103/1673-5374.346542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a dominant cause of death and disability worldwide. A sharp increase in intracranial pressure after SAH leads to a reduction in cerebral perfusion and insufficient blood supply for neurons, which subsequently promotes a series of pathophysiological responses leading to neuronal death. Many previous experimental studies have reported that excitotoxicity, mitochondrial death pathways, the release of free radicals, protein misfolding, apoptosis, necrosis, autophagy, and inflammation are involved solely or in combination in this disorder. Among them, irreversible neuronal apoptosis plays a key role in both short- and long-term prognoses after SAH. Neuronal apoptosis occurs through multiple pathways including extrinsic, mitochondrial, endoplasmic reticulum, p53 and oxidative stress. Meanwhile, a large number of blood contents enter the subarachnoid space after SAH, and the secondary metabolites, including oxygenated hemoglobin and heme, further aggravate the destruction of the blood-brain barrier and vasogenic and cytotoxic brain edema, causing early brain injury and delayed cerebral ischemia, and ultimately increasing neuronal apoptosis. Even there is no clear and effective therapeutic strategy for SAH thus far, but by understanding apoptosis, we might excavate new ideas and approaches, as targeting the upstream and downstream molecules of apoptosis-related pathways shows promise in the treatment of SAH. In this review, we summarize the existing evidence on molecules and related drugs or molecules involved in the apoptotic pathway after SAH, which provides a possible target or new strategy for the treatment of SAH.
Collapse
|
27
|
Kim JH, Najy AJ, Li J, Luo X, Kim HRC, Choudry MHA, Lee YJ. Involvement of Bid in the crosstalk between ferroptotic agent-induced ER stress and TRAIL-induced apoptosis. J Cell Physiol 2022; 237:4180-4196. [PMID: 35994698 PMCID: PMC9691566 DOI: 10.1002/jcp.30863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces death receptor-mediated extrinsic apoptosis, specifically in cancer cells, and Bid (BH3-interacting domain death agonist) plays an important role in TRAIL-induced apoptosis. Ferroptosis is a newly defined form of regulated cell death known to be distinct from other forms of cell death. However, our previous studies have shown that ferroptosis shares common pathways with other types of programmed cell death such as apoptosis. In this study, we investigated the role of Bid in the crosstalk between the ferroptotic agent-induced endoplasmic reticulum (ER) stress response and TRAIL-induced apoptosis. When human colorectal carcinoma HCT116 cells were treated with the ferroptosis-inducing agents artesunate and erastin in combination with TRAIL, TRAIL-induced activation of caspase-8 was enhanced, and subsequently, the truncation of Bid was increased. Similar results were observed when ovarian adenocarcinoma OVCAR-3 cells were treated with the ferroptotic agents in combination with TRAIL. Results from studies with Bid mutants reveal that the truncation of Bid and the presence of intact BH3 domains are critical for synergistic apoptosis. Nonfunctional Bid mutants were not able to activate the mitochondria-dependent apoptosis pathway, which is required for the conversion of p19 to p17, the active form of caspase-3. These results indicate that Bid plays a critical role in the crosstalk between the ferroptotic agent-induced ER stress response and TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Jin Hong Kim
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Abdo J. Najy
- Department of Pathology, Barbara Ann Karmanos Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Oncology, Barbara Ann Karmanos Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jian Li
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Hyeong-Reh C. Kim
- Department of Pathology, Barbara Ann Karmanos Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Oncology, Barbara Ann Karmanos Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - M. Haroon A. Choudry
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yong J. Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
28
|
Chlamydia trachomatis inhibits apoptosis in infected cells by targeting the pro-apoptotic proteins Bax and Bak. Cell Death Differ 2022; 29:2046-2059. [PMID: 35397654 PMCID: PMC9525694 DOI: 10.1038/s41418-022-00995-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractApoptosis acts in defense against microbial infection, and many infectious agents have developed strategies to inhibit host cell apoptosis. The human pathogen Chlamydia trachomatis (Ctr) is an obligate intracellular bacterium that strongly inhibits mitochondrial apoptosis of its human host cell but there is no agreement how the bacteria achieve this. We here provide a molecular analysis of chlamydial apoptosis-inhibition in infected human cells and demonstrate that the block of apoptosis occurs during the activation of the effectors of mitochondrial apoptosis, Bak and Bax. We use small-molecule Bcl-2-family inhibitors and gene targeting to show that previous models cannot explain the anti-apoptotic effect of chlamydial infection. Although the anti-apoptotic Bcl-2-family protein Mcl-1 was strongly upregulated upon infection, Mcl-1-deficient cells and cells where Mcl-1 was pharmacologically inactivated were still protected. Ctr-infection could inhibit both Bax- and Bak-induced apoptosis. Apoptotic Bax-oligomerization and association with the outer mitochondrial membrane was reduced upon chlamydial infection. Infection further inhibited apoptosis induced conformational changes of Bak, as evidenced by changes to protease sensitivity, oligomerization and release from the mitochondrial porin VDAC2. Mitochondria isolated from Ctr-infected cells were protected against the pro-apoptotic Bcl-2-family proteins Bim and tBid but this protection was lost upon protease digestion. However, the protective effect of Ctr-infection was reduced in cells lacking the Bax/Bak-regulator VDAC2. We further found that OmpA, a porin of the outer membrane of Ctr, associated upon experimental expression with mitochondria and inhibited apoptosis, phenocopying the effect of the infection. These results identify a novel way of apoptosis inhibition, involving only the most downstream modulator of mitochondrial apoptosis and suggest that Chlamydia has a protein dedicated to the inhibition of apoptosis to secure its survival in human cells.
Collapse
|
29
|
Deepak Shyl ES, Malgija B, Iniyan AM, Vincent SGP. Mutation in
MCL1
predicted loop to helix structural transition stabilizes
MCL1–Bax
binding interaction favoring cancer cell survival. Proteins 2022; 90:1699-1713. [DOI: 10.1002/prot.26347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Accepted: 03/27/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Eby‐nesar Stella‐glory Deepak Shyl
- International Centre for Nanobiotechnology (ICN), Centre for Marine Science and Technology (CMST) Manonmaniam Sundaranar University Kanyakumari Tamil Nadu India
| | - Beutline Malgija
- Computational Science Laboratory, MCC‐MRF Innovation Park Madras Christian College Chennai Tamil Nadu India
| | - Appadurai Muthamil Iniyan
- International Centre for Nanobiotechnology (ICN), Centre for Marine Science and Technology (CMST) Manonmaniam Sundaranar University Kanyakumari Tamil Nadu India
- York Bioscience Private Limited Ambattur Industrial Estate Chennai Tamil Nadu India
| | - Samuel Gnana Prakash Vincent
- International Centre for Nanobiotechnology (ICN), Centre for Marine Science and Technology (CMST) Manonmaniam Sundaranar University Kanyakumari Tamil Nadu India
| |
Collapse
|
30
|
Lai HT, Naumova N, Marchais A, Gaspar N, Geoerger B, Brenner C. Insight into the interplay between mitochondria-regulated cell death and energetic metabolism in osteosarcoma. Front Cell Dev Biol 2022; 10:948097. [PMID: 36072341 PMCID: PMC9441498 DOI: 10.3389/fcell.2022.948097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma (OS) is a pediatric malignant bone tumor that predominantly affects adolescent and young adults. It has high risk for relapse and over the last four decades no improvement of prognosis was achieved. It is therefore crucial to identify new drug candidates for OS treatment to combat drug resistance, limit relapse, and stop metastatic spread. Two acquired hallmarks of cancer cells, mitochondria-related regulated cell death (RCD) and metabolism are intimately connected. Both have been shown to be dysregulated in OS, making them attractive targets for novel treatment. Promising OS treatment strategies focus on promoting RCD by targeting key molecular actors in metabolic reprogramming. The exact interplay in OS, however, has not been systematically analyzed. We therefore review these aspects by synthesizing current knowledge in apoptosis, ferroptosis, necroptosis, pyroptosis, and autophagy in OS. Additionally, we outline an overview of mitochondrial function and metabolic profiles in different preclinical OS models. Finally, we discuss the mechanism of action of two novel molecule combinations currently investigated in active clinical trials: metformin and the combination of ADI-PEG20, Docetaxel and Gemcitabine.
Collapse
Affiliation(s)
- Hong Toan Lai
- CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l’oncogénèse pour de nouvelles approches thérapeutiques, Université Paris-Saclay, Villejuif, France
| | - Nataliia Naumova
- CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l’oncogénèse pour de nouvelles approches thérapeutiques, Université Paris-Saclay, Villejuif, France
| | - Antonin Marchais
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nathalie Gaspar
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Birgit Geoerger
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Catherine Brenner
- CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l’oncogénèse pour de nouvelles approches thérapeutiques, Université Paris-Saclay, Villejuif, France
- *Correspondence: Catherine Brenner,
| |
Collapse
|
31
|
Hertzel AV, Yong J, Chen X, Bernlohr DA. Immune Modulation of Adipocyte Mitochondrial Metabolism. Endocrinology 2022; 163:6618136. [PMID: 35752995 PMCID: PMC9653008 DOI: 10.1210/endocr/bqac094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 11/19/2022]
Abstract
Immune cells infiltrate adipose tissue as a function of age, sex, and diet, leading to a variety of regulatory processes linked to metabolic disease and dysfunction. Cytokines and chemokines produced by resident macrophages, B cells, T cells and eosinophils play major role(s) in fat cell mitochondrial functions modulating pyruvate oxidation, electron transport and oxidative stress, branched chain amino acid metabolism, fatty acid oxidation, and apoptosis. Indeed, cytokine-dependent downregulation of numerous genes affecting mitochondrial metabolism is strongly linked to the development of the metabolic syndrome, whereas the potentiation of mitochondrial metabolism represents a counterregulatory process improving metabolic outcomes. In contrast, inflammatory cytokines activate mitochondrially linked cell death pathways such as apoptosis, pyroptosis, necroptosis, and ferroptosis. As such, the adipocyte mitochondrion represents a major intersection point for immunometabolic regulation of central metabolism.
Collapse
Affiliation(s)
- Ann V Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota, Minneapolis, MN 55455, USA
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiaoli Chen
- Department of Food Science and Nutrition, The University of Minnesota, Minneapolis, MN 55455, USA
| | - David A Bernlohr
- Correspondence: David A. Bernlohr, PhD, Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
32
|
Cui XZ, Zheng MX, Yang SY, Bai R, Zhang L. Roles of calpain in the apoptosis of Eimeria tenella host cells at the middle and late developmental stages. Parasitol Res 2022; 121:1639-1649. [PMID: 35412077 DOI: 10.1007/s00436-022-07496-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 03/14/2022] [Indexed: 11/26/2022]
Abstract
This study investigated the role of calpain in Eimeria tenella-induced host cell apoptosis. Chick embryo cecal epithelial cell culture technology, flow cytometry, enzyme-linked immunosorbent assays, and fluorescence quantitative PCR were used to detect the E. tenella host cell apoptotic rate, Bax and Bid expression levels, and calpain activity. The results demonstrated that Bax, Bid, and calpain levels were upregulated and apoptosis was increased following E. tenella infection at 24-120 h. Calpain levels were reduced by pharmacological inhibition of calpain using SJA6017 or by blocking Ca2+ entry into the cell using BAPTA/AM at 24-120 h. The mRNA and protein levels of Bax and Bid, the E. tenella infection rate, and the early apoptotic and late apoptotic (necrosis) rates were decreased by using SJA6017 at 24-120 h. These results indicated that E. tenella-promoted host cell apoptosis is regulated by calpain via Bid and Bax at 24-120 h. Thus, manipulation of calpain levels could be used to manage E. tenella infection in chickens in the middle and late developmental stages.
Collapse
Affiliation(s)
- Xiao-Zhen Cui
- College of Animal Medicine, Shanxi Agriculture University, Taiyuan, Shanxi Province, 030036, People's Republic of China
| | - Ming-Xue Zheng
- College of Animal Medicine, Shanxi Agriculture University, Taiyuan, Shanxi Province, 030036, People's Republic of China.
| | - Shi-Yu Yang
- Department of Clinical Neurosciences, UCL Institute of Neurology, Rowland Hill Street, London, NW3 2PF, UK
| | - Rui Bai
- College of Animal Medicine, Shanxi Agriculture University, Taiyuan, Shanxi Province, 030036, People's Republic of China
| | - Li Zhang
- College of Animal Medicine, Shanxi Agriculture University, Taiyuan, Shanxi Province, 030036, People's Republic of China
| |
Collapse
|
33
|
How Do Hexokinases Inhibit Receptor-Mediated Apoptosis? BIOLOGY 2022; 11:biology11030412. [PMID: 35336786 PMCID: PMC8945020 DOI: 10.3390/biology11030412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary In multicellular animals, cells autonomously respond to lethal stress by inducing cell death programs. The most common regulated cell death is apoptosis. Cells protect their neighbors from damage by their cell contents or infection through this process. Apoptosis can occur as a result of intrinsic stress or induced by surface receptors, for example, by immune cells. In most cases, receptor-mediated apoptosis also requires the intrinsic signaling pathway. Intrinsic apoptosis is controlled by proteins of the B-cell lymphoma 2 (BCL-2) family. Pro-apoptotic BCL-2 proteins are inhibited by retrotranslocation from the mitochondria into the cytosol until the cell commits to apoptosis. Increasingly, discoveries show that BCL-2 proteins are regulated by proteins that are not themselves members of the BCL-2 family. Here, we discuss the selective inhibition of the link between death receptors activation and intrinsic apoptosis by hexokinases. These enzymes funnel glucose into the cellular metabolism. Independently, hexokinases retrotranslocate BCL-2 proteins and thereby protect cells from receptor-mediated apoptosis. Abstract The regulated cell death apoptosis enables redundant or compromised cells in ontogeny and homeostasis to remove themselves receptor-dependent after extrinsic signaling or after internal stress by BCL-2 proteins on the outer mitochondrial membrane (OMM). Mitochondrial BCL-2 proteins are also often needed for receptor-mediated signaling in apoptosis. Then, the truncated BH3-only protein BID (tBID) blocks retrotranslocation of the pro-apoptotic BCL-2 proteins BAX and BAK from the mitochondria into the cytosol. BAX and BAK in turn permeabilize the OMM. Although the BCL-2 proteins are controlled by a complex regulatory network, a specific mechanism for the inhibition of tBID remained unknown. Curiously, it was suggested that hexokinases, which channel glucose into the metabolism, have an intriguing function in the regulation of apoptosis. Recent analysis of transient hexokinase interactions with BAX revealed its participation in the inhibition of BAX and also BAK by retrotranslocation from mitochondria to the cytosol. In contrast to general apoptosis inhibition by anti-apoptotic BCL-2 proteins, hexokinase I and hexokinase 2 specifically inhibit tBID and thus the mitochondrial apoptosis pathway in response to death receptor signaling. Mitochondrial hexokinase localization and BH3 binding of cytosolic hexokinase domains are prerequisites for protection against receptor-mediated cell death, whereas glucose metabolism is not. This mechanism protects cells from apoptosis induced by cytotoxic T cells.
Collapse
|
34
|
Physiological and pharmacological modulation of BAX. Trends Pharmacol Sci 2022; 43:206-220. [PMID: 34848097 PMCID: PMC8840970 DOI: 10.1016/j.tips.2021.11.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 01/29/2023]
Abstract
Bcl-2-associated X protein (BAX) is a critical executioner of mitochondrial regulated cell death through its lethal activity of permeabilizing the mitochondrial outer membrane (MOM). While the physiological function of BAX ensures tissue homeostasis, dysregulation of BAX leads to aberrant cell death. Despite BAX being a promising therapeutic target for human diseases, historically the development of drugs has focused on antiapoptotic BCL-2 proteins, due to challenges in elucidating the mechanism of BAX activation and identifying druggable surfaces of BAX. Here, we discuss recent studies that have provided structure-function insights and identified regulatory surfaces that control BAX activation. Moreover, we emphasize the development of small molecule orthosteric, allosteric, and oligomerization modulators that provide novel opportunities for biological investigation and progress towards drugging BAX.
Collapse
|
35
|
Hypoxia-Inducible Factors and Burn-Associated Acute Kidney Injury-A New Paradigm? Int J Mol Sci 2022; 23:ijms23052470. [PMID: 35269613 PMCID: PMC8910144 DOI: 10.3390/ijms23052470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
O2 deprivation induces stress in living cells linked to free-radical accumulation and oxidative stress (OS) development. Hypoxia is established when the overall oxygen pressure is less than 40 mmHg in cells or tissues. However, tissues and cells have different degrees of hypoxia. Hypoxia or low O2 tension may be present in both physiological (during embryonic development) and pathological circumstances (ischemia, wound healing, and cancer). Meanwhile, the kidneys are major energy-consuming organs, being second only to the heart, with an increased mitochondrial content and O2 consumption. Furthermore, hypoxia-inducible factors (HIFs) are the key players that orchestrate the mammalian response to hypoxia. HIFs adapt cells to low oxygen concentrations by regulating transcriptional programs involved in erythropoiesis, angiogenesis, and metabolism. On the other hand, one of the life-threatening complications of severe burns is acute kidney injury (AKI). The dreaded functional consequence of AKI is an acute decline in renal function. Taking all these aspects into consideration, the aim of this review is to describe the role and underline the importance of HIFs in the development of AKI in patients with severe burns, because kidney hypoxia is constant in the presence of severe burns, and HIFs are major players in the adaptative response of all tissues to hypoxia.
Collapse
|
36
|
Jang DM, Oh EK, Hahn H, Kim HS, Han BW. Structural insights into apoptotic regulation of human Bfk as a novel Bcl-2 family member. Comput Struct Biotechnol J 2022; 20:745-756. [PMID: 35140891 PMCID: PMC8814693 DOI: 10.1016/j.csbj.2022.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Dong Man Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Eun Kyung Oh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunggu Hahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoun Sook Kim
- Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
- Corresponding authors.
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Corresponding authors.
| |
Collapse
|
37
|
Computational design of an apoptogenic protein that binds BCL-xL and MCL-1 simultaneously and potently. Comput Struct Biotechnol J 2022; 20:3019-3029. [PMID: 35782728 PMCID: PMC9218148 DOI: 10.1016/j.csbj.2022.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
One of the hallmarks of cancer cells is their ability to evade apoptosis, which confers survival advantages and resistance to anti-cancer drugs. Cancers often exhibit overexpression of anti-apoptotic BCL-2 proteins, the loss of which triggers apoptosis. In particular, the inhibition of both BCL-xL and MCL-1, but neither one individually, synergistically enhances apoptotic cell death. Here, we report computational design to produce a protein that inhibits both BCL-xL and MCL-1 simultaneously. To a reported artificial three-helix bundle whose second helix was designed to bind MCL-1, we added a fourth helix and designed it to bind BCL-xL. After structural validation of the design and further structure-based sequence design, we produced a dual-binding protein that interacts with both BCL-xL and MCL-1 with apparent dissociation constants of 820 pM and 196 pM, respectively. Expression of this dual binder in a subset of cancer cells induced apoptotic cell death at levels significantly higher than those induced by the pro-apoptotic BIM protein. With a genetic fusion of a mitochondria-targeting sequence or the BH3 sequence of BIM, the activity of the dual binder was enhanced even further. These data suggest that targeted delivery of this dual binder alone or as a part of a modular protein to cancers in the form of protein, mRNA, or DNA may be an effective way to induce cancer cell apoptosis.
Collapse
|
38
|
Lee A, Jin HO, Masudul Haque M, Kim HY, Jung H, Park JH, Kim I, Song JY, Yoon HK, Kim HK, Han J, Park IC, Kim KS, Park SG. Synergism of a novel MCL‑1 downregulator, acriflavine, with navitoclax (ABT‑263) in triple‑negative breast cancer, lung adenocarcinoma and glioblastoma multiforme. Int J Oncol 2021; 60:2. [PMID: 34913076 PMCID: PMC8698747 DOI: 10.3892/ijo.2021.5292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Myeloid cell leukemia sequence 1 (MCL‑1), an anti‑apoptotic B‑cell lymphoma 2 (BCL‑2) family molecule frequently amplified in various human cancer cells, is known to be critical for cancer cell survival. MCL‑1 has been recognized as a target molecule for cancer treatment. While various agents have emerged as potential MCL‑1 blockers, the present study presented acriflavine (ACF) as a novel MCL‑1 inhibitor in triple‑negative breast cancer (TNBC). Further evaluation of its treatment potential on lung adenocarcinoma and glioblastoma multiforme (GBM) was also investigated. The anticancer effect of ACF on TNBC cells was demonstrated when MDA‑MB‑231 and HS578T cells were treated with ACF. ACF significantly induced typical intrinsic apoptosis in TNBCs in a dose‑ and time‑dependent manner via MCL‑1 downregulation. MCL‑1 downregulation by ACF treatment was revealed at each phase of protein expression. Initially, transcriptional regulation via reverse transcription‑quantitative PCR was validated. Then, post‑translational regulation was explained by utilizing an inhibitor against protein biosynthesis and proteasome. Lastly, immunoprecipitation of ubiquitinated MCL‑1 confirmed the post‑translational downregulation of MCL‑1. In addition, the synergistic treatment efficacy of ACF with the well‑known MCL‑1 inhibitor ABT‑263 against the TNBC cells was explored [combination index (CI)<1]. Conjointly, the anticancer effect of ACF was assessed in GBM (U87, U251 and U343), and lung cancer (A549 and NCI‑H69) cell lines as well, using immunoblotting, cytotoxicity assay and FACS. The effect of the combination treatment using ACF and ABT‑263 was estimated in GBM (U87, U343 and U251), and non‑small cell lung cancer (A549) cells likewise. The present study suggested a novel MCL‑1 inhibitory function of ACF and the synergistic antitumor effect with ABT‑263.
Collapse
Affiliation(s)
- Anbok Lee
- Department of Surgery, Busan Paik Hospital, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Hyeon-Ok Jin
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Md Masudul Haque
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Hee Yeon Kim
- Department of Surgery, Busan Paik Hospital, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Hana Jung
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Jin Hee Park
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Ilwhan Kim
- Department of Internal Medicine, Division of Oncology, Haeundae Paik Hospital, College of Medicine, Inje University, Busan 48108, Republic of Korea
| | - Joo Yeon Song
- Department of Pathology, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Hye Kyoung Yoon
- Department of Pathology, Inje University, Busan 47392, Republic of Korea
| | - Hyoung Kyu Kim
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, College of Medicine, Inje University, Busan 47397, Republic of Korea
| | - Jin Han
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, College of Medicine, Inje University, Busan 47397, Republic of Korea
| | - In-Chul Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Kwang Seok Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Sae Gwang Park
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| |
Collapse
|
39
|
VDAC2 and the BCL-2 family of proteins. Biochem Soc Trans 2021; 49:2787-2795. [PMID: 34913469 PMCID: PMC8786305 DOI: 10.1042/bst20210753] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022]
Abstract
The BCL-2 protein family govern whether a cell dies or survives by controlling mitochondrial apoptosis. As dysregulation of mitochondrial apoptosis is a common feature of cancer cells, targeting protein–protein interactions within the BCL-2 protein family is a key strategy to seize control of apoptosis and provide favourable outcomes for cancer patients. Non-BCL-2 family proteins are emerging as novel regulators of apoptosis and are potential drug targets. Voltage dependent anion channel 2 (VDAC2) can regulate apoptosis. However, it is unclear how this occurs at the molecular level, with conflicting evidence in the literature for its role in regulating the BCL-2 effector proteins, BAK and BAX. Notably, VDAC2 is required for efficient BAX-mediated apoptosis, but conversely inhibits BAK-mediated apoptosis. This review focuses on the role of VDAC2 in apoptosis, discussing the current knowledge of the interaction between VDAC2 and BCL-2 family proteins and the recent development of an apoptosis inhibitor that targets the VDAC2–BAK interaction.
Collapse
|
40
|
Foo BJA, Eu JQ, Hirpara JL, Pervaiz S. Interplay between Mitochondrial Metabolism and Cellular Redox State Dictates Cancer Cell Survival. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1341604. [PMID: 34777681 PMCID: PMC8580634 DOI: 10.1155/2021/1341604] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are the main powerhouse of the cell, generating ATP through the tricarboxylic acid cycle (TCA) and oxidative phosphorylation (OXPHOS), which drives myriad cellular processes. In addition to their role in maintaining bioenergetic homeostasis, changes in mitochondrial metabolism, permeability, and morphology are critical in cell fate decisions and determination. Notably, mitochondrial respiration coupled with the passage of electrons through the electron transport chain (ETC) set up a potential source of reactive oxygen species (ROS). While low to moderate increase in intracellular ROS serves as secondary messenger, an overwhelming increase as a result of either increased production and/or deficient antioxidant defenses is detrimental to biomolecules, cells, and tissues. Since ROS and mitochondria both regulate cell fate, attention has been drawn to their involvement in the various processes of carcinogenesis. To that end, the link between a prooxidant milieu and cell survival and proliferation as well as a switch to mitochondrial OXPHOS associated with recalcitrant cancers provide testimony for the remarkable metabolic plasticity as an important hallmark of cancers. In this review, the regulation of cell redox status by mitochondrial metabolism and its implications for cancer cell fate will be discussed followed by the significance of mitochondria-targeted therapies for cancer.
Collapse
Affiliation(s)
- Brittney Joy-Anne Foo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Jie Qing Eu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Cancer Science Institute, NUS, Singapore, Singapore
| | | | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
- NUS Medicine Healthy Longevity Program, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
- Integrative Sciences and Engineering Program, NUS Graduate School, NUS, Singapore, Singapore
- National University Cancer Institute, National University Health System, Singapore, Singapore
- Faculté de Médicine, Université de Paris, Paris, France
| |
Collapse
|
41
|
Delinois LJ, De León-Vélez O, Vázquez-Medina A, Vélez-Cabrera A, Marrero-Sánchez A, Nieves-Escobar C, Alfonso-Cano D, Caraballo-Rodríguez D, Rodriguez-Ortiz J, Acosta-Mercado J, Benjamín-Rivera JA, González-González K, Fernández-Adorno K, Santiago-Pagán L, Delgado-Vergara R, Torres-Ávila X, Maser-Figueroa A, Grajales-Avilés G, Miranda Méndez GI, Santiago-Pagán J, Nieves-Santiago M, Álvarez-Carrillo V, Griebenow K, Tinoco AD. Cytochrome c: Using Biological Insight toward Engineering an Optimized Anticancer Biodrug. INORGANICS 2021; 9:83. [PMID: 35978717 PMCID: PMC9380692 DOI: 10.3390/inorganics9110083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The heme protein cytochrome c (Cyt c) plays pivotal roles in cellular life and death processes. In the respiratory chain of mitochondria, it serves as an electron transfer protein, contributing to the proliferation of healthy cells. In the cell cytoplasm, it activates intrinsic apoptosis to terminate damaged cells. Insight into these mechanisms and the associated physicochemical properties and biomolecular interactions of Cyt c informs on the anticancer therapeutic potential of the protein, especially in its ability to subvert the current limitations of small molecule-based chemotherapy. In this review, we explore the development of Cyt c as an anticancer drug by identifying cancer types that would be receptive to the cytotoxicity of the protein and factors that can be finetuned to enhance its apoptotic potency. To this end, some information is obtained by characterizing known drugs that operate, in part, by triggering Cyt c induced apoptosis. The application of different smart drug delivery systems is surveyed to highlight important features for maintaining Cyt c stability and activity and improving its specificity for cancer cells and high drug payload release while recognizing the continuing limitations. This work serves to elucidate on the optimization of the strategies to translate Cyt c to the clinical market.
Collapse
Affiliation(s)
- Louis J. Delinois
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Omar De León-Vélez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Adriana Vázquez-Medina
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Alondra Vélez-Cabrera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Amanda Marrero-Sánchez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Daniela Alfonso-Cano
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Jael Rodriguez-Ortiz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Jemily Acosta-Mercado
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Josué A. Benjamín-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Kiara González-González
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Kysha Fernández-Adorno
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Lisby Santiago-Pagán
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Rafael Delgado-Vergara
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Xaiomy Torres-Ávila
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Andrea Maser-Figueroa
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | | | - Javier Santiago-Pagán
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Miguel Nieves-Santiago
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Vanessa Álvarez-Carrillo
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Kai Griebenow
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| |
Collapse
|
42
|
Murad F, Garcia-Saez AJ. Bcl-xL inhibits tBid and Bax via distinct mechanisms. Faraday Discuss 2021; 232:86-102. [PMID: 34528939 DOI: 10.1039/d0fd00045k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The proteins of the Bcl-2 family are key regulators of apoptosis. They form a complex interaction network in the cytosol and in cellular membranes, whose outcome determines mitochondrial permeabilization and commitment to death. However, we still do not understand how the action of the different family members is orchestrated to regulate apoptosis. Here, we combined quantitative analysis of the interactions and the localization dynamics of the family representatives Bcl-xL, Bax and tBid, in living cells. We discovered that Bax and tBid are able to constitutively shuttle between cytosol and mitochondria in the absence of other Bcl-2 proteins. Bcl-xL clearly stabilized tBid at mitochondria, where they formed tight complexes. In contrast, Bcl-xL promoted Bax retrotranslocation to the cytosol without affecting its shuttling rate, but by forming weak inhibitory mitochondrial complexes. Furthermore, analysis of phospho-mimetics of Bcl-xL suggested that phosphorylation regulates the function of Bcl-xL via multiple mechanisms. Altogether, our findings support a model in which the Bcl-2 network not only modulates protein/protein interactions among the family members, but also their respective intracellular localization dynamics, to regulate apoptosis.
Collapse
Affiliation(s)
- Fabronia Murad
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
| | - Ana J Garcia-Saez
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany. .,Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany
| |
Collapse
|
43
|
Abstract
Receptor–ligand interactions on the cell surface or intrinsic stress signals can commit mammalian cells to apoptosis. In this study, we discover how hexokinases confer resistance to receptor-mediated apoptosis through specific inhibition of B-cell lymphoma 2 (BCL-2) proteins. Hexokinases retrotranslocate activator and effector BCL-2 proteins from the mitochondria into the cytosol. Hexokinase-dependent BCL-2 protein retrotranslocation can protect cells from apoptosis despite death receptor signaling. Death receptor–mediated apoptosis requires the mitochondrial apoptosis pathway in many mammalian cells. In response to death receptor signaling, the truncated BH3-only protein BID can activate the proapoptotic BCL-2 proteins BAX and BAK and trigger the permeabilization of the mitochondria. BAX and BAK are inhibited by prosurvival BCL-2 proteins through retrotranslocation from the mitochondria into the cytosol, but a specific resistance mechanism to truncated BID-dependent apoptosis is unknown. Here, we report that hexokinase 1 and hexokinase 2 inhibit the apoptosis activator truncated BID as well as the effectors BAX and BAK by retrotranslocation from the mitochondria into the cytosol. BCL-2 protein shuttling and protection from TRAIL- and FasL-induced cell death requires mitochondrial hexokinase localization and interactions with the BH3 motifs of BCL-2 proteins but not glucose phosphorylation. Together, our work establishes hexokinase-dependent retrotranslocation of truncated BID as a selective protective mechanism against death receptor–induced apoptosis on the mitochondria.
Collapse
|
44
|
Rose M, Kurylowicz M, Mahmood M, Winkel S, Moran-Mirabal JM, Fradin C. Direct Measurement of the Affinity between tBid and Bax in a Mitochondria-Like Membrane. Int J Mol Sci 2021; 22:8240. [PMID: 34361006 PMCID: PMC8348223 DOI: 10.3390/ijms22158240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 01/05/2023] Open
Abstract
The execution step in apoptosis is the permeabilization of the outer mitochondrial membrane, controlled by Bcl-2 family proteins. The physical interactions between the different proteins in this family and their relative abundance literally determine the fate of the cells. These interactions, however, are difficult to quantify, as they occur in a lipid membrane and involve proteins with multiple conformations and stoichiometries which can exist both in soluble and membrane. Here we focus on the interaction between two core Bcl-2 family members, the executor pore-forming protein Bax and the truncated form of the activator protein Bid (tBid), which we imaged at the single particle level in a mitochondria-like planar supported lipid bilayer. We inferred the conformation of the proteins from their mobility, and detected their transient interactions using a novel single particle cross-correlation analysis. We show that both tBid and Bax have at least two different conformations at the membrane, and that their affinity for one another increases by one order of magnitude (with a 2D-KD decreasing from ≃1.6μm-2 to ≃0.1μm-2) when they pass from their loosely membrane-associated to their transmembrane form. We conclude by proposing an updated molecular model for the activation of Bax by tBid.
Collapse
Affiliation(s)
- Markus Rose
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada; (M.R.); (M.K.); (M.M.); (S.W.)
| | - Martin Kurylowicz
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada; (M.R.); (M.K.); (M.M.); (S.W.)
| | - Mohammad Mahmood
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada; (M.R.); (M.K.); (M.M.); (S.W.)
| | - Sheldon Winkel
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada; (M.R.); (M.K.); (M.M.); (S.W.)
| | - Jose M. Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada;
| | - Cécile Fradin
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada; (M.R.); (M.K.); (M.M.); (S.W.)
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
45
|
Dadsena S, King LE, García-Sáez AJ. Apoptosis regulation at the mitochondria membrane level. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183716. [PMID: 34343535 DOI: 10.1016/j.bbamem.2021.183716] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023]
Abstract
Mitochondrial outer membrane permeabilization (MOMP) is a key checkpoint in apoptosis that activates the caspase cascade and irreversibly causes the majority of cells to die. The proteins of the Bcl-2 family are master regulators of apoptosis that form a complex interaction network within the mitochondrial membrane that determines the induction of MOMP. This culminates in the activation of the effector members Bax and Bak, which permeabilize the mitochondrial outer membrane to mediate MOMP. Although the key role of Bax and Bak has been established, many questions remain unresolved regarding molecular mechanisms that control the apoptotic pore. In this review, we discuss the recent progress in our understanding of the regulation of Bax/Bak activity within the mitochondrial membrane.
Collapse
Affiliation(s)
- Shashank Dadsena
- Institute for Genetics, CECAD Research Center, University of Cologne, Germany
| | - Louise E King
- Institute for Genetics, CECAD Research Center, University of Cologne, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD Research Center, University of Cologne, Germany.
| |
Collapse
|
46
|
Selective BCL-X L Antagonists Eliminate Infected Cells from a Primary-Cell Model of HIV Latency but Not from Ex Vivo Reservoirs. J Virol 2021; 95:e0242520. [PMID: 33980597 DOI: 10.1128/jvi.02425-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
HIV persists, despite immune responses and antiretroviral therapy, in viral reservoirs that seed rebound viremia if therapy is interrupted. Previously, we showed that the BCL-2 protein contributes to HIV persistence by conferring a survival advantage to reservoir-harboring cells. Here, we demonstrate that many of the BCL-2 family members are overexpressed in HIV-infected CD4+ T cells, indicating increased tension between proapoptotic and prosurvival family members-and suggesting that inhibition of prosurvival members may disproportionately affect the survival of HIV-infected cells. Based on these results, we chose to study BCL-XL due to its consistent overexpression and the availability of selective antagonists. Infection of primary CD4+ T cells with HIV resulted in increased BCL-XL protein expression, and treatment with two selective BCL-XL antagonists, A-1155463 and A-1551852, led to selective death of productively infected CD4+ T cells. In a primary cell model of latency, both BCL-XL antagonists drove reductions in HIV DNA and in infectious cell frequencies both alone and in combination with the latency reversing agent bryostatin-1, with little off-target cytotoxicity. However, these antagonists, with or without bryostatin-1 or in combination with the highly potent latency reversing agent combination phorbol myristate acetate (PMA) + ionomycin, failed to reduce total HIV DNA and infectious reservoirs in ex vivo CD4+ T cells from antiretroviral therapy (ART)-suppressed donors. Our results add to growing evidence that bona fide reservoir-harboring cells are resistant to multiple "kick and kill" modalities-relative to latency models. We also interpret our results as encouraging further exploration of BCL-XL antagonists for cure, where combination approaches, including with immune effectors, may unlock the ability to eliminate ex vivo reservoirs. IMPORTANCE Although antiretroviral therapy (ART) has transformed HIV infection into a manageable chronic condition, there is no safe or scalable cure. HIV persists in "reservoirs" of infected cells that reinitiate disease progression if ART is interrupted. Whereas most efforts to eliminate this reservoir have focused on exposing these cells to immune-mediated clearance by reversing viral latency, recent work shows that these cells also resist being killed. Here, we identify a "prosurvival" factor, BCL-XL, that is overexpressed in HIV-infected cells, and demonstrate selective toxicity to these cells by BCL-XL antagonists. These antagonists also reduced reservoirs in a primary-cell latency model but were insufficient to reduce "natural" reservoirs in ex vivo CD4+ T cells-adding to growing evidence that the latter are resilient in a way that is not reflected in models. We nonetheless suggest that the selective toxicity of BCL-XL antagonists to HIV-infected cells supports their prioritization for testing in combinations aimed at reducing ex vivo reservoirs.
Collapse
|
47
|
Lv F, Qi F, Zhang Z, Wen M, Kale J, Piai A, Du L, Wang S, Zhou L, Yang Y, Wu B, Liu Z, Del Rosario J, Pogmore J, Chou JJ, Andrews DW, Lin J, OuYang B. An amphipathic Bax core dimer forms part of the apoptotic pore wall in the mitochondrial␣membrane. EMBO J 2021; 40:e106438. [PMID: 34101209 PMCID: PMC8280806 DOI: 10.15252/embj.2020106438] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/17/2021] [Accepted: 04/27/2021] [Indexed: 02/01/2023] Open
Abstract
Bax proteins form pores in the mitochondrial outer membrane to initiate apoptosis. This might involve their embedding in the cytosolic leaflet of the lipid bilayer, thus generating tension to induce a lipid pore with radially arranged lipids forming the wall. Alternatively, Bax proteins might comprise part of the pore wall. However, there is no unambiguous structural evidence for either hypothesis. Using NMR, we determined a high-resolution structure of the Bax core region, revealing a dimer with the nonpolar surface covering the lipid bilayer edge and the polar surface exposed to water. The dimer tilts from the bilayer normal, not only maximizing nonpolar interactions with lipid tails but also creating polar interactions between charged residues and lipid heads. Structure-guided mutations demonstrate the importance of both types of protein-lipid interactions in Bax pore assembly and core dimer configuration. Therefore, the Bax core dimer forms part of the proteolipid pore wall to permeabilize mitochondria.
Collapse
Affiliation(s)
- Fujiao Lv
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fei Qi
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zhi Zhang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Maorong Wen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Justin Kale
- Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Lingyu Du
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shuqing Wang
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Liujuan Zhou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yaqing Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bin Wu
- National Facility for Protein Science in Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Juan Del Rosario
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Justin Pogmore
- Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jialing Lin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Stephenson Cancer Center, Oklahoma City, OK, USA
| | - Bo OuYang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Pogmore JP, Uehling D, Andrews DW. Pharmacological Targeting of Executioner Proteins: Controlling Life and Death. J Med Chem 2021; 64:5276-5290. [PMID: 33939407 DOI: 10.1021/acs.jmedchem.0c02200] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Small-molecule mediated modulation of protein interactions of Bcl-2 (B-cell lymphoma-2) family proteins was clinically validated in 2015 when Venetoclax, a selective inhibitor of the antiapoptotic protein BCL-2, achieved breakthrough status designation by the FDA for treatment of lymphoid malignancies. Since then, substantial progress has been made in identifying inhibitors of other interactions of antiapoptosis proteins. However, targeting their pro-apoptotic counterparts, the "executioners" BAX, BAK, and BOK that both initiate and commit the cell to dying, has lagged behind. However, recent publications demonstrate that these proteins can be positively or negatively regulated using small molecule tool compounds. The results obtained with these molecules suggest that pharmaceutical regulation of apoptosis will have broad implications that extend beyond activating cell death in cancer. We review recent advances in identifying compounds and their utility in the exogenous control of life and death by regulating executioner proteins, with emphasis on the prototype BAX.
Collapse
Affiliation(s)
- Justin P Pogmore
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1J7, Canada.,Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 1M1, Canada
| | - David W Andrews
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1J7, Canada.,Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
49
|
Intrinsically Connected: Therapeutically Targeting the Cathepsin Proteases and the Bcl-2 Family of Protein Substrates as Co-regulators of Apoptosis. Int J Mol Sci 2021; 22:ijms22094669. [PMID: 33925117 PMCID: PMC8124540 DOI: 10.3390/ijms22094669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
Taken with the growing importance of cathepsin-mediated substrate proteolysis in tumor biology and progression, the focus and emphasis placed on therapeutic design and development is coming into fruition. Underpinning this approach is the invariable progression from the direction of fully characterizing cathepsin protease members and their substrate targets, towards targeting such an interaction with tangible therapeutics. The two groups of such substrates that have gained much attention over the years are the pro- and anti- apoptotic protein intermediates from the extrinsic and intrinsic signaling arms of the apoptosis pathway. As proteins that are central to determining cellular fate, some of them present themselves as very favorable candidates for therapeutic targeting. However, considering that both anti- and pro- apoptotic signaling intermediates have been reported to be downstream substrates for certain activated cathepsin proteases, therapeutic targeting approaches based on greater selectivity do need to be given greater consideration. Herein, we review the relationships shared by the cathepsin proteases and the Bcl-2 homology domain proteins, in the context of how the topical approach of adopting 'BH3-mimetics' can be explored further in modulating the relationship between the anti- and pro- apoptotic signaling intermediates from the intrinsic apoptosis pathway and their upstream cathepsin protease regulators. Based on this, we highlight important future considerations for improved therapeutic design.
Collapse
|
50
|
Wu G, Tu Z, Yang F, Mai Z, Chen H, Tang Q, Ye X, Wang K, Wang X, Chen T. Evaluating the inhibitory priority of Bcl-xL to Bad, tBid and Bax by using live-cell imaging assay. Cytometry A 2021; 99:1091-1101. [PMID: 33843148 DOI: 10.1002/cyto.a.24351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 01/02/2023]
Abstract
Molecular regulatory network among the B cell leukemia-2 (Bcl-2) family proteins is a research hotspot on apoptosis. The inhibitory priority of anti-apoptotic Bcl-2 family proteins (such as Bcl-xL) to pro-apoptotic Bcl-2 family proteins (such as Bad, tBid and Bax) determines the outcome of their interactions. Based on over-expression model system, we here evaluate the inhibitory priority of Bcl-xL to Bad, tBid and Bax by using live-cell imaging assay on cell viability. Fluorescence images of living cells co-expressing CFP-Bcl-xL and YFP-Bad or YFP-tBid or YFP-Bax showed that Bcl-xL markedly inhibited Bad/tBid/Bax-mediated apoptosis, revealing that Bcl-xL inhibits the proapoptotic function of Bad, tBid and Bax. In the case of equimolar co-expression of Bad and CFP-Bcl-xL, the inhibition of Bcl-xL on tBid/Bax mediate-apoptosis was completely relieved. Moreover, co-expression of tBid-P2A-CFP-Bcl-xL significantly relieved the inhibition of Bcl-xL on the pro-apoptotic ability Bax, suggesting that Bcl-xL preferentially inhibits the pro-apoptotic ability of Bad over tBid, subsequently to Bax.
Collapse
Affiliation(s)
- Ge Wu
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Zhuang Tu
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Fangfang Yang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Zihao Mai
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Hongce Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Qiling Tang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Xianxin Ye
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Kunhao Wang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Xiaoping Wang
- Department of Pain Management, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Tongsheng Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,SCNU Qingyuan Institute of Science and Technology Innovation Co. Ltd., South China Normal University, Qingyuan, China
| |
Collapse
|