1
|
Gancedo SN, Sahores A, Gómez N, Di Siervi N, May M, Yaneff A, de Sousa Serro MG, Fraunhoffer N, Dusetti N, Iovanna J, Shayo C, Davio CA, González B. The xenobiotic transporter ABCC4/MRP4 promotes epithelial mesenchymal transition in pancreatic cancer. Front Pharmacol 2024; 15:1432851. [PMID: 39114357 PMCID: PMC11303182 DOI: 10.3389/fphar.2024.1432851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
The xenobiotic transporter ABCC4/MRP4 is highly expressed in pancreatic ductal adenocarcinoma (PDAC) and correlates with a more aggressive phenotype and metastatic propensity. Here, we show that ABCC4 promotes epithelial-mesenchymal transition (EMT) in PDAC, a hallmark process involving the acquisition of mesenchymal traits by epithelial cells, enhanced cell motility, and chemoresistance. Modulation of ABCC4 levels in PANC-1 and BxPC-3 cell lines resulted in the dysregulation of genes present in the EMT signature. Bioinformatic analysis on several cohorts including tumor samples, primary patient-derived cultured cells, patient-derived xenografts, and cell lines, revealed a positive correlation between ABCC4 expression and EMT markers. We also characterized the ABCC4 cistrome and identified four candidate clusters in the distal promoter and intron one that showed differential binding of pro-epithelial FOXA1 and pro-mesenchymal GATA2 transcription factors in low ABCC4-expressing HPAF-II and high ABCC4-expressing PANC-1 xenografts. HPAF-II xenografts showed exclusive binding of FOXA1, and PANC-1 xenografts exclusive binding of GATA2, at ABCC4 clusters, consistent with their low and high EMT phenotype respectively. Our results underscore ABCC4/MRP4 as a valuable prognostic marker and a potential therapeutic target to treat PDAC subtypes with prominent EMT features, such as the basal-like/squamous subtype, characterized by worse prognosis and no effective therapies.
Collapse
Affiliation(s)
- S. N. Gancedo
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - A. Sahores
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
| | - N. Gómez
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - N. Di Siervi
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - M. May
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - A. Yaneff
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
| | - M. G. de Sousa Serro
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - N. Fraunhoffer
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, CNRS UMR, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Equipe Labellisée La Ligue, Marseille, France
| | - N. Dusetti
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, CNRS UMR, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Equipe Labellisée La Ligue, Marseille, France
| | - J. Iovanna
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, CNRS UMR, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Equipe Labellisée La Ligue, Marseille, France
- Hospital de Alta Complejidad El Cruce, Argentina. Universidad Nacional Arturo Jauretche, Buenos Aires, Argentina
| | - C. Shayo
- Instituto de Biología y Medicina Experimental (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - C. A. Davio
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
| | - B. González
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
| |
Collapse
|
2
|
Wang H, Liu F, Wu X, Zhu G, Tang Z, Qu W, Zhao Q, Huang R, Tian M, Fang Y, Jiang X, Tao C, Gao J, Liu W, Zhou J, Fan J, Wu D, Shi Y. Cancer-associated fibroblasts contributed to hepatocellular carcinoma recurrence and metastasis via CD36-mediated fatty-acid metabolic reprogramming. Exp Cell Res 2024; 435:113947. [PMID: 38301989 DOI: 10.1016/j.yexcr.2024.113947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are the main components in the tumor microenvironment. Tumors activate fibroblasts from quiescent state into activated state by secreting cytokines, and activated CAFs may in turn promote tumor progression and metastasis. Therefore, studies targeting CAFs could enrich the therapeutic options for tumor treatment. In this study, we demonstrate that the content of lipid droplets and the expression of autophagosomes were higher in CAFs than in peri-tumor fibroblasts (PTFs), which was inhibited by 5-(tetradecyloxy)-2-furoic acid(TOFA). The expression of CD36 in CAFs was higher than that in PTFs at both mRNA and protein levels. Inhibition of CD36 activity using either the CD36 inhibitor SSO or siRNA had a significant negative impact on the proliferation and migration abilities of CAFs, which was associated with reduced levels of relevant activated genes (α-SMA, FAP, Vimentin) and cytokines (IL-6, TGF-β and VEGF-α). SSO also inhibited HCC growth and tumorigenesis in nude mice orthotopically implanted with CAFs and HCC cells. Our data further show that CD36+CAFs affected the expression of PD-1 in CTLs leading to CTL exhaustion, and that patients with high CD36 expression in CAFs were correlated with shorter overall survival (OS). Together, our data demonstrate that CAFs were active in lipid metabolism with increased lipid content and lipophagy activity. CD36 may play a key role in the regulation of the biological behaviors of CAFs, which may influence the proliferation and migration of tumor cells by reprograming the lipid metabolism in tumor cells. Thus, CD36 could be an effective therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Han Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Department of General Surgery, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Fangming Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Xiaoling Wu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Guiqi Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Weifeng Qu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Qianfu Zhao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Run Huang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengxin Tian
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Fang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Xifei Jiang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenyang Tao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Weiren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China.
| | - Duojiao Wu
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yinghong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Chhichholiya Y, Singh HV, Vashistha R, Singh S, Munshi A. Deciphering the role of KRAS gene in oncogenesis: Focus on signaling pathways, genetic alterations in 3'UTR, KRAS specific miRNAs and therapeutic interventions. Crit Rev Oncol Hematol 2024; 194:104250. [PMID: 38143047 DOI: 10.1016/j.critrevonc.2023.104250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023] Open
Abstract
Cancer is a significant cause of death after cardiovascular disease. The genomic, epigenetic and environmental factors have been found to be the risk factor for the disease. The most important genes that develop cancer are oncogenes and tumor suppressor genes. Among oncogenes, KRAS has emerged as a significant player in the development of many cancers. Dysregulation of the RAS signaling pathway either on account of mutation in significant genes involved in the pathway or aberrant expression of different miRNAs targeting these genes including KRAS. The focus is also on the alterations in 3'UTR of the KRAS gene sequence as well as the changes in the miRNA encoding genes especially the one targeting the KRAS gene. Efforts are also being put in to target the dysregulated KRAS gene as a therapeutic approach to treat different cancers. However, there are some challenges like resistance to KRAS inhibitors that need to be addressed.
Collapse
Affiliation(s)
- Yogita Chhichholiya
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Harsh Vikram Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | | | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
4
|
Guo Y, Tian J, Guo Y, Wang C, Chen C, Cai S, Yu W, Sun B, Yan J, Li Z, Fan J, Qi Q, Zhang D, Jin W, Hua Z, Chen G. Oncogenic KRAS effector USP13 promotes metastasis in non-small cell lung cancer through deubiquitinating β-catenin. Cell Rep 2023; 42:113511. [PMID: 38043062 DOI: 10.1016/j.celrep.2023.113511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
KRAS mutations are frequently detected in non-small cell lung cancers (NSCLCs). Although covalent KRASG12C inhibitors have been developed to treat KRASG12C-mutant cancers, effective treatments are still lacking for other KRAS-mutant NSCLCs. Thus, identifying a KRAS effector that confers poor prognosis would provide an alternative strategy for the treatment of KRAS-driven cancers. Here, we show that KRAS drives expression of deubiquitinase USP13 through Ras-responsive element-binding protein 1 (RREB1). Elevated USP13 promotes KRAS-mutant NSCLC metastasis, which is associated with poor prognosis in NSCLC patients. Mechanistically, USP13 interacts with and removes the K63-linked polyubiquitination of β-catenin at lysine 508, which enhances the binding between β-catenin and transcription factor TCF4. Importantly, we identify 2-methoxyestradiol as an effective inhibitor for USP13 from a natural compound library, and it could potently suppress the metastasis of KRAS-mutant NSCLC cells in vitro and in vivo. These findings identify USP13 as a therapeutic target for metastatic NSCLC with KRAS mutations.
Collapse
Affiliation(s)
- Yanguan Guo
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China; Department of General Surgery and Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R. China
| | - Jiaxin Tian
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Cong Wang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Congcong Chen
- Department of General Surgery and Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R. China
| | - Songwang Cai
- Department of General Surgery and Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R. China
| | - Wenliang Yu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Binghe Sun
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jin Yan
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Zhonghua Li
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jun Fan
- Department of Medical Biochemistry, Molecular Biology and Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Qi Qi
- Department of Medical Biochemistry, Molecular Biology and Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Zichun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China; School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China.
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China; Department of Medical Biochemistry, Molecular Biology and Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P.R. China.
| |
Collapse
|
5
|
Zhang Y, Liang S, Zhang Y, Liu M, Zhang K. Identification of a novel endocytosis‑associated gene signature for prognostic prediction in lung adenocarcinoma. Oncol Lett 2023; 26:511. [PMID: 37920434 PMCID: PMC10618919 DOI: 10.3892/ol.2023.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
Lung cancer is one of the most common malignant solid tumors and the leading cause of cancer-associated mortality worldwide. Endocytosis is an essential physiological activity for cells to maintain membrane homeostasis, and has been reported to serve an important role in tumorigenesis and progression. In the present study, the aim was to construct a prognostic prediction model of endocytosis-associated genes for patients with lung adenocarcinoma (LUAD). The endocytosis-associated gene signature was established using Lasso Cox regression analysis using the training set of the LUAD cohort from The Cancer Genome Atlas (TCGA) database, and verified using two datasets from the Gene Expression Omnibus (GEO) database. Kaplan-Meier survival curves were used to evaluate the effectiveness of the prognostic evaluation of patients with LUAD. Differentially expressed genes were screened in the tumor tissue of patients compared with paired paracancerous tissues. A series of candidate genes associated to the prognosis of patients with LUAD was obtained using univariate Cox's regression analysis. Using the Lasso Cox regression analysis, an appropriate risk model with 18 endocytosis-associated genes was established. A high-risk score was positively correlated with a higher tumor stage and pathologic grade. Patients with LUAD and high-risk scores had shorter survival times, increased intratumor heterogeneities and immune cell infiltration into tumor tissues, compared with those patients with LUAD and low-risk scores. The endocytosis inhibitor chloroquine could repress proliferation and increase the apoptosis of lung cancer cells. In summary, a novel endocytosis-associated gene signature was constructed using TCGA and GEO datasets. Patients with LUAD and high-risk scores, as calculated by the signature, had a poor prognosis and short survival time.
Collapse
Affiliation(s)
- Yixin Zhang
- Department of Blood Transfusion, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Siwen Liang
- School of Optometry & Ophthalmology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yan Zhang
- Department of Blood Transfusion, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Minghui Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Kai Zhang
- Department of Blood Transfusion, Tianjin Hospital, Tianjin 300211, P.R. China
| |
Collapse
|
6
|
Aktar A, Heit B. Role of the pioneer transcription factor GATA2 in health and disease. J Mol Med (Berl) 2023; 101:1191-1208. [PMID: 37624387 DOI: 10.1007/s00109-023-02359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The transcription factor GATA2 is involved in human diseases ranging from hematopoietic disorders, to cancer, to infectious diseases. GATA2 is one of six GATA-family transcription factors that act as pioneering transcription factors which facilitate the opening of heterochromatin and the subsequent binding of other transcription factors to induce gene expression from previously inaccessible regions of the genome. Although GATA2 is essential for hematopoiesis and lymphangiogenesis, it is also expressed in other tissues such as the lung, prostate gland, gastrointestinal tract, central nervous system, placenta, fetal liver, and fetal heart. Gene or transcriptional abnormalities of GATA2 causes or predisposes patients to several diseases including the hematological cancers acute myeloid leukemia and acute lymphoblastic leukemia, the primary immunodeficiency MonoMAC syndrome, and to cancers of the lung, prostate, uterus, kidney, breast, gastric tract, and ovaries. Recent data has also linked GATA2 expression and mutations to responses to infectious diseases including SARS-CoV-2 and Pneumocystis carinii pneumonia, and to inflammatory disorders such as atherosclerosis. In this article we review the role of GATA2 in the etiology and progression of these various diseases.
Collapse
Affiliation(s)
- Amena Aktar
- Department of Microbiology and Immunology; the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology; the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, N6A 5C1, Canada.
- Robarts Research Institute, London, ON, N6A 3K7, Canada.
| |
Collapse
|
7
|
Feng X. Integrative analysis of GWAS and transcriptomics data reveal key genes for non-small lung cancer. Med Oncol 2023; 40:270. [PMID: 37592093 DOI: 10.1007/s12032-023-02139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
Lung cancer is one of the world's most common and deadly cancers. The two main types of lung cancer are non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). More than 85% of lung cancers are NSCLC. Genetic factors play a significant role in the risk of NSCLC. Growing studies focus on studying risk factors at the molecular level. The aim of the study is to build a pipeline to integrate Genome-wide association analysis (GWAS) and transcriptomics data with machine learning to effectively identify genetic risk factors of NSCLC. GWAS datasets and GWAS summary data were downloaded from GWAS catalog, which include lung carcinoma genetic variants among the European population. Then, with the GWAS summary, data functional analysis of significant SNPs was performed using a webserver called FUMAGWAS. The transcriptomics data of NSCLC and non-NSCLC people were used to build a machine learning model to identify the key genes that help predict the NSCLC. The top up-regulation and down-regulation genes were identified by the BART cancer webserver, and the mechanistic roles of the genes were validated by literature review. By performing integrative analysis of GWAS and transcriptomics analysis using machine learning, we identified multiple SNPs and genes that related to NSCLC. The computational pipeline may facilitate the biomarker discovery for NSCLC and other diseases.
Collapse
Affiliation(s)
- Xiangxiong Feng
- University of California Davis, Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
8
|
Tavares V, Assis J, Pinto R, Freitas-Silva M, Medeiros R. Venous thromboembolism-related genetic determinant F11 rs4253417 is a potential prognostic factor in ischaemic stroke. Mol Cell Probes 2023; 70:101917. [PMID: 37364690 DOI: 10.1016/j.mcp.2023.101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 06/28/2023]
Abstract
Ischaemic stroke (IS) and venous thromboembolism (VTE) are two forms of thromboembolism that, although distinct, seem to share numerous risk factors. Concerning genetic risk factors, while many VTE genetic markers have been reported, inclusively by genome-wide association studies (GWAS), the identification and validation of genetic determinants underlying IS pathogenesis have been challenging. Considering that IS and VTE shared biological pathways and aetiological factors, the severity of IS might be also influenced by VTE-related genetic variants. Thus, the present study was designed to analyse the impact of six VTE GWAS-identified genetic variants on the clinical outcome of 363 acute IS patients. Results revealed that the single-nucleotide polymorphism (SNP) F11 rs4253417 was an independent predictor of the 5-year risk of death among patients with total anterior circulation infarct (TACI). Namely, the ones carrying the SNP C allele presented a fourfold increase in the 5-year risk of death compared to TT genotype carriers (CC/CT vs. TT; adjusted HR, 4.240; 95% CI, 1.260-14.270; P = 0.020). This SNP is known to be associated with coagulation factor XI (FXI) levels, thus with implications in haemostasis and inflammation. As such, F11 rs4253417 might be a promising prognostic biomarker among TACI patients to aid in clinical decision-making. However, additional investigation is required to confirm the study's results and dissect the underlying mechanisms.
Collapse
Affiliation(s)
- Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Dep., Clinical Pathology SV, RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal; ICBAS, Abel Salazar Institute for the Biomedical Sciences, 4050-313, Porto, Portugal; FMUP, Faculty of Medicine, University of Porto, 4200-072, Porto, Portugal
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal
| | - Ricardo Pinto
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Dep., Clinical Pathology SV, RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal
| | - Margarida Freitas-Silva
- FMUP, Faculty of Medicine, University of Porto, 4200-072, Porto, Portugal; Department of Medicine, Centro Hospitalar São João, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Dep., Clinical Pathology SV, RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal; ICBAS, Abel Salazar Institute for the Biomedical Sciences, 4050-313, Porto, Portugal; FMUP, Faculty of Medicine, University of Porto, 4200-072, Porto, Portugal; Research Department, Portuguese League Against Cancer (NRNorte), 4200-172, Porto, Portugal; CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, 4200-150, Porto, Portugal.
| |
Collapse
|
9
|
Moghal N, Li Q, Stewart EL, Navab R, Mikubo M, D'Arcangelo E, Martins-Filho SN, Raghavan V, Pham NA, Li M, Shepherd FA, Liu G, Tsao MS. Single-Cell Analysis Reveals Transcriptomic Features of Drug-Tolerant Persisters and Stromal Adaptation in a Patient-Derived EGFR-Mutated Lung Adenocarcinoma Xenograft Model. J Thorac Oncol 2023; 18:499-515. [PMID: 36535627 DOI: 10.1016/j.jtho.2022.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/11/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Targeted therapies require life-long treatment, as drug discontinuation invariably leads to tumor recurrence. Recurrence is mainly driven by minor subpopulations of drug-tolerant persister (DTP) cells that survive the cytotoxic drug effect. In lung cancer, DTP studies have mainly been conducted with cell line models. METHODS We conducted an in vivo DTP study using a lung adenocarcinoma patient-derived xenograft tumor driven by an EGFR mutation. Daily treatment of tumor-bearing mice for 5 to 6 weeks with the EGFR inhibitor erlotinib markedly shrunk tumors and generated DTPs, which were analyzed by whole exome, bulk population transcriptome, and single-cell RNA sequencing. RESULTS The DTP tumors maintained the genomic clonal architecture of untreated baseline (BL) tumors but had reduced proliferation. Single-cell RNA sequencing identified a rare (approximately 4%) subpopulation of BL cells (DTP-like) with transcriptomic similarity to DTP cells and intermediate activity of pathways that are up-regulated in DTPs. Furthermore, the predominant transforming growth factor-β activated cancer-associated fibroblast (CAF) population in BL tumors was replaced by a CAF population enriched for IL6 production. In vitro experiments indicate that these populations interconvert depending on the levels of transforming growth factor-β versus NF-κB signaling, which is modulated by tyrosine kinase inhibitor presence. The DTPs had signs of increased NF-κB and STAT3 signaling, which may promote their survival. CONCLUSIONS The DTPs may arise from a specific preexisting subpopulation of cancer cells with partial activation of specific drug resistance pathways. Tyrosine kinase inhibitor treatment induces DTPs revealing greater activation of these pathways while converting the major preexisting CAF population into a new state that may further promote DTP survival.
Collapse
Affiliation(s)
- Nadeem Moghal
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Quan Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Erin L Stewart
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Roya Navab
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Masashi Mikubo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Thoracic Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Elisa D'Arcangelo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sebastiao N Martins-Filho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Vibha Raghavan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ming Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Frances A Shepherd
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Ebi H. Drug-Tolerant Persister Cells After EGFR Tyrosine Kinase Inhibitor Treatment: Their Origin and the Influences From the Tumor Microenvironment. J Thorac Oncol 2023; 18:399-401. [PMID: 36990572 DOI: 10.1016/j.jtho.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 03/29/2023]
|
11
|
Adler J, Oren R, Shaul Y. Depleting the 19S proteasome regulatory PSMD1 subunit as a cancer therapy strategy. Cancer Med 2023; 12:10781-10790. [PMID: 36934426 DOI: 10.1002/cam4.5775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/18/2022] [Accepted: 02/24/2023] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND Proteasome inhibitors are in use in treating certain types of cancers. These drugs inhibit the catalytic activity of the 20S proteasome, shared by all the different proteasome complexes. Inhibitors of the 26S-associated deubiquitinating activity explicitly inhibit the 26S proteasomal degradation of ubiquitinylated substrates. We have previously reported an alternative strategy that is based on reducing the 26S/20S ratio by depleting PSMD1, 6, and 11, the subunits of the 19S proteasome regulatory complex. Given the addiction of the many cancer types to a high 26S/20S ratio, the depletion strategy is highly effective in killing many aggressive cancer cell lines but not mouse and human immortalized and normal cells. METHODS We used two aggressive cell lines, MDA-MB-231, a triple-negative breast tumor cell line, and OVCAR8, a high-grade ovary adenocarcinoma. Cell culture, mouse MDA-MB-231, OVCAR8 xenografts, and patient-derived ovarian cancer xenograft (PDX) models were transduced with lentivectors expressing PSMD1 shRNA. Tumor size was measured to follow treatment efficacy. RESULTS Using different experimental strategies of expressing shRNA, we found that PSMD1 depletion, either by expressing PSMD1 shRNA in an inducible manner or in a constitutive manner, robustly inhibited MDA-MB-231, and OVCAR8 xenograft tumor growth. Furthermore, the PSMD1 depletion strategy compromised the growth of the PDX of primary ovarian cancer. CONCLUSION Our results suggest that reducing the 26S/20S ratio might be a valuable strategy for treating drug-resistant aggressive types of cancers.
Collapse
Affiliation(s)
- Julia Adler
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Santhanam B, Oikonomou P, Tavazoie S. Systematic assessment of prognostic molecular features across cancers. CELL GENOMICS 2023; 3:100262. [PMID: 36950380 PMCID: PMC10025453 DOI: 10.1016/j.xgen.2023.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/29/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Precision oncology promises accurate prediction of disease trajectories by utilizing molecular features of tumors. We present a systematic analysis of the prognostic potential of diverse molecular features across large cancer cohorts. We find that the mRNA expression of biologically coherent sets of genes (modules) is substantially more predictive of patient survival than single-locus genomic and transcriptomic aberrations. Extending our analysis beyond existing curated gene modules, we find a large novel class of highly prognostic DNA/RNA cis-regulatory modules associated with dynamic gene expression within cancers. Remarkably, in more than 82% of cancers, modules substantially improve survival stratification compared with conventional clinical factors and prominent genomic aberrations. The prognostic potential of cancer modules generalizes to external cohorts better than conventionally used single-gene features. Finally, a machine-learning framework demonstrates the combined predictive power of multiple modules, yielding prognostic models that perform substantially better than existing histopathological and clinical factors in common use.
Collapse
Affiliation(s)
- Balaji Santhanam
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10032, USA
| | - Panos Oikonomou
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10032, USA
| | - Saeed Tavazoie
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
13
|
Zaw Thin M, Moore C, Snoeks T, Kalber T, Downward J, Behrens A. Micro-CT acquisition and image processing to track and characterize pulmonary nodules in mice. Nat Protoc 2023; 18:990-1015. [PMID: 36494493 DOI: 10.1038/s41596-022-00769-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
X-ray computed tomography is a reliable technique for the detection and longitudinal monitoring of pulmonary nodules. In preclinical stages of diagnostic or therapeutic development, the miniaturized versions of the clinical computed tomography scanners are ideally suited for carrying out translationally-relevant research in conditions that closely mimic those found in the clinic. In this Protocol, we provide image acquisition parameters optimized for low radiation dose, high-resolution and high-throughput computed tomography imaging using three commercially available micro-computed tomography scanners, together with a detailed description of the image analysis tools required to identify a variety of lung tumor types, characterized by specific radiological features. For each animal, image acquisition takes 4-8 min, and data analysis typically requires 10-30 min. Researchers with basic training in animal handling, medical imaging and software analysis should be able to implement this protocol across a wide range of lung cancer models in mice for investigating the molecular mechanisms driving lung cancer development and the assessment of diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- May Zaw Thin
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK. .,Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.
| | - Christopher Moore
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Thomas Snoeks
- Imaging Research Facility, The Francis Crick Institute, London, UK
| | - Tammy Kalber
- Centre for Advanced Biomedical Imaging (CABI), University College London, London, UK
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK. .,Lung Cancer Group, Division of Molecular Pathology, Institute of Cancer Research, London, UK.
| | - Axel Behrens
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK.,Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.,Department of Surgery and Cancer, Imperial College London, London, UK.,Cancer Research UK Convergence Science Centre, Imperial College London, London, UK
| |
Collapse
|
14
|
At the crossroads of immunotherapy for oncogene-addicted subsets of NSCLC. Nat Rev Clin Oncol 2023; 20:143-159. [PMID: 36639452 DOI: 10.1038/s41571-022-00718-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/15/2023]
Abstract
Non-small-cell lung cancer (NSCLC) has become a paradigm of precision medicine, with the discovery of numerous disease subtypes defined by specific oncogenic driver mutations leading to the development of a range of molecularly targeted therapies. Over the past decade, rapid progress has also been made in the development of immune-checkpoint inhibitors (ICIs), especially antagonistic antibodies targeting the PD-L1-PD-1 axis, for the treatment of NSCLC. Although many of the major oncogenic drivers of NSCLC are associated with intrinsic resistance to ICIs, patients with certain oncogene-driven subtypes of the disease that are highly responsive to specific targeted therapies might also derive benefit from immunotherapy. However, the development of effective immunotherapy approaches for oncogene-addicted NSCLC has been challenged by a lack of predictive biomarkers for patient selection and limited knowledge of how ICIs and oncogene-directed targeted therapies should be combined. Therefore, whether ICIs alone or with chemotherapy or even in combination with molecularly targeted agents would offer comparable benefit in the context of selected oncogenic driver alterations to that observed in the general unselected NSCLC population remains an open question. In this Review, we discuss the effects of oncogenic driver mutations on the efficacy of ICIs and the immune tumour microenvironment as well as the potential vulnerabilities that could be exploited to overcome the challenges of immunotherapy for oncogene-addicted NSCLC.
Collapse
|
15
|
Hu P, Wan P, Xu A, Yan B, Liu C, Xu Q, Wei Z, Xu J, Liu S, Yang G, Pan Y. Neferine, a novel ROCK1-targeting inhibitor, blocks EMT process and induces apoptosis in non-small cell lung cancer. J Cancer Res Clin Oncol 2023; 149:553-566. [PMID: 35984492 DOI: 10.1007/s00432-022-04280-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
The compounds derived from Traditional Chinese Medicines have shown various pharmacological activities with unique advantages, especially in the aspect of antitumor. Neferine (Nef), a natural compound, extracted from green seed embryos of Lotus (Nelumbo nucifera Gaertn.) also exerts antitumor effects on cancers. In this study, the effects and mechanisms of Nef on epithelial-to-mesenchymal transition (EMT) process in non-small cell lung cancer (NSCLC) were evaluated. The results showed that Nef had the antitumor effects in vivo and in vitro. Nef significantly suppressed cell viability and induced apoptosis in NSCLC cells, with elevated reactive oxygen species and reduced BCL2/BAX ratio. Nef was also demonstrated to inhibit the invasion, metastasis and EMT process of NSCLC cells, and attenuate EMT-related changes of E-cadherin, N-cadherin and Vimentin at both transcriptional and translational levels. Moreover, we concluded that the inhibitory effects of Nef on EMT was achieved by targeting Rho-associated protein kinase 1, a protein mediating the process of EMT in various cancers. These results showed that Nef had a significant antitumor effect on NSCLC cells by inducing apoptosis and blocking EMT, providing the therapeutical prospect on NSCLC treatment.
Collapse
Affiliation(s)
- Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Peng Wan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Anna Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Binghui Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chunmei Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qixuan Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenhuan Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingyi Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Siqi Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guangming Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
16
|
Hu H, Cheng R, Wang Y, Wang X, Wu J, Kong Y, Zhan S, Zhou Z, Zhu H, Yu R, Liang G, Wang Q, Zhu X, Zhang CY, Yin R, Yan C, Chen X. Oncogenic KRAS signaling drives evasion of innate immune surveillance in lung adenocarcinoma by activating CD47. J Clin Invest 2023; 133:153470. [PMID: 36413402 PMCID: PMC9843062 DOI: 10.1172/jci153470] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
KRAS is one of the most frequently activated oncogenes in human cancers. Although the role of KRAS mutation in tumorigenesis and tumor maintenance has been extensively studied, the relationship between KRAS and the tumor immune microenvironment is not fully understood. Here, we identified a role of KRAS in driving tumor evasion from innate immune surveillance. In samples of lung adenocarcinoma from patients and Kras-driven genetic mouse models of lung cancer, mutant KRAS activated the expression of cluster of differentiation 47 (CD47), an antiphagocytic signal in cancer cells, leading to decreased phagocytosis of cancer cells by macrophages. Mechanistically, mutant KRAS activated PI3K/STAT3 signaling, which restrained miR-34a expression and relieved the posttranscriptional repression of miR-34a on CD47. In 3 independent cohorts of patients with lung cancer, the KRAS mutation status positively correlated with CD47 expression. Therapeutically, disruption of the KRAS/CD47 signaling axis with KRAS siRNA, the KRASG12C inhibitor AMG 510, or a miR-34a mimic suppressed CD47 expression, enhanced the phagocytic capacity of macrophages, and restored innate immune surveillance. Our results reveal a direct mechanistic link between active KRAS and innate immune evasion and identify CD47 as a major effector underlying the KRAS-mediated immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Huanhuan Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Rongjie Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and,Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Yanbo Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Xiaojun Wang
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jianzhuang Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and
| | - Yan Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and
| | - Shoubin Zhan
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and
| | - Zhen Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and
| | - Hongyu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and
| | - Gaoli Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and
| | - Qingyan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and
| | - Xiaoju Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and,Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.,Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China.,Biobank of Lung Cancer, Jiangsu Biobank of Clinical Resources, Nanjing, China.,Collaborative Innovation Centre for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.,Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.,Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.,Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.,Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Singh G, Thakur N, Kumar U. RAS: Circuitry and therapeutic targeting. Cell Signal 2023; 101:110505. [PMID: 36341985 DOI: 10.1016/j.cellsig.2022.110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/26/2022]
Abstract
Cancer has affected the lives of millions worldwide and is truly regarded as a devastating disease process. Despite advanced understanding of the genomic underpinning of cancer development and progression, therapeutic challenges are still persistent. Among all the human cancers, around 33% are attributed to mutations in RAS oncogene, a crucial component of the signaling pathways. With time, our understanding of RAS circuitry has improved and now the fact that it activates several downstream effectors, depending on the type and grades of cancer has been established. The circuitry is controlled via post-transcriptional mechanisms and frequent distortions in these mechanisms lead to important metabolic as well as immunological states that favor cancer cells' growth, survival, plasticity and metastasis. Therefore, understanding RAS circuitry can help researchers/clinicians to develop novel and potent therapeutics that, in turn, can save the lives of patients suffering from RAS-mutant cancers. There are many challenges presented by resistance and the potential strategies with a particular focus on novel combinations for overcoming these, that could move beyond transitory responses in the direction of treatment. Here in this review, we will look at how understanding the circuitry of RAS can be put to use in making strategies for developing therapeutics against RAS- driven malignancies.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Sahibzada Ajit Singh Nagar, Punjab 140413, India
| | - Neelam Thakur
- Department of Biosciences (UIBT), Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Sahibzada Ajit Singh Nagar, Punjab 140413, India; Department of Zoology, Sardar Patel University, Vallabh Government College Campus, Paddal, Kartarpur, Mandi, Himachal Pradesh 175001, India.
| | - Umesh Kumar
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH09, Ghaziabad, Uttar Pradesh 201015, India.
| |
Collapse
|
18
|
Shahrear S, Zinnia MA, Ahmed T, Islam ABMMK. Deciphering the role of predicted miRNAs of polyomaviruses in carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166537. [PMID: 36089125 DOI: 10.1016/j.bbadis.2022.166537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/13/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022]
Abstract
Human polyomaviruses are relatively common in the general population. Polyomaviruses maintain a persistent infection after initial infection in childhood, acting as an opportunistic pathogen in immunocompromised populations and their association has been linked to carcinogenesis. A comprehensive understanding of the underlying molecular mechanisms of carcinogenesis in consequence of polyomavirus infection remains elusive. However, the critical role of viral miRNAs and their potential targets in modifying the transcriptome profile of the host remains largely unknown. Polyomavirus-derived miRNAs have the potential to play a substantial role in carcinogenesis. Employing computational approaches, putative viral miRNAs along with their target genes have been predicted and possible roles of the targeted genes in many significant biological processes have been obtained. Polyomaviruses have been observed to target intracellular signal transduction pathways through miRNA-mediated epigenetic regulation, which may contribute to cancer development. In addition, BKPyV-infected human renal cell microarray data was coupled with predicted target genes and analysis of the downregulated genes indicated that viruses target multiple signaling pathways (e.g. MAPK signaling pathway, PI3K-Akt signaling pathway, PPAR signaling pathway) in the host as well as turning off several tumor suppression genes (e.g. FGGY, EPHX2, CACNA2D3, CDH16) through miRNA-induced mechanisms, assuring cell transformation. This study provides a conceptual framework for the underlying molecular mechanisms involved in the course of carcinogenesis upon polyomavirus infection.
Collapse
Affiliation(s)
- Sazzad Shahrear
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | | - Tasnim Ahmed
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
19
|
Wang F, Huang YS, Wu HX, Wang ZX, Jin Y, Yao YC, Chen YX, Zhao Q, Chen S, He MM, Luo HY, Qiu MZ, Wang DS, Wang FH, Xu M, Li YH, Xu RH. Genomic temporal heterogeneity of circulating tumour DNA in unresectable metastatic colorectal cancer under first-line treatment. Gut 2022; 71:1340-1349. [PMID: 34489309 PMCID: PMC9185813 DOI: 10.1136/gutjnl-2021-324852] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Circulating tumour DNA (ctDNA) sequencing is increasingly used in the clinical management of patients with colorectal cancer. However, the genomic heterogeneity in ctDNA during treatments and its impact on clinical outcomes remain largely unknown. DESIGN We conducted a prospective cohort study (NCT04228614) of 171 patients with unresectable metastatic colorectal cancer (mCRC) who underwent first-line treatment and prospectively collected blood samples with or without tumour samples from patients at baseline and sequentially until disease progression or last follow-up. RESULTS The RAS/BRAF alterations in paired baseline tissue and plasma samples from 63 patients displayed a favourable concordance (81.0%, 51/63). After a period of first-line treatment (median time between baseline and last liquid biopsy, 4.67 months), 42.6% (26/61) of RAS-mutant patients showed RAS clearance and 50.0% (5/10) of BRAF-mutant patients showed BRAF clearance, while 3.6% (3/84) and 0.7% (1/135) of patients showed new RAS or BRAF mutations in ctDNA. Patients with plasma RAS/BRAF clearance showed similar progression-free survival (PFS) and overall survival (OS) with patients who remained RAS/BRAF wild-type, while much better outcomes than those who remained RAS/BRAF mutant. Patients who gained new RAS/BRAF mutations showed similar prognosis as those who maintained RAS/BRAF mutations, and shorter PFS and OS than those who remained RAS/BRAF wild-type. CONCLUSION This prospective, serial and large-scale ctDNA profiling study reveals the temporal heterogeneity of mCRC-related somatic variants, which should be given special attention in clinical practice, as evidenced by the finding that the shift in plasma RAS/BRAF mutational status can yield a drastic change in survival outcomes.
Collapse
Affiliation(s)
- Feng Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China .,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - You-Sheng Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China,Bioinformatics Platform, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Hao-Xiang Wu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Zi-Xian Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Ying Jin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Yi-Chen Yao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Yan-Xing Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China,Bioinformatics Platform, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Qi Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China,Bioinformatics Platform, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Shifu Chen
- Research and Development Division, HaploX Biotechnology, Shenzhen, Guangdong, People's Republic of China
| | - Ming-Ming He
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Hui-Yan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Miao-Zhen Qiu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - De-shen Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Feng-Hua Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Mingyan Xu
- Research and Development Division, HaploX Biotechnology, Shenzhen, Guangdong, People's Republic of China
| | - Yu-Hong Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China .,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
20
|
Seguin L. KRAS Addiction Promotes Cancer Cell Adaptation in Harsh Microenvironment Through Macropinocytosis. Subcell Biochem 2022; 98:189-204. [PMID: 35378709 DOI: 10.1007/978-3-030-94004-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
KRAS is the most frequently mutated oncogene in cancer and despite intensive studies, attempts to develop effective therapies targeting KRAS or its downstream signaling have failed mostly due to the complexity of KRAS activation and function in cancer initiation and progression. Over the years, KRAS has been involved in several biological processes including cell survival, proliferation, and metabolism by promoting not only a favorable tumor environment but also a cell-microenvironment dialog to allow cancer cells to adapt to tumor microenvironment scarcity. One of the mechanisms involved in this adaption is KRAS-mediated macropinocytosis. Macropinocytosis is an evolutionarily conserved, large-scale, and nonselective form of endocytosis involving actin-driven cell membrane remodeling to engulf large amounts of extracellular fluids and proteins from the local environment. While macropinocytosis process has been known for decades, recent gain interest due to its regulation of KRAS-driven tumor growth in adverse microenvironments. By promoting extracellular protein and other macromolecules internalization, macropinocytosis provides a survival mechanism under nutrient scarce conditions and the potential for unrestricted tumor growth. Thus, a better understanding of macropinocytotic process is needed to develop alternative therapeutic strategies.
Collapse
|
21
|
Ferrara MG, Stefani A, Pilotto S, Carbone C, Vita E, Di Salvatore M, D'Argento E, Sparagna I, Monaca F, Valente G, Vitale A, Piro G, Belluomini L, Milella M, Tortora G, Bria E. The Renaissance of KRAS Targeting in Advanced Non-Small-Cell Lung Cancer: New Opportunities Following Old Failures. Front Oncol 2022; 11:792385. [PMID: 35004317 PMCID: PMC8733471 DOI: 10.3389/fonc.2021.792385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) represents the perfect paradigm of ‘precision medicine’ due to its complex intratumoral heterogeneity. It is truly characterized by a range of molecular alterations that can deeply influence the natural history of this disease. Several molecular alterations have been found over time, paving the road to biomarker-driven therapy and radically changing the prognosis of ‘oncogene addicted’ NSCLC patients. Kirsten rat sarcoma (KRAS) mutations are present in up to 30% of NSCLC (especially in adenocarcinoma histotype) and have been identified decades ago. Since its discovery, its molecular characteristics and its marked affinity to a specific substrate have led to define KRAS as an undruggable alteration. Despite that, many attempts have been made to develop drugs capable of targeting KRAS signaling but, until a few years ago, these efforts have been unsuccessful. Comprehensive genomic profiling and wide-spectrum analysis of genetic alterations have only recently allowed to identify different types of KRAS mutations. This tricky step has finally opened new frontiers in the treatment approach of KRAS-mutant patients and might hopefully increase their prognosis and quality of life. In this review, we aim to highlight the most interesting aspects of (epi)genetic KRAS features, hoping to light the way to the state of art of targeting KRAS in NSCLC.
Collapse
Affiliation(s)
- Miriam Grazia Ferrara
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Alessio Stefani
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Sara Pilotto
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Carmine Carbone
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Emanuele Vita
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | | | - Ettore D'Argento
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Ileana Sparagna
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Federico Monaca
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Giustina Valente
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Antonio Vitale
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Geny Piro
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Lorenzo Belluomini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Giampaolo Tortora
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| |
Collapse
|
22
|
Huang L, Guo Z, Wang F, Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct Target Ther 2021; 6:386. [PMID: 34776511 PMCID: PMC8591115 DOI: 10.1038/s41392-021-00780-4] [Citation(s) in RCA: 323] [Impact Index Per Article: 107.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the leading cause of death worldwide, and its treatment and outcomes have been dramatically revolutionised by targeted therapies. As the most frequently mutated oncogene, Kirsten rat sarcoma viral oncogene homologue (KRAS) has attracted substantial attention. The understanding of KRAS is constantly being updated by numerous studies on KRAS in the initiation and progression of cancer diseases. However, KRAS has been deemed a challenging therapeutic target, even "undruggable", after drug-targeting efforts over the past four decades. Recently, there have been surprising advances in directly targeted drugs for KRAS, especially in KRAS (G12C) inhibitors, such as AMG510 (sotorasib) and MRTX849 (adagrasib), which have obtained encouraging results in clinical trials. Excitingly, AMG510 was the first drug-targeting KRAS (G12C) to be approved for clinical use this year. This review summarises the most recent understanding of fundamental aspects of KRAS, the relationship between the KRAS mutations and tumour immune evasion, and new progress in targeting KRAS, particularly KRAS (G12C). Moreover, the possible mechanisms of resistance to KRAS (G12C) inhibitors and possible combination therapies are summarised, with a view to providing the best regimen for individualised treatment with KRAS (G12C) inhibitors and achieving truly precise treatment.
Collapse
Affiliation(s)
- Lamei Huang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Zhixing Guo
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Fang Wang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
23
|
Tang D, Kroemer G, Kang R. Oncogenic KRAS blockade therapy: renewed enthusiasm and persistent challenges. Mol Cancer 2021; 20:128. [PMID: 34607583 PMCID: PMC8489073 DOI: 10.1186/s12943-021-01422-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
Across a broad range of human cancers, gain-of-function mutations in RAS genes (HRAS, NRAS, and KRAS) lead to constitutive activity of oncoproteins responsible for tumorigenesis and cancer progression. The targeting of RAS with drugs is challenging because RAS lacks classic and tractable drug binding sites. Over the past 30 years, this perception has led to the pursuit of indirect routes for targeting RAS expression, processing, upstream regulators, or downstream effectors. After the discovery that the KRAS-G12C variant contains a druggable pocket below the switch-II loop region, it has become possible to design irreversible covalent inhibitors for the variant with improved potency, selectivity and bioavailability. Two such inhibitors, sotorasib (AMG 510) and adagrasib (MRTX849), were recently evaluated in phase I-III trials for the treatment of non-small cell lung cancer with KRAS-G12C mutations, heralding a new era of precision oncology. In this review, we outline the mutations and functions of KRAS in human tumors and then analyze indirect and direct approaches to shut down the oncogenic KRAS network. Specifically, we discuss the mechanistic principles, clinical features, and strategies for overcoming primary or secondary resistance to KRAS-G12C blockade.
Collapse
Affiliation(s)
- Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China. .,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Wu C, Li Z, Feng G, Wang L, Xie J, Jin Y, Wang L, Liu S. Tumor suppressing role of serum-derived exosomal microRNA-15a in osteosarcoma cells through the GATA binding protein 2/murine double minute 2 axis and the p53 signaling pathway. Bioengineered 2021; 12:8378-8395. [PMID: 34592889 PMCID: PMC8806960 DOI: 10.1080/21655979.2021.1987092] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exosomes are emerging tools for transporting lipids, proteins, microRNAs (miRNAs), or other biomarkers for clinical purposes. They have produced widespread concern in managing human diseases, including osteosarcoma (OS). This study focuses on the function of serum-derived exosomal miR-15a in the growth of OS cells and the mechanism of action. Differentially expressed genes between OS and normal samples were screened using two datasets GSE70367 and GSE65071. miR-15a was poorly expressed, whereas GATA-binding protein 2 (GATA2) and murine double minute 2 (MDM2) were abundantly expressed in OS samples. miR-15a and its target mRNAs, including GATA2, were enriched in the p53 signaling pathway. miR-15a directly targets GATA2 mRNA to inhibit its expression, whereas GATA2 activates the transcription of MDM2, a negative regulator of p53. Overexpression of GATA2 and MDM2 promoted proliferation and cell cycle progression of MG-63 cells, whereas miR-15a blocked this axis and suppressed cell growth. miR-15a was identified as a major cargo of serum-derived exosomes, and exosomes conveying miR-15a were internalized by OS cells. This study demonstrated that miR-15a suppresses the GATA2/MDM2 axis to inhibit the proliferation and invasiveness of OS cells in vitro through the p53 signaling pathway.
Collapse
Affiliation(s)
- Chunyu Wu
- Department of Continuing Education, Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P.R. China
| | - Zhigang Li
- Department of the Second Ward Orthopedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P.R. China
| | - Guang Feng
- Department of Youth League Committee, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P.R. China
| | - Liqin Wang
- Department of Vice Director of the Hospital, Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P.R. China
| | - Jingri Xie
- Department of the Liver Spleen and Stomach, Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P.R. China
| | - Yang Jin
- Department of the Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P.R. China
| | - Long Wang
- Department of Graduate Division, Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P.R. China
| | - Songjiang Liu
- Department of Oncology, Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
25
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
26
|
Adhikari N, Jha T, Ghosh B. Dissecting Histone Deacetylase 3 in Multiple Disease Conditions: Selective Inhibition as a Promising Therapeutic Strategy. J Med Chem 2021; 64:8827-8869. [PMID: 34161101 DOI: 10.1021/acs.jmedchem.0c01676] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The acetylation of histone and non-histone proteins has been implicated in several disease states. Modulation of such epigenetic modifications has therefore made histone deacetylases (HDACs) important drug targets. HDAC3, among various class I HDACs, has been signified as a potentially validated target in multiple diseases, namely, cancer, neurodegenerative diseases, diabetes, obesity, cardiovascular disorders, autoimmune diseases, inflammatory diseases, parasitic infections, and HIV. However, only a handful of HDAC3-selective inhibitors have been reported in spite of continuous efforts in design and development of HDAC3-selective inhibitors. In this Perspective, the roles of HDAC3 in various diseases as well as numerous potent and HDAC3-selective inhibitors have been discussed in detail. It will surely open up a new vista in the discovery of newer, more effective, and more selective HDAC3 inhibitors.
Collapse
Affiliation(s)
- Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
27
|
Kumar U, Khandia R, Singhal S, Puranik N, Tripathi M, Pateriya AK, Khan R, Emran TB, Dhama K, Munjal A, Alqahtani T, Alqahtani AM. Insight into Codon Utilization Pattern of Tumor Suppressor Gene EPB41L3 from Different Mammalian Species Indicates Dominant Role of Selection Force. Cancers (Basel) 2021; 13:cancers13112739. [PMID: 34205890 PMCID: PMC8198080 DOI: 10.3390/cancers13112739] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The present study envisaged the codon usage pattern analysis of tumor suppressor gene EPB41L3 for the human, brown rat, domesticated cattle, and Sumatran orangutan. Most amino acids are coded by more than one synonymous codon, but they are used in a biased manner. The codon usage bias results from multiple factors like compositional properties, dinucleotide abundance, neutrality, parity, tRNA pool, etc. Understanding codon bias is central to fields as diverse as molecular evolution, gene expressivity, protein translation, and protein folding. This kind of studies is important to see the effects of various evolutionary forces on codon usage. The present study indicated that the selection force is dominant over other forces shaping codon usage in the envisaged organisms. Abstract Uneven codon usage within genes as well as among genomes is a usual phenomenon across organisms. It plays a significant role in the translational efficiency and evolution of a particular gene. EPB41L3 is a tumor suppressor protein-coding gene, and in the present study, the pattern of codon usage was envisaged. The full-length sequences of the EPB41L3 gene for the human, brown rat, domesticated cattle, and Sumatran orangutan available at the NCBI were retrieved and utilized to analyze CUB patterns across the selected mammalian species. Compositional properties, dinucleotide abundance, and parity analysis showed the dominance of A and G whilst RSCU analysis indicated the dominance of G/C-ending codons. The neutrality plot plotted between GC12 and GC3 to determine the variation between the mutation pressure and natural selection indicated the dominance of selection pressure (R = 0.926; p < 0.00001) over the three codon positions across the gene. The result is in concordance with the codon adaptation index analysis and the ENc-GC3 plot analysis, as well as the translational selection index (P2). Overall selection pressure is the dominant pressure acting during the evolution of the EPB41L3 gene.
Collapse
Affiliation(s)
- Utsang Kumar
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India; (U.K.); (S.S.); (N.P.); (A.M.)
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India; (U.K.); (S.S.); (N.P.); (A.M.)
- Correspondence: (R.K.); (K.D.)
| | - Shailja Singhal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India; (U.K.); (S.S.); (N.P.); (A.M.)
| | - Nidhi Puranik
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India; (U.K.); (S.S.); (N.P.); (A.M.)
| | - Meghna Tripathi
- ICAR-National Institute of High Security Animal Diseases, Bhopal 462043, India; (M.T.); (A.K.P.)
| | - Atul Kumar Pateriya
- ICAR-National Institute of High Security Animal Diseases, Bhopal 462043, India; (M.T.); (A.K.P.)
| | - Raju Khan
- Microfluidics & MEMS Center, (MRS & CFC), CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
- Correspondence: (R.K.); (K.D.)
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India; (U.K.); (S.S.); (N.P.); (A.M.)
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (T.A.); (A.M.A.)
| | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (T.A.); (A.M.A.)
| |
Collapse
|
28
|
Fu Z, Zhang X, Zhou X, Ur-Rehman U, Yu M, Liang H, Guo H, Guo X, Kong Y, Su Y, Ye Y, Hu X, Cheng W, Wu J, Wang Y, Gu Y, Lu SF, Wu D, Zen K, Li J, Yan C, Zhang CY, Chen X. In vivo self-assembled small RNAs as a new generation of RNAi therapeutics. Cell Res 2021; 31:631-648. [PMID: 33782530 PMCID: PMC8169669 DOI: 10.1038/s41422-021-00491-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/22/2021] [Indexed: 02/01/2023] Open
Abstract
RNAi therapy has undergone two stages of development, direct injection of synthetic siRNAs and delivery with artificial vehicles or conjugated ligands; both have not solved the problem of efficient in vivo siRNA delivery. Here, we present a proof-of-principle strategy that reprogrammes host liver with genetic circuits to direct the synthesis and self-assembly of siRNAs into secretory exosomes and facilitate the in vivo delivery of siRNAs through circulating exosomes. By combination of different genetic circuit modules, in vivo assembled siRNAs are systematically distributed to multiple tissues or targeted to specific tissues (e.g., brain), inducing potent target gene silencing in these tissues. The therapeutic value of our strategy is demonstrated by programmed silencing of critical targets associated with various diseases, including EGFR/KRAS in lung cancer, EGFR/TNC in glioblastoma and PTP1B in obesity. Overall, our strategy represents a next generation RNAi therapeutics, which makes RNAi therapy feasible.
Collapse
Affiliation(s)
- Zheng Fu
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China ,grid.41156.370000 0001 2314 964XChemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, Jiangsu, China ,grid.89957.3a0000 0000 9255 8984State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang Zhang
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Xinyan Zhou
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Uzair Ur-Rehman
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Mengchao Yu
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China ,grid.412521.1Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hongwei Liang
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Hongyuan Guo
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Xu Guo
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Yan Kong
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Yuanyuan Su
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Yangyang Ye
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Xiuting Hu
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Wei Cheng
- grid.410745.30000 0004 1765 1045Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jinrong Wu
- grid.440259.e0000 0001 0115 7868Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Yanbo Wang
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Yayun Gu
- grid.89957.3a0000 0000 9255 8984State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sheng-feng Lu
- grid.410745.30000 0004 1765 1045Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dianqing Wu
- grid.47100.320000000419368710Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT USA
| | - Ke Zen
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Jing Li
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Chao Yan
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China ,grid.41156.370000 0001 2314 964XChemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, Jiangsu, China ,grid.89957.3a0000 0000 9255 8984State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen-Yu Zhang
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Xi Chen
- grid.41156.370000 0001 2314 964XNanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu China ,grid.41156.370000 0001 2314 964XChemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, Jiangsu, China ,grid.89957.3a0000 0000 9255 8984State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Gong C, Fan Y, Zhou X, Lai S, Wang L, Liu J. Comprehensive Analysis of Expression and Prognostic Value of GATAs in Lung Cancer. J Cancer 2021; 12:3862-3876. [PMID: 34093794 PMCID: PMC8176258 DOI: 10.7150/jca.52623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
GATAs are a family of transcription factors that play sophisticated and extensive roles in cell fate transitions and tissue morphogenesis during embryonic development. Emerging evidence indicate that GATAs are involved in tumorigenesis of lung cancer (LC). However, the distinct roles, diverse expression patterns and prognostic values of six GATA family members in LC have yet to be elucidated. In the present study, the diverse expression patterns, prognostic values, genetic mutations, protein-protein interaction(PPI) networks of GATAs, Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway in LC patients were analyzed using a serious of databases, including ONCOMINE database, Cancer Cell Line Encyclopedia database, the Human Protein Atlas, the Gene Expression Profiling Interactive Analysis database, the Kaplan-Meier plotter, cBioPortal, String database and database Database for Annotation, Visualization, and Integrated Discovery. The mRNA expression levels of GATA1/2/4/5/6 were downregulated, while GATA3 showed abnormal expressions of up-regulation and down-regulation in patients with LC. Aberrant GATAs mRNA expression was connected with prognosis. Furthermore, genetic alterations mainly appeared in GATA4. Gene Ontology enrichment and network analysis demonstrated that GATAs and their 50 interactors were primarily associated with positive regulation of transcription from RNA polymerase II promoter, transcription factor complex, transcription factor binding Jak-STAT signaling pathway. This comprehensive bioinformatic analysis demonstrated that GATA1/2/3/4/6 may be new prognosis factors, and GATA2/5/6 may be potential targets for personalized therapy for patients with LC, but further studies are requisite to analyze the mechanism of their carcinogenicity and investigate novel drug treatment. Finally, these findings would conduce to a better understanding of the unique roles of GATAs in LC.
Collapse
Affiliation(s)
- Chengwu Gong
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yun Fan
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xueliang Zhou
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Songqing Lai
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Lijun Wang
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jichun Liu
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
30
|
Xie M, Xu X, Fan Y. KRAS-Mutant Non-Small Cell Lung Cancer: An Emerging Promisingly Treatable Subgroup. Front Oncol 2021; 11:672612. [PMID: 34012925 PMCID: PMC8126715 DOI: 10.3389/fonc.2021.672612] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
Lung cancer, the leading cause of cancer-related deaths worldwide, can be classified into small cell lung cancer and non-small cell lung cancer (NSCLC). NSCLC is the most common histological type, accounting for 85% of all lung cancers. Kirsten rat sarcoma viral oncogene (KRAS) mutations, common in NSCLC, are associated with poor prognosis, likely due to poor responses to most systemic therapies and lack of targeted drugs. The latest published clinical trial data on new small-molecule KRAS G12C inhibitors, AMG510 and MRTX849, indicate that these molecules may potentially help treat KRAS-mutant NSCLC. Simultaneously, within the immuno-therapeutic process, immune efficacy has been observed in those patients who have KRAS mutations. In this article, the pathogenesis, treatment status, progress of immunotherapy, and targeted therapy of KRAS-mutant NSCLC are reviewed.
Collapse
Affiliation(s)
- Mingying Xie
- Department of Medical Oncology, The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoling Xu
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yun Fan
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
31
|
Monserrat J, Morales Torres C, Richardson L, Wilson TS, Patel H, Domart MC, Horswell S, Song OR, Jiang M, Crawford M, Bui M, Dalal Y, Scaffidi P. Disruption of the MSL complex inhibits tumour maintenance by exacerbating chromosomal instability. Nat Cell Biol 2021; 23:401-412. [PMID: 33837287 PMCID: PMC7610593 DOI: 10.1038/s41556-021-00657-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/26/2021] [Indexed: 02/01/2023]
Abstract
Rewiring of cellular programmes in malignant cells generates cancer-specific vulnerabilities. Here, using an unbiased screening strategy aimed at identifying non-essential genes required by tumour cells to sustain unlimited proliferative capacity, we identify the male-specific lethal (MSL) acetyltransferase complex as a vulnerability of genetically unstable cancers. We find that disruption of the MSL complex and consequent loss of the associated H4K16ac mark do not substantially alter transcriptional programmes but compromise chromosome integrity and promote chromosomal instability (CIN) that progressively exhausts the proliferative potential of cancer cells through a p53-independent mechanism. This effect is dependent on pre-existing genomic instability, and normal cells are insensitive to MSL disruption. Using cell- and patient-derived xenografts from multiple cancer types, we show that excessive CIN induced by MSL disruption inhibits tumour maintenance. Our findings suggest that targeting MSL may be a valuable means to increase CIN beyond the level tolerated by cancer cells without inducing severe adverse effects in normal tissues.
Collapse
Affiliation(s)
- Josep Monserrat
- Cancer Epigenetics Laboratory, Francis Crick Institute, London, UK
| | | | | | | | - Harshil Patel
- Bioinformatics and Biostatistics, Francis Crick Institute, London, UK
| | | | - Stuart Horswell
- Bioinformatics and Biostatistics, Francis Crick Institute, London, UK
| | - Ok-Ryul Song
- High Throughput Screening, Francis Crick Institute, London, UK
| | - Ming Jiang
- High Throughput Screening, Francis Crick Institute, London, UK
| | | | - Minh Bui
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yamini Dalal
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paola Scaffidi
- Cancer Epigenetics Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
32
|
Tani T, Kitajima S, Conway EB, Knelson EH, Barbie DA. KRAS G12C inhibition and innate immune targeting. Expert Opin Ther Targets 2021; 25:167-174. [PMID: 33703985 DOI: 10.1080/14728222.2021.1902991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION KRAS mutations drive tumorigenesis by altering cell signaling and the tumor immune microenvironment. Recent studies have shown promise for KRAS-G12C covalent inhibitors, which are advancing rapidly through clinical trials. The sequencing and combination of these agents with other therapies including immune checkpoint blockade (ICB) will benefit from strategies that also address the immune microenvironment to improve durability of response. AREAS COVERED This paper reviews KRAS signaling and discusses downstream effects on cytokine production and the tumor immune microenvironment. RAS targeted therapy is introduced and perspectives on therapeutic targeting of KRAS-G12C and its immunosuppressive tumor microenvironment are offered. EXPERT OPINION The availability of KRAS-G12C covalent inhibitors raises hopes for targeting this pervasive oncogene and designing better therapeutic combinations to promote anti-tumor immunity. A comprehensive mechanistic understanding of KRAS immunosuppression is required in order to prioritize agents for clinical trials.
Collapse
Affiliation(s)
- Tetsuo Tani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Shunsuke Kitajima
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ella B Conway
- Department of Health Sciences, Chapman University, Orange, USA
| | - Erik H Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| |
Collapse
|
33
|
Gottschalk G, Knox K, Roy A. ACE2: At the crossroad of COVID-19 and lung cancer. GENE REPORTS 2021; 23:101077. [PMID: 33723522 PMCID: PMC7946539 DOI: 10.1016/j.genrep.2021.101077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Upregulation of Angiotensin Converting Enzyme-2 (ACE2) was frequently observed in patients with lung cancer. Interestingly, our recent study revealed that the same ACE2 receptor was also strongly upregulated in lungs during SARS-CoV2 infection. Therefore, it is possible that the upregulated expression of ACE2 in lung tumors might increase the susceptibility to COVID-19 infection in lung cancer patients. However, the molecular mechanism for the regulation of ACE2 is known neither in lung tumors nor in COVID-19. Under this review, we attempt to identify transcription factors (TFs) in the promoter of ACE2 that promote the expression of ACE2 both in COVID-19 infection and lung cancer. This review would decipher the molecular role of ACE2 in the upscaled fatality of lung cancer patients suffering from COVID-19.
Collapse
Affiliation(s)
- Gunnar Gottschalk
- Technology Innovation Center, 10437 W Innovation Drive, Suite # 325, Wauwatosa, WI 53226, United States of America
| | - Konstance Knox
- Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186, United States of America
| | - Avik Roy
- Technology Innovation Center, 10437 W Innovation Drive, Suite # 325, Wauwatosa, WI 53226, United States of America
| |
Collapse
|
34
|
Köhler J, Jänne PA. If Virchow and Ehrlich Had Dreamt Together: What the Future Holds for KRAS-Mutant Lung Cancer. Int J Mol Sci 2021; 22:3025. [PMID: 33809660 PMCID: PMC8002337 DOI: 10.3390/ijms22063025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/26/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) with Kirsten rat sarcoma (KRAS) mutations has notoriously challenged oncologists and researchers for three notable reasons: (1) the historical assumption that KRAS is "undruggable", (2) the disease heterogeneity and (3) the shaping of the tumor microenvironment by KRAS downstream effector functions. Better insights into KRAS structural biochemistry allowed researchers to develop direct KRAS(G12C) inhibitors, which have shown early signs of clinical activity in NSCLC patients and have recently led to an FDA breakthrough designation for AMG-510. Following the approval of immune checkpoint inhibitors for PDL1-positive NSCLC, this could fuel yet another major paradigm shift in the treatment of advanced lung cancer. Here, we review advances in our understanding of the biology of direct KRAS inhibition and project future opportunities and challenges of dual KRAS and immune checkpoint inhibition. This strategy is supported by preclinical models which show that KRAS(G12C) inhibitors can turn some immunologically "cold" tumors into "hot" ones and therefore could benefit patients whose tumors harbor subtype-defining STK11/LKB1 co-mutations. Forty years after the discovery of KRAS as a transforming oncogene, we are on the verge of approval of the first KRAS-targeted drug combinations, thus therapeutically unifying Paul Ehrlich's century-old "magic bullet" vision with Rudolf Virchow's cancer inflammation theory.
Collapse
Affiliation(s)
- Jens Köhler
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, Boston, MA 02215, USA
| | - Pasi A. Jänne
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, Boston, MA 02215, USA
- Belfer Center for Applied Cancer Sciences, Boston, MA 02215, USA
| |
Collapse
|
35
|
Merz V, Gaule M, Zecchetto C, Cavaliere A, Casalino S, Pesoni C, Contarelli S, Sabbadini F, Bertolini M, Mangiameli D, Milella M, Fedele V, Melisi D. Targeting KRAS: The Elephant in the Room of Epithelial Cancers. Front Oncol 2021; 11:638360. [PMID: 33777798 PMCID: PMC7991835 DOI: 10.3389/fonc.2021.638360] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations of the proto-oncogene KRAS are the most frequent gain-of-function alterations found in cancer. KRAS is mutated in about 30% of all human tumors, but it could reach more than 90% in certain cancer types such as pancreatic adenocarcinoma. Although historically considered to be undruggable, a particular KRAS mutation, the G12C variant, has recently emerged as an actionable alteration especially in non-small cell lung cancer (NSCLC). KRASG12C and pan-KRAS inhibitors are being tested in clinical trials and have recently shown promising activity. Due to the difficulties in direct targeting of KRAS, other approaches are being explored. The inhibition of target upstream activators or downstream effectors of KRAS pathway has shown to be moderately effective given the evidence of emerging mechanisms of resistance. Various synthetic lethal partners of KRAS have recently being identified and the inhibition of some of those might prove to be successful in the future. The study of escape mechanisms to KRAS inhibition could support the utility of combination strategies in overcoming intrinsic and adaptive resistance and enhancing clinical benefit of KRASG12C inhibitors. Considering the role of the microenvironment in influencing tumor initiation and promotion, the immune tumor niche of KRAS mutant tumors has been deeply explored and characterized for its unique immunosuppressive skewing. However, a number of aspects remains to be fully understood, and modulating this tumor niche might revert the immunoresistance of KRAS mutant tumors. Synergistic associations of KRASG12C and immune checkpoint inhibitors are being tested.
Collapse
Affiliation(s)
- Valeria Merz
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Medical Oncology Unit, Santa Chiara Hospital, Trento, Italy
| | - Marina Gaule
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Camilla Zecchetto
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Alessandro Cavaliere
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Simona Casalino
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Camilla Pesoni
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Serena Contarelli
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Fabio Sabbadini
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Monica Bertolini
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Domenico Mangiameli
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Michele Milella
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Vita Fedele
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Davide Melisi
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| |
Collapse
|
36
|
Ho NTT, Rahane CS, Pramanik S, Kim PS, Kutzner A, Heese K. FAM72, Glioblastoma Multiforme (GBM) and Beyond. Cancers (Basel) 2021; 13:cancers13051025. [PMID: 33804473 PMCID: PMC7957592 DOI: 10.3390/cancers13051025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) is a serious and aggressive cancer disease that has not allowed scientists to rest for decades. In this review, we consider the new gene pair |-SRGAP2–FAM72-| and discuss its role in the cell cycle and the possibility of defining new therapeutic approaches for the treatment of GBM and other cancers via this gene pair |-SRGAP2–FAM72-|. Abstract Neural stem cells (NSCs) offer great potential for regenerative medicine due to their excellent ability to differentiate into various specialized cell types of the brain. In the central nervous system (CNS), NSC renewal and differentiation are under strict control by the regulation of the pivotal SLIT-ROBO Rho GTPase activating protein 2 (SRGAP2)—Family with sequence similarity 72 (FAM72) master gene (i.e., |-SRGAP2–FAM72-|) via a divergent gene transcription activation mechanism. If the gene transcription control unit (i.e., the intergenic region of the two sub-gene units, SRGAP2 and FAM72) gets out of control, NSCs may transform into cancer stem cells and generate brain tumor cells responsible for brain cancer such as glioblastoma multiforme (GBM). Here, we discuss the surveillance of this |-SRGAP2–FAM72-| master gene and its role in GBM, and also in light of FAM72 for diagnosing various types of cancers outside of the CNS.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Ho
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
| | - Chinmay Satish Rahane
- Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Maharashtra 410507, India;
| | - Subrata Pramanik
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany;
| | - Pok-Son Kim
- Department of Mathematics, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702, Korea;
| | - Arne Kutzner
- Department of Information Systems, College of Computer Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
- Correspondence:
| |
Collapse
|
37
|
Gilad Y, Gellerman G, Lonard DM, O’Malley BW. Drug Combination in Cancer Treatment-From Cocktails to Conjugated Combinations. Cancers (Basel) 2021; 13:669. [PMID: 33562300 PMCID: PMC7915944 DOI: 10.3390/cancers13040669] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
It is well recognized today that anticancer drugs often are most effective when used in combination. However, the establishment of chemotherapy as key modality in clinical oncology began with sporadic discoveries of chemicals that showed antiproliferative properties and which as a first attempt were used as single agents. In this review we describe the development of chemotherapy from its origins as a single drug treatment with cytotoxic agents to polydrug therapy that includes targeted drugs. We discuss the limitations of the first chemotherapeutic drugs as a motivation for the establishment of combined drug treatment as standard practice in spite of concerns about frequent severe, dose limiting toxicities. Next, we introduce the development of targeted treatment as a concept for advancement within the broader field of small-molecule drug combination therapy in cancer and its accelerating progress that was boosted by recent scientific and technological progresses. Finally, we describe an alternative strategy of drug combinations using drug-conjugates for selective delivery of cytotoxic drugs to tumor cells that potentiates future improvement of drug combinations in cancer treatment. Overall, in this review we outline the development of chemotherapy from a pharmacological perspective, from its early stages to modern concepts of using targeted therapies for combinational treatment.
Collapse
Affiliation(s)
- Yosi Gilad
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Gary Gellerman
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel;
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
38
|
Lee DY. Cancer Epigenomics and Beyond: Advancing the Precision Oncology Paradigm. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2020; 3:147-156. [PMID: 35665374 PMCID: PMC9165444 DOI: 10.36401/jipo-20-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/14/2020] [Indexed: 06/15/2023]
Abstract
How cancers are characterized and treated has evolved over the past few decades. Major advances in genomics tools and techniques have revealed interlinked regulatory pathways of cancers with unprecedented detail. Early discoveries led to success with rationally targeted small molecules and more recently with immunomodulatory agents, setting the stage for precision oncology. However, drug resistance to every agent has thus far proven intractable, sending us back to fill the gaps in our rudimentary knowledge of tumor biology. Epigenetics is emerging as a fundamental process in every hallmark of cancer. Large-scale interrogation of the cancer epigenome continues to reveal new mechanisms of astounding complexity. In this review, I present selected experimental and clinical examples that have shaped our understanding of cancer at the molecular level. Translation of our collective erudition into revolutionary diagnostic and treatment strategies will advance the precision oncology paradigm.
Collapse
Affiliation(s)
- Daniel Y. Lee
- InSilico Genomics, Inc., Houston, TX, USA
- Department of Radiology, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
39
|
Hamarsheh S, Groß O, Brummer T, Zeiser R. Immune modulatory effects of oncogenic KRAS in cancer. Nat Commun 2020; 11:5439. [PMID: 33116132 PMCID: PMC7595113 DOI: 10.1038/s41467-020-19288-6] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Oncogenic KRAS mutations are the most frequent mutations in human cancer, but most difficult to target. While sustained proliferation caused by oncogenic KRAS-downstream signalling is a main driver of carcinogenesis, there is increasing evidence that it also mediates autocrine effects and crosstalk with the tumour microenvironment (TME). Here, we discuss recent reports connecting KRAS mutations with tumour-promoting inflammation and immune modulation caused by KRAS that leads to immune escape in the TME. We discuss the preclinical work on KRAS-induced inflammation and immune modulation in the context of currently ongoing clinical trials targeting cancer entities that carry KRAS mutations and strategies to overcome the oncogene-induced effects on the immune system.
Collapse
Affiliation(s)
- Shaima'a Hamarsheh
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Olaf Groß
- Institute of Neuropathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
40
|
Development of synthetic lethality in cancer: molecular and cellular classification. Signal Transduct Target Ther 2020; 5:241. [PMID: 33077733 PMCID: PMC7573576 DOI: 10.1038/s41392-020-00358-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/27/2022] Open
Abstract
Recently, genetically targeted cancer therapies have been a topic of great interest. Synthetic lethality provides a new approach for the treatment of mutated genes that were previously considered unable to be targeted in traditional genotype-targeted treatments. The increasing researches and applications in the clinical setting made synthetic lethality a promising anticancer treatment option. However, the current understandings on different conditions of synthetic lethality have not been systematically assessed and the application of synthetic lethality in clinical practice still faces many challenges. Here, we propose a novel and systematic classification of synthetic lethality divided into gene level, pathway level, organelle level, and conditional synthetic lethality, according to the degree of specificity into its biological mechanism. Multiple preclinical findings of synthetic lethality in recent years will be reviewed and classified under these different categories. Moreover, synthetic lethality targeted drugs in clinical practice will be briefly discussed. Finally, we will explore the essential implications of this classification as well as its prospects in eliminating existing challenges and the future directions of synthetic lethality.
Collapse
|
41
|
Sun DE, Ye SY. Emerging Roles of Long Noncoding RNA Regulator of Reprogramming in Cancer Treatment. Cancer Manag Res 2020; 12:6103-6112. [PMID: 32765105 PMCID: PMC7382586 DOI: 10.2147/cmar.s253042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Despite numerous advances in cancer treatment, the global prevalence and cancer-related mortality remain high. Understanding tumor initiation and progression mechanisms are critical as it will lead to the development of interventions for improving the prognosis of cancer patients. The roles of long noncoding RNAs (lncRNAs) in cancer have attracted immense research interest. Growing evidence indicates that lncRNA regulator of reprogramming (linc-ROR), a well-studied RNA, regulates the progression of various cancers, such as lung cancer (LC), hepatocellular carcinoma (HCC), breast cancer (BC), colorectal cancer (CRC), pancreatic cancer (PC), papillary thyroid carcinoma (PTC), or esophageal squamous cell carcinoma (ESCC). linc-ROR promotes the proliferation, invasion, migration and chemoresistance of cancer cells. Herein, we reviewed current literature on the modulatory functions and mechanisms of linc-ROR in cancer development. We highlight new linc-ROR-related therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Di-Er Sun
- Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People's Republic of China.,Clinical Laboratory, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People's Republic of China
| | - Shu-Yuan Ye
- Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People's Republic of China.,Clinical Laboratory, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People's Republic of China
| |
Collapse
|
42
|
Brown AL, Hahn CN, Scott HS. Secondary leukemia in patients with germline transcription factor mutations (RUNX1, GATA2, CEBPA). Blood 2020; 136:24-35. [PMID: 32430494 PMCID: PMC7332898 DOI: 10.1182/blood.2019000937] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Recognition that germline mutations can predispose individuals to blood cancers, often presenting as secondary leukemias, has largely been driven in the last 20 years by studies of families with inherited mutations in the myeloid transcription factors (TFs) RUNX1, GATA2, and CEBPA. As a result, in 2016, classification of myeloid neoplasms with germline predisposition for each of these and other genes was added to the World Health Organization guidelines. The incidence of germline mutation carriers in the general population or in various clinically presenting patient groups remains poorly defined for reasons including that somatic mutations in these genes are common in blood cancers, and our ability to distinguish germline (inherited or de novo) and somatic mutations is often limited by the laboratory analyses. Knowledge of the regulation of these TFs and their mutant alleles, their interaction with other genes and proteins and the environment, and how these alter the clinical presentation of patients and their leukemias is also incomplete. Outstanding questions that remain for patients with these germline mutations or their treating clinicians include: What is the natural course of the disease? What other symptoms may I develop and when? Can you predict them? Can I prevent them? and What is the best treatment? The resolution of many of the remaining clinical and biological questions and effective evidence-based treatment of patients with these inherited mutations will depend on worldwide partnerships among patients, clinicians, diagnosticians, and researchers to aggregate sufficient longitudinal clinical and laboratory data and integrate these data with model systems.
Collapse
MESH Headings
- Age of Onset
- Blood Cell Count
- CCAAT-Enhancer-Binding Proteins/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Disease Management
- Early Detection of Cancer
- Forecasting
- GATA2 Transcription Factor/genetics
- Genes, Neoplasm
- Genetic Counseling
- Genetic Predisposition to Disease
- Germ-Line Mutation
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/epidemiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Myelodysplastic Syndromes/genetics
- Neoplasms, Second Primary/genetics
- Penetrance
- Prognosis
Collapse
Affiliation(s)
- Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
| | - Christopher N Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
43
|
Gata2 -77 enhancer regulates adult hematopoietic stem cell survival. Leukemia 2020; 35:901-905. [PMID: 32594099 DOI: 10.1038/s41375-020-0942-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 11/08/2022]
|
44
|
Uras IZ, Moll HP, Casanova E. Targeting KRAS Mutant Non-Small-Cell Lung Cancer: Past, Present and Future. Int J Mol Sci 2020; 21:E4325. [PMID: 32560574 PMCID: PMC7352653 DOI: 10.3390/ijms21124325] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the most frequent cancer with an aggressive clinical course and high mortality rates. Most cases are diagnosed at advanced stages when treatment options are limited and the efficacy of chemotherapy is poor. The disease has a complex and heterogeneous background with non-small-cell lung cancer (NSCLC) accounting for 85% of patients and lung adenocarcinoma being the most common histological subtype. Almost 30% of adenocarcinomas of the lung are driven by an activating Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation. The ability to inhibit the oncogenic KRAS has been the holy grail of cancer research and the search for inhibitors is immensely ongoing as KRAS-mutated tumors are among the most aggressive and refractory to treatment. Therapeutic strategies tailored for KRAS+ NSCLC rely on the blockage of KRAS functional output, cellular dependencies, metabolic features, KRAS membrane associations, direct targeting of KRAS and immunotherapy. In this review, we provide an update on the most recent advances in anti-KRAS therapy for lung tumors with mechanistic insights into biological diversity and potential clinical implications.
Collapse
Affiliation(s)
- Iris Z. Uras
- Department of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| | - Herwig P. Moll
- Department of Physiology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria; (H.P.M.); (E.C.)
| | - Emilio Casanova
- Department of Physiology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria; (H.P.M.); (E.C.)
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), 1090 Vienna, Austria
| |
Collapse
|
45
|
Li S, Zhou G, Liu W, Ye J, Yuan F, Zhang Z. Curcumol Inhibits Lung Adenocarcinoma Growth and Metastasis via Inactivation of PI3K/AKT and Wnt/-Catenin Pathway. Oncol Res 2020; 28:685-700. [PMID: 32886059 PMCID: PMC8420902 DOI: 10.3727/096504020x15917007265498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Curcumol (Cur), isolated from the Traditional Chinese Medical plant Rhizoma Curcumae, is the bioactive component of sesquiterpene reported to possess antitumor activity. However, its bioactivity and mechanisms against lung adenocarcinoma are still unclear. We investigated its effect on lung adenocarcinoma and elucidated its underlying molecular mechanisms. In vitro, Cur effectively suppressed proliferation, migration, and invasion of lung adenocarcinoma cells A549 and H460, which were associated with the altered expressions of signaling molecules, including p-AKT, p-PI3K, p-LRP5/6, AXIN, APC, GSK3 and p--catenin, matrix metalloproteinase (MMP)-2, and MMP-9. Furthermore, Cur significantly induced cell apoptosis of A549 and H460 by promoting the expression of Bax, caspase 3, and caspase 9 and suppressing the expression of Bcl-2, and arrested the cell cycle at the G0/G1 phase by lowering the levels of cyclin D1, CDK1, and CDK4. In vivo experiment revealed that Cur could inhibit lung tumor growth and lung metastasis, which were consistent with these in vitro results. In xenograft model mice, Cur strongly decreased tumor weight and tumor volume, which may be related to the downregulation of p-AKT and p-PI3K by immunofluorescence analysis. In addition, a lung metastasis model experiment suggested that Cur dramatically decreased the ratio of lung/total weight, tumor metastatic nodules, and the expressions of MMP-2 and MMP-9 in lung tissues compared with the control. Overall, these data suggested that the inhibitory activity of Cur on lung adenocarcinoma via the inactivation of PI3K/Akt and Wnt/-catenin pathways, at least in part, indicates that curcumol may be a potential antitumor agent for lung adenocarcinoma therapy.
Collapse
Affiliation(s)
- Sheng Li
- Department of Chemotherapy, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer HospitalNanjingP.R. China
| | - Guoren Zhou
- Department of Chemotherapy, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer HospitalNanjingP.R. China
| | - Wei Liu
- Department of Radiotherapy, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer HospitalNanjingP.R. China
| | - Jinjun Ye
- Department of Radiotherapy, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer HospitalNanjingP.R. China
| | - Fangliang Yuan
- Department of Thoracic Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer HospitalNanjingP.R. China
| | - Zhi Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer HospitalNanjingP.R. China
| |
Collapse
|
46
|
Feng J, Jiang W, Liu Y, Huang W, Hu K, Li K, Chen J, Ma C, Sun Z, Pang X. Blocking STAT3 by pyrvinium pamoate causes metabolic lethality in KRAS-mutant lung cancer. Biochem Pharmacol 2020; 177:113960. [PMID: 32298693 DOI: 10.1016/j.bcp.2020.113960] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) exerts a profound role in regulating mitochondrial function and cellular metabolism. Mitochondrial STAT3 supports RAS-dependent malignant transformation and tumor growth. However, whether pharmacological blockade of STAT3 leads to metabolic lethality in KRAS-mutant lung cancer remains unclear. Pyrvinium pamoate, a clinical antihelminthic drug, preferentially inhibited the growth of KRAS-mutant lung cancer cells in vitro and in vivo. Mechanistic study revealed that pyrvinium dose-dependently suppressed STAT3 phosphorylation at tyrosine 705 and serine 727. Overexpression mitochondrial STAT3 prominently weakened the therapeutic efficacy of pyrvinium. As a result of targeting STAT3, pyrvinium selectively triggered reactive oxygen species release, depolarized mitochondrial membrane potential and suppressed aerobic glycolysis in KRAS-mutant lung cancer cells. Importantly, the cytotoxic effects of pyrvinium could be significantly augmented by glucose deprivation both in vitro and in a patient-derived lung cancer xenograft mouse model in vivo. The combined efficacy significantly correlated with intratumoural STAT3 suppression. Our findings reveal that KRAS-mutant lung cancer cells are vulnerable to STAT3 inhibition exerted by pyrvinium, providing a promising direction for developing therapies targeting STAT3 and metabolic synthetic lethality for the treatment of KRAS-mutant lung cancer.
Collapse
Affiliation(s)
- JuanJuan Feng
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, Maternity and Infant Health Hospital Affiliated to East China Normal University, Shanghai Changning Maternity and Infant Health Hospital, East China Normal Indeniversity, Shanghai 200241, China
| | - Wenhao Jiang
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, Maternity and Infant Health Hospital Affiliated to East China Normal University, Shanghai Changning Maternity and Infant Health Hospital, East China Normal Indeniversity, Shanghai 200241, China
| | - Yanan Liu
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, Maternity and Infant Health Hospital Affiliated to East China Normal University, Shanghai Changning Maternity and Infant Health Hospital, East China Normal Indeniversity, Shanghai 200241, China
| | - Wanfeng Huang
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, Maternity and Infant Health Hospital Affiliated to East China Normal University, Shanghai Changning Maternity and Infant Health Hospital, East China Normal Indeniversity, Shanghai 200241, China
| | - Kewen Hu
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, Maternity and Infant Health Hospital Affiliated to East China Normal University, Shanghai Changning Maternity and Infant Health Hospital, East China Normal Indeniversity, Shanghai 200241, China; Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Kun Li
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, Maternity and Infant Health Hospital Affiliated to East China Normal University, Shanghai Changning Maternity and Infant Health Hospital, East China Normal Indeniversity, Shanghai 200241, China
| | - Jing Chen
- Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan 750004, China
| | - Chengbin Ma
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, Maternity and Infant Health Hospital Affiliated to East China Normal University, Shanghai Changning Maternity and Infant Health Hospital, East China Normal Indeniversity, Shanghai 200241, China.
| | - Zhenliang Sun
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China.
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, Maternity and Infant Health Hospital Affiliated to East China Normal University, Shanghai Changning Maternity and Infant Health Hospital, East China Normal Indeniversity, Shanghai 200241, China.
| |
Collapse
|
47
|
Gao Q, Ouyang W, Kang B, Han X, Xiong Y, Ding R, Li Y, Wang F, Huang L, Chen L, Wang D, Dong X, Zhang Z, Li Y, Ze B, Hou Y, Yang H, Ma Y, Gu Y, Chao CC. Selective targeting of the oncogenic KRAS G12S mutant allele by CRISPR/Cas9 induces efficient tumor regression. Am J Cancer Res 2020; 10:5137-5153. [PMID: 32308773 PMCID: PMC7163449 DOI: 10.7150/thno.42325] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
Rationale: KRAS is one of the most frequently mutated oncogenes in cancers. The protein's picomolar affinity for GTP/GDP and smooth protein structure resulting in the absence of known allosteric regulatory sites makes its genomic-level activating mutations a difficult but attractive target. Methods: Two CRISPR systems, genome-editing CRISPR/SpCas9 and transcription-regulating dCas9-KRAB, were developed to deplete the KRAS G12S mutant allele or repress its transcription, respectively, with the goal of treating KRAS-driven cancers. Results: SpCas9 and dCas9-KRAB systems with a sgRNA targeting the mutant allele blocked the expression of the mutant KRAS gene, leading to an inhibition of cancer cell proliferation. Local adenoviral injections using SpCas9 and dCas9-KRAB systems suppressed tumor growth in vivo. The gene-depletion system (SpCas9) performed more effectively than the transcription-suppressing system (dCas9-KRAB) on tumor inhibition. Application of both Cas9 systems to wild-type KRAS tumors did not affect cell proliferation. Furthermore, through bioinformatic analysis of 31555 SNP mutations of the top 20 cancer driver genes, the data showed that our mutant-specific editing strategy could be extended to a reference list of oncogenic mutations with high editing potentials. This pipeline could be applied to analyze the distribution of PAM sequences and survey the best alternative targets for gene editing. Conclusion: We successfully developed both gene-depletion and transcription-suppressing systems to specifically target an oncogenic KRAS mutant allele that led to significant tumor regression. These findings show the potential of CRISPR-based strategies for the treatment of tumors with driver gene mutations.
Collapse
|
48
|
Sato M. Phenotypic screening using large-scale genomic libraries to identify drug targets for the treatment of cancer. Oncol Lett 2020; 19:3617-3626. [PMID: 32391087 PMCID: PMC7204489 DOI: 10.3892/ol.2020.11512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
During malignant progression to overt cancer cells, normal cells accumulate multiple genetic and non-genetic changes, which result in the acquisition of various oncogenic properties, such as uncontrolled proliferation, drug resistance, invasiveness, anoikis-resistance, the ability to bypass oncogene-induced senescence and cancer stemness. To identify potential novel drug targets contributing to these malignant phenotypes, researchers have performed large-scale genomic screening using various in vitro and in vivo screening models and identified numerous promising cancer drug target genes. However, there are issues with these identified genes, such as low reproducibility between different datasets. In the present study, the recent advances in the functional screening for identification of cancer drug target genes are summarized, and current issues and future perspectives are discussed.
Collapse
Affiliation(s)
- Mitsuo Sato
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi 461-8673, Japan
| |
Collapse
|
49
|
Valencia K, Erice O, Kostyrko K, Hausmann S, Guruceaga E, Tathireddy A, Flores NM, Sayles LC, Lee AG, Fragoso R, Sun TQ, Vallejo A, Roman M, Entrialgo-Cadierno R, Migueliz I, Razquin N, Fortes P, Lecanda F, Lu J, Ponz-Sarvise M, Chen CZ, Mazur PK, Sweet-Cordero EA, Vicent S. The Mir181ab1 cluster promotes KRAS-driven oncogenesis and progression in lung and pancreas. J Clin Invest 2020; 130:1879-1895. [PMID: 31874105 PMCID: PMC7108928 DOI: 10.1172/jci129012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/19/2019] [Indexed: 02/03/2023] Open
Abstract
Few therapies are currently available for patients with KRAS-driven cancers, highlighting the need to identify new molecular targets that modulate central downstream effector pathways. Here we found that the microRNA (miRNA) cluster including miR181ab1 is a key modulator of KRAS-driven oncogenesis. Ablation of Mir181ab1 in genetically engineered mouse models of Kras-driven lung and pancreatic cancer was deleterious to tumor initiation and progression. Expression of both resident miRNAs in the Mir181ab1 cluster, miR181a1 and miR181b1, was necessary to rescue the Mir181ab1-loss phenotype, underscoring their nonredundant role. In human cancer cells, depletion of miR181ab1 impaired proliferation and 3D growth, whereas overexpression provided a proliferative advantage. Lastly, we unveiled miR181ab1-regulated genes responsible for this phenotype. These studies identified what we believe to be a previously unknown role for miR181ab1 as a potential therapeutic target in 2 highly aggressive and difficult to treat KRAS-mutated cancers.
Collapse
Affiliation(s)
- Karmele Valencia
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- University of Navarra, Department of Biochemistry and Genetics, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Oihane Erice
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | - Kaja Kostyrko
- Division of Hematology and Oncology, UCSF, San Francisco, California, USA
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth Guruceaga
- Bioinformatics Platform, Center for Applied Medical Research, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | | | - Natasha M. Flores
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Leanne C. Sayles
- Division of Hematology and Oncology, UCSF, San Francisco, California, USA
| | - Alex G. Lee
- Division of Hematology and Oncology, UCSF, San Francisco, California, USA
| | - Rita Fragoso
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Adrian Vallejo
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Marta Roman
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Rodrigo Entrialgo-Cadierno
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- University of Navarra, Department of Biochemistry and Genetics, Pamplona, Spain
| | - Itziar Migueliz
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | - Nerea Razquin
- University of Navarra, Center for Applied Medical Research, Program in Gene Therapy and Regulation of Gene Expression, Pamplona, Spain
| | - Puri Fortes
- University of Navarra, Center for Applied Medical Research, Program in Gene Therapy and Regulation of Gene Expression, Pamplona, Spain
| | - Fernando Lecanda
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Jun Lu
- Genetics Department, Yale University, New Haven, Connecticut, USA
| | - Mariano Ponz-Sarvise
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Clínica Universidad de Navarra, Department of Medical Oncology, Pamplona, Spain
| | - Chang-Zheng Chen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Achelois Oncology, Redwood City, California, USA
| | - Pawel K. Mazur
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Silvestre Vicent
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| |
Collapse
|
50
|
von Karstedt S, Walczak H. An unexpected turn of fortune: targeting TRAIL-Rs in KRAS-driven cancer. Cell Death Discov 2020; 6:14. [PMID: 32194994 PMCID: PMC7078304 DOI: 10.1038/s41420-020-0249-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/30/2022] Open
Abstract
Twenty-one percent of all human cancers bear constitutively activating mutations in the proto-oncogene KRAS. This incidence is substantially higher in some of the most inherently therapy-resistant cancers including 30% of non-small cell lung cancers (NSCLC), 50% of colorectal cancers, and 95% of pancreatic ductal adenocarcinomas (PDAC). Importantly, survival of patients with KRAS-mutated PDAC and NSCLC has not significantly improved since the 1970s highlighting an urgent need to re-examine how oncogenic KRAS influences cell death signaling outputs. Interestingly, cancers expressing oncogenic KRAS manage to escape antitumor immunity via upregulation of programmed cell death 1 ligand 1 (PD-L1). Recently, the development of next-generation KRASG12C-selective inhibitors has shown therapeutic efficacy by triggering antitumor immunity. Yet, clinical trials testing immune checkpoint blockade in KRAS-mutated cancers have yielded disappointing results suggesting other, additional means endow these tumors with the capacity to escape immune recognition. Intriguingly, oncogenic KRAS reprograms regulated cell death pathways triggered by death receptors of the tumor necrosis factor (TNF) receptor superfamily. Perverting the course of their intended function, KRAS-mutated cancers use endogenous TNF-related apoptosis-inducing ligand (TRAIL) and its receptor(s) to promote tumor growth and metastases. Yet, endogenous TRAIL-TRAIL-receptor signaling can be therapeutically targeted and, excitingly, this may not only counteract oncogenic KRAS-driven cancer cell migration, invasion, and metastasis, but also the immunosuppressive reprogramming of the tumor microenvironment it causes. Here, we provide a concise summary of the current literature on oncogenic KRAS-mediated reprogramming of cell death signaling and antitumor immunity with the aim to open novel perspectives on combinatorial treatment strategies involving death receptor targeting.
Collapse
Affiliation(s)
- Silvia von Karstedt
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Cologne, Germany
| | - Henning Walczak
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College, London, WC1E 6BT UK
| |
Collapse
|