1
|
Dwivedi A, Thippana M, Khammampalli S, Cholleti SN, Vindal V. Unraveling the gender-specific molecular landscape of lung squamous cell carcinoma progression. J Biomol Struct Dyn 2025:1-14. [PMID: 39895519 DOI: 10.1080/07391102.2025.2460069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/14/2024] [Indexed: 02/04/2025]
Abstract
Lung squamous cell carcinoma (LUSC) is a type of non-small cell lung cancer that is the most common and deadly type of lung cancer, originating from the cells lining the bronchi. The progression of LUSC is influenced by various factors, such as genetic, viral, environmental and hormonal factors, immune system response, and smoking history. Despite extensive studies aimed at improving patient survival, the role of gender-specific molecular variants in LUSC progression remains unclear. Using a systems biology approach, combining differential gene expression, network analysis, and machine learning, aberrant mRNA and ncRNAs implicated in LUSC have been identified to improve patient survival, stratify patients and develop novel prognostic strategies. Furthermore, a systematic analysis of the prognostic implications and functional annotations of the molecular variants results in the filtering of key protein-coding genes and non-coding RNAs that are involved in tumor progression. We found several common molecular variants in both genders, including 4 mRNA, 4 miRNAs, and 27 lncRNAs. Among the shared lncRNAs, 5 were novel for both genders. These were found to have a poor prognostic performance in patients with lung cancer. The key players are involved in DNA replication, nucleotide excision repair, complement and coagulation cascades, and estrogen signaling pathways. In this study, we report lncRNAs (PVT1, FAM13A-AS1, LINC00461, NAV2-AS5, PRICKLE2-AS1, and VCAN-AS1) that may function as oncogenes or tumor suppressors by regulating the expression of coding genes, such as RAB24, HECW2, LGR4, and FKBP5. These lncRNAs and coding genes may play important roles in LUSC development and progression.
Collapse
Affiliation(s)
- Ayushi Dwivedi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Mallikarjuna Thippana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Srija Khammampalli
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Sai Nikhith Cholleti
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Vaibhav Vindal
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| |
Collapse
|
2
|
Wang X, Lin Q, Tian L, Li X, Fukuyama T, Ten W, Kong X, Yang Y, Ma X, Zhou X. Electroacupuncture alleviates damage to myopic RGCs probably through lncRNA-XR_002789763.1-mediated mitophagy. Chin Med 2025; 20:16. [PMID: 39894836 PMCID: PMC11787754 DOI: 10.1186/s13020-025-01058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Mitophagy is closely related to the regulation of retinal ganglion cell (RGC) structure and function. Our previous study suggested that long noncoding RNAs (lncRNAs) can cause damage to myopic RGCs. However, whether electroacupuncture (EA) treatment can delay myopia progression through lncRNA-mediated mitophagy in RGCs is currently unknown. This study aimed to investigate the effect of EA on lncRNA-mediated mitophagy in myopic RGCs. METHODS Our study investigated the modulatory effect of EA on mitophagy in RGCs of guinea pigs with form-deprived myopia (FDM). RNA sequencing was performed to further analyze the expression profiles of lncRNAs and mRNAs in RGCs of guinea pigs with FDM after EA treatment, and the related competing endogenous RNA (ceRNA) network was constructed. Importantly, PINK1, a mitophagy-related gene, was included in the core ceRNA network to explore the relationship between lncRNAs and mitophagy in myopic RGCs regulated by EA. We also collected eyeballs from myopic and highly myopic adults to further verify the mechanistic results. RESULTS This study demonstrated that EA treatment delayed the reduction in refraction and increase in axial length and alleviated RGC damage in guinea pigs with FDM. We further found that EA could induce mitophagy in guinea pig RGCs with FDM by promoting the mitophagy-related PINK1/Parkin signaling pathway. Moreover, mitophagy is inhibited in the retina of highly myopic adults. RNA sequencing revealed that 599 lncRNAs and 455 mRNAs were differentially expressed in guinea pig RGCs with FDM after EA treatment. A core ceRNA network was constructed by incorporating PINK1 and verified by related molecular experiments, and we found that EA treatment may induce mitophagy and attenuated RGC injury in guinea pigs with FDM by sponging miR-342-5p through lncRNA-XR_002789763.1 to activate the PINK1/Parkin signaling pathway and promote Mfn2 ubiquitination. CONCLUSION EA treatment might regulate lncRNA-XR_002789763.1/miR-342-5p axis and activate the mitophagy-related PINK1/Parkin signaling pathway, and promote Mfn2 ubiquitination, thereby alleviating RGC damage and delaying myopia progression.
Collapse
Affiliation(s)
- Xuejun Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China
| | - Qinghong Lin
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China
- Refractive Surgery Department, Bright Eye Hospital, Fuzhou, 350001, China
| | - Li Tian
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xiaoying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200083, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Teruko Fukuyama
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China
| | - Weijung Ten
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China
| | - Xiehe Kong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200083, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yanting Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200083, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xiaopeng Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200083, China.
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
- NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China.
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China.
| |
Collapse
|
3
|
Duan X, Shi J, Hou R, Huang Y, Wang C, Du H. The necroptosis-related lncRNA ENSG00000253385.1 promotes the progression of esophageal squamous cell carcinoma by targeting the miR-16-2-3p/VDAC1 axis. Sci Rep 2025; 15:2650. [PMID: 39837946 PMCID: PMC11751061 DOI: 10.1038/s41598-025-85646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common digestive malignancies. Our previous studies revealed necroptosis-related lncRNA ENSG00000253385.1 was an independent prognostic factor for ESCC. However, the specific regulatory mechanisms are unknown. This study aimed to investigate the expression of the lncRNA ENSG00000253385.1 in ESCC tissues and its relationship with clinicopathological features and patient prognosis, and to explore its potential regulatory mechanism in ESCC cells. We detected the location of the lncRNA ENSG00000253385.1 in ESCC cells by fluorescence in situ hybridization (FISH). FISH and quantitative real-time polymerase chain reaction (qRT‒PCR) were used to detect gene expression in ESCC tissues and cells. Cell proliferation, migration and apoptosis were evaluated by CCK-8 assay, wound healing, transwell cell migration, invasion and flow cytometry assay. The levels of necroptosis-related protein were detected by western blot. The binding sites between miR-16-2-3p and lncRNA ENSG00000253385.1 or voltage-dependent anion channel 1 (VDAC1) were predicted by bioinformatics database and confirmed by dual luciferase reporter gene assay. Results revealed that the lncRNA ENSG00000253385.1 expression was higher in ESCC tissues than in the adjacent tissues. High lncRNA ENSG00000253385.1 expression, positive lymph node metastasis and clinical stage III were associated with poor overall survival (OS) in patients with ESCC, and were independent risk factors for prognosis of patients with ESCC. The lncRNA ENSG00000253385.1 was located in the cytoplasm. MiR-16-2-3p had a direct targeting regulatory relation ship with lncRNA ENSG00000253385.1 and VDAC1. MiR-16-2-3p inhibitor promoted proliferation, migration and invasion, and inhibited apoptosis of ESCC cells. Knockdown of the lncRNA ENSG00000253385.1 could inhibit the proliferation, migration and invasion, promote the apoptosis, and result in increases in the necroptosis-related proteins p-receptor-interacting protein kinase 3 (RIPK3)/RIPK3 and p-mixed lineaae kinase domain-like protein (MLKL)/MLKL and a decrease in the VDAC1 protein levels in ESCC cells, whereas miR-16-2-3p inhibition rescued these effects. Therefore, The lncRNA ENSG00000253385.1/ miR-16-2-3p/VDAC1 axis may be considered as a potential predictive biomarker and target for ESCC.
Collapse
Affiliation(s)
- Xiaoyang Duan
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Jian Shi
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Ran Hou
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Yajie Huang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Chunyan Wang
- Gastroenterology department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Huazhen Du
- Emergency department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
4
|
He S, Bing J, Zhong Y, Zheng X, Zhou Z, Wang Y, Hu J, Sun X. PlantCircRNA: a comprehensive database for plant circular RNAs. Nucleic Acids Res 2025; 53:D1595-D1605. [PMID: 39189447 PMCID: PMC11701686 DOI: 10.1093/nar/gkae709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
Circular RNAs (circRNAs) represent recently discovered novel regulatory non-coding RNAs. While they are present in many eukaryotes, there has been limited research on plant circRNAs. We developed PlantCircRNA (https://plant.deepbiology.cn/PlantCircRNA/) to fill this gap. The two most important features of PlantCircRNA are (i) it incorporates circRNAs from 94 plant species based on 39 245 RNA-sequencing samples and (ii) it imports the original AtCircDB and CropCircDB databases. We manually curated all circRNAs from published articles, and imported them into the database. Furthermore, we added detailed information of tissue as well as abiotic stresses to the database. To help users understand these circRNAs, the database includes a detection score to measure their consistency and a naming system following the guidelines recently proposed for eukaryotes. Finally, we developed a comprehensive platform for users to visualize, analyze, and download data regarding specific circRNAs. This resource will serve as a home for plant circRNAs and provide the community with unprecedented insights into these mysterious molecule.
Collapse
Affiliation(s)
- Shutian He
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Jianhao Bing
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yang Zhong
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xiaoyang Zheng
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Ziyu Zhou
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yifei Wang
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Jiming Hu
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xiaoyong Sun
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
5
|
Li W, Zhang X, Song J, Yang L, Wang D, Yuan G, Zhao L. Mechanistic insights into GLP-1 receptor agonist-induced weight loss through ceRNA network analysis. Genomics 2025; 117:110988. [PMID: 39761765 DOI: 10.1016/j.ygeno.2025.110988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/09/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND GLP-1 receptor agonists (GLP-1RA) have been extensively utilized in the management of body weight in individuals with obesity. Circular RNA (circRNA), a class of covalently closed RNA molecules, has garnered increasing attention for its potential role in the pathogenesis of obesity. However, the specific mechanisms through which circRNA contributes to GLP-1RA-induced weight loss remains elusive. METHODS High-throughput sequencing analyzed epididymal adipose tissue from obese mice under high-fat, and GLP-1RA intervention (600 μg/kg/d). The functions of differentially expressed (DE) genes were enriched and analyzed. The circRNA-miRNA-mRNA interaction network was constructed in Cytoscape, and KEGG pathway gene enrichment was validated via western blotting. RESULTS A total of 644 DEcircRNAs, 186 DEmiRNAs, and 3474 DEmRNAs were identified. Based on ceRNA score calculations, network diagrams were constructed. Gene Ontology (GO) analysis revealed that DERNAs were linked to lipid and fatty acid metabolism. DE genes within ceRNA pairs were enriched in lipid metabolism pathways, especially the PI3K-Akt and AMPK signaling pathways. GLP-1RA induced the phosphorylation of AKT and AMPK, which subsequently led to a reduction of SREBP-1, ACC, and FAS. CONCLUSION GLP-1RA might activate PI3K-Akt and AMPK signaling pathways to combat obesity through the ceRNA network of circRNAs.
Collapse
Affiliation(s)
- Wenxin Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang 212000, Jiangsu, China
| | - Xinyu Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang 212000, Jiangsu, China; Department of Endocrinology, the Eighth People's Hospital of Wuxi, Wuxi 214000, Jiangsu, China
| | - Jiamin Song
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang 212000, Jiangsu, China
| | - Ling Yang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang 212000, Jiangsu, China
| | - Dong Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang 212000, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang 212000, Jiangsu, China.
| | - Li Zhao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang 212000, Jiangsu, China.
| |
Collapse
|
6
|
Rao J, Wang X, Wan X, Chen C, Xiong X, Xiong A, Yang Z, Chen L, Wang T, Mao L, Jiang C, Zeng J, Zheng Z. Multiomics Approach Identifies Key Proteins and Regulatory Pathways in Colorectal Cancer. J Proteome Res 2025; 24:356-367. [PMID: 39699012 DOI: 10.1021/acs.jproteome.4c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The prevalence rate of colorectal cancer (CRC) has dramatically increased in recent decades. However, robust CRC biomarkers with therapeutic value for early diagnosis are still lacking. To comprehensively reveal the molecular characteristics of CRC development, we employed a multiomics strategy to investigate eight different types of CRC samples. Proteomic analysis revealed 2022 and 599 differentially expressed tissue proteins between CRC and control groups in CRC patients and CRC mice, respectively. In patients with colorectal precancerous lesions, 25 and 34 significantly changed proteins were found between patients and healthy controls in plasma and white blood cells, respectively. Notably, vesicle-associated membrane protein-associated protein A (VAPA) was found to be consistently and significantly decreased in most types of CRC samples, and its level was also significantly correlated with increased overall survival of CRC patients. Furthermore, 37 significantly enriched pathways in CRC were further validated via metabolomics analysis. Ten VAPA-related pathways were found to be significantly enriched in CRC samples, among which PI3K-Akt signaling, central carbon metabolism in cancer, cholesterol metabolism, and ABC transporter pathways were also enriched in the premalignant stage. Our study identified VAPA and its associated pathways as key regulators, suggesting their potential applications in the early diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Jun Rao
- The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Xing Wang
- The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang 330006, Jiangxi Province, China
| | - Xianghui Wan
- The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Chao Chen
- The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Xiaopeng Xiong
- The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Aihua Xiong
- The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Zhiqing Yang
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xian 710000, Shaanxi Province, China
| | - Lanyu Chen
- The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang 330006, Jiangxi Province, China
| | - Ting Wang
- The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang 330006, Jiangxi Province, China
| | - Lihua Mao
- The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang 330006, Jiangxi Province, China
| | - Chunling Jiang
- Department of Radiation Oncology, Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, Nanchang 330029, China
| | - Jiquan Zeng
- The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Zhi Zheng
- The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
7
|
Kolapalli SP, Nielsen TM, Frankel LB. Post-transcriptional dynamics and RNA homeostasis in autophagy and cancer. Cell Death Differ 2025; 32:27-36. [PMID: 37558732 PMCID: PMC11742036 DOI: 10.1038/s41418-023-01201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Autophagy is an essential recycling and quality control pathway which preserves cellular and organismal homeostasis. As a catabolic process, autophagy degrades damaged and aged intracellular components in response to conditions of stress, including nutrient deprivation, oxidative and genotoxic stress. Autophagy is a highly adaptive and dynamic process which requires an intricately coordinated molecular control. Here we provide an overview of how autophagy is regulated post-transcriptionally, through RNA processing events, epitranscriptomic modifications and non-coding RNAs. We further discuss newly revealed RNA-binding properties of core autophagy machinery proteins and review recent indications of autophagy's ability to impact cellular RNA homeostasis. From a physiological perspective, we examine the biological implications of these emerging regulatory layers of autophagy, particularly in the context of nutrient deprivation and tumorigenesis.
Collapse
Affiliation(s)
| | | | - Lisa B Frankel
- Danish Cancer Institute, Copenhagen, Denmark.
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Zhang H, Winter P, Wartmann T, Simioni L, Al-Madhi S, Perrakis A, Croner RS, Shi W, Yu Q, Kahlert UD. Unlocking Clinical Insights: Lymphocyte-Specific Protein Tyrosine Kinase Candidates as Promising Therapeutic Targets for Pancreatic Cancer Risk Stratification. Cancer Biother Radiopharm 2025; 40:1-10. [PMID: 38837745 DOI: 10.1089/cbr.2024.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Background: Uncover the pivotal link between lymphocyte-specific protein tyrosine kinase (Lck)-related genes and clinical risk stratification in pancreatic cancer. Methods: This study identifies shared genes between differentially expressed genes (DEGs) and Lck-related genes in pancreatic cancer using a methodological framework rooted in The Cancer Genome Atlas database. Feature gene selection is accomplished and a signature model is constructed. Statistical significant clinical endpoints such as overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) were defined. Results: After performing random survival forest, Lasso regression, and multivariate Cox regression model, 7 trait genes out of 272 Lck-associated DEGs are selected to create a signature model that is independent of other clinical factors and can predict OS and DSS. It appears that high-risk patients have activated the TP53 signaling pathway and the cell cycle signaling pathway. LAMA3 turned out to be the hub gene of the signature with high expression in pancreatic cancer. Patients with increased expression of LAMA3 had a short OS, DSS, and PFI in comparison. The candidate competing endogenous RNA network of LAMA3 turned out to be OPI5-AS1/hsa-miR-186-5p/LAMA3 axis. Conclusions: A characteristic signature of seven Lck-related genes, especially LAMA3, has been shown to be a key factor in clinical risk stratification for pancreatic cancer.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Wuhu City, China
| | - Paul Winter
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, Magdeburg, Germany
| | - Thomas Wartmann
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, Magdeburg, Germany
| | - Luca Simioni
- Institute for molecular and clinical immunology, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, Magdeburg, Germany
| | - Sara Al-Madhi
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, Magdeburg, Germany
| | - Aris Perrakis
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, Magdeburg, Germany
| | - Roland S Croner
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, Magdeburg, Germany
| | - Wenjie Shi
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, Magdeburg, Germany
| | - Quan Yu
- Department of Clinical Nutrition, Jinshan Hospital, Fudan University, Shanghai, China
| | - Ulf D Kahlert
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, Magdeburg, Germany
| |
Collapse
|
9
|
Ferro E, Szischik CL, Cunial M, Ventura AC, De Martino A, Bosia C. Out-of-Equilibrium ceRNA Crosstalk. Methods Mol Biol 2025; 2883:167-193. [PMID: 39702709 DOI: 10.1007/978-1-0716-4290-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Among non-coding RNAs, microRNAs are pivotal post-transcriptional regulators of gene expression in higher eukaryotes. Through a titration-based mechanism of interaction with their target RNAs, microRNAs can mediate a weak but pervasive form of RNA cross-regulation, as different endogenous RNAs can be effectively coupled by competing for microRNA binding (a phenomenon now known as "crosstalk"). Mathematical modeling has been proven of great help in unraveling many features of these competing endogenous RNA (ceRNA) interactions. However, although many studies have been devoted to the steady-state properties of this indirect regulatory layer, little is known about how the information encoded in frequency, amplitude, duration, and other features of regulatory signals can affect the resulting ceRNA crosstalk picture and hence the overall patterns of gene expression. Here, we focus on such dynamical aspects, with a special emphasis on the encoding and decoding of time-dependent signals.
Collapse
Affiliation(s)
- Elsi Ferro
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, Torino, Italy
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le, Candiolo, Italy
| | - Candela L Szischik
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas Argentina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marta Cunial
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le, Candiolo, Italy
| | - Alejandra C Ventura
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas Argentina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea De Martino
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, Torino, Italy
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le, Candiolo, Italy
| | - Carla Bosia
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, Torino, Italy.
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le, Candiolo, Italy.
| |
Collapse
|
10
|
Pedrani M, Barizzi J, Salfi G, Nepote A, Testi I, Merler S, Castelo-Branco L, Mestre RP, Turco F, Tortola L, Theurillat JP, Gillessen S, Vogl U. The Emerging Predictive and Prognostic Role of Aggressive-Variant-Associated Tumor Suppressor Genes Across Prostate Cancer Stages. Int J Mol Sci 2025; 26:318. [PMID: 39796175 PMCID: PMC11719667 DOI: 10.3390/ijms26010318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Aggressive variant prostate cancer (AVPC) is characterized by a molecular signature involving combined defects in TP53, RB1, and/or PTEN (AVPC-TSGs), identifiable through immunohistochemistry or genomic analysis. The reported prevalence of AVPC-TSG alterations varies widely, reflecting differences in assay sensitivity, treatment pressure, and disease stage evolution. Although robust clinical evidence is still emerging, the study of AVPC-TSG alterations in prostate cancer (PCa) is promising. Alterations in TP53, RB1, and PTEN, as well as the combined loss of AVPC-TSGs, may have significant implications for prognosis and treatment. These biomarkers might help predict responses to various therapies, including hormonal treatments, cytotoxic agents, radiotherapy, and targeted therapies. Understanding the impact of these molecular alterations in patients with PCa is crucial for personalized management. In this review, we provide a comprehensive overview of the emerging prognostic and predictive roles of AVPC-TSG alterations across PCa stages. Moreover, we discuss the implications of different methods used for detecting AVPC-TSG alterations and summarize factors influencing their prevalence. As our comprehension of the genomic landscape of PCa disease deepens, incorporating genomic profiling into clinical decision making will become increasingly important for improving patient outcomes.
Collapse
Affiliation(s)
- Martino Pedrani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Jessica Barizzi
- Istituto Cantonale di Patologia, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland
| | - Giuseppe Salfi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Alessandro Nepote
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- AOU San Luigi Gonzaga, Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Irene Testi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Sara Merler
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University Hospital Trust, 37126 Verona, Italy
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Luis Castelo-Branco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Fabio Turco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Luigi Tortola
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Ursula Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| |
Collapse
|
11
|
Zhang J, Xiong C, Wei X, Yang H, Zhao C. Modeling ncRNA Synergistic Regulation in Cancer. Methods Mol Biol 2025; 2883:377-402. [PMID: 39702718 DOI: 10.1007/978-1-0716-4290-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cancer seriously threatens human life and health, and the structure and function of genes within cancer cells have changed relative to normal cells. Essentially, cancer is a polygenic disorder, and the core of its occurrence and development is caused by polygenic synergy. Non-coding RNAs (ncRNAs) act as regulators to modulate gene expression levels, and they provide theoretical basis and new technology for the diagnosis and preventive treatment of cancer. However, the study of ncRNA regulation and its role as biomarkers in cancer remain largely unearthed. Driven by multi-omics data, an abundance of computational methods, tools, and databases have been developed for predicting ncRNA-cancer association/causality, inferring ncRNA regulation, and modeling ncRNA synergistic regulation. This chapter aims to provide a comprehensive perspective of modeling ncRNA synergistic regulation. Since the ncRNAs involved in cancer contribute to modeling cancer-associated ncRNA synergistic regulation, we first review the databases and tools of cancer-related ncRNAs. Then we investigate the existing tools or methods for modeling ncRNA-directed and ncRNA-mediated regulation. In addition, we survey the available computational tools or methods for modeling ncRNA synergistic regulation, including synergistic interaction and synergistic competition. Finally, we discuss the future directions and challenges in modeling ncRNA synergistic regulation.
Collapse
Affiliation(s)
- Junpeng Zhang
- School of Engineering, Dali University, Dali, Yunnan, China
| | - Chenchen Xiong
- School of Engineering, Dali University, Dali, Yunnan, China
- Beijing CapitalBio Pharma Technology Co., Ltd., Beijing, China
| | - Xuemei Wei
- School of Engineering, Dali University, Dali, Yunnan, China
| | - Haolin Yang
- School of Engineering, Dali University, Dali, Yunnan, China
| | - Chunwen Zhao
- School of Engineering, Dali University, Dali, Yunnan, China
| |
Collapse
|
12
|
Yu Z, Zhang Y, Wang G, Song S, Su H, Wu Y, Zhang Y, Liu P, Liu X. The mechanism of all-trans retinoic acid-induced cleft palate may be related to the novel ENSMUST00000159153-miR-137-5p-Wnt7a and ENSMUST000000236086-miR-34b-3p-EphA10/TRPM2 ceRNA crosstalk. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 114:104623. [PMID: 39710122 DOI: 10.1016/j.etap.2024.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/08/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Cleft palate is the most prevalent congenital condition. Cleft palate is brought on by an exogenous chemical called all-trans retinoic acid (atRA). In order to indirectly control gene expression, long chain non-coding RNAs (lncRNAs) act as competitive endogenous RNA (ceRNA) sponges. Its exact mode of action in cleft palate has not yet been determined. The purpose of this study was to determine whether lncRNAs and miRNAs regulated palatal fusion genes during the formation of cleft palate and to offer a possible course for cleft palate target gene therapy. In this work, we created a cleft palate model using atRA, conducted RNA sequencing (RNA-seq) to identify the genes that differed between the atRA-treated group and the control group, and built the lncRNA-miRNA-mRNA ceRNA network based on the projected ceRNA. The results were confirmed using a quantitative real-time polymerase chain reaction (qRT-PCR). ENSMUST00000159153-miR-137-5p-Wnt7a and ENSMUST000000236086-miR-34b-3p-EphA10/TRPM2 may be the main causes of atRA-induced cleft palate, according to the results.
Collapse
Affiliation(s)
- Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China; Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Yaxin Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Guoxu Wang
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Shuaixing Song
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Hexin Su
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Yang Wu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Pengfei Liu
- The Sixth People's Hospital of Luoyang, Luoyang 471023, China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
13
|
Pilotto Heming C, Aran V. The potential of circulating cell-free RNA in CNS tumor diagnosis and monitoring: A liquid biopsy approach. Crit Rev Oncol Hematol 2024; 204:104504. [PMID: 39251048 DOI: 10.1016/j.critrevonc.2024.104504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024] Open
Abstract
Early detection of malignancies, through regular cancer screening, has already proven to have potential to increase survival rates. Yet current screening methods rely on invasive, expensive tissue sampling that has hampered widespread use. Liquid biopsy is noninvasive and represents a potential approach to precision oncology, based on molecular profiling of body fluids. Among these, circulating cell-free RNA (cfRNA) has gained attention due to its diverse composition and potential as a sensitive biomarker. This review provides an overview of the processes of cfRNA delivery into the bloodstream and the role of cfRNA detection in the diagnosis of central nervous system (CNS) tumors. Different types of cfRNAs such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) have been recognized as potential biomarkers in CNS tumors. These molecules exhibit differential expression patterns in the plasma, cerebrospinalfluid (CSF) and urine of patients with CNS tumors, providing information for diagnosing the disease, predicting outcomes, and assessing treatment effectiveness. Few clinical trials are currently exploring the use of liquid biopsy for detecting and monitoring CNS tumors. Despite obstacles like sample standardization and data analysis, cfRNA shows promise as a tool in the diagnosis and management of CNS tumors, offering opportunities for early detection, personalized therapy, and improved patient outcomes.
Collapse
Affiliation(s)
- Carlos Pilotto Heming
- Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Av. Rodolpho Paulo Rocco 225, Rio de Janeiro 21941-905, Brazil; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rua do Rezende 156, Rio de Janeiro 20231-092, Brazil
| | - Veronica Aran
- Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Av. Rodolpho Paulo Rocco 225, Rio de Janeiro 21941-905, Brazil; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rua do Rezende 156, Rio de Janeiro 20231-092, Brazil.
| |
Collapse
|
14
|
Li Y, Ye Y, Zhu X, Li S, Rihan N, Yao Z, Sun Z, Gao P, Zhao Y, Lai Q. Polystyrene nanoplastics induce apoptosis, histopathological damage, and glutathione metabolism disorder in the intestine of juvenile East Asian river prawns (Macrobrachium nipponense). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176718. [PMID: 39366565 DOI: 10.1016/j.scitotenv.2024.176718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
Abstract
Nanoplastics (NPs) are widely distributed in the aquatic environment and have become a global concern as a new type of pollutant. Many researchers have studied the physiological effects of NPs on aquatic organisms, but relatively little is known about their effects on intestinal immune function in crustaceans. Therefore, we used NPs concentrations of 0, 5, 10, 20, 40 mg/L for 28 days of stress, evaluated the effects of NPs exposure on intestinal cell apoptosis, histopathological damage, and glutathione (GSH) metabolism of juvenile East Asian river prawns (Macrobrachium nipponense). As NPs concentration increased, the contents of total GSH and oxidized glutathione decreased gradually (P < 0.05), the concentration of GSH first increased and then decreased (P < 0.05), and the activities of lysozyme, acid phosphatase, phenoloxidase, and alkaline phosphatase first increased and then decreased (P < 0.05). Additionally, intestinal tissue structure was damaged, and the apoptosis rate significantly increased (P < 0.05). The expression of intestinal autophagy genes (CTL, ALF, Crustin, ATG8, and BCL-2) increased at first and then decreased, the expression levels of TNF and Wnt4 significantly decreased, and the expression of Beclin significantly increased with increasing NPs concentration. We also found that AP-1 and PTEN were highly expressed in the hepatopancreas and were involved in intestinal immune responses. Our results showed that exposure to NPs may induce apoptosis of intestinal tissue cells, induce autophagy, and inhibit GSH metabolism, thereby reducing intestinal immune function of M. nipponense. These findings provide a reference for healthy aquaculture and ecological risk assessment of prawns.
Collapse
Affiliation(s)
- Yiming Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xiaoyi Zhu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Siwen Li
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Na Rihan
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Zongli Yao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Zhen Sun
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Pengcheng Gao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Qifang Lai
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China.
| |
Collapse
|
15
|
Kumar RR, Mohanta A, Rana MK, Uttam V, Tuli HS, Jain A. LncRNAs SOX2-OT and NEAT1 act as a potential biomarker for esophageal squamous cell carcinoma. Discov Oncol 2024; 15:693. [PMID: 39576275 PMCID: PMC11584831 DOI: 10.1007/s12672-024-01589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
Despite strides in diagnostic and therapeutic approaches for ESCC, patient survival rates remain relatively low. Recent studies highlight the pivotal role of long non-coding RNAs (lncRNAs) in regulating diverse cellular activities in humans. Dysregulated lncRNAs have emerged as potential diagnostic indicators across various cancers, including ESCC. However, further research is necessary to effectively leverage ESCC-associated lncRNAs in clinical settings. Understanding their clinical significance for ESCC diagnosis and their mechanisms can pave the way for more effective therapeutic strategies. Our qRT-PCR analysis revealed significant downregulation of SOX2-OT (~ 2.02-fold) and NEAT1 (~ 1.53-fold) in ESCC blood samples. These lncRNAs show potential as biomarkers for distinguishing ESCC patients from healthy individuals, with ROC curves and AUC values of 0.736 for SOX2-OT and 0.621 for NEAT1. Further analysis examined the correlation between SOX2-OT and NEAT1 expression and various clinicopathological factors, including age, gender, smoking, alcohol use, hot beverage intake, tumor grade, and TNM stages. In-silico studies highlighted their roles in miRNA sponging via mTOR and MAPK pathways, while co-expression network analysis identified associated genes. This research paves the way for future studies on ESCC prognosis using SOX2-OT and NEAT1 as predictive markers. By thoroughly investigating the functions of these lncRNAs, we aim to deepen our understanding of their potential as diagnostic markers and their role in facilitating effective therapeutic interventions for esophageal squamous cell carcinoma (ESCC) within clinical contexts.
Collapse
Affiliation(s)
- Rajiv Ranjan Kumar
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, 151401, India
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Adrija Mohanta
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Manjit Kaur Rana
- Department of Pathology/Laboratory Medicine, All India Institute of Medical Sciences, Bathinda, India
| | - Vivek Uttam
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | | | - Aklank Jain
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
16
|
Li D, Wang J, Zeng J, Li S, Sun D, Qiu L, Huang Z, Wang K, Fu G, Gou D, Zhang Y. Identification and Validation of Genes Exhibiting Dynamic Alterations in Response to Bleomycin-Induced Pulmonary Fibrosis. Mol Biotechnol 2024; 66:3323-3335. [PMID: 37924392 DOI: 10.1007/s12033-023-00943-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/09/2023] [Indexed: 11/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) carries a high mortality rate and has a poor prognosis. The pathogenesis of pulmonary fibrosis (PF) is highly related to dysregulation of multiple RNAs. This study aims to identify and validate dysregulated RNAs that exhibited dynamic alterations in response to bleomycin (BLM)-induced PF. The results will provide therapeutic targets for patients suffering from IPF. Whole transcriptomic profiles of BLM-induced PF were obtained through high-throughput RNA sequencing. miRNA profiling was downloaded from GSE45789 database in the Gene Expression Omnibus (GEO). We identified the differentially expressed RNAs (DERNAs) that exhibited dynamic alterations in response to BLM-induced PF. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis were conducted to discovery regulatory processes of PF. Weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) analysis, and co-expression analysis were performed to identify key genes and pathogenic pattern during the progression of PF. MiRanda, miRcode, and TargetScan were utilized to predict target relationships in the potential competing endogenous RNA (ceRNA) network. The results were verified by qRT-PCR analysis. In the context of BLM-induced PF, this study identified a total of 167 differentially expressed messenger RNAs (DEmRNAs), 115 differentially expressed long non-coding RNAs (DElncRNAs), 45 differentially expressed circular RNAs (DEcircRNAs), and 87 differentially expressed microRNAs (DEmiRNAs). These RNA molecules showed dynamic alterations in response to BLM-induced PF. These DEmRNAs exhibited a predominant association with the biological processes pertaining to the organization of extracellular matrix. A regulatory network was built in PF, encompassing 31 DEmRNAs, 18 DE lncRNAs, 13 DEcircRNAs, and 13 DEmiRNAs. Several DERNA molecules were subjected to validate using additional BLM-induced PF model. The outcomes of this validation process shown a strong correlation with the results obtained from RNA sequencing analysis. The GSE213001 dataset was utilized to validate the expression levels and diagnostic efficacy of four specific hub mRNAs (CCDC80, CLU, COL5A1, and COL6A3) in individuals diagnosed with PF. In this study, we identified and validated several RNA molecules that exhibited dynamic alternations in response to BLM-induced PF. These dysregulated RNAs participated in the pathogenesis of PF and can be used as therapeutic targets for early-stage IPF. Although more work must be done to confirm the results, our study may provide directions for future studies.
Collapse
Affiliation(s)
- Dengyuan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650022, China
| | - Jun Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Jie Zeng
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650022, China
| | - Shujin Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Danxiong Sun
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650022, China
| | - Lin Qiu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Zhenming Huang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650022, China
| | - Ku Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Gaohui Fu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China.
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650022, China.
| |
Collapse
|
17
|
Pang X, Xiao F, Zheng T, Zhao L, Ge X, Xie S, Zhang Z, Xu N, Wei Z, Xiao Z. Integration Analysis of miRNA Circulating Expression Following Cerebellar Transcranial Direct Current Stimulation in Patients with Ischemic Stroke. Biochem Genet 2024:10.1007/s10528-024-10912-4. [PMID: 39304639 DOI: 10.1007/s10528-024-10912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
The aim of this study was to explore the molecular mechanisms underlying cerebellar transcranial direct current stimulation (ctDCS) as a rehabilitation intervention for patients with ischemic stroke, focusing on the role of microRNAs (miRNAs). Whole-transcriptome sequencing was employed to obtain circulating expression profiles of miRNAs, long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and mRNAs in patients with ischemic stroke before and after 3-week ctDCS. miRanda software was used to predict the target genes of miRNAs, while Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to identify biological functions and signaling pathways. Subsequently, competing endogenous RNA (ceRNA) regulatory networks comprising circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA interactions were constructed. Key miRNAs in blood samples were validated through quantitative RT-PCR. In total, 43 miRNAs, 807 lncRNAs, 1,111 circRNAs, and 201 mRNAs were differentially expressed after ctDCS compared with before ctDCS. Bioinformatics analyses revealed significant enrichment of target genes regulated by differentially expressed miRNAs across multiple biological pathways. CeRNA regulatory networks implied that several miRNAs were closely related to the ctDCS. Among them, hsa-miR-181a-5p, hsa-miR-224-5p, and hsa-miR-340-3p showed significantly downregulated expression levels as confirmed by qRT-PCR. This study conducted the first-ever assessment of miRNA expression patterns in patients with ischemic stroke undergoing ctDCS. The findings revealed that ctDCS induces alterations in miRNA levels, suggesting their potential utility as therapeutic markers.
Collapse
Affiliation(s)
- Xiaomin Pang
- Department of Rehabilitation, the First People's Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fang Xiao
- Department of Neurology, the First Peoples Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianqing Zheng
- Department of Rehabilitation, the First People's Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liren Zhao
- Department of Rehabilitation, the First People's Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaorong Ge
- Department of Rehabilitation, the First People's Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shaojun Xie
- Department of Rehabilitation, the First People's Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhao Zhang
- Department of Neurology, the First Peoples Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ning Xu
- Department of Neurology, the First Peoples Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zongyong Wei
- Department of Rehabilitation, the First People's Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Zhanhong Xiao
- Department of Rehabilitation, the First People's Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
18
|
Ji HW, Kang J, Kim HC, Jung J, Lee SJ, Jung JY, Lee SW. The association between cumulative exposure to PM 2.5 and DNA methylation measured using methyl-capture sequencing among COPD patients. Respir Res 2024; 25:335. [PMID: 39251997 PMCID: PMC11386081 DOI: 10.1186/s12931-024-02955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/17/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Particulate matter with a diameter of < 2.5 μm (PM2.5) influences gene regulation via DNA methylation; however, its precise mechanism of action remains unclear. Thus, this study aimed to examine the connection between personal PM2.5 exposure and DNA methylation in CpG islands as well as explore the associated gene pathways. METHODS A total of 95 male patients with chronic obstructive pulmonary disease (COPD) were enrolled in this study. PM2.5 concentrations were measured for 12 months, with individual exposure recorded for 24 h every 3 months. Mean indoor and estimated individual PM2.5 exposure levels were calculated for short-term (7 days), mid-term (35 days), and long-term (90 days). DNA methylation analysis was performed on the blood samples, which, after PCR amplification and hybridization, were finally sequenced using an Illumina NovaSeq 6000 system. Correlation between PM2.5 exposure and CpG methylation sites was confirmed via a mixed-effects model. Functional enrichment analysis was performed on unique CpG methylation sites associated with PM2.5 exposure to identify the relevant biological functions or pathways. RESULTS The number of CpG sites showing differential methylation was 36, 381, and 182 for the short-, mid-, and long-term indoor models, respectively, and 3, 98, and 28 for the short-, mid-, and long-term estimated exposure models, respectively. The representative genes were TMTC2 (p = 1.63 × 10-3, R2 = 0.656), GLRX3 (p = 1.46 × 10-3, R2 = 0.623), DCAF15 (p = 2.43 × 10-4, R2 = 0.623), CNOT6L (p = 1.46 × 10-4, R2 = 0.609), BSN (p = 2.21 × 10-5, R2 = 0.606), and SENP6 (p = 1.59 × 10-4, R2 = 0.604). Functional enrichment analysis demonstrated that the related genes were mostly associated with pathways related to synaptic transmission in neurodegenerative diseases and cancer. CONCLUSION A significant association was observed between PM2.5 exposure and DNA methylation upon short-term exposure, and the extent of DNA methylation was the highest upon mid-term exposure. Additionally, various pathways related to neurodegenerative diseases and cancer were associated with patients with COPD. CLINICALTRIALS GOV IDENTIFIER NCT04878367.
Collapse
Affiliation(s)
- Hyun Woo Ji
- Division of Pulmonology, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Jieun Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Hwan-Cheol Kim
- Department of Occupational and Environmental Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| | | | - Seon-Jin Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ji Ye Jung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Poliseno L, Lanza M, Pandolfi PP. Coding, or non-coding, that is the question. Cell Res 2024; 34:609-629. [PMID: 39054345 PMCID: PMC11369213 DOI: 10.1038/s41422-024-00975-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/30/2024] [Indexed: 07/27/2024] Open
Abstract
The advent of high-throughput sequencing uncovered that our genome is pervasively transcribed into RNAs that are seemingly not translated into proteins. It was also found that non-coding RNA transcripts outnumber canonical protein-coding genes. This mindboggling discovery prompted a surge in non-coding RNA research that started unraveling the functional relevance of these new genetic units, shaking the classic definition of "gene". While the non-coding RNA revolution was still taking place, polysome/ribosome profiling and mass spectrometry analyses revealed that peptides can be translated from non-canonical open reading frames. Therefore, it is becoming evident that the coding vs non-coding dichotomy is way blurrier than anticipated. In this review, we focus on several examples in which the binary classification of coding vs non-coding genes is outdated, since the same bifunctional gene expresses both coding and non-coding products. We discuss the implications of this intricate usage of transcripts in terms of molecular mechanisms of gene expression and biological outputs, which are often concordant, but can also surprisingly be discordant. Finally, we discuss the methodological caveats that are associated with the study of bifunctional genes, and we highlight the opportunities and challenges of therapeutic exploitation of this intricacy towards the development of anticancer therapies.
Collapse
Affiliation(s)
- Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy.
- Institute of Clinical Physiology, CNR, Pisa, Italy.
| | - Martina Lanza
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy
- Institute of Clinical Physiology, CNR, Pisa, Italy
- University of Siena, Siena, Italy
| | - Pier Paolo Pandolfi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy.
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, USA.
| |
Collapse
|
20
|
Chen X, Shen Y, Song Z, Wang X, Yao H, Cai Y, Zhao ZA, Hu B. microRNA-2184 orchestrates Mauthner-cell axon regeneration in zebrafish via syt3 modulation. J Genet Genomics 2024; 51:911-921. [PMID: 38582297 DOI: 10.1016/j.jgg.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
MicroRNAs (miRNAs) play a significant role in axon regeneration following spinal cord injury. However, the functions of numerous miRNAs in axon regeneration within the central nervous system (CNS) remain largely unexplored. Here, we elucidate the positive role of microRNA-2184 (miR-2184) in axon regeneration within zebrafish Mauthner cells (M-cells). The upregulation of miR-2184 in a single M-cell can facilitate axon regeneration, while the specific sponge-induced silencing of miR-2184 leads to impeded regeneration. We show that syt3, a downstream target of miR-2184, negatively regulates axon regeneration, and the regeneration suppression modulated by syt3 depends on its binding to Ca2+. Furthermore, pharmacological stimulation of the cAMP/PKA pathway suggests that changes in the readily releasable pool may affect axon regeneration. Our data indicate that miR-2184 promotes axon regeneration of M-cells within the CNS by modulating the downstream target syt3, providing valuable insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Xinghan Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yueru Shen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zheng Song
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinliang Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huaitong Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuan Cai
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zi-Ang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
21
|
Ortega Moreno L, Chaparro M, Gisbert JP. Long Non-Coding RNAs and Their Potential Role as Biomarkers in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:8808. [PMID: 39201494 PMCID: PMC11354568 DOI: 10.3390/ijms25168808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Inflammatory bowel disease is a chronic inflammatory disease that encompasses entities such as Crohn's disease and ulcerative colitis. Its incidence has risen in newly industrialised countries over time, turning it into a global disease. Lately, studies on inflammatory bowel disease have focused on finding non-invasive and specific biomarkers. Long non-coding RNAs may play a role in the pathophysiology of inflammatory bowel disease and therefore they may be considered as potential biomarkers for this disease. In the present article, we review information in the literature on the relationship between long non-coding RNAs and inflammatory bowel disease. We especially focus on understanding the potential function of these RNAs as non-invasive biomarkers, providing information that may be helpful for future studies in the field.
Collapse
Affiliation(s)
- Lorena Ortega Moreno
- Área Farmacología, Bromatología y Nutrición, Departamento Ciencias Básicas de la Salud, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - María Chaparro
- Gastroenterology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28006 Madrid, Spain; (M.C.); (J.P.G.)
| | - Javier P. Gisbert
- Gastroenterology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28006 Madrid, Spain; (M.C.); (J.P.G.)
| |
Collapse
|
22
|
Aquino-Jarquin G. CircRNA knockdown based on antisense strategies. Drug Discov Today 2024; 29:104066. [PMID: 38908546 DOI: 10.1016/j.drudis.2024.104066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Circular RNAs (circRNAs) are a type of noncoding RNA that are formed by back-splicing from eukaryotic protein-coding genes. The most frequently reported and well-characterized function of circRNAs is their ability to act as molecular decoys, most often as miRNA and protein sponges. However, the functions of most circRNAs still need to be better understood. To more fully understand the biological relevance of validated circRNAs, knockdown functional analyses can be performed using antisense oligonucleotides, RNA interference (RNAi) experiments (e.g., targeting back-splicing junction sites), the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas)-9 system (e.g., generating circRNA-specific knockouts), and CRISPR-Cas13 technology to effectively target circRNAs without affecting host genes. In this review, I summarize the feasibility and effectiveness of circRNA knockdown through antisense strategies for investigating the biological roles of circRNAs in cultured cells and animal models.
Collapse
Affiliation(s)
- Guillermo Aquino-Jarquin
- RNA Biology and Genome Editing Section. Genomics, Genetics, and Bioinformatics Research Laboratory. 'Federico Gómez' Children's Hospital of Mexico. Dr. Márquez 162, Doctores, Cuauhtémoc, CP 06720, CDMX, Mexico.
| |
Collapse
|
23
|
Agrawal A, Vindal V. Competing endogenous RNAs in head and neck squamous cell carcinoma: a review. Brief Funct Genomics 2024; 23:335-348. [PMID: 37941447 DOI: 10.1093/bfgp/elad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
Our understanding of RNA biology has evolved with recent advances in research from it being a non-functional product to molecules of the genome with specific regulatory functions. Competitive endogenous RNA (ceRNA), which has gained prominence over time as an essential part of post-transcriptional regulatory mechanism, is one such example. The ceRNA biology hypothesis states that coding RNA and non-coding RNA co-regulate each other using microRNA (miRNA) response elements. The ceRNA components include long non-coding RNAs, pseudogene and circular RNAs that exert their effect by interacting with miRNA and regulate the expression level of its target genes. Emerging evidence has revealed that the dysregulation of the ceRNA network is attributed to the pathogenesis of various cancers, including the head and neck squamous cell carcinoma (HNSCC). This is the most prevalent cancer developed from the mucosal epithelium in the lip, oral cavity, larynx and pharynx. Although many efforts have been made to comprehend the cause and subsequent treatment of HNSCC, the morbidity and mortality rate remains high. Hence, there is an urgent need to understand the holistic progression of HNSCC, mediated by ceRNA, that can have immense relevance in identifying novel biomarkers with a defined therapeutic intervention. In this review, we have made an effort to highlight the ceRNA biology hypothesis with a focus on its involvement in the progression of HNSCC. For the identification of such ceRNAs, we have additionally highlighted a number of databases and tools.
Collapse
Affiliation(s)
- Avantika Agrawal
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Vaibhav Vindal
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
24
|
Ran F, Wang Y, Zhang G, Guo H, Li J, Zhang X, Wu Z, Bi L. Whole-transcriptome sequencing of phagocytes reveals a ceRNA network contributing to natural resistance to tuberculosis infection. Microb Pathog 2024; 192:106681. [PMID: 38754565 DOI: 10.1016/j.micpath.2024.106681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/14/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Tuberculosis (TB) is a major fatal infectious disease globally, exhibiting high morbidity rates and impacting public health and other socio-economic factors. However, some individuals are resistant to TB infection and are referred to as "Resisters". Resisters remain uninfected even after exposure to high load of Mycobacterium tuberculosis (Mtb). To delineate this further, this study aimed to investigate the factors and mechanisms influencing the Mtb resistance phenotype. We assayed the phagocytic capacity of peripheral blood mononuclear cells (PBMCs) collected from Resisters, patients with latent TB infection (LTBI), and patients with active TB (ATB), following infection with fluorescent Mycobacterium bovis Bacillus Calmette-Guérin (BCG). Phagocytosis was stronger in PBMCs from ATB patients, and comparable in LTBI patients and Resisters. Subsequently, phagocytes were isolated and subjected to whole transcriptome sequencing and small RNA sequencing to analyze transcriptional expression profiles and identify potential targets associated with the resistance phenotype. The results revealed that a total of 277 mRNAs, 589 long non-coding RNAs, 523 circular RNAs, and 35 microRNAs were differentially expressed in Resisters and LTBI patients. Further, the endogenous competitive RNA (ceRNA) network was constructed from differentially expressed genes after screening. Bioinformatics, statistical analysis, and quantitative real-time polymerase chain reaction were used for the identification and validation of potential crucial targets in the ceRNA network. As a result, we obtained a ceRNA network that contributes to the resistance phenotype. TCONS_00034796-F3, ENST00000629441-DDX43, hsa-ATAD3A_0003-CYP17A1, and XR_932996.2-CERS1 may be crucial association pairs for resistance to TB infection. Overall, this study demonstrated that the phagocytic capacity of PBMCs was not a determinant of the resistance phenotype and that some non-coding RNAs could be involved in the natural resistance to TB infection through a ceRNA mechanism.
Collapse
Affiliation(s)
- Fanlei Ran
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Yaguo Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; TB Healthcare Co., Ltd., Foshan, 528300, China
| | - Guoqin Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Guo
- Department of Geriatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jinlong Li
- TB Healthcare Co., Ltd., Foshan, 528300, China
| | - Xilin Zhang
- Foshan Fourth People's Hospital, Foshan, 528000, China.
| | - Zhilong Wu
- Foshan Fourth People's Hospital, Foshan, 528000, China.
| | - Lijun Bi
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Guangzhou National Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
25
|
Wei Q, Liu G, Huang Z, Nian J, Huang L, Huang Y, Huang Z, Pu J. lncRNA PAARH impacts liver cancer cell proliferation by engaging miR‑6512‑3p to target LASP1. Oncol Lett 2024; 28:306. [PMID: 38774456 PMCID: PMC11106750 DOI: 10.3892/ol.2024.14439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/18/2024] [Indexed: 05/24/2024] Open
Abstract
Long non-coding (lnc)RNAs serve a pivotal role as regulatory factors in carcinogenesis. The present study aimed to assess the involvement of the lncRNA progression and angiogenesis-associated RNA in hepatocellular carcinoma (PAARH) in liver cancer, along with the associated underlying mechanism. Through the use of reverse transcription-quantitative (RT-q)PCR, differences in the expression levels of PAARH in HepG2, HEP3B2.1.7, HCCLM3, Huh-7 and MHCC97-H liver cancer cell lines and THLE-2 epithelial cell lines were evaluated. The liver cancer cell line with the greatest, significantly different, level of expression relative to the normal liver cell line was selected for subsequent experiments. Using ENCORI database, the putative target genes of the microRNA (miR) miR-6512-3p were predicted. Cells were then transfected with lentiviruses carrying short-hairpin-PAARH to interfere with PAARH expression. Subsequently, HepG2 liver cancer cells were transfected with a miR-6512-3p mimic and an inhibitor, and the expression levels of miR-6512-3p and the LIM and SH3 domain protein 1 (LASP1) in cells were assessed using RT-qPCR analysis. Cell proliferation was subsequently evaluated using colony formation assays, and immunofluorescence and western blotting were used to assess the expression level of LASP1 in transfected cells. The binding interaction between miR-6512-3p and LASP1 was further evaluated using a dual-luciferase reporter gene assay. Liver cancer cells were found to exhibit higher expression levels of PAARH compared with normal liver cells. Following PAARH interference, the expression level of miR-6512-3p was significantly increased, whereas that of LASP1 was significantly decreased, resulting in a reduction in cell proliferation. In liver cancer cells, miR-6512-3p overexpression led to a significant reduction in the LASP1 level and reduced proliferation, whereas suppressing miR-6512-3p led to a significant increase in LASP1 levels and increased proliferation. Additionally, the inhibition of miR-6512-3p caused the states of low LASP1 expression and reduced cell proliferation to be reversed. LASP1, a recently identified target gene of miR-6512-3p, was demonstrated to be suppressed by miR-6512-3p overexpression, thereby inhibiting liver cancer cell proliferation. Taken together, the findings of the present study demonstrate that the lncRNA PAARH may enhance liver cancer cell proliferation by engaging miR-6512-3p to target LASP1.
Collapse
Affiliation(s)
- Qing Wei
- Graduate College, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Guoman Liu
- Graduate College, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Zihua Huang
- Graduate College, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Jiahui Nian
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Lizheng Huang
- Graduate College, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Yanyan Huang
- Graduate College, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Zheng Huang
- Graduate College, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| |
Collapse
|
26
|
Lu P, Deng S, Liu J, Xiao Q, Zhou Z, Li S, Xin J, Shu G, Yi B, Yin G. Tweety homolog 3 promotes colorectal cancer progression through mutual regulation of histone deacetylase 7. MedComm (Beijing) 2024; 5:e576. [PMID: 38827027 PMCID: PMC11141500 DOI: 10.1002/mco2.576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/18/2024] [Accepted: 04/07/2024] [Indexed: 06/04/2024] Open
Abstract
Colorectal cancer (CRC) is one of the leading cancers worldwide, with metastasis being a major cause of high mortality rates among patients. In this study, dysregulated gene Tweety homolog 3 (TTYH3) was identified by Gene Expression Omnibus database. Public databases were used to predict potential competing endogenous RNAs (ceRNAs) for TTYH3. Quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry were utilized to analyze TTYH3 and histone deacetylase 7 (HDAC7) levels. Luciferase assays confirmed miR-1271-5p directly targeting the 3' untranslated regions of TTYH3 and HDAC7. In vitro experiments such as transwell and human umbilical vein endothelial cell tube formation, as well as in vivo mouse models, were conducted to assess the biological functions of TTYH3 and HDAC7. We discovered that upregulation of TTYH3 in CRC promotes cell migration by affecting the Epithelial-mesenchymal transition pathway, which was independent of its ion channel activity. Mechanistically, TTYH3 and HDAC7 functioned as ceRNAs, reciprocally regulating each other's expression. TTYH3 competes for binding miR-1271-5p, increasing HDAC7 expression, facilitating CRC metastasis and angiogenesis. This study reveals the critical role of TTYH3 in promoting CRC metastasis through ceRNA crosstalk, offering new insights into potential therapeutic targets for clinical intervention.
Collapse
Affiliation(s)
- Pengyan Lu
- Department of PathologyXiangya Hospital, School of Basic Medical Sciences, Central South UniversityChangshaChina
| | - Shumin Deng
- Department of PathologyXiangya Hospital, School of Basic Medical Sciences, Central South UniversityChangshaChina
| | - Jiaxin Liu
- Department of PathologyXiangya Hospital, School of Basic Medical Sciences, Central South UniversityChangshaChina
| | - Qing Xiao
- Department of PathologyThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Zhengwei Zhou
- Department of PathologyXiangya Hospital, School of Basic Medical Sciences, Central South UniversityChangshaChina
| | - Shuojie Li
- Department of PathologyXiangya Hospital, School of Basic Medical Sciences, Central South UniversityChangshaChina
| | - Jiaxuan Xin
- Department of Gastrointestinal SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Guang Shu
- Department of PathologyXiangya Hospital, School of Basic Medical Sciences, Central South UniversityChangshaChina
| | - Bo Yi
- Department of PathologyThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Gang Yin
- Department of PathologyXiangya Hospital, School of Basic Medical Sciences, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
- China‐Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South UniversityChangshaHunan ProvinceChina
| |
Collapse
|
27
|
Tang X, Liu Z, Liu H, Zhang H, Tian Y, Xia S, Sun Z, Luo G. Construction of lncRNA- and circRNA-associated ceRNA networks in the prostatic urethra of rats after simulating transurethral laser prostatectomy (TULP). Mol Cell Biochem 2024; 479:1363-1377. [PMID: 37410211 PMCID: PMC11224087 DOI: 10.1007/s11010-023-04804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Non-coding RNA appears to be involved in wound repair. Competing endogenous RNA (ceRNA) appears to be an important post-transcriptional mechanism, it means that long noncoding RNA (lncRNA) or circular RNA (circRNA) acts as a microRNA (miRNA) sponge to further regulate mRNA. However, ceRNA network related to wound repair after prostatectomy has yet been constructed. TULP is the main surgical method of prostatectomy, but there have been no reports of TULP rat models in the past. We simulated TULP on rats, and observed the whole process of wound injury and repair after operation through pathological examination of wound tissue. Next, we discovered 732 differentially expressed lncRNAs (DElncRNAs), 47 differentially expressed circRNAs (DEcircRNAs), 17 differentially expressed miRNAs (DEmiRNAs), and 1892 differentially expressed mRNAs (DEmRNAs) related to wound repair after TULP through full transcriptome microarray and bioinformatics methods, and confirmed the reliability of transcriptome data by quantitative Reverse Transcription PCR (qRT-PCR), and immunohistochemistry. Then, we constructed the lncRNA- and circRNA-associated ceRNA regulatory networks related to wound repair after TULP in rats. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that molecules in these networks were mainly involved in inflammatory infiltration, cell differentiation, and intercellular interactions and involved signal pathways such as the PI3K-Akt signaling pathway. Thus, this study successfully established the TULP model in rats, revealed potentially important biomarkers and ceRNA networks after prostatectomy in rats, and provided theoretical support for the repair of post-prostatectomy wound.
Collapse
Affiliation(s)
- XiaoHu Tang
- Medical College, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Department of Urology Surgery, Guizhou Province People's Hospital, Guiyang, 550002, Guizhou Province, China
| | - ZhiYan Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Hao Liu
- Department of Urology Surgery, Guizhou Province People's Hospital, Guiyang, 550002, Guizhou Province, China
| | - Heng Zhang
- Department of Urology Surgery, Guizhou Province People's Hospital, Guiyang, 550002, Guizhou Province, China
| | - Ye Tian
- Department of Urology Surgery, Guizhou Province People's Hospital, Guiyang, 550002, Guizhou Province, China
| | - ShuJie Xia
- Department of Urology Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - ZhaoLin Sun
- Medical College, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - GuangHeng Luo
- Department of Urology Surgery, Guizhou Province People's Hospital, Guiyang, 550002, Guizhou Province, China.
| |
Collapse
|
28
|
Allen-Coyle TJ, Roca BC, Costello A, Barron N, Keenan J, Clynes M, O’Neill F, O’Sullivan F. miRNA- and Cell Line-Specific Constraints on Precursor miRNA Processing of Stably Transfected Pancreatic Cancer and Other Mammalian Cells. Int J Mol Sci 2024; 25:5666. [PMID: 38891854 PMCID: PMC11172344 DOI: 10.3390/ijms25115666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
MicroRNAs (miRNAs) regulate approximately one-third of all human genes. The dysregulation of miRNAs has been implicated in the development of numerous human diseases, including cancers. In our investigation focusing on altering specific miRNA expression in human pancreatic cancer cells, we encountered an interesting finding. While two expression vector designs effectively enhanced miR-708 levels, they were unable to elevate mature forms of miR-29b, -1290, -2467, and -6831 in pancreatic cancer cell lines. This finding was also observed in a panel of other non-pancreatic cancer cell lines, suggesting that miRNA processing efficiency was cell line specific. Using a step-by-step approach in each step of miRNA processing, we ruled out alternative strand selection by the RISC complex and transcriptional interference at the primary miRNA (pri-miRNA) level. DROSHA processing and pri-miRNA export from the nucleus also appeared to be occurring normally. We observed precursor (pre-miRNA) accumulation only in cell lines where mature miRNA expression was not achieved, suggesting that the block was occurring at the pre-miRNA stage. To further confirm this, synthetic pre-miRNA mimics that bypass DICER processing were processed into mature miRNAs in all cases. This study has demonstrated the distinct behaviours of different miRNAs with the same vector in the same cell line, the same miRNA between the two vector designs, and with the same miRNA across different cell lines. We identified a stable vector pre-miRNA processing block. Our findings on the structural and sequence differences between successful and non-successful vector designs could help to inform future chimeric miRNA design strategies and act as a guide to other researchers on the intricate processing dynamics that can impact vector efficiency. Our research confirms the potential of miRNA mimics to surmount some of these complexities.
Collapse
Affiliation(s)
- Taylor J. Allen-Coyle
- The SFI Research Centre for Pharmaceuticals (SSPC), Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (T.J.A.-C.); (F.O.)
- SSPC Research Group, National Institute for Cellular Biotechnology, Life Sciences Institute, Dublin City University, D09 E432 Dublin, Ireland
| | - Berta Capella Roca
- The SFI Research Centre for Pharmaceuticals (SSPC), Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (T.J.A.-C.); (F.O.)
- SSPC Research Group, National Institute for Cellular Biotechnology, Life Sciences Institute, Dublin City University, D09 E432 Dublin, Ireland
| | - Alan Costello
- SSPC Research Group, National Institute for Cellular Biotechnology, Life Sciences Institute, Dublin City University, D09 E432 Dublin, Ireland
| | - Niall Barron
- Cell Engineering Group, National Institute for Bioprocessing Research and Training (NIBRT), A94 X099 Dublin, Ireland
| | - Joanne Keenan
- The SFI Research Centre for Pharmaceuticals (SSPC), Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (T.J.A.-C.); (F.O.)
- SSPC Research Group, National Institute for Cellular Biotechnology, Life Sciences Institute, Dublin City University, D09 E432 Dublin, Ireland
| | - Martin Clynes
- The SFI Research Centre for Pharmaceuticals (SSPC), Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (T.J.A.-C.); (F.O.)
- SSPC Research Group, National Institute for Cellular Biotechnology, Life Sciences Institute, Dublin City University, D09 E432 Dublin, Ireland
| | - Fiona O’Neill
- The SFI Research Centre for Pharmaceuticals (SSPC), Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (T.J.A.-C.); (F.O.)
- SSPC Research Group, National Institute for Cellular Biotechnology, Life Sciences Institute, Dublin City University, D09 E432 Dublin, Ireland
| | - Finbarr O’Sullivan
- The SFI Research Centre for Pharmaceuticals (SSPC), Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (T.J.A.-C.); (F.O.)
- SSPC Research Group, National Institute for Cellular Biotechnology, Life Sciences Institute, Dublin City University, D09 E432 Dublin, Ireland
| |
Collapse
|
29
|
Alammari F, Al-Hujaily EM, Alshareeda A, Albarakati N, Al-Sowayan BS. Hidden regulators: the emerging roles of lncRNAs in brain development and disease. Front Neurosci 2024; 18:1392688. [PMID: 38841098 PMCID: PMC11150811 DOI: 10.3389/fnins.2024.1392688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical players in brain development and disease. These non-coding transcripts, which once considered as "transcriptional junk," are now known for their regulatory roles in gene expression. In brain development, lncRNAs participate in many processes, including neurogenesis, neuronal differentiation, and synaptogenesis. They employ their effect through a wide variety of transcriptional and post-transcriptional regulatory mechanisms through interactions with chromatin modifiers, transcription factors, and other regulatory molecules. Dysregulation of lncRNAs has been associated with certain brain diseases, including Alzheimer's disease, Parkinson's disease, cancer, and neurodevelopmental disorders. Altered expression and function of specific lncRNAs have been implicated with disrupted neuronal connectivity, impaired synaptic plasticity, and aberrant gene expression pattern, highlighting the functional importance of this subclass of brain-enriched RNAs. Moreover, lncRNAs have been identified as potential biomarkers and therapeutic targets for neurological diseases. Here, we give a comprehensive review of the existing knowledge of lncRNAs. Our aim is to provide a better understanding of the diversity of lncRNA structure and functions in brain development and disease. This holds promise for unravelling the complexity of neurodevelopmental and neurodegenerative disorders, paving the way for the development of novel biomarkers and therapeutic targets for improved diagnosis and treatment.
Collapse
Affiliation(s)
- Farah Alammari
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ensaf M. Al-Hujaily
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Alaa Alshareeda
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Saudi Biobank Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Nada Albarakati
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard-Health Affairs, Jeddah, Saudi Arabia
| | - Batla S. Al-Sowayan
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Cheng DH, Jiang TG, Zeng WB, Li TM, Jing YD, Li ZQ, Guo YH, Zhang Y. Identification and coregulation pattern analysis of long noncoding RNAs in the mouse brain after Angiostrongylus cantonensis infection. Parasit Vectors 2024; 17:205. [PMID: 38715092 PMCID: PMC11077716 DOI: 10.1186/s13071-024-06278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Angiostrongyliasis is a highly dangerous infectious disease. Angiostrongylus cantonensis larvae migrate to the mouse brain and cause symptoms, such as brain swelling and bleeding. Noncoding RNAs (ncRNAs) are novel targets for the control of parasitic infections. However, the role of these molecules in A. cantonensis infection has not been fully clarified. METHODS In total, 32 BALB/c mice were randomly divided into four groups, and the infection groups were inoculated with 40 A. cantonensis larvae by gavage. Hematoxylin and eosin (H&E) staining and RNA library construction were performed on brain tissues from infected mice. Differential expression of long noncoding RNAs (lncRNAs) and mRNAs in brain tissues was identified by high-throughput sequencing. The pathways and functions of the differentially expressed lncRNAs were determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. The functions of the differentially expressed lncRNAs were further characterized by lncRNA‒microRNA (miRNA) target interactions. The potential host lncRNAs involved in larval infection of the brain were validated by quantitative real-time polymerase chain reaction (qRT‒PCR). RESULTS The pathological results showed that the degree of brain tissue damage increased with the duration of infection. The transcriptome results showed that 859 lncRNAs and 1895 mRNAs were differentially expressed compared with those in the control group, and several lncRNAs were highly expressed in the middle-late stages of mouse infection. GO and KEGG pathway analyses revealed that the differentially expressed target genes were enriched mainly in immune system processes and inflammatory response, among others, and several potential regulatory networks were constructed. CONCLUSIONS This study revealed the expression profiles of lncRNAs in the brains of mice after infection with A. cantonensis. The lncRNAs H19, F630028O10Rik, Lockd, AI662270, AU020206, and Mexis were shown to play important roles in the infection of mice with A. cantonensis infection.
Collapse
Affiliation(s)
- Dong-Hui Cheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (National Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, Shanghai, People's Republic of China
| | - Tian-Ge Jiang
- School of Global Health, National Center for Tropical Disease Research, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wen-Bo Zeng
- School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Tian-Mei Li
- Dali Prefectural Institute of Research and Control On Schistosomiasis, Yunnan, People's Republic of China
| | - Yi-Dan Jing
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (National Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, Shanghai, People's Republic of China
| | - Zhong-Qiu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (National Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, Shanghai, People's Republic of China
| | - Yun-Hai Guo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (National Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, Shanghai, People's Republic of China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (National Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, Shanghai, People's Republic of China.
- School of Global Health, National Center for Tropical Disease Research, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
31
|
Shafaee Arani S, Nejati M, Rastgoufar S, Raisi A, Eshraghi R, Ostadian A, Matini AH, Rahimain N, Mirzaei H. Evaluation of expression level of BANCR, MALAT1 and FER1L4 and their target genes in coumarin-treated AGS cell line. Pathol Res Pract 2024; 257:155291. [PMID: 38643553 DOI: 10.1016/j.prp.2024.155291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024]
Abstract
Because long non-coding RNAs (lncRNAs) can affect several interconnected processes, its value as a predictive marker for gastric cancer has been demonstrated. Coumarin - a natural compound known to contain some beneficial antitumor qualities - was tested for its effects on AGS gastric cancer cells. In this study, we investigated the expression level of selected cellular lncRNAs (BANCR, MALAT1 and FER1L4) and their target genes (PTEN, p-PI3K and p-AKT) in coumarin-treated AGS cell line. The expressions of the three lncRNAs: BANCR, MALAT1 and FER1L4, as well as their specified targets, PTEN, PI3K and AKT, were measured by qRT-PCR. To gauge the impact of coumarin on the AGS cells, a MTT assay was utilized. A Western blot has been employed to assess variations in PTEN, p-PI3K, and p-AKT expression. The experiment's results showed that AGS viability diminished with increasing doses of coumarin. Compared to the control cells, the cells exposed to coumarin had showed reduced levels of mRNAs which are known targets of the lncRNA BANCR. At the same time, levels of lncRNAs MALAT1 and FER1L4 within coumarin group have been higher comparing to those within control group. Additionally, the Western blot analysis revealed that the coumarin-treated cells expressed lower levels of p-PI3K, PTEN as well as p-AKT compared to control group. This information points to coumarin being a possible option in a treatment regimen for gastric cancer due to its ability to affect lncRNAs and the molecules they target.
Collapse
Affiliation(s)
- Shirin Shafaee Arani
- Department of Pathology and Histology, School of Medicine, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Sepide Rastgoufar
- Department of Pathology and Histology, School of Medicine, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Eshraghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Ostadian
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hassan Matini
- Department of Pathology and Histology, School of Medicine, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran.
| | - Neda Rahimain
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
32
|
Yin Y, Liu J, Xu C, Zeng D, Zhu Y, Wu X, Fan Q, Zhao S, Wang J, Liu Y, Li Y, Lu W. Whole-transcriptome RNA sequencing reveals CeRNA regulatory network under long-term space composite stress in Rats. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:136-145. [PMID: 38670640 DOI: 10.1016/j.lssr.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 04/28/2024]
Abstract
To systematically evaluate the effect of simulated long-term spaceflight composite stress (LSCS) in hippocampus and gain more insights into the transcriptomic landscape and molecular mechanism, we performed whole-transcriptome sequencing based on the control group (Ctrl) and the simulated long-term spaceflight composite stress group (LSCS) from six hippocampus of rats. Subsequently, differential expression analysis was performed on the Ctrl and LSCS groups, followed by enrichment analysis and functional interaction prediction analysis to investigate gene-regulatory circuits in LSCS. In addition, competitive endogenous RNA (ceRNA) network was constructed to gain insights into genetic interaction. The result showed that 276 differentially expressed messenger RNAs (DEmRNAs), 139 differentially expressed long non-coding RNAs (DElncRNAs), 103 differentially expressed circular RNAs (DEcircRNAs), and 52 differentially expressed microRNAs (DEmiRNAs) were found in LSCS samples compared with the controls, which were then subjected to enrichment analysis of Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to find potential functions. PI3K-Akt signaling pathway and MAPK signaling pathway may play fundamental roles in the pathogenesis of LSCS. A ceRNA network was constructed with the predicted 340 DE pairs, which revealed the interaction roles of 220 DEmiRNA-DEmRNA pairs, 76 DEmiRNA-DElncRNA pairs, and 44 DEmiRNA-DEcircRNA pairs. Further, Thrombospondins2 was found to be a key target among those ceRNAs. Overall, we conducted for the first time a full transcriptomic analysis of the response of hippocampus to the LSCS that involved a potential ceRNA network, thus providing a basis to study the underlying mechanism of the LSCS.
Collapse
Affiliation(s)
- YiShu Yin
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, PR China
| | - JunLian Liu
- China Astronaut Research and Training Center, Beijing 100094, PR China; Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, PR China
| | - Chong Xu
- China Astronaut Research and Training Center, Beijing 100094, PR China
| | - DeYong Zeng
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, PR China
| | - YuanBing Zhu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, PR China
| | - XiaoRui Wu
- China Astronaut Research and Training Center, Beijing 100094, PR China
| | - QuanChun Fan
- China Astronaut Research and Training Center, Beijing 100094, PR China
| | - Shuang Zhao
- China Astronaut Research and Training Center, Beijing 100094, PR China
| | - JiaPing Wang
- China Astronaut Research and Training Center, Beijing 100094, PR China
| | - Yu Liu
- China Astronaut Research and Training Center, Beijing 100094, PR China
| | - YongZhi Li
- China Astronaut Research and Training Center, Beijing 100094, PR China.
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, PR China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, PR China.
| |
Collapse
|
33
|
Ari Yuka S, Yilmaz A. Decoding dynamic miRNA:ceRNA interactions unveils therapeutic insights and targets across predominant cancer landscapes. BioData Min 2024; 17:11. [PMID: 38627780 PMCID: PMC11022475 DOI: 10.1186/s13040-024-00362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Competing endogenous RNAs play key roles in cellular molecular mechanisms through cross-talk in post-transcriptional interactions. Studies on ceRNA cross-talk, which is particularly dependent on the abundance of free transcripts, generally involve large- and small-scale studies involving the integration of transcriptomic data from tissues and correlation analyses. This abundance-dependent nature of ceRNA interactions suggests that tissue- and condition-specific ceRNA dynamics may fluctuate. However, there are no comprehensive studies investigating the ceRNA interactions in normal tissue, ceRNAs that are lost and/or appear in cancerous tissues or their interactions. In this study, we comprehensively analyzed the tumor-specific ceRNA fluctuations observed in the three highest-incidence cancers, LUAD, PRAD, and BRCA, compared to healthy lung, prostate, and breast tissues, respectively. Our observations pertaining to tumor-specific competing endogenous RNA (ceRNA) interactions revealed that, in the cases of lung adenocarcinoma (LUAD), prostate adenocarcinoma (PRAD), and breast invasive carcinoma (BRCA), 3,204, 1,233, and 406 ceRNAs, respectively, engage in post-transcriptional intercommunication within tumor tissues, in contrast to their absence in corresponding healthy samples. We also found that 90 ceRNAs are shared by the three cancer types and that these ceRNAs participate in ceRNA interactions in tumor tissues compared to those in normal tissues. Among the 90 ceRNAs that directly interact with miRNAs, we uncovered a core network of 165 miRNAs and 63 ceRNAs that should be considered in RNA-targeted and RNA-mediated approaches in future studies and could be used in these three aggressive cancer types. More specifically, in this core interaction network, ceRNAs such as GALNT7, KLF9, and DAB2 and miRNAs like miR-106a/b-5p, miR-20a-5p, and miR-519d-3p may have potential as common targets in the three critical cancers. In contrast to conventional methods that construct ceRNA networks using differentially expressed genes compared to normal tissues, our proposed approach identifies ceRNA players by considering their context within the ceRNA:miRNA interactions. Our results have the potential to reveal distinct and common ceRNA interactions in cancer types and to pinpoint critical RNAs, thereby paving the way for RNA-based strategies in the battle against cancer.
Collapse
Affiliation(s)
- Selcen Ari Yuka
- Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Yildiz Technical University, Istanbul, 34220, Turkey.
| | - Alper Yilmaz
- Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey
| |
Collapse
|
34
|
Hu Y, Sun Y, Yuan H, Liu J, Chen L, Liu D, Xu Y, Zhou X, Ding L, Zhang Z, Xiong L, Xue L, Wang T. Vof16-miR-185-5p-GAP43 network improves the outcomes following spinal cord injury via enhancing self-repair and promoting axonal growth. CNS Neurosci Ther 2024; 30:e14535. [PMID: 38168094 PMCID: PMC11017428 DOI: 10.1111/cns.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 01/05/2024] Open
Abstract
INTRODUCTION Self-repair of spinal cord injury (SCI) has been found in humans and experimental animals with partial recovery of neurological functions. However, the regulatory mechanisms underlying the spontaneous locomotion recovery after SCI are elusive. AIMS This study was aimed at evaluating the pathological changes in injured spinal cord and exploring the possible mechanism related to the spontaneous recovery. RESULTS Immunofluorescence staining was performed to detect GAP43 expression in lesion site after spinal cord transection (SCT) in rats. Then RNA sequencing and gene ontology (GO) analysis were employed to predict lncRNA that correlates with GAP43. LncRNA smart-silencing was applied to verify the function of lncRNA vof16 in vitro, and knockout rats were used to evaluate its role in neurobehavioral functions after SCT. MicroRNA sequencing, target scan, and RNA22 prediction were performed to further explore the underlying regulatory mechanisms, and miR-185-5p stands out. A miR-185-5p site-regulated relationship with GAP43 and vof16 was determined by luciferase activity analysis. GAP43-silencing, miR-185-5p-mimic/inhibitor, and miR-185-5p knockout rats were also applied to elucidate their effects on spinal cord neurite growth and neurobehavioral function after SCT. We found that a time-dependent increase of GAP43 corresponded with the limited neurological recovery in rats with SCT. CRNA chip and GO analysis revealed lncRNA vof16 was the most functional in targeting GAP43 in SCT rats. Additionally, silencing vof16 suppressed neurite growth and attenuated the motor dysfunction in SCT rats. Luciferase reporter assay showed that miR-185-5p competitively bound the same regulatory region of vof16 and GAP43. CONCLUSIONS Our data indicated miR-185-5p could be a detrimental factor in SCT, and vof16 may function as a ceRNA by competitively binding miR-185-5p to modulate GAP43 in the process of self-recovery after SCT. Our study revealed a novel vof16-miR-185-5p-GAP43 regulatory network in neurological self-repair after SCT and may underlie the potential treatment target for SCI.
Collapse
Affiliation(s)
- Yue Hu
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu DistrictWest China Airport Hospital of Sichuan UniversityChengduChina
| | - Yi‐Fei Sun
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Hao Yuan
- Laboratory Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Jia Liu
- Laboratory Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Li Chen
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Dong‐Hui Liu
- Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Yang Xu
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Xin‐Fu Zhou
- Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Li Ding
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Ze‐Tao Zhang
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Liu‐Lin Xiong
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Lu‐Lu Xue
- State Key Laboratory of BiotherapySichuan UniversityChengduSichuanChina
| | - Ting‐Hua Wang
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
- Laboratory Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
- State Key Laboratory of BiotherapySichuan UniversityChengduSichuanChina
| |
Collapse
|
35
|
do Amaral CC, Nedel F, Ferrúa CP, Garcia TF, Corrêa GP, Giorgi R, Longoni dos Santos A, de Assis AM, de Avila Quevedo L, Ghisleni GC, de Matos MB, Pinheiro KAT, Trettim JP, Pinheiro RT. Maternal hsa-miR-423-5p associated with the cognitive development of babies in pregnant women without mental disorders. Front Hum Neurosci 2024; 18:1322820. [PMID: 38487105 PMCID: PMC10937415 DOI: 10.3389/fnhum.2024.1322820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Background MicroRNAs (miRNAs) are small non-coding RNAs capable of regulating gene expression post-transcriptionally. MiRNAs are recognized as key regulators of diverse biological and developmental processes. During the pregnancy-puerperal cycle, numerous changes occur in the female body for the formation, growth, and development of the baby. After birth, there is a critical period in child development, as rapid gains in the physical, cognitive, and socio-emotional domains constitute the "building blocks" of children's later growth. Objective The aim of this study was to investigate the association between maternal expression of hsa-miR-423-5p during the first and second trimesters of pregnancy and neurocognitive development at 90 days of life in infants. Methods: This is a longitudinal study included in a population-based cohort study, carried out in a city in southern Brazil. The Bayley III was used to assess the babies' cognitive development. Blood samples from mothers were obtained for RNA extraction from serum and analysis of miRNA expression by qRT-PCR. Results In total, 87 dyads (mother-baby) were included. The average gestational age was 15.86 weeks (SD ± 5.55). An association of maternal miRNA with infant cognitive development was found; as maternal miR-423-5p increases, infants' cognitive development increases by 2.40 (95% CI 0.37; 4.43, p = 0.021) points at 3 months of age. Conclusion In this context, it is suggested to use this miRNA as a biomarker of child neurocognitive development detectable in the prenatal period, thus allowing the planning of early interventions.
Collapse
Affiliation(s)
- Cainá Corrêa do Amaral
- Post-Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil
| | - Fernanda Nedel
- Anatomy Department, Federal University of Pelotas, Pelotas, Brazil
| | - Camila Perelló Ferrúa
- Post-Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil
| | - Tiago Fernandez Garcia
- Post-Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil
| | | | - Roberta Giorgi
- Post-Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil
| | | | | | | | | | - Mariana Bonati de Matos
- Post-Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil
| | | | | | | |
Collapse
|
36
|
Qian H, Meng J, Yuan T, Jiang H, Zhou L, Zhang L, Zhao J, Bao N. Gene Expression in Synovium of Rotator Cuff Tear Patients Determined by RNA Sequencing. Biochem Genet 2024; 62:452-467. [PMID: 37380850 DOI: 10.1007/s10528-023-10411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 05/30/2023] [Indexed: 06/30/2023]
Abstract
Rotator cuff tear (RCT) is a common shoulder disorder related to pain and dysfunction. However, the pathological mechanism of RCT remains unclear. Thus, this study aims to investigate the molecular events in RCT synovium and identify possible target genes and pathways as determined by RNA sequencing (RNA-Seq). The synovial tissue was biopsied from 3 patients with RCT (RCT group) and 3 patients with shoulder instability (Control group) during arthroscopic surgery. Then, differentially expressed (DE) mRNAs, long non-coding RNAs (lncRNAs) and micro RNAs (miRNAs) were comprehensively profiled by RNA-Seq. Gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and competing endogenous RNA (ceRNA) network analysis were performed to identify the potential functions of these DE genes. 447 mRNAs, 103 lncRNAs and 15 miRNAs were identified differentially expressed. The DE mRNAs were highlighted in inflammatory pathway including up-regulated T cell costimulation, positive regulation of T cell activation, and T cell receptor signaling. Down-regulated fatty acid degradation pathway and 5'-AMP-activated protein kinase (AMPK) signaling in RCT group are also enriched. Validation assay showed that the expression of pro-inflammatory molecules including IL21R, CCR5, TNFSF11, and MMP11 was significantly increased in RCT group compared with Control group. CeRNA analysis further revealed lncRNA-miRNA-mRNA regulatory networks involving IL21R and TNFSF11 in RCT. Activated synovial inflammation is the remarkable event of RCT. Importantly, increased T cell activation and disordered fatty acid metabolism signaling might play a significant role. ceRNA networks involving IL21R and TNFSF11 identified could potentially control the progression of RCT. In conclusion, our findings could provide new evidence for the molecular mechanisms of RCT and might identify new therapeutic targets.
Collapse
Affiliation(s)
- Hong Qian
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, #305, East Zhongshan Road, Nanjing, 210002, China
| | - Jia Meng
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, #305, East Zhongshan Road, Nanjing, 210002, China
| | - Tao Yuan
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, #305, East Zhongshan Road, Nanjing, 210002, China
| | - Hui Jiang
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, #305, East Zhongshan Road, Nanjing, 210002, China
| | - Li Zhou
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, #305, East Zhongshan Road, Nanjing, 210002, China
| | - Lei Zhang
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, #305, East Zhongshan Road, Nanjing, 210002, China.
| | - Jianning Zhao
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, #305, East Zhongshan Road, Nanjing, 210002, China.
| | - Nirong Bao
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, #305, East Zhongshan Road, Nanjing, 210002, China.
| |
Collapse
|
37
|
Lu S, Huang J, Zhang J, Wu C, Huang Z, Tao X, You L, Stalin A, Chen M, Li J, Tan Y, Wu Z, Geng L, Li Z, Fan Q, Liu P, Lin Y, Zhao C, Wu J. The anti-hepatocellular carcinoma effect of Aidi injection was related to the synergistic action of cantharidin, formononetin, and isofraxidin through BIRC5, FEN1, and EGFR. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117209. [PMID: 37757991 DOI: 10.1016/j.jep.2023.117209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aidi injection (ADI) is a popular anti-tumor Chinese patent medicine, widely used in clinics for the treatment of hepatocellular carcinoma (HCC) with remarkable therapeutic effects through multiple targets and pathways. However, the scientific evidence of the synergistic role of the complex chemical component system and the potential mechanism for treating diseases are ignored and remain to be elucidated. AIM OF THE STUDY This study aimed to elucidate and verify the cooperative association between the potential active ingredient of ADI, which is of significance to enlarge our understanding of its anti-HCC molecular mechanisms. MATERIALS AND METHODS Firstly, the anti-HCC effect of ADI was evaluated in various HCC cells and the zebrafish xenograft model. Subsequently, a variety of bioinformatic technologies, including network pharmacology, weighted gene co-expression network analysis (WGCNA), meta-analysis of gene expression profiles, and pathway enrichment analysis were performed to construct the competitive endogenous RNA (ceRNA) network of ADI intervention in HCC and to establish the relationship between the critical targets/pathways and the key corresponding components, which were involved in ADI against HCC in a synergistic way and were validated by molecular biology experiments. RESULTS ADI exerted remarkable anti-HCC in vitro cells and in vivo zebrafish model, especially that the Hep 3B2.1-7 cell showed substantial sensibility to ADI. The ceRNA network revealed that the EGFR/PI3K/AKT signaling pathway was identified as the promising pathway. Furthermore, the meta-analysis also demonstrated the critical role of BIRC5 and FEN1 as key targets. Finally, the synergistic effect of ADI was revealed by discovering the inhibitory effect of cantharidin on BIRC5, formononetin on FEN1 and EGFR, as well as isofraxidin on EGFR. CONCLUSION Our study unveiled that the incredible protective effect of ADI on HCC resulted from the synergistic inhibition effect of cantharidin, formononetin, and isofraxidin on multiple targets/pathways, including BIRC5, FEN1, and EGFR/PI3K/AKT, respectively, providing a scientific interpretation of ADI against HCC and a typical example of pharmacodynamic evaluation of other proprietary Chinese patent medicine.
Collapse
Affiliation(s)
- Shan Lu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jiaqi Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Chao Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhihong Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xiaoyu Tao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Leiming You
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Meilin Chen
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jiaqi Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yingying Tan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhishan Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Libo Geng
- Guizhou Yibai Pharmaceutical Co. Ltd, Guiyang, 550008, Guizhou, China.
| | - Zhiqi Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Qiqi Fan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Pengyun Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yifan Lin
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Chongjun Zhao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
38
|
Yang X, Xiong S, Zhao X, Jin J, Yang X, Du Y, Zhao L, He Z, Gong C, Guo L, Liang T. Orchestrating Cellular Balance: ncRNAs and RNA Interactions at the Dominant of Autophagy Regulation in Cancer. Int J Mol Sci 2024; 25:1561. [PMID: 38338839 PMCID: PMC10855840 DOI: 10.3390/ijms25031561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Autophagy, a complex and highly regulated cellular process, is critical for the maintenance of cellular homeostasis by lysosomal degradation of cellular debris, intracellular pathogens, and dysfunctional organelles. It has become an interesting and attractive topic in cancer because of its dual role as a tumor suppressor and cell survival mechanism. As a highly conserved pathway, autophagy is strictly regulated by diverse non-coding RNAs (ncRNAs), ranging from short and flexible miRNAs to lncRNAs and even circRNAs, which largely contribute to autophagy regulatory networks via complex RNA interactions. The potential roles of RNA interactions during autophagy, especially in cancer procession and further anticancer treatment, will aid our understanding of related RNAs in autophagy in tumorigenesis and cancer treatment. Herein, we mainly summarized autophagy-related mRNAs and ncRNAs, also providing RNA-RNA interactions and their potential roles in cancer prognosis, which may deepen our understanding of the relationships between various RNAs during autophagy and provide new insights into autophagy-related therapeutic strategies in personalized medicine.
Collapse
Affiliation(s)
- Xueni Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Shizheng Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Xinmiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Jiaming Jin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Xinbing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.)
| | - Yajing Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.)
| | - Linjie Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Zhiheng He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Chengjun Gong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.)
| |
Collapse
|
39
|
Hong Y, Li Z, Su Y, Pu H, Zhang X. The ceRNA Mechanism of lncRNA MEG3/miR-21-5p/SPRY2 in Cell Proliferation and Apoptosis in Bladder Cancer. Crit Rev Eukaryot Gene Expr 2024; 34:55-68. [PMID: 37824392 DOI: 10.1615/critreveukaryotgeneexpr.2023048011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Bladder cancer (BC) is the second most common genitourinary malignancy. Long noncoding RNA (lncRNA) is implicated in BC progression. This study delved into the underlying mechanism of lncRNA MEG3 in BC. Bioinformatics analysis predicted the expression of lncRNA MEG3, its association with the survival of BC patients, its subcellular localization, and its binding sites with miR-21-5p. Differentially expressed genes (DEGs) in the GSE13507 chip were analyzed using GEOexplorer, downstream targets of miR-21-5p were predicted from databases, and the overlapping genes were analyzed by the website Venny2.1 (https://bioinfogp.cnb.csic.es/tools/venny/index.html); their impacts on patient survival were analyzed by the Starbase database. The expression of SPRY2 and TGFBI associated with patient survival was analyzed in TCGA. RT-qPCR and western blot were performed to detect levels of MEG3, miR-21-5p, and SPRY2 in BC/SV-HUC-1 cells. Malignant biological behaviors of BC cells were detected using CCK8, flow cytometry, and Transwell assays. RNA pull-down and dual-luciferase assays were employed to verify the binding relationship of miR-21-5p with MEG3 and SPRY2. MEG3 was found to be lowly expressed in BC cells and mainly distributed in the cytoplasm. Over-expression of MEG3 was found to inhibit BC cell activity, promote apoptosis, and reduce invasion and migration. miR-21-5p was found to be highly expressed in BC cells, and its down-regulation was found to inhibit the malignant behavior of BC cells. Over-expression of miR-21-5p was found to reverse the effect of pcDNA3.1-MEG3 on BC cells. MEG3 was found to competitively bind to miR-21-5p as a ceRNA to promote SPRY2 levels. LncRNA MEG3 promotes SPRY2 expression by competitively binding to miR-21-5p, thereby inhibiting proliferation and promoting apoptosis of BC cells.
Collapse
Affiliation(s)
- Yangchun Hong
- Department of Urology, Shunde Hospital Affiliated to Jinan University, Foshan, 528305, Guangdong, China
| | - Zhen Li
- Department of Urology, Shunde Hospital Affiliated to Jinan University, Foshan, 528305, Guangdong, China
| | - Yixin Su
- Department of Urology, Shunde Hospital Affiliated to Jinan University, Foshan, 528305, Guangdong, China
| | - Hexian Pu
- Department of Urology, Shunde Hospital Affiliated to Jinan University, Foshan, 528305, Guangdong, China
| | - Xiuxiu Zhang
- Department of Urology, Shunde Hospital Affiliated to Jinan University, Foshan, 528305, Guangdong, China
| |
Collapse
|
40
|
Lin H, Hu S, Li Y, Li S, Teng D, Yang Y, Liu B, Du X. H3K27ac-activated LncRNA NUTM2A-AS1 Facilitated the Progression of Colorectal Cancer Cells via MicroRNA-126-5p/FAM3C Axis. Curr Cancer Drug Targets 2024; 24:1222-1234. [PMID: 38347779 DOI: 10.2174/0115680096277956240119065938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 09/25/2024]
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) are of great importance in the process of colorectal cancer (CRC) tumorigenesis and progression. However, the functions and underlying molecular mechanisms of the majority of lncRNAs in CRC still lack clarity. METHODS A Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to detect lncRNA NUTM2A-AS1 expression in CRC cell lines. Cell counting kit 8 (CCK-8) assay and flow cytometry were used to examine the biological functions of lncRNA NUTM2A-AS1 in the proliferation and apoptosis of CRC cells. RT-qPCR and western blot were implemented for the detection of cell proliferation-, apoptosis-related proteins, and FAM3C. Bioinformatics analysis and dual- luciferase reporter assays were utilized to identify the mutual regulatory mechanism of ceRNAs. RESULTS lncRNA NUTM2A-AS1 notably elevated in CRC cell lines and the silenced of NUTM2A- AS1 declined proliferation and facilitated apoptosis. Mechanistically, NUTM2A-AS1 was transcriptionally activated by histone H3 on lysine 27 acetylation (H3K27ac) enriched at its promoter region, and NUTM2A-AS1 acted as a sponge for miR-126-5p, leading to the upregulation of FAM3C expression in CRC cell lines. CONCLUSION Our research proposed NUTM2A-AS1 as an oncogenic lncRNA that facilitates CRC malignancy by upregulating FAM3C expression, which might provide new insight and a promising therapeutic target for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Haiguan Lin
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of General Surgery, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Shidong Hu
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuxuan Li
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Songyan Li
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Da Teng
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yan Yang
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Boyan Liu
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaohui Du
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
41
|
Ranapour S, Motamed N. Effect of Silibinin on the Expression of Mir-20b, Bcl2L11, and Erbb2 in Breast Cancer Cell Lines. Mol Biotechnol 2023; 65:1979-1990. [PMID: 36905464 DOI: 10.1007/s12033-023-00702-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/14/2023] [Indexed: 03/12/2023]
Abstract
This study aimed to evaluate the comparative effect of silibinin (SB) on the expression of MiR‑20b and BCL2L11 in T47D and MCF-7 cell lines. Molecular simulation studies were carried out to analyze Erbb2, as a potential target of SB, to direct the breast cancer cells toward apoptosis. At first, cell viability, apoptosis, and cell cycle arrest-inducing capacity of SB were examined using MTT and flow cytometry analysis, respectively. Real-time PCR (RT-PCR) was employed to assess the effect of SB on BCL2L11, Phosphatase and tensin homolog (PTEN), and Caspase 9 mRNarrest-indu. Moreover, alterations in Caspase 9 protein expression were determined using Western blot analysis. Finally, AutoDockVina software was used to dock the SB/ MiR‑20b and SB/ erb-b2 receptor tyrosine kinase 2 (Erbb2) interaction. The obtained data revealed the potent cytotoxicity of SB in both T47D and MCF-7 cells through apoptosis induction and cell cycle arrest. SB-treated cells also showed downregulation of MiR‑20b and high expression of BCL2L11, PTEN, and Caspase 9 mRNA compared to non-treated cancer cells. Computational docking showed a strong interaction between SB/ MiR‑20b and SB/Erbb2. It can be concluded that SB had a strong anti-tumorigenic activity through BCL2L11upregulation and MiR‑20b down expression, maybe through targeting the PTEN and interacting with Erbb2, which resulted in apoptotic induction and cell cycle arrest.
Collapse
Affiliation(s)
- Sanaz Ranapour
- Department of Cellular and Molecular Biology, Kish International Campus, University of Tehran, Kish, Iran
| | - Nasrin Motamed
- Department of Cellular and Molecular Biology, Kish International Campus, University of Tehran, Kish, Iran.
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| |
Collapse
|
42
|
Zhou F. Prognostic value of CASC15 and LINC01600 as competitive endogenous RNAs in lung adenocarcinoma: An observational study. Medicine (Baltimore) 2023; 102:e36026. [PMID: 37960753 PMCID: PMC10637420 DOI: 10.1097/md.0000000000036026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) can directly or indirectly regulate gene expression through interacting with microRNAs (miRNAs). Competitive endogenous RNAs render the roles of lncRNAs more complicated in the process of tumor occurrence and progression. However, the prognostic value of lncRNAs as potential biomarkers and their functional roles as competitive endogenous RNAs have not been clearly described for lung adenocarcinoma (LUAD). In the present study, the aberrant expression profiles of lncRNAs and miRNAs were analyzed at cBioPortal by interrogating LUAD dataset from The Cancer Genome Atlas (TCGA) database with 517 tissue samples. A total of 92 lncRNAs and 125 miRNAs with highly genetic alterations were identified. Further bioinformatics analysis was performed to construct a LUAD-related lncRNA-miRNA-mRNA ceRNA network, which included 24 highly altered lncRNAs, 21 miRNAs and 142 mRNAs. Some key lncRNAs in this network were subsequently identified as LUAD prognosis-related, and of those, CASC15 and LINC01600 both performed the potential prognostic characteristics with LUAD regarding OS and recurrence. Comprehensive analysis indicated that the expression of LINC01600 was significantly associated with KRAS mutation and lymph node metastasis, and CASC15 and LINC01600 were significantly tended towards co-occurrence, which may be due to the similarity of genes co-expressed by these 2 lncRNAs. Our findings provided novel insight into better understanding of ceRNA regulatory mechanisms in the pathogenesis of LUAD and facilitated the identification of potential biomarkers for prognosis.
Collapse
Affiliation(s)
- Fangbin Zhou
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| |
Collapse
|
43
|
Wang X, Lin Q, Liu S, Li X, Kong X, Wang Y, Ten W, Huang Y, Yang Y, Zhao J, Ma X, Zhou X. LncRNA-XR_002792574.1-mediated ceRNA network reveals potential biomarkers in myopia-induced retinal ganglion cell damage. J Transl Med 2023; 21:785. [PMID: 37932794 PMCID: PMC10629108 DOI: 10.1186/s12967-023-04662-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play a key role in the occurrence and progression of myopia. However, the function of lncRNAs in retinal ganglion cells (RGCs) in the pathogenesis of myopia is still unknown. The aim of our study was to explore the lncRNA-mediated competing endogenous RNA (ceRNA) network in RGCs during the development of myopia. METHODS RNA sequencing was performed to analyze lncRNA and mRNA expression profiles in RGCs between guinea pigs with form-deprived myopia (FDM) and normal control guinea pigs, and related ceRNA networks were constructed. Then, potentially important genes in ceRNA networks were verified by qRT‒PCR, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to explore biological functions in the RGCs of FDM guinea pigs. The important genes and related signaling pathways were further verified by qRT‒PCR, immunohistochemistry, immunofluorescence and Western blot in myopia in FDM guinea pigs, FDM mice, and highly myopic adults. RESULTS The distribution of RGCs was uneven, the number of RGCs was decreased, and RGC apoptosis was increased in FDM guinea pigs. In total, 873 lncRNAs and 2480 mRNAs were determined to be differentially expressed genes in RGCs from normal control and FDM guinea pigs. Via lncRNA-mediated ceRNA network construction and PCR verification, we found that lncRNA-XR_002792574.1 may be involved in the development of myopia through the miR-760-3p/Adcy1 pathway in RGCs. Further verification in FDM guinea pigs, FDM mice, and highly myopic adults demonstrated that the lncRNA-XR_002792574.1/miR-760-3p/Adcy1 axis in RGCs might be related to cGMP/PKG, the apelin signaling pathway and scleral remodeling. CONCLUSION We demonstrated that the lncRNA-XR_002792574.1/miR-760-3p/Adcy1 axis in RGCs might be related to myopia. On the one hand, the lncRNA-XR_002792574.1/miR-760-3p/Adcy1 axis might inhibit the cGMP/PKG and apelin signaling pathways in RGCs, thereby causing RGC damage in myopia. On the other hand, the lncRNA-XR_002792574.1/miR-760-3p/Adcy1 axis may cause myopic scleral remodeling through the ERK-MMP-2 pathway. These findings may reveal novel potential targets in myopia and provide reference value for exploration and development of gene editing therapeutics for hereditary myopia.
Collapse
Affiliation(s)
- Xuejun Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Qinghong Lin
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Shengtao Liu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Xiaoying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiehe Kong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuliang Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Weijung Ten
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Yangyi Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Yanting Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China.
| | - Xiaopeng Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China.
| |
Collapse
|
44
|
Travis G, McGowan EM, Simpson AM, Marsh DJ, Nassif NT. PTEN, PTENP1, microRNAs, and ceRNA Networks: Precision Targeting in Cancer Therapeutics. Cancers (Basel) 2023; 15:4954. [PMID: 37894321 PMCID: PMC10605164 DOI: 10.3390/cancers15204954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a well characterised tumour suppressor, playing a critical role in the maintenance of fundamental cellular processes including cell proliferation, migration, metabolism, and survival. Subtle decreases in cellular levels of PTEN result in the development and progression of cancer, hence there is tight regulation of the expression, activity, and cellular half-life of PTEN at the transcriptional, post-transcriptional, and post-translational levels. PTENP1, the processed pseudogene of PTEN, is an important transcriptional and post-transcriptional regulator of PTEN. PTENP1 expression produces sense and antisense transcripts modulating PTEN expression, in conjunction with miRNAs. Due to the high sequence similarity between PTEN and the PTENP1 sense transcript, the transcripts possess common miRNA binding sites with the potential for PTENP1 to compete for the binding, or 'sponging', of miRNAs that would otherwise target the PTEN transcript. PTENP1 therefore acts as a competitive endogenous RNA (ceRNA), competing with PTEN for the binding of specific miRNAs to alter the abundance of PTEN. Transcription from the antisense strand produces two functionally independent isoforms (PTENP1-AS-α and PTENP1-AS-β), which can regulate PTEN transcription. In this review, we provide an overview of the post-transcriptional regulation of PTEN through interaction with its pseudogene, the cellular miRNA milieu and operation of the ceRNA network. Furthermore, its importance in maintaining cellular integrity and how disruption of this PTEN-miRNA-PTENP1 axis may lead to cancer but also provide novel therapeutic opportunities, is discussed. Precision targeting of PTENP1-miRNA mediated regulation of PTEN may present as a viable alternative therapy.
Collapse
Affiliation(s)
- Glena Travis
- Cancer Biology, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (G.T.); (E.M.M.)
| | - Eileen M. McGowan
- Cancer Biology, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (G.T.); (E.M.M.)
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Ann M. Simpson
- Gene Therapy and Translational Molecular Analysis Laboratory, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Deborah J. Marsh
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Najah T. Nassif
- Cancer Biology, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (G.T.); (E.M.M.)
| |
Collapse
|
45
|
Shan TD, Han Y, Song MQ, Chen L. Mettl14-mediated m 6 A modification regulates the abnormal differentiation of small intestinal epithelial stem cells in diabetic state. J Cell Physiol 2023; 238:2361-2372. [PMID: 37565545 DOI: 10.1002/jcp.31090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023]
Abstract
Diabetes mellitus (DM) and its related complications are a global epidemic characterized by high morbidity and mortality. However, little is known about diabetic enteropathy (DE) and its the potential underlying mechanism. Intestinal epithelial stem cells (IESCs) were harvested from experimental mice, and the levels of dominant N6-methyladenosine (m6 A)-related enzyme were detected by RT-PCR, Western blotting, immunohistochemistry. The role of Mettl14 in the abnormal differentiation of intestinal epithelial cells (IECs) during DM was confirmed by knockdown experiments. RT-PCR, MeRIP, and bioinformatics analysis were carried out to confirm the downstream target of Mettl14. Through bioinformatics analysis, RT-PCR, and Western blotting, we further analyzed the differentiation-related gene in the IECs from mice with DM. In this study, the levels of Mettl14 and m6 A were higher in db/db mice than that in control mice. And abnormal differentiation of IECs in DM was associated with Mettl14 overexpression. Additionally, Mettl14 is a major determinant of IESCs identity and organoid-forming upon DM state. Mechanistically, we revealed that the candidate binding target of Mettl14 was Fzd2 mRNA and affected Fzd2 stability. Moreover, Mettl14 downregulation was observed to attenuate the abnormal differentiation of IECs through modulating Fzd2 m6A modification in DM state. Together, our results provide definitive evidence for the essential role of Mettl14 in differentiation of IESCs in DM state.
Collapse
Affiliation(s)
- Ti-Dong Shan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P. R. China
| | - Yue Han
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P. R. China
| | - Ming-Quan Song
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P. R. China
| | - Li Chen
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P. R. China
| |
Collapse
|
46
|
Ouyang G, Wu Z, Liu Z, Pan G, Wang Y, Liu J, Guo J, Liu T, Huang G, Zeng Y, Wei Z, He S, Yuan G. Identification and validation of potential diagnostic signature and immune cell infiltration for NAFLD based on cuproptosis-related genes by bioinformatics analysis and machine learning. Front Immunol 2023; 14:1251750. [PMID: 37822923 PMCID: PMC10562635 DOI: 10.3389/fimmu.2023.1251750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Background and aims Cuproptosis has been identified as a key player in the development of several diseases. In this study, we investigate the potential role of cuproptosis-related genes in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Method The gene expression profiles of NAFLD were obtained from the Gene Expression Omnibus database. Differential expression of cuproptosis-related genes (CRGs) were determined between NAFLD and normal tissues. Protein-protein interaction, correlation, and function enrichment analyses were performed. Machine learning was used to identify hub genes. Immune infiltration was analyzed in both NAFLD patients and controls. Quantitative real-time PCR was employed to validate the expression of hub genes. Results Four datasets containing 115 NAFLD and 106 control samples were included for bioinformatics analysis. Three hub CRGs (NFE2L2, DLD, and POLD1) were identified through the intersection of three machine learning algorithms. The receiver operating characteristic curve was plotted based on these three marker genes, and the area under the curve (AUC) value was 0.704. In the external GSE135251 dataset, the AUC value of the three key genes was as high as 0.970. Further nomogram, decision curve, calibration curve analyses also confirmed the diagnostic predictive efficacy. Gene set enrichment analysis and gene set variation analysis showed these three marker genes involved in multiple pathways that are related to the progression of NAFLD. CIBERSORT and single-sample gene set enrichment analysis indicated that their expression levels in macrophages, mast cells, NK cells, Treg cells, resting dendritic cells, and tumor-infiltrating lymphocytes were higher in NAFLD compared with control liver samples. The ceRNA network demonstrated a complex regulatory relationship between the three hub genes. The mRNA level of these hub genes were further confirmed in a mouse NAFLD liver samples. Conclusion Our study comprehensively demonstrated the relationship between NAFLD and cuproptosis, developed a promising diagnostic model, and provided potential targets for NAFLD treatment and new insights for exploring the mechanism for NAFLD.
Collapse
Affiliation(s)
- Guoqing Ouyang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
- Liuzhou Key Laboratory of Liver Cancer Research, Liuzhou People’s Hospital, Liuzhou, Guangxi, China
| | - Zhan Wu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhipeng Liu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Guandong Pan
- Liuzhou Key Laboratory of Liver Cancer Research, Liuzhou People’s Hospital, Liuzhou, Guangxi, China
- Liuzhou Hepatobiliary and Pancreatic Diseases Precision Diagnosis Research Center of Engineering Technology, Liuzhou People’s Hospital by Liuzhou Science and Technology Bureau, Liuzhou, Guangxi, China
| | - Yong Wang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Liu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Jixu Guo
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Tao Liu
- Department of General Surgery, Luzhai People’s Hospital, Liuzhou, Guangxi, China
| | - Guozhen Huang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Yonglian Zeng
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Zaiwa Wei
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
47
|
Pan S, Zhu J, Liu P, Wei Q, Zhang S, An W, Tong Y, Cheng Z, Liu F. FN1 mRNA 3'-UTR supersedes traditional fibronectin 1 in facilitating the invasion and metastasis of gastric cancer through the FN1 3'-UTR-let-7i-5p-THBS1 axis. Theranostics 2023; 13:5130-5150. [PMID: 37771777 PMCID: PMC10526670 DOI: 10.7150/thno.82492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
Background: Current clinical treatments for gastric cancer (GC), particularly advanced GC, lack infallible therapeutic targets. The 3'-untranslated region (3'-UTR) has attracted increasing attention as a drug target. Methods: In vitro and in vivo experiments were conducted to determine the function of FN1 3'-UTR and FN1 protein in invasion and metastasis. RNA pull-down assay and high-throughput sequencing were used to screen the factors regulated by FN1 3'-UTR and construct the regulatory network. Western blotting and polymerase chain reaction were used to examine the correlation of intermolecular expression levels. RNA-binding protein immunoprecipitation was used to verify the correlation between FN1 3'-UTR and target mRNAs. Results: The FN1 3'-UTR may have stronger prognostic implications than the FN1 protein in GC patients. Upregulation of FN1 3'-UTR significantly promoted the invasive and metastatic abilities of GC cells to a greater extent than FN1 protein in vitro and in vivo. A novel regulatory network was constructed based on the FN1 3'-UTR-let-7i-5p-THBS1 axis, wherein FN1 3'-UTR displayed stronger oncogenic effects than the FN1 protein. Conclusions: FN1 3'-UTR may be a better therapeutic target for constructing targeted drugs in GC than the FN1 protein.
Collapse
Affiliation(s)
- Siwei Pan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
- Phase I Clinical Trails Center, The First Hospital, China Medical University, 518 North Chuangxin Road, Baita Street, Hunnan District, Shenyang, 110102 Liaoning, China
| | - Jiaming Zhu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
| | - Pengfei Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
- Phase I Clinical Trails Center, The First Hospital, China Medical University, 518 North Chuangxin Road, Baita Street, Hunnan District, Shenyang, 110102 Liaoning, China
| | - Qiaochu Wei
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
- Phase I Clinical Trails Center, The First Hospital, China Medical University, 518 North Chuangxin Road, Baita Street, Hunnan District, Shenyang, 110102 Liaoning, China
| | - Siyu Zhang
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Wen An
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
| | - Yuxin Tong
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Zhenguo Cheng
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhenzhou 450000, China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
- Phase I Clinical Trails Center, The First Hospital, China Medical University, 518 North Chuangxin Road, Baita Street, Hunnan District, Shenyang, 110102 Liaoning, China
| |
Collapse
|
48
|
Eun JW, Cheong JY, Jeong JY, Kim HS. A New Understanding of Long Non-Coding RNA in Hepatocellular Carcinoma-From m 6A Modification to Blood Biomarkers. Cells 2023; 12:2272. [PMID: 37759495 PMCID: PMC10528438 DOI: 10.3390/cells12182272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
With recent advancements in biological research, long non-coding RNAs (lncRNAs) with lengths exceeding 200 nucleotides have emerged as pivotal regulators of gene expression and cellular phenotypic modulation. Despite initial skepticism due to their low sequence conservation and expression levels, their significance in various biological processes has become increasingly apparent. We provided an overview of lncRNAs and discussed their defining features and modes of operation. We then explored their crucial function in the hepatocarcinogenesis process, elucidating their complex involvement in hepatocellular carcinoma (HCC). The influential role of lncRNAs within the HCC tumor microenvironment is emphasized, illustrating their potential as key modulators of disease dynamics. We also investigated the significant influence of N6-methyladenosine (m6A) modification on lncRNA function in HCC, enhancing our understanding of both their roles and their upstream regulators. Additionally, the potential of lncRNAs as promising biomarkers was discussed in liver cancer diagnosis, suggesting a novel avenue for future research and clinical application. Finally, our work underscored the dual potential of lncRNAs as both contributors to HCC pathogenesis and innovative tools for its diagnosis. Existing challenges and prospective trajectories in lncRNA research are also discussed, emphasizing their potential in advancing liver cancer research.
Collapse
Affiliation(s)
- Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea; (J.W.E.); (J.Y.C.)
| | - Jae Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea; (J.W.E.); (J.Y.C.)
| | - Jee-Yeong Jeong
- Department of Biochemistry, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea;
- Institute for Medical Science, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea
| | - Hyung Seok Kim
- Department of Biochemistry, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea;
| |
Collapse
|
49
|
Roy L, Chatterjee O, Bose D, Roy A, Chatterjee S. Noncoding RNA as an influential epigenetic modulator with promising roles in cancer therapeutics. Drug Discov Today 2023; 28:103690. [PMID: 37379906 DOI: 10.1016/j.drudis.2023.103690] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/11/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
The epigenetic landscape has an important role in cellular homeostasis and its deregulation leads to cancer. Noncoding (nc)RNA networks function as major regulators of cellular epigenetic hallmarks via regulation of vital processes, such as histone modification and DNA methylation. They are integral intracellular components affecting multiple oncogenic pathways. Thus, it is important to elucidate the effects of ncRNA networks on epigenetic programming that lead to the initiation and progression of cancer. In this review, we summarize the effects of epigenetic modification influenced by ncRNA networks and crosstalk between diverse classes of ncRNA, which could aid the development of patient-specific cancer therapeutics targeting ncRNAs, thereby altering cellular epigenetics.
Collapse
Affiliation(s)
- Laboni Roy
- Department of Biophysics, Bose Institute, Kolkata 700091, India
| | | | - Debopriya Bose
- Department of Biophysics, Bose Institute, Kolkata 700091, India
| | - Ananya Roy
- Department of Biophysics, Bose Institute, Kolkata 700091, India
| | | |
Collapse
|
50
|
Zhao J, Le M, Li J, Huang Q, Chen H, Zhang W, Mao H, Sun Q, Li A, Zhao Y, Yu L, Yi M, Wang J, Li X, Zhang G, Ma J, Dong X. LINC00938 alleviates hypoxia ischemia encephalopathy induced neonatal brain injury by regulating oxidative stress and inhibiting JNK/p38 MAPK signaling pathway. Exp Neurol 2023; 367:114449. [PMID: 37257715 DOI: 10.1016/j.expneurol.2023.114449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is an important factor leading to permanent damage of central nervous system (CNS) and even neonatal death. Long non-coding RNAs (lncRNAs) has been shown to get involved in the pathogenesis of nervous system diseases. LINC00938 is an intergenic lncRNA which is reported to be involved in neurodegenerative disease. However, the potential role of LINC00938 in nerve injury of neonatal HIE is undetermined. Here, we found that the expression of LINC00938 in the whole blood of neonates with HIE was downregulated compared with the non-HIE group. Functional study revealed that the expression of LINC00938 was significantly decreased in oxygen-glucose deprivation (OGD)-induced SH-SY5Y. Knockdown of LINC00938 induced the neural cell apoptosis by increased the protein level of Bax, Cleaved-Caspase3 and decreased the expression of Bcl-2. In addition, overexpression of LINC00938 prevented the apoptosis of SH-SY5Y from OGD injury. RNA-seq analysis showed that MAPK signaling was involved in the anti-apoptosis function of LINC00938. LINC00938 knockdown induced the activation of c-Jun-N-terminal kinase (JNK), p38 mitogen-activated protein kinase, and inhibited the activation of ERK signaling. However, LINC00938 play neuroprotective role in OGD-induced SH-SY5Y by suppression the phosphorylation of JNK and p38 MAPK rather than regulation of ERK signaling pathway. Further analyses illustrated that the cell apoptosis of neuronal cell was dependent on the elevation of reactive oxygen species (ROS) and result in mitochondria dysfunction in LINC00938 knockdown SH-SY5Y. Pretreated with ROS inhibitor N-acetylcysteine amide (NACA) dramatically suppressed LINC00938 knockdown induced oxidative stress and mitochondria dysfunction which induced cell apoptosis. In addition, NACA treatment significantly reduced the expression of p-JNK and p-p38 in OGD-induced SH-SY5Y. Furthermore, overexpression of LINC00938 displayed a notably neuroprotective effect by suppress central nervous system cell apoptosis via alleviating oxidative stress in CoCl2-induced hypoxic HIE model of zebrafish. Taken together, these results suggested that LINC00938 can act as a neuroprotective factor to inhibit oxidative stress and apoptosis of CNS under HIE conditions.
Collapse
Affiliation(s)
- Jing Zhao
- Department of General Practitioners, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Meini Le
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Jie Li
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 20033, China
| | - Qiong Huang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Haocong Chen
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Wenyi Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Huiwen Mao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Qing Sun
- Department of Pediatrics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 20033, China
| | - Aiguo Li
- Department of Pediatrics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 20033, China
| | - Yingmin Zhao
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, China
| | - Lingling Yu
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, China
| | - Mingjiang Yi
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Jie Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Xinyuan Li
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 20033, China.
| | - Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China.
| | - Jun Ma
- Department of General Practitioners, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China.
| | - Xiaohua Dong
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China; Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 20033, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China.
| |
Collapse
|