1
|
Fujiwara H. Dynamic duo: Cell-extracellular matrix interactions in hair follicle development and regeneration. Dev Biol 2024; 516:20-34. [PMID: 39059679 DOI: 10.1016/j.ydbio.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Ectodermal organs, such as hair follicles, originate from simple epithelial and mesenchymal sheets through a complex developmental process driven by interactions between these cell types. This process involves dermal condensation, placode formation, bud morphogenesis, and organogenesis, and all of these processes require intricate interactions among various tissues. Recent research has emphasized the crucial role of reciprocal and dynamic interactions between cells and the extracellular matrix (ECM), referred to as the "dynamic duo", in the development of ectodermal organs. These interactions provide spatially and temporally changing biophysical and biochemical cues within tissues. Using the hair follicle as an example, this review highlights two types of cell-ECM adhesion units-focal adhesion-type and hemidesmosome-type adhesion units-that facilitate communication between epithelial and mesenchymal cells. This review further explores how these adhesion units, along with other cell-ECM interactions, evolve during hair follicle development and regeneration, underscoring their importance in guiding both developmental and regenerative processes.
Collapse
|
2
|
Walther RF, Lancaster C, Burden JJ, Pichaud F. A dystroglycan-laminin-integrin axis coordinates cell shape remodeling in the developing Drosophila retina. PLoS Biol 2024; 22:e3002783. [PMID: 39226305 PMCID: PMC11398702 DOI: 10.1371/journal.pbio.3002783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/13/2024] [Accepted: 08/03/2024] [Indexed: 09/05/2024] Open
Abstract
Cell shape remodeling is a principal driver of epithelial tissue morphogenesis. While progress continues to be made in our understanding of the pathways that control the apical (top) geometry of epithelial cells, we know comparatively little about those that control cell basal (bottom) geometry. To examine this, we used the Drosophila ommatidium, which is the basic visual unit of the compound eye. The ommatidium is shaped as a hexagonal prism, and generating this 3D structure requires ommatidial cells to adopt specific apical and basal polygonal geometries. Using this model system, we find that generating cell type-specific basal geometries starts with patterning of the basal extracellular matrix, whereby Laminin accumulates at discrete locations across the basal surface of the retina. We find the Dystroglycan receptor complex (DGC) is required for this patterning by promoting localized Laminin accumulation at the basal surface of cells. Moreover, our results reveal that localized accumulation of Laminin and the DGC are required for directing Integrin adhesion. This induces cell basal geometry remodeling by anchoring the basal surface of cells to the extracellular matrix at specific, Laminin-rich locations. We propose that patterning of a basal extracellular matrix by generating discrete Laminin domains can direct Integrin adhesion to induce cell shape remodeling in epithelial morphogenesis.
Collapse
Affiliation(s)
- Rhian F. Walther
- Cell Biology of Tissue Architecture and Physiology. Laboratory for Molecular Cell Biology (LMCB), University College London, London, United Kingdom
| | - Courtney Lancaster
- Cell Biology of Tissue Architecture and Physiology. Laboratory for Molecular Cell Biology (LMCB), University College London, London, United Kingdom
| | - Jemima J. Burden
- Cell Biology of Tissue Architecture and Physiology. Laboratory for Molecular Cell Biology (LMCB), University College London, London, United Kingdom
| | - Franck Pichaud
- Cell Biology of Tissue Architecture and Physiology. Laboratory for Molecular Cell Biology (LMCB), University College London, London, United Kingdom
| |
Collapse
|
3
|
Tang X, Wang J, Chen J, Liu W, Qiao P, Quan H, Li Z, Dang E, Wang G, Shao S. Epidermal stem cells: skin surveillance and clinical perspective. J Transl Med 2024; 22:779. [PMID: 39169334 PMCID: PMC11340167 DOI: 10.1186/s12967-024-05600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
The skin epidermis is continually influenced by a myriad of internal and external elements. At its basal layer reside epidermal stem cells, which fuels epidermal renovation and hair regeneration with powerful self-renewal ability, as well as keeping diverse signals that direct their activity under surveillance with quick response. The importance of epidermal stem cells in wound healing and immune-related skin conditions has been increasingly recognized, and their potential for clinical applications is attracting attention. In this review, we delve into recent advancements and the various physiological and psychological factors that govern distinct epidermal stem cell populations, including psychological stress, mechanical forces, chronic aging, and circadian rhythm, as well as providing an overview of current methodological approaches. Furthermore, we discuss the pathogenic role of epidermal stem cells in immune-related skin disorders and their potential clinical applications.
Collapse
Affiliation(s)
- Xin Tang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaqi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Wanting Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Huiyi Quan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Zhiguo Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| |
Collapse
|
4
|
Amuso VM, Haas MR, Cooper PO, Chatterjee R, Hafiz S, Salameh S, Gohel C, Mazumder MF, Josephson V, Khorsandi K, Horvath A, Rahnavard A, Shook BA. Deep skin fibroblast-mediated macrophage recruitment supports acute wound healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607357. [PMID: 39149286 PMCID: PMC11326280 DOI: 10.1101/2024.08.09.607357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Epithelial and immune cells have long been appreciated for their contribution to the early immune response after injury; however, much less is known about the role of mesenchymal cells. Using single nuclei RNA-sequencing, we defined changes in gene expression associated with inflammation at 1-day post-wounding (dpw) in mouse skin. Compared to keratinocytes and myeloid cells, we detected enriched expression of pro-inflammatory genes in fibroblasts associated with deeper layers of the skin. In particular, SCA1+ fibroblasts were enriched for numerous chemokines, including CCL2, CCL7, and IL33 compared to SCA1- fibroblasts. Genetic deletion of Ccl2 in fibroblasts resulted in fewer wound bed macrophages and monocytes during injury-induced inflammation with reduced revascularization and re-epithelialization during the proliferation phase of healing. These findings highlight the important contribution of deep skin fibroblast-derived factors to injury-induced inflammation and the impact of immune cell dysregulation on subsequent tissue repair.
Collapse
Affiliation(s)
- Veronica M. Amuso
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - MaryEllen R. Haas
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Paula O. Cooper
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Ranojoy Chatterjee
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Sana Hafiz
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Shatha Salameh
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Chiraag Gohel
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Miguel F. Mazumder
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Violet Josephson
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Khatereh Khorsandi
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Anelia Horvath
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Brett A. Shook
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
- Department of Dermatology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
5
|
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol 2024; 15:1395479. [PMID: 38835782 PMCID: PMC11148235 DOI: 10.3389/fimmu.2024.1395479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The skin, being a multifaceted organ, performs a pivotal function in the complicated wound-healing procedure, which encompasses the triggering of several cellular entities and signaling cascades. Aberrations in the typical healing process of wounds may result in atypical scar development and the establishment of a persistent condition, rendering patients more vulnerable to infections. Chronic burns and wounds have a detrimental effect on the overall quality of life of patients, resulting in higher levels of physical discomfort and socio-economic complexities. The occurrence and frequency of prolonged wounds are on the rise as a result of aging people, hence contributing to escalated expenditures within the healthcare system. The clinical evaluation and treatment of chronic wounds continue to pose challenges despite the advancement of different therapeutic approaches. This is mainly owing to the prolonged treatment duration and intricate processes involved in wound healing. Many conventional methods, such as the administration of growth factors, the use of wound dressings, and the application of skin grafts, are used to ease the process of wound healing across diverse wound types. Nevertheless, these therapeutic approaches may only be practical for some wounds, highlighting the need to advance alternative treatment modalities. Novel wound care technologies, such as nanotherapeutics, stem cell treatment, and 3D bioprinting, aim to improve therapeutic efficacy, prioritize skin regeneration, and minimize adverse effects. This review provides an updated overview of recent advancements in chronic wound healing and therapeutic management using innovative approaches.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Savitri C, Ha SS, Kwon JW, Kim SH, Kim Y, Park HM, Kwon H, Ji MJ, Park K. Human Fibroblast-Derived Matrix Hydrogel Accelerates Regenerative Wound Remodeling Through the Interactions with Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305852. [PMID: 38476050 PMCID: PMC11095160 DOI: 10.1002/advs.202305852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Herein, a novel extracellular matrix (ECM) hydrogel is proposed fabricated solely from decellularized, human fibroblast-derived matrix (FDM) toward advanced wound healing. This FDM-gel is physically very stable and viscoelastic, while preserving the natural ECM diversity and various bioactive factors. Subcutaneously transplanted FDM-gel provided a permissive environment for innate immune cells infiltration. Compared to collagen hydrogel, excellent wound healing indications of FDM-gel treated in the full-thickness wounds are noticed, particularly hair follicle formation via highly upregulated β-catenin. Sequential analysis of the regenerated wound tissues disclosed that FDM-gel significantly alleviated pro-inflammatory cytokine and promoted M2-like macrophages, along with significantly elevated vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) level. A mechanistic study demonstrated that macrophages-FDM interactions through cell surface integrins α5β1 and α1β1 resulted in significant production of VEGF and bFGF, increased Akt phosphorylation, and upregulated matrix metalloproteinase-9 activity. Interestingly, blocking such interactions using specific inhibitors (ATN161 for α5β1 and obtustatin for α1β1) negatively affected those pro-healing growth factors secretion. Macrophages depletion animal model significantly attenuated the healing effect of FDM-gel. This study demonstrates that the FDM-gel is an excellent immunomodulatory material that is permissive for host cells infiltration, resorbable with time, and interactive with macrophages, where it thus enables regenerative matrix remodeling toward a complete wound healing.
Collapse
Affiliation(s)
- Cininta Savitri
- Center for BiomaterialsKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Sang Su Ha
- Center for BiomaterialsKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Jae Won Kwon
- Center for BiomaterialsKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and Technology, KIST SchoolUniversity of Science and Technology (UST)Seoul02792Republic of Korea
| | - Sung Hoon Kim
- Center for BiomaterialsKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Young‐Min Kim
- Center for BiomaterialsKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and Technology, KIST SchoolUniversity of Science and Technology (UST)Seoul02792Republic of Korea
| | - Hyun Mee Park
- Advanced Analysis and Data CenterKISTSeoul02792Republic of Korea
| | - Haejin Kwon
- Advanced Analysis and Data CenterKISTSeoul02792Republic of Korea
| | - Mi Jung Ji
- Advanced Analysis and Data CenterKISTSeoul02792Republic of Korea
| | - Kwideok Park
- Center for BiomaterialsKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and Technology, KIST SchoolUniversity of Science and Technology (UST)Seoul02792Republic of Korea
| |
Collapse
|
7
|
Kiselev A, Park S. Immune niches for hair follicle development and homeostasis. Front Physiol 2024; 15:1397067. [PMID: 38711955 PMCID: PMC11070776 DOI: 10.3389/fphys.2024.1397067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
The hair follicle is a dynamic mini-organ that has specialized cycles and architectures with diverse cell types to form hairs. Previous studies for several decades have investigated morphogenesis and signaling pathways during embryonic development and adult hair cycles in both mouse and human skin. In particular, hair follicle stem cells and mesenchymal niches received major attention as key players, and their roles and interactions were heavily revealed. Although resident and circulating immune cells affect cellular function and interactions in the skin, research on immune cells has mainly received attention on diseases rather than development or homeostasis. Recently, many studies have suggested the functional roles of diverse immune cells as a niche for hair follicles. Here, we will review recent findings about immune niches for hair follicles and provide insight into mechanisms of hair growth and diseases.
Collapse
Affiliation(s)
- Artem Kiselev
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Sangbum Park
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
8
|
Vandishi AK, Esmaeili A, Taghipour N. The promising prospect of human hair follicle regeneration in the shadow of new tissue engineering strategies. Tissue Cell 2024; 87:102338. [PMID: 38428370 DOI: 10.1016/j.tice.2024.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Hair loss disorder (alopecia) affects numerous people around the world. The low effectiveness and numerous side effects of common treatments have prompted researchers to investigate alternative and effective solutions. Hair follicle (HF) bioengineering is the knowledge of using hair-inductive (trichogenic) cells. Most bioengineering-based approaches focus on regenerating folliculogenesis through manipulation of regulators of physical/molecular properties in the HF niche. Despite the high potential of cell therapy, no cell product has been produced for effective treatment in the field of hair regeneration. This problem shows the challenges in the functionality of cultured human hair cells. To achieve this goal, research and development of new and practical approaches, technologies and biomaterials are needed. Based on recent advances in the field, this review evaluates emerging HF bioengineering strategies and the future prospects for the field of tissue engineering and successful HF regeneration.
Collapse
Affiliation(s)
- Arezoo Karami Vandishi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Estrach S, Vivier CM, Féral CC. ECM and epithelial stem cells: the scaffold of destiny. Front Cell Dev Biol 2024; 12:1359585. [PMID: 38572486 PMCID: PMC10987781 DOI: 10.3389/fcell.2024.1359585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Adult stem cells play a critical role in maintaining tissue homeostasis and promoting longevity. The intricate organization and presence of common markers among adult epithelial stem cells in the intestine, lung, and skin serve as hallmarks of these cells. The specific location pattern of these cells within their respective organs highlights the significance of the niche in which they reside. The extracellular matrix (ECM) not only provides physical support but also acts as a reservoir for various biochemical and biophysical signals. We will consider differences in proliferation, repair, and regenerative capacities of the three epithelia and review how environmental cues emerging from the niche regulate cell fate. These cues are transduced via mechanosignaling, regulating gene expression, and bring us to the concept of the fate scaffold. Understanding both the analogies and discrepancies in the mechanisms that govern stem cell fate in various organs can offer valuable insights for rejuvenation therapy and tissue engineering.
Collapse
Affiliation(s)
- Soline Estrach
- INSERM, CNRS, IRCAN, Université Côte d’Azur, Nice, France
| | | | - Chloé C. Féral
- INSERM, CNRS, IRCAN, Université Côte d’Azur, Nice, France
| |
Collapse
|
10
|
Bertrand JU, Petit V, Aktary Z, de la Grange P, Elkoshi N, Sohier P, Delmas V, Levy C, Larue L. Loss of Dicer in Newborn Melanocytes Leads to Premature Hair Graying and Changes in Integrin Expression. J Invest Dermatol 2024; 144:601-611. [PMID: 37739336 DOI: 10.1016/j.jid.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/24/2023]
Abstract
Premature hair graying occurs owing to the depletion of melanocyte stem cells in the hair follicle, which can be accelerated by stress caused by genetic or environmental factors. However, the connection between stress and melanocyte stem cell loss is not fully understood. MicroRNAs are molecules that control gene expression by regulating mRNA stability and translation and are produced by the enzyme Dicer, which is repressed under stress. In this study, using 2 mouse genetic models and human and mouse cell lines, we found that the inactivation of Dicer in melanocytes leads to misplacement of these cells within the hair follicle, resulting in a lack of melanin transfer to keratinocytes in the growing hair and the exhaustion of the melanocyte stem cell pool. We also show that miR-92b, which regulates ItgaV mRNA and protein levels, plays a role in altering melanocyte migration. Overall, our findings suggest that the Dicer-miR92b-ItgaV pathway serves as a major signaling pathway linking stress to premature hair greying.
Collapse
Affiliation(s)
- Juliette U Bertrand
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | - Valérie Petit
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | - Zackie Aktary
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | | | - Nadav Elkoshi
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Pierre Sohier
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | - Véronique Delmas
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Lionel Larue
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France.
| |
Collapse
|
11
|
Garis M, Meyer MD, Lwigale P. Expression of Nephronectin in the Descemet's membrane of mouse corneas during development and adult homeostasis. Exp Eye Res 2024; 240:109797. [PMID: 38246333 DOI: 10.1016/j.exer.2024.109797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Nephronectin (Npnt) is an extracellular matrix (ECM) protein with pleiotropic functions during organogenesis, disease, and homeostasis. Although the ECM plays a crucial role during development and homeostasis of the adult cornea, little is known about the expression of Npnt in the mammalian cornea. Here, we investigated the expression of Npnt during early embryonic and postnatal development, and in adult mouse corneas. We combined ultrastructural and immunohistochemical analyses to study the early formation of the Descemet's membrane and how the expression of Npnt relates to key basement membrane proteins. Our section in situ hybridization and immunohistochemical analyses revealed that Npnt mRNA is expressed by the nascent corneal endothelial cells at embryonic day (E) 14.5, whereas the protein is localized in the adjacent extracellular matrix. These expression patterns were maintained in the corneal endothelium and Descemet's membrane throughout development and in adult corneas. Ultrastructural analysis revealed discontinuous electron dense regions of protein aggregates at E18.5 that was separated from the endothelial layer by an electron lucent space. At birth (postnatal day, P0), the Descemet's membrane was a single layer, which continuously thickened throughout P4, P8, P10, and P14. Npnt was localized to the Descemet's membrane by E18.5 and overlapped with Collagens IV and VIII, Laminin, and Perlecan. However, the proteins subsequently shifted and formed distinct layers in the adult cornea, whereby Npnt localized between two Collagen VIII bands and anterior to Collagen IV but overlapped with Laminin and Perlecan. Combined, our results reveal the expression of Npnt in the mouse cornea and define its spatiotemporal localization relative to key basement membrane proteins during the formation of the Descemet's membrane and in the adult cornea. Understanding the spatiotemporal expression of Npnt is important for future studies to elucidate its function in the mammalian cornea.
Collapse
Affiliation(s)
- Matthew Garis
- Department of Biosciences, Rice University, Houston, TX, 77019, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX, 77019, USA
| | - Peter Lwigale
- Department of Biosciences, Rice University, Houston, TX, 77019, USA.
| |
Collapse
|
12
|
Chrysostomou E, Mourikis P. The extracellular matrix niche of muscle stem cells. Curr Top Dev Biol 2024; 158:123-150. [PMID: 38670702 DOI: 10.1016/bs.ctdb.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Preserving the potency of stem cells in adult tissues is very demanding and relies on the concerted action of various cellular and non-cellular elements in a precise stoichiometry. This balanced microenvironment is found in specific anatomical "pockets" within the tissue, known as the stem cell niche. In this review, we explore the interplay between stem cells and their niches, with a primary focus on skeletal muscle stem cells and the extracellular matrix (ECM). Quiescent muscle stem cells, known as satellite cells are active producers of a diverse array of ECM molecules, encompassing major constituents like collagens, laminins, and integrins, some of which are explored in this review. The conventional perception of ECM as merely a structural scaffold is evolving. Collagens can directly interact as ligands with receptors on satellite cells, while other ECM proteins have the capacity to sequester growth factors and regulate their release, especially relevant during satellite cell turnover in homeostasis or activation upon injury. Additionally, we explore an evolutionary perspective on the ECM across a range of multicellular organisms and discuss a model wherein satellite cells are self-sustained by generating their own niche. Considering the prevalence of ECM proteins in the connective tissue of various organs it is not surprising that mutations in ECM genes have pathological implications, including in muscle, where they can lead to myopathies. However, the particular role of certain disease-related ECM proteins in stem cell maintenance highlights the potential contribution of stem cell deregulation to the progression of these disorders.
Collapse
Affiliation(s)
- Eleni Chrysostomou
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), Créteil, France
| | - Philippos Mourikis
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), Créteil, France.
| |
Collapse
|
13
|
Zhang B, Chen T. Local and systemic mechanisms that control the hair follicle stem cell niche. Nat Rev Mol Cell Biol 2024; 25:87-100. [PMID: 37903969 DOI: 10.1038/s41580-023-00662-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 11/01/2023]
Abstract
Hair follicles are essential appendages of the mammalian skin, as hair performs vital functions of protection, thermoregulation and sensation. Hair follicles harbour exceptional regenerative abilities as they contain multiple somatic stem cell populations such as hair follicle stem cells (HFSCs) and melanocyte stem cells. Surrounding the stem cells and their progeny, diverse groups of cells and extracellular matrix proteins are organized to form a microenvironment (called 'niche') that serves to promote and maintain the optimal functioning of these stem cell populations. Recent studies have shed light on the intricate nature of the HFSC niche and its crucial role in regulating hair follicle regeneration. In this Review, we describe how the niche serves as a signalling hub, communicating, deciphering and integrating both local signals within the skin and systemic inputs from the body and environment to modulate HFSC activity. We delve into the recent advancements in identifying the cellular and molecular nature of the niche, providing a holistic perspective on its essential functions in hair follicle morphogenesis, regeneration and ageing.
Collapse
Affiliation(s)
- Bing Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| | - Ting Chen
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
14
|
Nguyen MB, Flora P, Branch MC, Weber M, Zheng XY, Sivan U, Joost S, Annusver K, Zheng D, Kasper M, Ezhkova E. Tenascin-C expressing touch dome keratinocytes exhibit characteristics of all epidermal lineages. SCIENCE ADVANCES 2024; 10:eadi5791. [PMID: 38241368 PMCID: PMC10798558 DOI: 10.1126/sciadv.adi5791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
The touch dome (TD) keratinocytes are specialized epidermal cells that intimately associate with the light touch sensing Merkel cells (MCs). The TD keratinocytes function as a niche for the MCs and can induce de novo hair follicles upon stimulation; however, how the TD keratinocytes are maintained during homeostasis remains unclear. scRNA-seq identified a specific TD keratinocyte marker, Tenascin-C (TNC). Lineage tracing of Tnc-expressing TD keratinocytes revealed that these cells maintain themselves as an autonomous epidermal compartment and give rise to MCs upon injury. Molecular characterization uncovered that, while the transcriptional and chromatin landscape of the TD keratinocytes is remarkably similar to that of the interfollicular epidermal keratinocytes, it also shares certain molecular signatures with the hair follicle keratinocytes. Our study highlights that the TD keratinocytes in the adult skin have molecular characteristics of keratinocytes of diverse epidermal lineages.
Collapse
Affiliation(s)
- Minh Binh Nguyen
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meagan C. Branch
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madison Weber
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiang Yu Zheng
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neurology, and Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Unnikrishnan Sivan
- Department of Neurology, and Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Simon Joost
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Karl Annusver
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neurology, and Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria Kasper
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
15
|
Abstract
Diseases affecting the hair follicle are common in domestic animals, but despite the importance of an intact skin barrier and a fully functional hair coat, knowledge about the detailed morphological features and the diversity of these complex mini-organs are often limited, although mandatory to evaluate skin biopsies with a history of alopecia. The factors that regulate the innate hair follicle formation and the postnatal hair cycle are still not completely understood in rodents, only rudimentarily known in humans, and are poorly understood in our companion animals. This review aims to summarize the current knowledge about hair follicle and hair shaft anatomy, the arrangement of hair follicles, hair follicle morphogenesis in the embryo, and the lifelong regeneration during the postnatal hair cycle in domestic animals. The role of follicular stem cells and the need for a multitude of interacting signaling events during hair follicle morphogenesis and regeneration is unquestioned. Because of the lack of state of the art methods that can be applied in rodents but are not feasible in companion animals, most of the information in this review is based on rodent studies. However, the few data from domestic animals that are available will be discussed, and it can be assumed that at least the principal molecular mechanisms are similar in rodents and other species.
Collapse
|
16
|
Raja E, Clarin MTRDC, Yanagisawa H. Matricellular Proteins in the Homeostasis, Regeneration, and Aging of Skin. Int J Mol Sci 2023; 24:14274. [PMID: 37762584 PMCID: PMC10531864 DOI: 10.3390/ijms241814274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Matricellular proteins are secreted extracellular proteins that bear no primary structural functions but play crucial roles in tissue remodeling during development, homeostasis, and aging. Despite their low expression after birth, matricellular proteins within skin compartments support the structural function of many extracellular matrix proteins, such as collagens. In this review, we summarize the function of matricellular proteins in skin stem cell niches that influence stem cells' fate and self-renewal ability. In the epidermal stem cell niche, fibulin 7 promotes epidermal stem cells' heterogeneity and fitness into old age, and the transforming growth factor-β-induced protein ig-h3 (TGFBI)-enhances epidermal stem cell growth and wound healing. In the hair follicle stem cell niche, matricellular proteins such as periostin, tenascin C, SPARC, fibulin 1, CCN2, and R-Spondin 2 and 3 modulate stem cell activity during the hair cycle and may stabilize arrector pili muscle attachment to the hair follicle during piloerections (goosebumps). In skin wound healing, matricellular proteins are upregulated, and their functions have been examined in various gain-and-loss-of-function studies. However, much remains unknown concerning whether these proteins modulate skin stem cell behavior, plasticity, or cell-cell communications during wound healing and aging, leaving a new avenue for future studies.
Collapse
Affiliation(s)
- Erna Raja
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| | - Maria Thea Rane Dela Cruz Clarin
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
- Ph.D. Program in Humanics, School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| |
Collapse
|
17
|
Lei M, Harn HIC, Li Q, Jiang J, Wu W, Zhou W, Jiang TX, Wang M, Zhang J, Lai YC, Juan WT, Widelitz RB, Yang L, Gu ZZ, Chuong CM. The mechano-chemical circuit drives skin organoid self-organization. Proc Natl Acad Sci U S A 2023; 120:e2221982120. [PMID: 37643215 PMCID: PMC10483620 DOI: 10.1073/pnas.2221982120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
Stem cells in organoids self-organize into tissue patterns with unknown mechanisms. Here, we use skin organoids to analyze this process. Cell behavior videos show that the morphological transformation from multiple spheroidal units with morphogenesis competence (CMU) to planar skin is characterized by two abrupt cell motility-increasing events before calming down. The self-organizing processes are controlled by a morphogenetic module composed of molecular sensors, modulators, and executers. Increasing dermal stiffness provides the initial driving force (driver) which activates Yap1 (sensor) in epidermal cysts. Notch signaling (modulator 1) in epidermal cyst tunes the threshold of Yap1 activation. Activated Yap1 induces Wnts and MMPs (epidermal executers) in basal cells to facilitate cellular flows, allowing epidermal cells to protrude out from the CMU. Dermal cell-expressed Rock (dermal executer) generates a stiff force bridge between two CMU and accelerates tissue mixing via activating Laminin and β1-integrin. Thus, this self-organizing coalescence process is controlled by a mechano-chemical circuit. Beyond skin, self-organization in organoids may use similar mechano-chemical circuit structures.
Collapse
Affiliation(s)
- Mingxing Lei
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing400044, China
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung40402, Taiwan
| | - Hans I-Chen Harn
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing210096, China
| | - Jingwei Jiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing400044, China
| | - Wang Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing400044, China
| | - Wei Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing400030, China
| | - Tin-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Mengyue Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing400044, China
| | - Jinwei Zhang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing400044, China
| | - Yung-Chih Lai
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung40402, Taiwan
| | - Wen-Tau Juan
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung40402, Taiwan
| | - Randall Bruce Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing400044, China
| | - Zhong-Ze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing210096, China
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| |
Collapse
|
18
|
Chen J, Ye P, Gu R, Zhu H, He W, Mu X, Wu X, Pang H, Han F, Nie X. Neuropeptide substance P: A promising regulator of wound healing in diabetic foot ulcers. Biochem Pharmacol 2023; 215:115736. [PMID: 37549795 DOI: 10.1016/j.bcp.2023.115736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
In the past, neuropeptide substance P (SP) was predominantly recognized as a neuroinflammatory factor, while its potent healing activity was overlooked. This paper aims to review the regulatory characteristics of neuropeptide SP in both normal and diabetic wound healing. SP actively in the regulation of wound healing-related cells directly and indirectly, exhibiting robust inflammatory properties, promoting cell proliferation and migration and restoring the activity and paracrine ability of skin cells under diabetic conditions. Furthermore, SP not only regulates healing-related cells but also orchestrates the immune environment, thereby presenting unique and promising application prospects in wound intervention. As new SP-based preparations are being explored, SP-related drugs are poised to become an effective therapeutic intervention for diabetic foot ulcers (DFU).
Collapse
Affiliation(s)
- Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Rifang Gu
- University Medical Office, Zunyi Medical University, Zunyi 563000, China
| | - Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xingrui Mu
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xingqian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
19
|
McIntyre DC, Nance J. Niche cells regulate primordial germ cell quiescence in response to basement membrane signaling. Development 2023; 150:dev201640. [PMID: 37497562 PMCID: PMC10445801 DOI: 10.1242/dev.201640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Stem cell quiescence, proliferation and differentiation are controlled by interactions with niche cells and a specialized extracellular matrix called basement membrane (BM). Direct interactions with adjacent BM are known to regulate stem cell quiescence; however, it is less clear how niche BM relays signals to stem cells that it does not contact. Here, we examine how niche BM regulates Caenorhabditis elegans primordial germ cells (PGCs). BM regulates PGC quiescence even though PGCs are enwrapped by somatic niche cells and do not contact the BM; this can be demonstrated by depleting laminin, which causes normally quiescent embryonic PGCs to proliferate. We show that following laminin depletion, niche cells relay proliferation-inducing signals from the gonadal BM to PGCs via integrin receptors. Disrupting the BM proteoglycan perlecan blocks PGC proliferation when laminin is depleted, indicating that laminin functions to inhibit a proliferation-inducing signal originating from perlecan. Reducing perlecan levels in fed larvae hampers germline growth, suggesting that BM signals regulate germ cell proliferation under physiological conditions. Our results reveal how BM signals can regulate stem cell quiescence indirectly, by activating niche cell integrin receptors.
Collapse
Affiliation(s)
- Daniel C. McIntyre
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- University of Virginia, Department of Biology, 90 Geldard Drive, Physical Life Science Building Room 318, Charlottesville, VA 22904, USA
| | - Jeremy Nance
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
20
|
Takeo M, Toyoshima KE, Fujimoto R, Iga T, Takase M, Ogawa M, Tsuji T. Cyclical dermal micro-niche switching governs the morphological infradian rhythm of mouse zigzag hair. Nat Commun 2023; 14:4478. [PMID: 37542032 PMCID: PMC10403492 DOI: 10.1038/s41467-023-39605-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/21/2023] [Indexed: 08/06/2023] Open
Abstract
Biological rhythms are involved in almost all types of biological processes, not only physiological processes but also morphogenesis. Currently, how periodic morphological patterns of tissues/organs in multicellular organisms form is not fully understood. Here, using mouse zigzag hair, which has 3 bends, we found that a change in the combination of hair progenitors and their micro-niche and subsequent bend formation occur every three days. Chimeric loss-of-function and gain-of-function of Ptn and Aff3, which are upregulated immediately before bend formation, resulted in defects in the downward movement of the micro-niche and the rhythm of bend formation in an in vivo hair reconstitution assay. Our study demonstrates the periodic change in the combination between progenitors and micro-niche, which is vital for the unique infradian rhythm.
Collapse
Affiliation(s)
- Makoto Takeo
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
| | - Koh-Ei Toyoshima
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
- OrganTech Inc., Tokyo, 104-0028, Japan
| | - Riho Fujimoto
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Hyogo, 669-1337, Japan
| | - Tomoyo Iga
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
| | - Miki Takase
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
| | | | - Takashi Tsuji
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan.
- OrganTech Inc., Tokyo, 104-0028, Japan.
| |
Collapse
|
21
|
García A, Navarro MR, Ramirez A, Pino A, Navarro A, Moles I, Gallego E, Anitua E. Plasma Rich in Growth Factors as an Adjuvant Treatment for the Management of Frontal Fibrosing Alopecia: A Retrospective Observational Clinical Study. J Cutan Med Surg 2023; 27:340-349. [PMID: 37233603 DOI: 10.1177/12034754231177599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND Frontal fibrosing alopecia (FFA) is a scarring alopecia in which the exact etiopathogenesis has not been completely elucidated and the available treatments are not very effective. Plasma rich in growth factors (PRGF) has shown to induce folliculogenesis in hair loss related disorders. However, the scientific evidence when facing FFA is scarce. OBJECTIVES The aim of this study was to retrospectively analyze the adjuvant use of PRGF compared to the conventional treatment in the management of FFA. METHODS Participants with clinically diagnosed FFA who had been treated with either conventional therapy (Control Group) or conventional therapy combined with PRGF (PRGF Group) were identified from the center's medical records. The clinical assessment was based on the "Frontal Fibrosing Alopecia Severity Score" (FFASS), which was fulfilled during a period of two and 4 years. RESULTS This study included 118 patients with clinically diagnosed FFA (Control Group: 57 and PRGF Group: 61). No adverse effects related to the treatments were observed. Both treatments showed to halt the steady progression of hair loss compared to baseline. PRGF treatment also induced significant hair regrowth compared to the Control Group. The scalp inflammation was reduced in response to treatments. The FFASS score indicated that PRGF Group improved the symptoms and severity of FFA in a significant manner. CONCLUSIONS The adjuvant use of PRGF may exert long-term beneficial effects on hair loss reduction and might reduce the symptoms and severity of FFA.
Collapse
Affiliation(s)
| | - M R Navarro
- Centro Dermatológico Estético, Alicante, Spain
| | - Ana Ramirez
- Centro Dermatológico Estético, Alicante, Spain
| | - Ander Pino
- BTI Biotechnology Institute, Vitoria, Spain
| | | | | | | | | |
Collapse
|
22
|
Redmond LC, Limbu S, Farjo B, Messenger AG, Higgins CA. Male pattern hair loss: Can developmental origins explain the pattern? Exp Dermatol 2023; 32:1174-1181. [PMID: 37237288 PMCID: PMC10946844 DOI: 10.1111/exd.14839] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Male pattern hair loss (MPHL), also referred to as male androgenetic alopecia (AGA) is the most common type of non-scarring progressive hair loss, with 80% of men suffering from this condition in their lifetime. In MPHL, the hair line recedes to a specific part of the scalp which cannot be accurately predicted. Hair is lost from the front, vertex, and the crown, yet temporal and occipital follicles remain. The visual effect of hair loss is due to hair follicle miniaturisation, where terminal hair follicles become dimensionally smaller. Miniaturisation is also characterised by a shortening of the growth phase of the hair cycle (anagen), and a prolongation of the dormant phase (kenogen). Together, these changes result in the production of thinner and shorter hair fibres, referred to as miniaturised or vellus hairs. It remains unclear why miniaturisation occurs in this specific pattern, with frontal follicles being susceptible while occipital follicles remain in a terminal state. One main factor we believe to be at play, which will be discussed in this viewpoint, is the developmental origin of the skin and hair follicle dermis on different regions of the scalp.
Collapse
Affiliation(s)
| | - Summik Limbu
- Department of BioengineeringImperial College LondonLondonUK
| | | | | | | |
Collapse
|
23
|
Ma S, Li X, Cao R, Zhan G, Fu X, Xiao R, Yang Z. Developmentally regulated expression of integrin alpha-6 distinguishes neural crest derivatives in the skin. Front Cell Dev Biol 2023; 11:1140554. [PMID: 37255601 PMCID: PMC10225710 DOI: 10.3389/fcell.2023.1140554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Neural crest-derived cells play essential roles in skin function and homeostasis. However, how they interact with environmental cues and differentiate into functional skin cells remains unclear. Using a combination of single-cell data analysis, neural crest lineage tracing, and flow cytometry, we found that the expression of integrin α6 (ITGA6) in neural crest and its derivatives was developmentally regulated and that ITGA6 could serve as a functional surface marker for distinguishing neural crest derivatives in the skin. Based on the expression of ITGA6, Wnt1-Cre lineage neural crest derivatives in the skin could be categorized into three subpopulations, namely, ITGA6bright, ITGA6dim, and ITGA6neg, which were found to be Schwann cells, melanocytes, and fibroblasts, respectively. We further analyzed the signature genes and transcription factors that specifically enriched in each cell subpopulation, as well as the ligand or receptor molecules, mediating the potential interaction with other cells of the skin. Additionally, we found that Hmx1 and Lhx8 are specifically expressed in neural crest-derived fibroblasts, while Zic1 and homeobox family genes are expressed in mesoderm-derived fibroblasts, indicating the distinct development pathways of fibroblasts of different origins. Our study provides insights into the regulatory landscape of neural crest cell development and identifies potential markers that facilitate the isolation of different neural crest derivatives in the skin.
Collapse
Affiliation(s)
- Shize Ma
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiu Li
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Cao
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Guoqin Zhan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Fu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Ran Xiao
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhigang Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Jang H, Jo Y, Lee JH, Choi S. Aging of hair follicle stem cells and their niches. BMB Rep 2023; 56:2-9. [PMID: 36379515 PMCID: PMC9887102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Indexed: 01/28/2023] Open
Abstract
Hair follicles in the skin undergo cyclic rounds of regeneration, degeneration, and rest throughout life. Stem cells residing in hair follicles play a pivotal role in maintaining tissue homeostasis and hair growth cycles. Research on hair follicle aging and age-related hair loss has demonstrated that a decline in hair follicle stem cell (HFSC) activity with aging can decrease the regeneration capacity of hair follicles. This review summarizes our understanding of how age-associated HFSC intrinsic and extrinsic mechanisms can induce HFSC aging and hair loss. In addition, we discuss approaches developed to attenuate ageassociated changes in HFSCs and their niches, thereby promoting hair regrowth. [BMB Reports 2023; 56(1): 2-9].
Collapse
Affiliation(s)
- Hansaem Jang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea, Incheon 21983, Korea
| | - Yemin Jo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea, Incheon 21983, Korea
| | - Jung Hyun Lee
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, Korea,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA, Incheon 21983, Korea
| | - Sekyu Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea, Incheon 21983, Korea,School of Medical Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea,Institute for Convergence Research and Education in Advanced Technology (I_CREATE), Yonsei University, Incheon 21983, Korea,Corresponding author. Tel: +82-54-279-2359; Fax: +82-54-279-2199; E-mail:
| |
Collapse
|
25
|
Jang H, Jo Y, Lee JH, Choi S. Aging of hair follicle stem cells and their niches. BMB Rep 2023; 56:2-9. [PMID: 36379515 PMCID: PMC9887102 DOI: 10.5483/bmbrep.2022-0183] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 09/06/2023] Open
Abstract
Hair follicles in the skin undergo cyclic rounds of regeneration, degeneration, and rest throughout life. Stem cells residing in hair follicles play a pivotal role in maintaining tissue homeostasis and hair growth cycles. Research on hair follicle aging and age-related hair loss has demonstrated that a decline in hair follicle stem cell (HFSC) activity with aging can decrease the regeneration capacity of hair follicles. This review summarizes our understanding of how age-associated HFSC intrinsic and extrinsic mechanisms can induce HFSC aging and hair loss. In addition, we discuss approaches developed to attenuate ageassociated changes in HFSCs and their niches, thereby promoting hair regrowth. [BMB Reports 2023; 56(1): 2-9].
Collapse
Affiliation(s)
- Hansaem Jang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea, Incheon 21983, Korea
| | - Yemin Jo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea, Incheon 21983, Korea
| | - Jung Hyun Lee
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, Korea
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA, Incheon 21983, Korea
| | - Sekyu Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea, Incheon 21983, Korea
- School of Medical Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I_CREATE), Yonsei University, Incheon 21983, Korea
| |
Collapse
|
26
|
Progress of EGFL6 in angiogenesis and tumor development. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2022; 15:436-443. [PMID: 36507067 PMCID: PMC9729941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 09/30/2022] [Indexed: 12/15/2022]
Abstract
The epidermal growth factor (EGF) superfamily includes the protein 6 with an epidermal growth factor-like protein (EGFL6). EGFL6 has a signal peptide domain with an amino terminus and a MAM domain with a carboxy terminus. There are four whole EGF-like repeat regions and one partial EGF-like repeat region. Three of these regions include calcium-binding structures and an arg-gly-asp (RGD) integrin interaction motif. The epidermal growth factor-like (EGFL) and EGF domains have identical amino acid residues. Cell division, differentiation, mortality, cell adhesion, and migration are all affected by EGFL6. EGFL proteins are involved in a broad range of biological activities, making it important in tumor development and angiogenesis. We highlighted the latest development of EGFL6 research on tumor proliferation, invasion, and migration in this review.
Collapse
|
27
|
Scott-Solomon E, Hsu YC. Neurobiology, Stem Cell Biology, and Immunology: An Emerging Triad for Understanding Tissue Homeostasis and Repair. Annu Rev Cell Dev Biol 2022; 38:419-446. [PMID: 36201298 PMCID: PMC10085582 DOI: 10.1146/annurev-cellbio-120320-032429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The peripheral nervous system (PNS) endows animals with the remarkable ability to sense and respond to a dynamic world. Emerging evidence shows the PNS also participates in tissue homeostasis and repair by integrating local changes with organismal and environmental changes. Here, we provide an in-depth summary of findings delineating the diverse roles of peripheral nerves in modulating stem cell behaviors and immune responses under steady-state conditions and in response to injury and duress, with a specific focus on the skin and the hematopoietic system. These examples showcase how elucidating neuro-stem cell and neuro-immune cell interactions provides a conceptual framework that connects tissue biology and local immunity with systemic bodily changes to meet varying demands. They also demonstrate how changes in these interactions can manifest in stress, aging, cancer, and inflammation, as well as how these findings can be harnessed to guide the development of new therapeutics.
Collapse
Affiliation(s)
- Emily Scott-Solomon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA; ,
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA; ,
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
28
|
Howard A, Bojko J, Flynn B, Bowen S, Jungwirth U, Walko G. Targeting the Hippo/YAP/TAZ signalling pathway: Novel opportunities for therapeutic interventions into skin cancers. Exp Dermatol 2022; 31:1477-1499. [PMID: 35913427 PMCID: PMC9804452 DOI: 10.1111/exd.14655] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
Skin cancers are by far the most frequently diagnosed human cancers. The closely related transcriptional co-regulator proteins YAP and TAZ (WWTR1) have emerged as important drivers of tumour initiation, progression and metastasis in melanoma and non-melanoma skin cancers. YAP/TAZ serve as an essential signalling hub by integrating signals from multiple upstream pathways. In this review, we summarize the roles of YAP/TAZ in skin physiology and tumorigenesis and discuss recent efforts of therapeutic interventions that target YAP/TAZ in in both preclinical and clinical settings, as well as their prospects for use as skin cancer treatments.
Collapse
Affiliation(s)
| | - Jodie Bojko
- Department of Life SciencesUniversity of BathBathUK
| | | | - Sophie Bowen
- Department of Life SciencesUniversity of BathBathUK
| | - Ute Jungwirth
- Department of Life SciencesUniversity of BathBathUK,Centre for Therapeutic InnovationUniversity of BathBathUK
| | - Gernot Walko
- Department of Life SciencesUniversity of BathBathUK,Centre for Therapeutic InnovationUniversity of BathBathUK
| |
Collapse
|
29
|
Liu Y, Guerrero-Juarez CF, Xiao F, Shettigar NU, Ramos R, Kuan CH, Lin YC, de Jesus Martinez Lomeli L, Park JM, Oh JW, Liu R, Lin SJ, Tartaglia M, Yang RB, Yu Z, Nie Q, Li J, Plikus MV. Hedgehog signaling reprograms hair follicle niche fibroblasts to a hyper-activated state. Dev Cell 2022; 57:1758-1775.e7. [PMID: 35777353 PMCID: PMC9344965 DOI: 10.1016/j.devcel.2022.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 03/10/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
Hair follicle stem cells are regulated by dermal papilla fibroblasts, their principal signaling niche. Overactivation of Hedgehog signaling in the niche dramatically accelerates hair growth and induces follicle multiplication in mice. On single-cell RNA sequencing, dermal papilla fibroblasts increase heterogeneity to include new Wnt5ahigh states. Transcriptionally, mutant fibroblasts activate regulatory networks for Gli1, Alx3, Ebf1, Hoxc8, Sox18, and Zfp239. These networks jointly upregulate secreted factors for multiple hair morphogenesis and hair-growth-related pathways. Among these is non-conventional TGF-β ligand Scube3. We show that in normal mouse skin, Scube3 is expressed only in dermal papillae of growing, but not in resting follicles. SCUBE3 protein microinjection is sufficient to induce new hair growth, and pharmacological TGF-β inhibition rescues mutant hair hyper-activation phenotype. Moreover, dermal-papilla-enriched expression of SCUBE3 and its growth-activating effect are partially conserved in human scalp hair follicles. Thus, Hedgehog regulates mesenchymal niche function in the hair follicle via SCUBE3/TGF-β mechanism.
Collapse
Affiliation(s)
- Yingzi Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Christian F Guerrero-Juarez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Fei Xiao
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Nitish Udupi Shettigar
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Amplifica Holdings Group, Inc., San Diego, CA 92128, USA
| | - Raul Ramos
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Chen-Hsiang Kuan
- Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuh-Charn Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Jung Min Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea; Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ji Won Oh
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea; Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea; Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Ruiqi Liu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Sung-Jan Lin
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Engineering and Department of Dermatology, National Taiwan University, Taipei, Taiwan
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Nie
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
30
|
Park S. Hair Follicle Morphogenesis During Embryogenesis, Neogenesis, and Organogenesis. Front Cell Dev Biol 2022; 10:933370. [PMID: 35938157 PMCID: PMC9354988 DOI: 10.3389/fcell.2022.933370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Hair follicles are mini organs that repeat the growth and regression cycle continuously. These dynamic changes are driven by the regulation of stem cells via their multiple niche components. To build the complex structure of hair follicles and surrounding niches, sophisticated morphogenesis is required during embryonic development. This review will explore how hair follicles are formed and maintained through dynamic cellular changes and diverse signaling pathways. In addition, comparison of differences in stem cells and surrounding niche components during embryogenesis, neogenesis, and organogenesis will provide a comprehensive understanding of mechanisms for hair follicle generation and insights into skin regeneration.
Collapse
Affiliation(s)
- Sangbum Park
- Institute for Quantitative Health Science & Engineering (IQ), Michigan State University, East Lansing, MI, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- *Correspondence: Sangbum Park,
| |
Collapse
|
31
|
Wang X, Liu Y, He J, Wang J, Chen X, Yang R. Regulation of signaling pathways in hair follicle stem cells. BURNS & TRAUMA 2022; 10:tkac022. [PMID: 35795256 PMCID: PMC9250793 DOI: 10.1093/burnst/tkac022] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/07/2022] [Indexed: 11/21/2022]
Abstract
Hair follicle stem cells (HFSCs) reside in the bulge region of the outer root sheath of the hair follicle. They are considered slow-cycling cells that are endowed with multilineage differentiation potential and superior proliferative capacity. The normal morphology and periodic growth of HFSCs play a significant role in normal skin functions, wound repair and skin regeneration. The HFSCs involved in these pathophysiological processes are regulated by a series of cell signal transduction pathways, such as lymphoid enhancer factor/T-cell factor, Wnt/β-catenin, transforming growth factor-β/bone morphogenetic protein, Notch and Hedgehog. The mechanisms of the interactions among these signaling pathways and their regulatory effects on HFSCs have been previously studied, but many mechanisms are still unclear. This article reviews the regulation of hair follicles, HFSCs and related signaling pathways, with the aims of summarizing previous research results, revealing the regulatory mechanisms of HFSC proliferation and differentiation and providing important references and new ideas for treating clinical diseases.
Collapse
Affiliation(s)
| | | | - Jia He
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan 528000, China
| | - Jingru Wang
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan 528000, China
| | - Xiaodong Chen
- Correspondence. Xiaodong Chen, E-mail: ; Ronghua Yang,
| | - Ronghua Yang
- Correspondence. Xiaodong Chen, E-mail: ; Ronghua Yang,
| |
Collapse
|
32
|
Abstract
The skin forms a crucial, dynamic barrier between an animal and the external world. In mammals, three stem cell populations possess robust regenerative potential to maintain and repair the body's protective surface: epidermal stem cells, which maintain the stratified epidermis; hair follicle stem cells, which power the cyclic growth of the hair follicle; and melanocyte stem cells, which regenerate pigment-producing melanocytes to color the skin and hair. These stem cells reside in complex microenvironments ("niches") comprising diverse cellular repertoires that enable stem cells to rejuvenate tissues during homeostasis and regenerate them upon injury. Beyond their niches, skin stem cells can also sense and respond to fluctuations in organismal health or changes outside the body. Here, we review these diverse cellular interactions and highlight how far-reaching signals can be transmitted at the local level to enable skin stem cells to tailor their actions to suit the particular occasion and optimize fitness.
Collapse
Affiliation(s)
- Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
33
|
McPhetres J, Zickfeld JH. The physiological study of emotional piloerection: A systematic review and guide for future research. Int J Psychophysiol 2022; 179:6-20. [PMID: 35764195 DOI: 10.1016/j.ijpsycho.2022.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
This paper provides an accessible review of the biological and psychological evidence to guide new and experienced researchers in the study of emotional piloerection in humans. A limited number of studies have attempted to examine the physiological and emotional correlates of piloerection in humans. However, no review has attempted to collate this evidence to guide the field as it moves forward. We first discuss the mechanisms and function of non-emotional and emotional piloerection in humans and animals. We discuss the biological foundations of piloerection as a means to understand the similarities and differences between emotional and non-emotional piloerection. We then present a systematic qualitative review (k = 24) in which we examine the physiological correlates of emotional piloerection. The analysis revealed that indices of sympathetic activation are abundant, suggesting emotional piloerection occurs with increased (phasic) skin conductance and heart rate. Measures of parasympathetic activation are lacking and no definite conclusions can be drawn. Additionally, several studies examined self-reported emotional correlates, and these correlates are discussed in light of several possible theoretical explanations for emotional piloerection. Finally, we provide an overview of the methodological possibilities available for the study of piloerection and we highlight some pressing questions researchers may wish to answer in future studies.
Collapse
|
34
|
Ezure T, Amano S, Matsuzaki K. Quantitative characterization of 3D structure of vellus hair arrector pili muscles by micro CT. Skin Res Technol 2022; 28:689-694. [PMID: 35726958 PMCID: PMC9907649 DOI: 10.1111/srt.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Vellus hair is the fine, wispy hair found over most of the body surface, and the arrector pili muscles (hair muscle) serve to raise these hairs. Hair muscles are also critical for skin regeneration, contributing to the maintenance of stem cells in epidermis and hair follicles. However, little is known about their fundamental properties, especially their structure, because of the limitations of conventional two-dimensional histological analysis. OBJECTIVES We aimed to quantitatively characterize the structure of vellus hair muscles by establishing a method to visualize the 3D structure of hair muscle. METHODS We observed young female abdominal skin specimens by means of X-ray micro CT and identified hair muscles in each cross-sectional CT image. We then digitally reconstructed the 3D structure of the hair muscles on computer (digital-3D skin), and numerically evaluated their structural parameters. RESULTS Vellus hair muscles were clearly distinguished from the surrounding dermal layer in X-ray micro CT images and were digitally reconstructed in 3D from those images for quantification of the structural parameters. The mean value of number of divisions of vellus hair muscles was 1.6, mean depth was 943.6 μm from the skin surface, mean angle to the skin surface was 28.8 degrees, and mean length was 1657.9 μm. These values showed relatively little variation among subjects. The mean muscle volume was approximately 20 million μm3 but showed greater variability than the other parameters. CONCLUSION Digital-3D skin technology is a powerful approach to understand the tiny but complex 3D structure of vellus hair muscles. The fundamental nature of vellus hair muscles was characterized in terms of their 3D structural parameters, including number of divisions, angle to the skin surface, depth, and volume.
Collapse
Affiliation(s)
- Tomonobu Ezure
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| | - Satoshi Amano
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| | - Kyoichi Matsuzaki
- Department of Plastic and Reconstructive Surgery, School of Medicine, International University of Health and Welfare, Narita, Japan
| |
Collapse
|
35
|
Sipilä K, Rognoni E, Jokinen J, Tewary M, Vietri Rudan M, Talvi S, Jokinen V, Dahlström KM, Liakath-Ali K, Mobasseri A, Du-Harpur X, Käpylä J, Nutt SL, Salminen TA, Heino J, Watt FM. Embigin is a fibronectin receptor that affects sebaceous gland differentiation and metabolism. Dev Cell 2022; 57:1453-1465.e7. [PMID: 35671757 PMCID: PMC9616737 DOI: 10.1016/j.devcel.2022.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 03/19/2022] [Accepted: 05/16/2022] [Indexed: 12/25/2022]
Abstract
Stem cell renewal and differentiation are regulated by interactions with the niche. Although multiple cell populations have been identified in distinct anatomical compartments, little is known about niche-specific molecular factors. Using skin as a model system and combining single-cell RNA-seq data analysis, immunofluorescence, and transgenic mouse models, we show that the transmembrane protein embigin is specifically expressed in the sebaceous gland and that the number of embigin-expressing cells is negatively regulated by Wnt. The loss of embigin promotes exit from the progenitor compartment and progression toward differentiation, and also compromises lipid metabolism. Embigin modulates sebaceous niche architecture by affecting extracellular matrix organization and basolateral targeting of monocarboxylate transport. We discover through ligand screening that embigin is a direct fibronectin receptor, binding to the N-terminal fibronectin domain without impairing integrin function. Our results solve the long-standing question of how embigin regulates cell adhesion and demonstrate a mechanism that couples adhesion and metabolism.
Collapse
Affiliation(s)
- Kalle Sipilä
- Centre for Gene Therapy & Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Emanuel Rognoni
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Johanna Jokinen
- Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Mukul Tewary
- Centre for Gene Therapy & Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Matteo Vietri Rudan
- Centre for Gene Therapy & Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Salli Talvi
- Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Ville Jokinen
- Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Käthe M Dahlström
- Structural Bioinformatics Laboratory, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Kif Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Atefeh Mobasseri
- Centre for Gene Therapy & Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Xinyi Du-Harpur
- Centre for Gene Therapy & Regenerative Medicine, King's College London, London SE1 9RT, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Jarmo Käpylä
- Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Jyrki Heino
- Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Fiona M Watt
- Centre for Gene Therapy & Regenerative Medicine, King's College London, London SE1 9RT, UK; European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| |
Collapse
|
36
|
Ganier C, Rognoni E, Goss G, Lynch M, Watt FM. Fibroblast Heterogeneity in Healthy and Wounded Skin. Cold Spring Harb Perspect Biol 2022; 14:a041238. [PMID: 35667795 PMCID: PMC9248828 DOI: 10.1101/cshperspect.a041238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fibroblasts are the main cell type in the dermis. They are responsible for the synthesis and deposition of structural proteins such as collagen and elastin, which are integrated into the extracellular matrix (ECM). Mouse and human studies using flow cytometry, cell culture, skin reconstitution, and lineage tracing experiments have shown the existence of different subpopulations of fibroblasts, including papillary fibroblasts, reticular fibroblasts, and fibroblasts comprising the dermal papilla at the base of the hair follicle. In recent years, the technological advances in single-cell sequencing have allowed researchers to study the repertoire of cells present in full-thickness skin including the dermis. Multiple groups have confirmed that distinct fibroblast populations can be identified in mouse and human dermis on the basis of differences in the transcriptional profile. Here, we discuss the current state of knowledge regarding dermal fibroblast heterogeneity in healthy mouse and human skin, highlighting the similarities and differences between mouse and human fibroblast subpopulations. We also discuss how fibroblast heterogeneity may provide insights into physiological wound healing and its dysfunction in pathological states such as hypertrophic and keloid scars.
Collapse
Affiliation(s)
- Clarisse Ganier
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Emanuel Rognoni
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Georgina Goss
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Magnus Lynch
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
- St John's Institute of Dermatology, King's College London, London SE1 9RT, United Kingdom
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| |
Collapse
|
37
|
Yamada Y, Onda T, Hagiuda A, Kan R, Matsunuma M, Hamada K, Kikkawa Y, Nomizu M. RGDX 1 X 2 motif regulates integrin αvβ5 binding for pluripotent stem cell adhesion. FASEB J 2022; 36:e22389. [PMID: 35657599 DOI: 10.1096/fj.202200317r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 11/11/2022]
Abstract
The arginine-glycine-aspartic acid (RGD) motif is a cell adhesion sequence that binds to integrins. Some RGD-containing peptides promote adhesion of both embryonic stem cells and induced pluripotent stem cells (iPSCs); however, not all such RGD-containing peptides are active. In this study, we elucidated the role of RGD-neighboring sequences on iPSC adhesion using diverse synthetic peptides and recombinant proteins. Our results indicate that iPSC adhesion requires RGDX1 X2 sequences, such as RGDVF and RGDNY, and that the X1 X2 residues are essential for the adhesion via integrin αvβ5 but not αvβ3. iPSCs express integrin αvβ5 but not αvβ3; therefore, iPSC adhesion requires the RGDX1 X2 -containing sequences. The importance of the X1 X2 residues was confirmed with both HeLa and A549 cells, which express integrin αvβ5 but not αvβ3. Analysis of RGD-neighboring sequences provides important insights into ligand-binding specificity of integrins. Identification of integrin αvβ5-binding motifs is potentially useful in drug development, drug delivery, cell culture, and tissue engineering.
Collapse
Affiliation(s)
- Yuji Yamada
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Toru Onda
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Ayami Hagiuda
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Ryuji Kan
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Masumi Matsunuma
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Keisuke Hamada
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Yamato Kikkawa
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
38
|
Lyu Y, Ge Y. Toward Elucidating Epigenetic and Metabolic Regulation of Stem Cell Lineage Plasticity in Skin Aging. Front Cell Dev Biol 2022; 10:903904. [PMID: 35663405 PMCID: PMC9160930 DOI: 10.3389/fcell.2022.903904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Skin is the largest organ in human body, harboring a plethora of cell types and serving as the organismal barrier. Skin aging such as wrinkling and hair graying is graphically pronounced, and the molecular mechanisms behind these phenotypic manifestations are beginning to unfold. As in many other organs and tissues, epigenetic and metabolic deregulations have emerged as key aging drivers. Particularly in the context of the skin epithelium, the epigenome and metabolome coordinately shape lineage plasticity and orchestrate stem cell function during aging. Our review discusses recent studies that proposed molecular mechanisms that drive the degeneration of hair follicles, a major appendage of the skin. By focusing on skin while comparing it to model organisms and adult stem cells of other tissues, we summarize literature on genotoxic stress, nutritional sensing, metabolic rewiring, mitochondrial activity, and epigenetic regulations of stem cell plasticity. Finally, we speculate about the rejuvenation potential of rate-limiting upstream signals during aging and the dominant role of the tissue microenvironment in dictating aged epithelial stem cell function.
Collapse
Affiliation(s)
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
39
|
Wilson CL, Hung CF, Schnapp LM. Endotoxin-induced acute lung injury in mice with postnatal deletion of nephronectin. PLoS One 2022; 17:e0268398. [PMID: 35552565 PMCID: PMC9097991 DOI: 10.1371/journal.pone.0268398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Acute injury of the lung involves damage to the epithelium and its underlying extracellular matrix (ECM), the basement membrane (BM). How BMs contribute to injury resolution is poorly understood. Nephronectin (NPNT) is a high-affinity ligand for integrin α8β1 and, although first identified in the mouse kidney, is prominently expressed in the lung, where it localizes to BMs in the alveoli. To determine if NPNT plays a role in acute injury and inflammation of the lung, we developed a model for postnatal deletion of NPNT using mice with a floxed allele of Npnt in combination with a tamoxifen-inducible Cre recombinase expressed at the ROSA locus. Expression of NPNT was substantially reduced in lungs from tamoxifen-treated Cre+ animals. Cre+ mice and Cre- controls were given E. coli LPS by oropharyngeal aspiration to induce injury and inflammation. In Cre- lungs, although both Npnt and Itga8 (integrin α8) transcripts were downregulated at the peak of inflammation, NPNT protein was still detectable. While the onset of inflammation was similar for Cre+ and Cre-, NPNT-deficient lungs still had thickened alveolar septa and there were increased macrophages in the bronchoalveolar lavage fluid (BALF) in the resolution phase. BALF from Cre+ lungs was more chemotactic for bone marrow-derived macrophages than Cre- in in vitro experiments, but there were no differences in the elaboration of chemokines in vivo. We speculate that absence of NPNT in BMs of the alveoli impairs or delays inflammatory and injury resolution in this model, but further studies are needed to establish the precise role of NPNT in tissue repair.
Collapse
Affiliation(s)
- Carole L. Wilson
- Division of Pulmonary, Critical Care, Allergy, Sleep Medicine, Dept of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Chi F. Hung
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of Washington, Seattle, Washington, United States of America
| | - Lynn M. Schnapp
- Division of Pulmonary, Critical Care, Allergy, Sleep Medicine, Dept of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
40
|
Harmon RM, Devany J, Gardel ML. Dia1 coordinates differentiation and cell sorting in a stratified epithelium. J Cell Biol 2022; 221:e202101008. [PMID: 35323863 PMCID: PMC8958268 DOI: 10.1083/jcb.202101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 11/10/2021] [Accepted: 03/01/2022] [Indexed: 11/27/2022] Open
Abstract
Although implicated in adhesion, only a few studies address how the actin assembly factors guide cell positioning in multicellular tissues. The formin, Dia1, localizes to the proliferative basal layer of the epidermis. In organotypic cultures, Dia1 depletion reduced basal cell density and resulted in stratified tissues with disorganized differentiation and proliferative markers. Since crowding induces differentiation in epidermal tissues, we hypothesized that Dia1 is essential to reach densities amenable to differentiation before or during stratification. Consistent with this, forced crowding of Dia1-deficient cells rescued transcriptional abnormalities. We find Dia1 promotes rapid growth of lateral cell-cell adhesions, necessary for the construction of a highly crowded monolayer. In aggregation assays, cells sorted into distinct layers based on Dia1 expression status. These results suggest that as basal cells proliferate, reintegration and packing of Dia1-positive daughter cells is favored, whereas Dia1-negative cells tend to delaminate to a suprabasal compartment. This work elucidates the role of formin expression patterns in constructing distinct cellular domains within stratified epithelia.
Collapse
Affiliation(s)
- Robert M. Harmon
- James Franck Institute, The University of Chicago, Chicago, IL
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL
| | - John Devany
- James Franck Institute, The University of Chicago, Chicago, IL
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL
- Department of Physics, The University of Chicago, Chicago, IL
| | - Margaret L. Gardel
- James Franck Institute, The University of Chicago, Chicago, IL
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL
- Department of Physics, The University of Chicago, Chicago, IL
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL
| |
Collapse
|
41
|
Tsai NY, Wang F, Toma K, Yin C, Takatoh J, Pai EL, Wu K, Matcham AC, Yin L, Dang EJ, Marciano DK, Rubenstein JL, Wang F, Ullian EM, Duan X. Trans-Seq maps a selective mammalian retinotectal synapse instructed by Nephronectin. Nat Neurosci 2022; 25:659-674. [PMID: 35524141 PMCID: PMC9172271 DOI: 10.1038/s41593-022-01068-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/30/2022] [Indexed: 12/21/2022]
Abstract
The mouse visual system serves as an accessible model to understand mammalian circuit wiring. Despite rich knowledge in retinal circuits, the long-range connectivity map from distinct retinal ganglion cell (RGC) types to diverse brain neuron types remains unknown. In this study, we developed an integrated approach, called Trans-Seq, to map RGCs to superior collicular (SC) circuits. Trans-Seq combines a fluorescent anterograde trans-synaptic tracer, consisting of codon-optimized wheat germ agglutinin fused to mCherry, with single-cell RNA sequencing. We used Trans-Seq to classify SC neuron types innervated by genetically defined RGC types and predicted a neuronal pair from αRGCs to Nephronectin-positive wide-field neurons (NPWFs). We validated this connection using genetic labeling, electrophysiology and retrograde tracing. We then used transcriptomic data from Trans-Seq to identify Nephronectin as a determinant for selective synaptic choice from αRGC to NPWFs via binding to Integrin α8β1. The Trans-Seq approach can be broadly applied for post-synaptic circuit discovery from genetically defined pre-synaptic neurons.
Collapse
Affiliation(s)
- Nicole Y Tsai
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program and Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Fei Wang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Kenichi Toma
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Chen Yin
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Jun Takatoh
- McGovern Institute for Brain Research, MIT Brain and Cognitive Sciences, Cambridge, MA, USA
| | - Emily L Pai
- Neuroscience Graduate Program, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Kongyan Wu
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Angela C Matcham
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Luping Yin
- McGovern Institute for Brain Research, MIT Brain and Cognitive Sciences, Cambridge, MA, USA
| | - Eric J Dang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Denise K Marciano
- Departments of Cell Biology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John L Rubenstein
- Neuroscience Graduate Program, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Fan Wang
- McGovern Institute for Brain Research, MIT Brain and Cognitive Sciences, Cambridge, MA, USA
| | - Erik M Ullian
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Xin Duan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
42
|
Peng J, Chen H, Zhang B. Nerve–stem cell crosstalk in skin regeneration and diseases. Trends Mol Med 2022; 28:583-595. [DOI: 10.1016/j.molmed.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
|
43
|
Chen Y, Liu L, Fan J, Zhang T, Zeng Y, Su Z. Low-level laser treatment promotes skin wound healing by activating hair follicle stem cells in female mice. Lasers Med Sci 2022; 37:1699-1707. [PMID: 34546465 DOI: 10.1007/s10103-021-03419-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/13/2021] [Indexed: 01/13/2023]
Abstract
The aim of the study was to explore the effect and mechanism of a low-level laser on hair follicle stem cells in full-thickness skin wound healing in mice. Full-thickness skin defects were generated by a 5-mm punch biopsy tool on the backs of depilated C57/BL6N mice, which were randomly divided thereafter into a low-dose laser treatment group (LLLT-Low), a high-dose laser treatment group (LLLT-High), and a control group (control). From the day of modeling to the day before the skin samples were taken, the wound area and wound edge of the mice in the LLLT-Low and LLLT-High groups were irradiated with a laser comb every 24 h, and the energy density was 1 J/cm2 and 10 J/cm2, respectively. The control group was irradiated with an ordinary fluorescent lamp. At 0, 3, 5, 10, and 14 days after modeling, pictures of each wound were taken, and the percent wound closure was analyzed. At 3, 5, 10, and 14 days after modeling, the samples were observed by hematoxylin and eosin (HE) and immunofluorescence (IF) staining. Whole transcriptome sequencing (RNA-Seq) was performed on the samples on day 10. Gene Ontology (GO) analysis was performed, and the results were validated by Western blot analysis and enzyme-linked immunosorbent assay (ELISA). The analysis of the percent of wound closure showed that healing was accelerated (significantly from 5 to 10 days) in the LLLT-Low group, but there was no clear change in the LLLT-High group. HE staining showed that the LLLT-Low group had an increasing number of hair follicles and a tendency to migrate to the center of the wound. There was no significant increase in the number of hair follicles and no obvious migration in the LLLT-High group. Immunofluorescence staining showed that the total number of CK15 + hair follicle stem cells in the LLLT-Low group was higher than that in the control group and LLLT-High group at all time points. The number and farthest migration distance of CK15 + hair follicle stem cells increased significantly with time, and after 5 days, they were significantly higher than those in the control group and LLLT-High group. RNA-Seq and Western blot analysis showed that the expression of related genes in hair follicle stem cells, including CK15, in the LLLT-Low group was upregulated. GO analysis and ELISA showed that the expression of many cytokines, represented by IL34, in the LLLT-Low group was upregulated. Low-level laser treatment can promote the proliferation, differentiation, and migration of CK15 + hair follicle stem cells by upregulating the cytokine IL34, thereby promoting skin wound healing in mice.
Collapse
Affiliation(s)
- Yihua Chen
- Ninth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Liqiang Liu
- Ninth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China.
| | - Jincai Fan
- Ninth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Tiran Zhang
- Ninth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Yan Zeng
- Ninth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Zhiguo Su
- Ninth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| |
Collapse
|
44
|
Ma J, Bi L, Spurlin J, Lwigale P. Nephronectin-Integrin α8 signaling is required for proper migration of periocular neural crest cells during chick corneal development. eLife 2022; 11:74307. [PMID: 35238772 PMCID: PMC8916771 DOI: 10.7554/elife.74307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
During development, cells aggregate at tissue boundaries to form normal tissue architecture of organs. However, how cells are segregated into tissue precursors remains largely unknown. Cornea development is a perfect example of this process whereby neural crest cells aggregate in the periocular region prior to their migration and differentiation into corneal cells. Our recent RNA-seq analysis identified upregulation of nephronectin (Npnt) transcripts during early stages of corneal development where its function has not been investigated. We found that Npnt mRNA and protein are expressed by various ocular tissues, including the migratory periocular neural crest (pNC), which also express the integrin alpha 8 (Itgα8) receptor. Knockdown of either Npnt or Itgα8 attenuated cornea development, whereas overexpression of Npnt resulted in cornea thickening. Moreover, overexpression of Npnt variants lacking RGD-binding sites did not affect corneal thickness. Neither the knockdown nor augmentation of Npnt caused significant changes in cell proliferation, suggesting that Npnt directs pNC migration into the cornea. In vitro analyses showed that Npnt promotes pNC migration from explanted periocular mesenchyme, which requires Itgα8, focal adhesion kinase, and Rho kinase. Combined, these data suggest that Npnt augments cell migration into the presumptive cornea extracellular matrix by functioning as a substrate for Itgα8-positive pNC cells.
Collapse
Affiliation(s)
- Justin Ma
- Department of Biosciences, Rice University, Houston, United States
| | - Lian Bi
- Department of Biosciences, Rice University, Houston, United States
| | - James Spurlin
- Department of Biosciences, Rice University, Houston, United States
| | - Peter Lwigale
- Department of Biosciences, Rice University, Houston, United States
| |
Collapse
|
45
|
Safina I, Childress LT, Myneni SR, Vang KB, Biris AS. Cell-Biomaterial Constructs for Wound Healing and Skin Regeneration. Drug Metab Rev 2022; 54:63-94. [PMID: 35129408 DOI: 10.1080/03602532.2021.2025387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Over the years, conventional skin grafts, such as full-thickness, split-thickness, and pre-sterilized grafts from human or animal sources, have been at the forefront of skin wound care. However, these conventional grafts are associated with major challenges, including supply shortage, rejection by the immune system, and disease transmission following transplantation. Due to recent progress in nanotechnology and material sciences, advanced artificial skin grafts-based on the fundamental concepts of tissue engineering-are quickly evolving for wound healing and regeneration applications, mainly because they can be uniquely tailored to meet the requirements of specific injuries. Despite tremendous progress in tissue engineering, many challenges and uncertainties still face skin grafts in vivo, such as how to effectively coordinate the interaction between engineered biomaterials and the immune system to prevent graft rejection. Furthermore, in-depth studies on skin regeneration at the molecular level are lacking; as a consequence, the development of novel biomaterial-based systems that interact with the skin at the core level has also been slow. This review will discuss 1) the biological aspects of wound healing and skin regeneration, 2) important characteristics and functions of biomaterials for skin regeneration applications, and 3) synthesis and applications of common biomaterials for skin regeneration. Finally, the current challenges and future directions of biomaterial-based skin regeneration will be addressed.
Collapse
Affiliation(s)
- Ingrid Safina
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| | - Luke T Childress
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| | - Srinivas R Myneni
- Department of Periodontology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Kieng Bao Vang
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| | - Alexandru S Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| |
Collapse
|
46
|
Cai Y, Wang S, Qu J, Belmonte JCI, Liu GH. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:231-238. [PMID: 35303745 PMCID: PMC8968747 DOI: 10.1093/stcltm/szab012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/17/2021] [Indexed: 11/14/2022] Open
Abstract
Stem cell therapies, including stem cell transplantation and rejuvenation of stem cells in situ, are promising avenues for tackling a broad range of diseases. Stem cells can both self-renew and differentiate into other cell types, and play a significant role in the regulation of tissue homeostasis and regeneration after cell degeneration or injury. However, stem cell exhaustion or dysfunction increases with age and impedes the normal function of multiple tissues and systems. Thus, stem cell therapies could provide a solution to aging and age-associated diseases. Here, we discuss recent advances in understanding the mechanisms that regulate stem cell regeneration. We also summarize potential strategies for rejuvenating stem cells that leverage intrinsic and extrinsic factors. These approaches may pave the way toward therapeutic interventions aiming at extending both health and life span.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, People’s Republic of China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, People’s Republic of China
- Aging Translational Medicine Center, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, People’s Republic of China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Corresponding author: Jing Qu, PhD, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, People’s Republic of China. Tel: +86-10-64807768;
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Juan Carlos Izpisúa-Belmonte, PhD, Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA, USA. Tel: (858) 453-4100 x1130;
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, People’s Republic of China
- Guanghui Liu, PhD, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 3A Datun Road, Chaoyang District, Beijing 100101, People’s Republic of China. Tel: +86-10-64807852;
| |
Collapse
|
47
|
Yokosaki Y, Nishimichi N. New Therapeutic Targets for Hepatic Fibrosis in the Integrin Family, α8β1 and α11β1, Induced Specifically on Activated Stellate Cells. Int J Mol Sci 2021; 22:12794. [PMID: 34884600 PMCID: PMC8657911 DOI: 10.3390/ijms222312794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
A huge effort has been devoted to developing drugs targeting integrins over 30 years, because of the primary roles of integrins in the cell-matrix milieu. Five αv-containing integrins, in the 24 family members, have been a central target of fibrosis. Currently, a small molecule against αvβ1 is undergoing a clinical trial for NASH-associated fibrosis as a rare agent aiming at fibrogenesis. Latent TGFβ activation, a distinct talent of αv-integrins, has been intriguing as a therapeutic target. None of the αv-integrin inhibitors, however, has been in the clinical market. αv-integrins commonly recognize an Arg-Gly-Asp (RGD) sequence, and thus the pharmacophore of inhibitors for the 5-integrins is based on the same RGD structure. The RGD preference of the integrins, at the same time, dilutes ligand specificity, as the 5-integrins share ligands containing RGD sequence such as fibronectin. With the inherent little specificity in both drugs and targets, "disease specificity" has become less important for the inhibitors than blocking as many αv-integrins. In fact, an almighty inhibitor for αv-integrins, pan-αv, was in a clinical trial. On the contrary, approved integrin inhibitors are all specific to target integrins, which are expressed in a cell-type specific manner: αIIbβ3 on platelets, α4β1, α4β7 and αLβ2 on leukocytes. Herein, "disease specific" integrins would serve as attractive targets. α8β1 and α11β1 are selectively expressed in hepatic stellate cells (HSCs) and distinctively induced upon culture activation. The exceptional specificity to activated HSCs reflects a rather "pathology specific" nature of these new integrins. The monoclonal antibodies against α8β1 and α11β1 in preclinical examinations may illuminate the road to the first medical agents.
Collapse
Affiliation(s)
- Yasuyuki Yokosaki
- Integrin-Matrix Biomedical Science, Translational Research Center, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8551, Japan;
| | | |
Collapse
|
48
|
Chen K, Liao S, Li Y, Jiang H, Liu Y, Wang C, Kuek V, Kenny J, Li B, Huang Q, Hong J, Huang Y, Chim SM, Tickner J, Pavlos NJ, Zhao J, Liu Q, Qin A, Xu J. Osteoblast-derived EGFL6 couples angiogenesis to osteogenesis during bone repair. Am J Cancer Res 2021; 11:9738-9751. [PMID: 34815781 PMCID: PMC8581413 DOI: 10.7150/thno.60902] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/02/2021] [Indexed: 01/07/2023] Open
Abstract
Rationale: Angiogenesis and osteogenesis are highly coupled processes which are indispensable to bone repair. However, the underlying mechanism(s) remain elusive. To bridge the gap in understanding the coupling process is crucial to develop corresponding solutions to abnormal bone healing. Epidermal growth factor-like protein 6 (EGFL6) is an angiogenic factor specifically and distinctively up-regulated during osteoblast differentiation. In contrast with most currently known osteoblast-derived coupling factors, EGFL6 is highlighted with little or low expression in other cells and tissues. Methods: In this study, primary bone marrow mesenchymal stem cells (MSCs) and osteoblastic cell line (MC3T3-E1) were transduced with lentiviral silencing or overexpression constructs targeting EGFL6. Cells were induced by osteogenic medium, followed by the evaluation of mineralization as well as related gene and protein expression. Global and conditional knockout mice were established to examine the bone phenotype under physiological condition. Furthermore, bone defect models were created to investigate the outcome of bone repair in mice lacking EGFL6 expression. Results: We show that overexpression of EGFL6 markedly enhances osteogenic capacity in vitro by augmenting bone morphogenic protein (BMP)-Smad and MAPK signaling, whereas downregulation of EGFL6 diminishes osteoblastic mineralization. Interestingly, osteoblast differentiation was not affected by the exogenous addition of EGFL6 protein, thereby indicating that EGFL6 may regulate osteoblastic function in an intracrine manner. Mice with osteoblast-specific and global knockout of EGFL6 surprisingly exhibit a normal bone phenotype under physiological conditions. However, EGFL6-deficiency leads to compromised bone repair in a bone defect model which is characterized by decreased formation of type H vessels as well as osteoblast lineage cells. Conclusions: Together, these data demonstrate that EGFL6 serves as an essential regulator to couple osteogenesis to angiogenesis during bone repair.
Collapse
|
49
|
Jin S, Na H, Jeon H, Park J, Choe CP. egfl6 expression in the pharyngeal pouch is dispensable for craniofacial development. Anim Cells Syst (Seoul) 2021; 25:255-263. [PMID: 34745432 PMCID: PMC8567925 DOI: 10.1080/19768354.2021.1970018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Epidermal growth factor-like domain multiple 6 (Egfl6) is a basement membrane protein and plays an important role in hair follicle morphogenesis, angiogenesis, notochord development in vertebrates. Although egfl6 expression in the developing head was observed in zebrafish, its role for craniofacial development and the determination of the pharyngeal region expressing egfl6, have not been reported yet. Here, we report the expression patterns and function of egfl6 in craniofacial development in zebrafish. egfl6 was expressed sequentially in the developing pharyngeal pouches that are key epithelial structures governing the development of the vertebrate head. However, loss-of-function mutations in egfl6 did not cause any craniofacial defects, including the pouches as well as the thymus and facial cartilages whose development is contingent upon appropriate pouch formation. egfl6 was unlikely redundant with egfl7 expressed in a distinct pharyngeal region from that of egfl6 in craniofacial development because reduction of egfl7 with a MO in egfl6 mutants did not affect craniofacial development. In addition, we found that egfl6 carried an endogenous start loss mutation in the wild-type Tübingen strain, implying egfl6 would be a non-functional gene. Taken all together, we suggest that egfl6 expression in the pharyngeal pouches is not required for craniofacial development in zebrafish.
Collapse
Affiliation(s)
- Sil Jin
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Hyejee Na
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Haewon Jeon
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Jangwon Park
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Chong Pyo Choe
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea.,Division of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
50
|
Tago K, Ohta S, Aoki-Ohmura C, Funakoshi-Tago M, Sashikawa M, Matsui T, Miyamoto Y, Wada T, Oshio T, Komine M, Matsugi J, Furukawa Y, Ohtsuki M, Yamauchi J, Yanagisawa K. K15 promoter-driven enforced expression of NKIRAS exhibits tumor suppressive activity against the development of DMBA/TPA-induced skin tumors. Sci Rep 2021; 11:20658. [PMID: 34667224 PMCID: PMC8526694 DOI: 10.1038/s41598-021-00200-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
NKIRAS1 and NKIRAS2 (also called as κB-Ras) were identified as members of the atypical RAS family that suppress the transcription factor NF-κB. However, their function in carcinogenesis is still controversial. To clarify how NKIRAS acts on cellular transformation, we generated transgenic mice in which NKIRAS2 was forcibly expressed using a cytokeratin 15 (K15) promoter, which is mainly activated in follicle bulge cells. The ectopic expression of NKIRAS2 was mainly detected in follicle bulges of transgenic mice with NKIRAS2 but not in wild type mice. K15 promoter-driven expression of NKIRAS2 failed to affect the development of epidermis, which was evaluated using the expression of K10, K14, K15 and filaggrin. However, K15 promoter-driven expression of NKIRAS2 effectively suppressed the development of skin tumors induced by treatment with 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol 13-acetate (TPA). This observation suggested that NKIRAS seemed to function as a tumor suppressor in follicle bulges. However, in the case of oncogenic HRAS-driven cellular transformation of murine fibroblasts, knockdown of NKIRAS2 expression drastically suppressed HRAS-mutant-provoked cellular transformation, suggesting that NKIRAS2 was required for the cellular transformation of murine fibroblasts. Furthermore, moderate enforced expression of NKIRAS2 augmented oncogenic HRAS-provoked cellular transformation, whereas an excess NKIRAS2 expression converted its functional role into a tumor suppressive phenotype, suggesting that NKIRAS seemed to exhibit a biphasic bell-shaped enhancing effect on HRAS-mutant-provoked oncogenic activity. Taken together, the functional role of NKIRAS in carcinogenesis is most likely determined by not only cellular context but also its expression level.
Collapse
Affiliation(s)
- Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan.
| | - Satoshi Ohta
- Division of Structural Biochemistry, Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Chihiro Aoki-Ohmura
- Division of Structural Biochemistry, Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Megumi Funakoshi-Tago
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Miho Sashikawa
- Department of Dermatology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Takeshi Matsui
- Laboratory for Evolutionary Cell Biology of the Skin, School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| | - Taeko Wada
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Tomoyuki Oshio
- Department of Dermatology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Mayumi Komine
- Department of Dermatology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Jitsuhiro Matsugi
- Division of Structural Biochemistry, Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Yusuke Furukawa
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Mamitaro Ohtsuki
- Department of Dermatology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan.,Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Ken Yanagisawa
- Division of Structural Biochemistry, Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| |
Collapse
|