1
|
Datta D, Kumar P, Mandal S, Krampert M, Egli M, Hrdlicka PJ, Manoharan M. Conformation matters: siRNAs with antisense strands with 5'-( E)-vinyl-phosphonate-α-L-LNA elicit stronger RNAi-mediated gene silencing than those with 5'-( E)-vinyl-phosphonate-LNA. Chem Commun (Camb) 2024; 60:13024-13027. [PMID: 39431399 DOI: 10.1039/d4cc04302b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Conformationally constrained nucleotides, LNA or α-L-LNA, at the 5' terminus of the antisense strand impeded gene silencing of small interfering RNA (siRNA) by hindering phosphorylation, thereby deterring loading into the RNA-induced silencing complex. Installation of a phosphate mimic, (E)-vinyl phosphonate (VP), improved activity considerably. Gene silencing was more efficient when the antisense strand of the siRNA was modified with 5'-VP-α-L-LNA, which adopts a C3'-exo (south) conformation, than when the antisense strand was modified with 5'-VP-LNA, which adopts a C3'-endo (north) pucker. These data underscore the critical role of conformation of nucleotides in RNA interference.
Collapse
Affiliation(s)
- Dhrubajyoti Datta
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA.
| | - Pawan Kumar
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA.
| | - Soham Mandal
- Axolabs GmbH, Fritz-Hornschuch-Strasse 9, 95326 Kulmbach, Germany
| | - Monika Krampert
- Axolabs GmbH, Fritz-Hornschuch-Strasse 9, 95326 Kulmbach, Germany
| | - Martin Egli
- Department of Biochemistry, School of Medicine Nashville, Vanderbilt University, TN 37232, USA
| | | | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA.
| |
Collapse
|
2
|
Tao X, Ding H, Wu S, Wang F, Xu H, Li J, Zhai C, Li S, Chen K, Wu S, Liu Y, Ma L. Structural and mechanistic insights into a mesophilic prokaryotic Argonaute. Nucleic Acids Res 2024; 52:11895-11910. [PMID: 39315697 PMCID: PMC11514475 DOI: 10.1093/nar/gkae820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Argonaute (Ago) proteins are programmable nucleases found in all domains of life, playing a crucial role in biological processes like DNA/RNA interference and gene regulation. Mesophilic prokaryotic Agos (pAgos) have gained increasing research interest due to their broad range of potential applications, yet their molecular mechanisms remain poorly understood. Here, we present seven cryo-electron microscopy structures of Kurthia massiliensis Ago (KmAgo) in various states. These structures encompass the steps of apo-form, guide binding, target recognition, cleavage, and release, revealing that KmAgo employs a unique DDD catalytic triad, instead of a DEDD tetrad, for DNA target cleavage under 5'P-DNA guide conditions. Notably, the last catalytic residue, D713, is positioned outside the catalytic pocket in the absence of guide. After guide binding, D713 enters the catalytic pocket. In contrast, the corresponding catalytic residue in other Agos has been consistently located in the catalytic pocket. Moreover, we identified several sites exhibiting enhanced catalytic activity through alanine mutagenesis. These sites have the potential to serve as engineering targets for augmenting the catalytic efficiency of KmAgo. This structural analysis of KmAgo advances the understanding of the diversity of molecular mechanisms by Agos, offering insights for developing and optimizing mesophilic pAgos-based programmable DNA and RNA manipulation tools.
Collapse
Affiliation(s)
- Xin Tao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Hui Ding
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shaowen Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Hu Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jie Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shunshun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Kai Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
3
|
Dasgupta R, Becker W, Petzold K. Elucidating microRNA-34a organisation within human Argonaute-2 by dynamic nuclear polarisation-enhanced magic angle spinning NMR. Nucleic Acids Res 2024; 52:11995-12004. [PMID: 39228364 PMCID: PMC11514488 DOI: 10.1093/nar/gkae744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Understanding mRNA regulation by microRNA (miR) relies on the structural understanding of the RNA-induced silencing complex (RISC). Here, we elucidate the structural organisation of miR-34a, which is de-regulated in various cancers, in human Argonaute-2 (hAgo2), the effector protein in RISC. This analysis employs guanosine-specific isotopic labelling and dynamic nuclear polarisation (DNP)-enhanced Magic Angle Spinning (MAS) NMR. Homonuclear correlation experiments revealed that the non-A-form helical conformation of miR-34a increases when incorporated into hAgo2 and subsequently bound to SIRT1 mRNA compared to the free miR-34a or the free mRNA:miR duplex. The C8-C1' correlation provided a nucleotide-specific distribution of C2'- and C3'-endo sugar puckering, revealing the capture of diverse dynamic conformations upon freezing. Predominantly C3'-endo puckering was observed for the seed region, while C2'-endo conformation was found in the central region, with a mixture of both conformations elsewhere. These observations provide insights into the molecular dynamics underlying miR-mediated mRNA regulation and demonstrate that experiments conducted under cryogenic conditions, such as at 90 K, can capture and reveal frozen dynamic states, using methods like DNP-enhanced MAS NMR or Cryo-Electron Microscopy.
Collapse
Affiliation(s)
- Rubin Dasgupta
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Walter Becker
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
- Centre of Excellence for the Chemical Mechanisms of Life, Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
- Science for Life Laboratory, Uppsala Biomedical Centre, Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| |
Collapse
|
4
|
Agapov A, Lisitskaya L, Kussakina X, Kropocheva E, Esyunina D, Kulbachinskiy A. Unusual Guide-binding Pockets in RNA-targeting pAgo Nucleases. J Mol Biol 2024; 436:168745. [PMID: 39147126 DOI: 10.1016/j.jmb.2024.168745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Argonaute nucleases use small nucleic acid guides to recognize and degrade complementary nucleic acid targets. Most prokaryotic Argonautes (pAgos) recognize DNA targets and may play a role in cell immunity against invader genetic elements. We have recently described two related groups of pAgo nucleases that have distinct specificity for DNA guides and RNA targets (DNA > RNA pAgos). Here, we describe additional pAgos from the same clades of the pAgo tree and demonstrate that they have the same unusual nucleic acid specificity. The two groups of DNA > RNA pAgos have non-standard guide-binding pockets in the MID domain and differ in the register of guide DNA binding and target cleavage. In contrast to other pAgos, which coordinate the 5'-end of the guide molecule by their C-terminal carboxyl, DNA > RNA pAgos have an extended C-terminus located away from the MID pocket. We show that modifications of the C-terminus do not affect guide DNA binding, but inhibit cleavage of complementary and mismatched RNA targets by some DNA > RNA pAgos. Our data suggest that the unique C-terminus found in DNA > RNA pAgos can modulate their catalytic properties and can be used as a target for pAgo modifications.
Collapse
Affiliation(s)
- Aleksei Agapov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Lidiya Lisitskaya
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Xeniya Kussakina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | | | - Daria Esyunina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | | |
Collapse
|
5
|
Chung HJ, Nguyen TNC, Lee JW, Huh Y, Ko S, Lim H, Seo H, Ha YG, Chang JH, Woo JS, Song JJ, Kim SW, Lee JS, Mo JS, Park B, Min KW, Yoon JH, Kim MS, Jung J, Jeong NY. Targeting the Hippo pathway in Schwann cells ameliorates peripheral nerve degeneration via a polypharmacological mechanism. Neurotherapeutics 2024:e00458. [PMID: 39384453 DOI: 10.1016/j.neurot.2024.e00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/03/2024] [Accepted: 09/22/2024] [Indexed: 10/11/2024] Open
Abstract
Peripheral neuropathies (PNs) are common diseases in elderly individuals characterized by Schwann cell (SC) dysfunction and irreversible Wallerian degeneration (WD). Although the molecular mechanisms of PN onset and progression have been widely studied, therapeutic opportunities remain limited. In this study, we investigated the pharmacological inhibition of Mammalian Ste20-like kinase 1/2 (MST1/2) by using its chemical inhibitor, XMU-MP-1 (XMU), against WD. XMU treatment suppressed the proliferation, dedifferentiation, and demyelination of SCs in models of WD in vitro, in vivo, and ex vivo. As a downstream mediator of canonical and noncanonical Hippo/MST1 pathway activation, the mature microRNA (miRNA) let-7b and its binding partners quaking homolog (QKI)/nucleolin (NCL) modulated miRNA-mediated silencing of genes involved in protein transport. Hence, direct phosphorylation of QKI and NCL by MST1 might be critical for WD onset and pathogenesis. Moreover, p38α/mitogen-activated protein kinase 14 (p38α) showed a strong affinity for XMU, and therefore, it may be an alternative XMU target for controlling WD in SCs. Taken together, our findings provide new insights into the Hippo/MST pathway function in PNs and suggest that XMU is a novel multitargeted therapeutic for elderly individuals with PNs.
Collapse
Affiliation(s)
- Hyung-Joo Chung
- Department of Anesthesiology and Pain Medicine, College of Medicine, Kosin University, Busan 49267, South Korea
| | - Thy N C Nguyen
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, South Korea
| | - Ji Won Lee
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Youngbuhm Huh
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Seungbeom Ko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Heejin Lim
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), Cheongju 28119, South Korea
| | - Hyewon Seo
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, South Korea
| | - Young-Geun Ha
- Department of Chemistry, College of Convergence Science, Kyonggi University, Suwon 16227, South Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu 41566, South Korea
| | - Jae-Sung Woo
- Department of Life Sciences, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, South Korea
| | - So-Woon Kim
- Department of Pathology, College of Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul 02447, South Korea
| | - Jin San Lee
- Department of Neurology, College of Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul 02447, South Korea
| | - Jung-Soon Mo
- Institute of Medical Science, School of Medicine, Ajou University, Suwon 16499, South Korea
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Kyung-Won Min
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Oncology Science, College of Medicine, The University of Oklahoma, Oklahoma City, OK 73104, USA.
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, South Korea.
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, South Korea.
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 49201, South Korea.
| |
Collapse
|
6
|
Aluri KC, Datta D, Waldron S, Taneja N, Qin J, Donnelly DP, Theile CS, Guenther DC, Lei L, Harp JM, Pallan PS, Egli M, Zlatev I, Manoharan M. Single-Stranded Hairpin Loop RNAs (loopmeRNAs) Potently Induce Gene Silencing through the RNA Interference Pathway. J Am Chem Soc 2024. [PMID: 39373383 DOI: 10.1021/jacs.4c07902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Synthetic small interfering RNAs conjugated to trivalent N-acetylgalactosamine (GalNAc) are clinically validated drugs for treatment of liver diseases. Incorporation of phosphorothioate linkages and ribose modifications are necessary for stability, potency, and duration of pharmacology. Although multiple alternative siRNA designs such as Dicer-substrate RNA, shRNA, and circular RNA have been evaluated in vitro and in preclinical studies with some success, clinical applications of these designs are limited as it is difficult to incorporate chemical modifications in these designs. An alternative siRNA design that can incorporate chemical modifications through straightforward synthesis without compromising potency will significantly advance the field. Here, we report a facile synthesis of GalNAc ligand-containing single-stranded loop hairpin RNAs (loopmeRNAs) with clinically relevant chemical modifications. We evaluated the efficiency of novel loopmeRNA designs in vivo and correlated their structure-activity relationship with the support of in vitro metabolism data. Sequences and chemical modifications in the loop region of the loopmeRNA design were optimized for maximal potency. Our studies demonstrate that loopmeRNAs can efficiently silence expression of target genes with comparable efficacy to conventional double-stranded siRNAs but reduced environmental and regulatory burdens.
Collapse
Affiliation(s)
- Krishna C Aluri
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Dhrubajyoti Datta
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Scott Waldron
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Nate Taneja
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - June Qin
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Daniel P Donnelly
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | | | - Dale C Guenther
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Li Lei
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Joel M Harp
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Pradeep S Pallan
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Ivan Zlatev
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| |
Collapse
|
7
|
Lu G, Shivalila C, Monian P, Yu H, Harding I, Briem S, Byrne M, Faraone A, Friend S, Huth O, Iwamoto N, Kawamoto T, Kumarasamy J, Lamattina A, Longo K, McCarthy L, McGlynn A, Molski A, Pan Q, Pu T, Purcell-Estabrook E, Rossi J, Standley S, Thomas C, Walen A, Yang H, Kandasamy P, Vargeese C. Rational design of base, sugar and backbone modifications improves ADAR-mediated RNA editing. Nucleic Acids Res 2024; 52:10068-10084. [PMID: 39149897 PMCID: PMC11417349 DOI: 10.1093/nar/gkae681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
AIMers are short, chemically modified oligonucleotides that induce A-to-I RNA editing through interaction with endogenous adenosine deaminases acting on RNA (ADAR) enzymes. Here, we describe the development of new AIMer designs with base, sugar and backbone modifications that improve RNA editing efficiency over our previous design. AIMers incorporating a novel pattern of backbone and 2' sugar modifications support enhanced editing efficiency across multiple sequences. Further efficiency gains were achieved through incorporation of an N-3-uridine (N3U), in place of cytidine (C), in the 'orphan base' position opposite the edit site. Molecular modeling suggests that N3U might enhance ADAR catalytic activity by stabilizing the AIMer-ADAR interaction and potentially reducing the energy required to flip the target base into the active site. Supporting this hypothesis, AIMers containing N3U consistently enhanced RNA editing over those containing C across multiple target sequences and multiple nearest neighbor sequence combinations. AIMers combining N3U and the novel pattern of 2' sugar chemistry and backbone modifications improved RNA editing both in vitro and in vivo. We provide detailed N3U synthesis methods and, for the first time, explore the impact of N3U and its analogs on ADAR-mediated RNA editing efficiency and targetable sequence space.
Collapse
Affiliation(s)
| | | | | | - Hui Yu
- Wave Life Sciences, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tom Pu
- Wave Life Sciences, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mohamed AA, Wang PY, Bartel DP, Vos SM. The structural basis for RNA slicing by human Argonaute2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608718. [PMID: 39229170 PMCID: PMC11370433 DOI: 10.1101/2024.08.19.608718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Argonaute (AGO) proteins associate with guide RNAs to form complexes that slice transcripts that pair to the guide. This slicing drives post-transcriptional gene-silencing pathways that are essential for many eukaryotes and the basis for new clinical therapies. Despite this importance, structural information on eukaryotic AGOs in a fully paired, slicing-competent conformation-hypothesized to be intrinsically unstable-has been lacking. Here we present the cryogenic-electron microscopy structure of a human AGO-guide complex bound to a fully paired target, revealing structural rearrangements that enable this conformation. Critically, the N domain of AGO rotates to allow the RNA full access to the central channel and forms contacts that license rapid slicing. Moreover, a conserved loop in the PIWI domain secures the RNA near the active site to enhance slicing rate and specificity. These results explain how AGO accommodates targets possessing the pairing specificity typically observed in biological and clinical slicing substrates.
Collapse
Affiliation(s)
- Abdallah A. Mohamed
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA, 02139, USA
- These authors contributed equally
| | - Peter Y. Wang
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA, 02139, USA
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA
- These authors contributed equally
| | - David P. Bartel
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA, 02139, USA
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA
| | - Seychelle M. Vos
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA
- Lead contact
| |
Collapse
|
9
|
Sahoo A, Gupta S, Das G, Ghosh A, Bagale SS, Sinha S, Gore KR. 2'- O-Alkyl- N 3-Methyluridine Functionalized Passenger Strand Improves RNAi Activity by Modulating the Thermal Stability. ACS Med Chem Lett 2024; 15:1250-1259. [PMID: 39140063 PMCID: PMC11318005 DOI: 10.1021/acsmedchemlett.4c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
Herein, we have demonstrated that the siRNA activity could be enhanced by incorporating the guide strand in the RISC complex through thermodynamic asymmetry caused by m3U-based destabilizing modifications. A nuclease stability study revealed that 2'-OMe-m3U and 2'-OEt-m3U modifications slightly improved the half-lives of siRNA strands in human serum. In the in vitro gene silencing assay, 2'-OMe-m3U modification at the 3'-overhang and cleavage site of the passenger strand in anti-renilla and anti-Bcl-2 siRNA duplexes were well-tolerated and exhibited improved gene silencing activity. However, gene silencing activity was attenuated when these modifications were incorporated at position 3 in the seed region of the antisense strand. The molecular modeling studies using these modifications at the seed region with the MID domain of hAGO2 explained that the 2'-alkoxy group makes steric interactions with the amino acid residues of the hAGO2 protein.
Collapse
Affiliation(s)
- Avijit Sahoo
- Department
of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Shalini Gupta
- School
of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Gourav Das
- Department
of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Atanu Ghosh
- School
of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | | | - Surajit Sinha
- School
of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Kiran R. Gore
- Department
of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| |
Collapse
|
10
|
Wang PY, Bartel DP. The guide-RNA sequence dictates the slicing kinetics and conformational dynamics of the Argonaute silencing complex. Mol Cell 2024; 84:2918-2934.e11. [PMID: 39025072 PMCID: PMC11371465 DOI: 10.1016/j.molcel.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/03/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
The RNA-induced silencing complex (RISC), which powers RNA interference (RNAi), consists of a guide RNA and an Argonaute protein that slices target RNAs complementary to the guide. We find that, for different guide-RNA sequences, slicing rates of perfectly complementary bound targets can be surprisingly different (>250-fold range), and that faster slicing confers better knockdown in cells. Nucleotide sequence identities at guide-RNA positions 7, 10, and 17 underlie much of this variation in slicing rates. Analysis of one of these determinants implicates a structural distortion at guide nucleotides 6-7 in promoting slicing. Moreover, slicing directed by different guide sequences has an unanticipated, 600-fold range in 3'-mismatch tolerance, attributable to guides with weak (AU-rich) central pairing requiring extensive 3' complementarity (pairing beyond position 16) to more fully populate the slicing-competent conformation. Together, our analyses identify sequence determinants of RISC activity and provide biochemical and conformational rationale for their action.
Collapse
Affiliation(s)
- Peter Y Wang
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David P Bartel
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Sekar V, Mármol-Sánchez E, Kalogeropoulos P, Stanicek L, Sagredo EA, Widmark A, Doukoumopoulos E, Bonath F, Biryukova I, Friedländer MR. Detection of transcriptome-wide microRNA-target interactions in single cells with agoTRIBE. Nat Biotechnol 2024; 42:1296-1302. [PMID: 37735263 PMCID: PMC11324520 DOI: 10.1038/s41587-023-01951-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
MicroRNAs (miRNAs) exert their gene regulatory effects on numerous biological processes based on their selection of target transcripts. Current experimental methods available to identify miRNA targets are laborious and require millions of cells. Here we have overcome these limitations by fusing the miRNA effector protein Argonaute2 to the RNA editing domain of ADAR2, allowing the detection of miRNA targets transcriptome-wide in single cells. miRNAs guide the fusion protein to their natural target transcripts, causing them to undergo A>I editing, which can be detected by sensitive single-cell RNA sequencing. We show that agoTRIBE identifies functional miRNA targets, which are supported by evolutionary sequence conservation. In one application of the method we study microRNA interactions in single cells and identify substantial differential targeting across the cell cycle. AgoTRIBE also provides transcriptome-wide measurements of RNA abundance and allows the deconvolution of miRNA targeting in complex tissues at the single-cell level.
Collapse
Affiliation(s)
- Vaishnovi Sekar
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Emilio Mármol-Sánchez
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Panagiotis Kalogeropoulos
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Laura Stanicek
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Eduardo A Sagredo
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Albin Widmark
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Franziska Bonath
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Inna Biryukova
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
12
|
Metcalf GAD. MicroRNAs: circulating biomarkers for the early detection of imperceptible cancers via biosensor and machine-learning advances. Oncogene 2024; 43:2135-2142. [PMID: 38839942 PMCID: PMC11226400 DOI: 10.1038/s41388-024-03076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
This review explores the topic of microRNAs (miRNAs) for improved early detection of imperceptible cancers, with potential to advance precision medicine and improve patient outcomes. Historical research exploring miRNA's role in cancer detection collectively revealed initial hurdles in identifying specific miRNA signatures for early-stage and difficult-to-detect cancers. Early studies faced challenges in establishing robust biomarker panels and overcoming the heterogeneity of cancer types. Despite this, recent developments have supported the potential of miRNAs as sensitive and specific biomarkers for early cancer detection as well as having demonstrated remarkable potential as diagnostic tools for imperceptible cancers, such as those with elusive symptoms or challenging diagnostic criteria. This review discusses the advent of high-throughput technologies that have enabled comprehensive detection and profiling of unique miRNA signatures associated with early-stage cancers. Furthermore, advancements in bioinformatics and machine-learning techniques are considered, exploring the integration of multi-omics data which have potential to enhance both the accuracy and reliability of miRNA-based cancer detection assays. Finally, perspectives on the continuing development on technologies as well as discussion around challenges that remain, such as the need for standardised protocols and addressing the complex interplay of miRNAs in cancer biology are conferred.
Collapse
Affiliation(s)
- Gavin A D Metcalf
- School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, UK.
| |
Collapse
|
13
|
Wang PY, Bartel DP. The guide RNA sequence dictates the slicing kinetics and conformational dynamics of the Argonaute silencing complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.15.562437. [PMID: 38766062 PMCID: PMC11100590 DOI: 10.1101/2023.10.15.562437] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The RNA-induced silencing complex (RISC), which powers RNA interference (RNAi), consists of a guide RNA and an Argonaute protein that slices target RNAs complementary to the guide. We find that for different guide-RNA sequences, slicing rates of perfectly complementary, bound targets can be surprisingly different (>250-fold range), and that faster slicing confers better knockdown in cells. Nucleotide sequence identities at guide-RNA positions 7, 10, and 17 underlie much of this variation in slicing rates. Analysis of one of these determinants implicates a structural distortion at guide nucleotides 6-7 in promoting slicing. Moreover, slicing directed by different guide sequences has an unanticipated, 600-fold range in 3'-mismatch tolerance, attributable to guides with weak (AU-rich) central pairing requiring extensive 3' complementarity (pairing beyond position 16) to more fully populate the slicing-competent conformation. Together, our analyses identify sequence determinants of RISC activity and provide biochemical and conformational rationale for their action.
Collapse
Affiliation(s)
- Peter Y. Wang
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David P. Bartel
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Lead contact
| |
Collapse
|
14
|
Lei L, Harp JM, Chaput JC, Wassarman K, Schlegel MK, Manoharan M, Egli M. Structure and Stability of Ago2 MID-Nucleotide Complexes: All-in-One (Drop) His 6-SUMO Tag Removal, Nucleotide Binding, and Crystal Growth. Curr Protoc 2024; 4:e1088. [PMID: 38923271 DOI: 10.1002/cpz1.1088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The middle (MID) domain of eukaryotic Argonaute (Ago) proteins and archaeal and bacterial homologues mediates the interaction with the 5'-terminal nucleotide of miRNA and siRNA guide strands. The MID domain of human Ago2 (hAgo2) is comprised of 139 amino acids with a molecular weight of 15.56 kDa. MID adopts a Rossman-like beta1-alpha1-beta2-alpha2-beta3-alpha3-beta4-alpha4 fold with a nucleotide specificity loop between beta3 and alpha3. Multiple crystal structures of nucleotides bound to hAgo2 MID have been reported, whereby complexes were obtained by soaking ligands into crystals of MID domain alone. This protocol describes a simplified one-step approach to grow well-diffracting crystals of hAgo2 MID-nucleotide complexes by mixing purified His6-SUMO-MID fusion protein, Ulp1 protease, and excess nucleotide in the presence of buffer and precipitant. The crystal structures of MID complexes with UMP, UTP and 2'-3' linked α-L-threofuranosyl thymidine-3'-triphosphate (tTTP) are presented. This article also describes fluorescence-based assays to measure dissociation constants (Kd) of MID-nucleotide interactions for nucleoside 5'-monophosphates and nucleoside 3',5'-bisphosphates. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Crystallization of Ago2 MID-nucleotide complexes Basic Protocol 2: Measurement of dissociation constant Kd between Ago2 MID and nucleotides.
Collapse
Affiliation(s)
- Li Lei
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Joel M Harp
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, California
| | | | | | | | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
15
|
Ganguly C, Rostami S, Long K, Aribam SD, Rajan R. Unity among the diverse RNA-guided CRISPR-Cas interference mechanisms. J Biol Chem 2024; 300:107295. [PMID: 38641067 PMCID: PMC11127173 DOI: 10.1016/j.jbc.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are adaptive immune systems that protect bacteria and archaea from invading mobile genetic elements (MGEs). The Cas protein-CRISPR RNA (crRNA) complex uses complementarity of the crRNA "guide" region to specifically recognize the invader genome. CRISPR effectors that perform targeted destruction of the foreign genome have emerged independently as multi-subunit protein complexes (Class 1 systems) and as single multi-domain proteins (Class 2). These different CRISPR-Cas systems can cleave RNA, DNA, and protein in an RNA-guided manner to eliminate the invader, and in some cases, they initiate programmed cell death/dormancy. The versatile mechanisms of the different CRISPR-Cas systems to target and destroy nucleic acids have been adapted to develop various programmable-RNA-guided tools and have revolutionized the development of fast, accurate, and accessible genomic applications. In this review, we present the structure and interference mechanisms of different CRISPR-Cas systems and an analysis of their unified features. The three types of Class 1 systems (I, III, and IV) have a conserved right-handed helical filamentous structure that provides a backbone for sequence-specific targeting while using unique proteins with distinct mechanisms to destroy the invader. Similarly, all three Class 2 types (II, V, and VI) have a bilobed architecture that binds the RNA-DNA/RNA hybrid and uses different nuclease domains to cleave invading MGEs. Additionally, we highlight the mechanistic similarities of CRISPR-Cas enzymes with other RNA-cleaving enzymes and briefly present the evolutionary routes of the different CRISPR-Cas systems.
Collapse
Affiliation(s)
- Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Kole Long
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Swarmistha Devi Aribam
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|
16
|
Shi C, Zou W, Zhu Y, Zhang J, Teng C, Wei H, He H, He W, Liu X, Zhang B, Zhang H, Leng Y, Guo M, Wang X, Chen W, Zhang Z, Qian H, Cui Y, Jiang H, Chen Y, Fei Q, Meyers BC, Liang W, Qian Q, Shang L. mRNA cleavage by 21-nucleotide phasiRNAs determines temperature-sensitive male sterility in rice. PLANT PHYSIOLOGY 2024; 194:2354-2371. [PMID: 38060676 DOI: 10.1093/plphys/kiad654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/15/2023] [Indexed: 04/02/2024]
Abstract
Temperature-sensitive male sterility is one of the core components for hybrid rice (Oryza sativa) breeding based on the 2-line system. We previously found that knockout of ARGONAUTE 1d (AGO1d) causes temperature-sensitive male sterility in rice by influencing phased small interfering RNA (phasiRNA) biogenesis and function. However, the specific phasiRNAs and their targets underlying the temperature-sensitive male sterility in the ago1d mutant remain unknown. Here, we demonstrate that the ago1d mutant displays normal female fertility but complete male sterility at low temperature. Through a multiomics analysis of small RNA (sRNA), degradome, and transcriptome, we found that 21-nt phasiRNAs account for the greatest proportion of the 21-nt sRNA species in rice anthers and are sensitive to low temperature and markedly downregulated in the ago1d mutant. Moreover, we found that 21-nt phasiRNAs are essential for the mRNA cleavage of a set of fertility- and cold tolerance-associated genes, such as Earlier Degraded Tapetum 1 (EDT1), Tapetum Degeneration Retardation (TDR), OsPCF5, and OsTCP21, directly or indirectly determined by AGO1d-mediated gene silencing. The loss of function of 21-nt phasiRNAs can result in upregulation of their targets and causes varying degrees of defects in male fertility and grain setting. Our results highlight the essential functions of 21-nt phasiRNAs in temperature-sensitive male sterility in rice and suggest their promising application in 2-line hybrid rice breeding in the future.
Collapse
Affiliation(s)
- Chuanlin Shi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wenli Zou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yiwang Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chong Teng
- Donald Danforth Plant Science Center, Saint Louis, MI 63132, USA
| | - Hua Wei
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Huiying He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wenchuang He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiangpei Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bin Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hong Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yue Leng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mingliang Guo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xianmeng Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wu Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhipeng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hongge Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yan Cui
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hongshuang Jiang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ying Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qili Fei
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Blake C Meyers
- Donald Danforth Plant Science Center, Saint Louis, MI 63132, USA
- Division of Plant Sciences and Technology, University of Missouri-Columbia, Columbia, MI 65211, USA
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China
| |
Collapse
|
17
|
Hynes C, Kakumani PK. Regulatory role of RNA-binding proteins in microRNA biogenesis. Front Mol Biosci 2024; 11:1374843. [PMID: 38567098 PMCID: PMC10985210 DOI: 10.3389/fmolb.2024.1374843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that silence gene expression through their interaction with complementary sequences in the 3' untranslated regions (UTR) of target mRNAs. miRNAs undergo a series of steps during their processing and maturation, which are tightly regulated to fine-tune their abundance and ability to function in post-transcriptional gene silencing. miRNA biogenesis typically involves core catalytic proteins, namely, Drosha and Dicer, and several other RNA-binding proteins (RBPs) that recognize and interact with miRNA precursors and/or their intermediates, and mature miRNAs along with their interacting proteins. The series of RNA-protein and protein-protein interactions are critical to maintaining miRNA expression levels and their function, underlying a variety of cellular processes. Throughout this article, we review RBPs that play a role in miRNA biogenesis and focus on their association with components of the miRNA pathway with functional consequences in the processing and generation of mature miRNAs.
Collapse
Affiliation(s)
| | - Pavan Kumar Kakumani
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
18
|
Gangopadhyay S, Das G, Gupta S, Ghosh A, Bagale SS, Roy PK, Mandal M, Harikrishna S, Sinha S, Gore KR. 4'- C-Acetamidomethyl-2'- O-methoxyethyl Nucleic Acid Modifications Improve Thermal Stability, Nuclease Resistance, Potency, and hAgo2 Binding of Small Interfering RNAs. J Org Chem 2024; 89:3747-3768. [PMID: 38394362 DOI: 10.1021/acs.joc.3c02506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
In this study, we designed the 4'-C-acetamidomethyl-2'-O-methoxyethyl (4'-C-ACM-2'-O-MOE) uridine and thymidine modifications, aiming to test them into small interfering RNAs. Thermal melting studies revealed that incorporating a single 4'-C-ACM-2'-O-MOE modification in the DNA duplex reduced thermal stability. In contrast, an increase in thermal stability was observed when the modification was introduced in DNA:RNA hybrid and in siRNAs. Thermal destabilization in DNA duplex was attributed to unfavorable entropy, which was mainly compensated by the enthalpy factor to some extent. A single 4'-C-ACM-2'-O-MOE thymidine modification at the penultimate position of the 3'-end of dT20 oligonucleotides in the presence of 3'-specific exonucleases, snake venom phosphodiesterase (SVPD), demonstrated significant stability as compared to monomer modifications including 2'-O-Me, 2'-O-MOE, and 2'-F. In gene silencing studies, we found that the 4'-C-ACM-2'-O-MOE uridine or thymidine modifications at the 3'-overhang in the passenger strand in combination with two 2'-F modifications exhibited superior RNAi activity. The results suggest that the dual modification is well tolerated at the 3'-end of the passenger strand, which reflects better siRNA stability and silencing activity. Interestingly, 4'-C-ACM-2'-O-MOE-modified siRNAs showed considerable gene silencing even after 96 h posttransfection; it showed that our modification could induce prolonged gene silencing due to improved metabolic stability. Molecular modeling studies revealed that the introduction of the 4'-C-ACM-2'-O-MOE modification at the 3'-end of the siRNA guide strand helps to anchor the strand within the PAZ domain of the hAgo2 protein. The overall results indicate that the 4'-C-ACM-2'-O-MOE uridine and thymidine modifications are promising modifications to improve the stability, potency, and hAgo2 binding of siRNAs.
Collapse
Affiliation(s)
- Sumit Gangopadhyay
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Gourav Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Shalini Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, Jadavpur 700032, India
| | - Atanu Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, Jadavpur 700032, India
| | | | - Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - S Harikrishna
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, Jadavpur 700032, India
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
19
|
Hiers NM, Li T, Traugot CM, Xie M. Target-directed microRNA degradation: Mechanisms, significance, and functional implications. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1832. [PMID: 38448799 PMCID: PMC11098282 DOI: 10.1002/wrna.1832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 03/08/2024]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a fundamental role in enabling miRNA-mediated target repression, a post-transcriptional gene regulatory mechanism preserved across metazoans. Loss of certain animal miRNA genes can lead to developmental abnormalities, disease, and various degrees of embryonic lethality. These short RNAs normally guide Argonaute (AGO) proteins to target RNAs, which are in turn translationally repressed and destabilized, silencing the target to fine-tune gene expression and maintain cellular homeostasis. Delineating miRNA-mediated target decay has been thoroughly examined in thousands of studies, yet despite these exhaustive studies, comparatively less is known about how and why miRNAs are directed for decay. Several key observations over the years have noted instances of rapid miRNA turnover, suggesting endogenous means for animals to induce miRNA degradation. Recently, it was revealed that certain targets, so-called target-directed miRNA degradation (TDMD) triggers, can "trigger" miRNA decay through inducing proteolysis of AGO and thereby the bound miRNA. This process is mediated in animals via the ZSWIM8 ubiquitin ligase complex, which is recruited to AGO during engagement with triggers. Since its discovery, several studies have identified that ZSWIM8 and TDMD are indispensable for proper animal development. Given the rapid expansion of this field of study, here, we summarize the key findings that have led to and followed the discovery of ZSWIM8-dependent TDMD. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Nicholas M Hiers
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Tianqi Li
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Conner M Traugot
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
20
|
Finocchio G, Koopal B, Potocnik A, Heijstek C, Westphal AH, Jinek M, Swarts DC. Target DNA-dependent activation mechanism of the prokaryotic immune system SPARTA. Nucleic Acids Res 2024; 52:2012-2029. [PMID: 38224450 PMCID: PMC10899771 DOI: 10.1093/nar/gkad1248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024] Open
Abstract
In both prokaryotic and eukaryotic innate immune systems, TIR domains function as NADases that degrade the key metabolite NAD+ or generate signaling molecules. Catalytic activation of TIR domains requires oligomerization, but how this is achieved varies in distinct immune systems. In the Short prokaryotic Argonaute (pAgo)/TIR-APAZ (SPARTA) immune system, TIR NADase activity is triggered upon guide RNA-mediated recognition of invading DNA by an unknown mechanism. Here, we describe cryo-EM structures of SPARTA in the inactive monomeric and target DNA-activated tetrameric states. The monomeric SPARTA structure reveals that in the absence of target DNA, a C-terminal tail of TIR-APAZ occupies the nucleic acid binding cleft formed by the pAgo and TIR-APAZ subunits, inhibiting SPARTA activation. In the active tetrameric SPARTA complex, guide RNA-mediated target DNA binding displaces the C-terminal tail and induces conformational changes in pAgo that facilitate SPARTA-SPARTA dimerization. Concurrent release and rotation of one TIR domain allow it to form a composite NADase catalytic site with the other TIR domain within the dimer, and generate a self-complementary interface that mediates cooperative tetramerization. Combined, this study provides critical insights into the structural architecture of SPARTA and the molecular mechanism underlying target DNA-dependent oligomerization and catalytic activation.
Collapse
Affiliation(s)
- Giada Finocchio
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Balwina Koopal
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Ana Potocnik
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Clint Heijstek
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Daan C Swarts
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
21
|
Johnson K, Kilikevicius A, Hofman C, Hu J, Liu Y, Aguilar S, Graswich J, Han Y, Wang T, Westcott J, Brekken R, Peng L, Karagkounis G, Corey D. Nuclear localization of Argonaute 2 is affected by cell density and may relieve repression by microRNAs. Nucleic Acids Res 2024; 52:1930-1952. [PMID: 38109320 PMCID: PMC10899759 DOI: 10.1093/nar/gkad1155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Argonaute protein is associated with post-transcriptional control of cytoplasmic gene expression through miRNA-induced silencing complexes (miRISC). Specific cellular and environmental conditions can trigger AGO protein to accumulate in the nucleus. Localization of AGO is central to understanding miRNA action, yet the consequences of AGO being in the nucleus are undefined. We show nuclear enrichment of AGO2 in HCT116 cells grown in two-dimensional culture to high density, HCT116 cells grown in three-dimensional tumor spheroid culture, and human colon tumors. The shift in localization of AGO2 from cytoplasm to nucleus de-represses cytoplasmic AGO2-eCLIP targets that were candidates for canonical regulation by miRISC. Constitutive nuclear localization of AGO2 using an engineered nuclear localization signal increases cell migration. Critical RNAi factors also affect the localization of AGO2. Knocking out an enzyme essential for miRNA biogenesis, DROSHA, depletes mature miRNAs and restricts AGO2 localization to the cytoplasm, while knocking out the miRISC scaffolding protein, TNRC6, results in nuclear localization of AGO2. These data suggest that AGO2 localization and miRNA activity can be regulated depending on environmental conditions, expression of mature miRNAs, and expression of miRISC cofactors. Localization and expression of core miRISC protein machinery should be considered when investigating the roles of miRNAs.
Collapse
Affiliation(s)
- Krystal C Johnson
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Audrius Kilikevicius
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Cristina Hofman
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Jiaxin Hu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Yang Liu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Selina Aguilar
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Jon Graswich
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Yi Han
- UT Southwestern Medical Center, Peter O’Donnell Jr. School of Public Health, Dallas, TX 75235, USA
| | - Tao Wang
- UT Southwestern Medical Center, Peter O’Donnell Jr. School of Public Health, Dallas, TX 75235, USA
| | - Jill M Westcott
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235, USA
| | - Rolf A Brekken
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235, USA
| | - Lan Peng
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Pathology, Dallas, TX 75235, USA
| | - Georgios Karagkounis
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235, USA
- Memorial Sloan Kettering Cancer Center, New York, NY 10022, USA
| | - David R Corey
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| |
Collapse
|
22
|
Buhagiar AF, Kleaveland B. To kill a microRNA: emerging concepts in target-directed microRNA degradation. Nucleic Acids Res 2024; 52:1558-1574. [PMID: 38224449 PMCID: PMC10899785 DOI: 10.1093/nar/gkae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
MicroRNAs (miRNAs) guide Argonaute (AGO) proteins to bind mRNA targets. Although most targets are destabilized by miRNA-AGO binding, some targets induce degradation of the miRNA instead. These special targets are also referred to as trigger RNAs. All triggers identified thus far have binding sites with greater complementarity to the miRNA than typical target sites. Target-directed miRNA degradation (TDMD) occurs when trigger RNAs bind the miRNA-AGO complex and recruit the ZSWIM8 E3 ubiquitin ligase, leading to AGO ubiquitination and proteolysis and subsequent miRNA destruction. More than 100 different miRNAs are regulated by ZSWIM8 in bilaterian animals, and hundreds of trigger RNAs have been predicted computationally. Disruption of individual trigger RNAs or ZSWIM8 has uncovered important developmental and physiologic roles for TDMD across a variety of model organisms and cell types. In this review, we highlight recent progress in understanding the mechanistic basis and functions of TDMD, describe common features of trigger RNAs, outline best practices for validating trigger RNAs, and discuss outstanding questions in the field.
Collapse
Affiliation(s)
- Amber F Buhagiar
- Department of Pathology and Lab Medicine, Weill Cornell Medicine, New York, NY10065, USA
| | - Benjamin Kleaveland
- Department of Pathology and Lab Medicine, Weill Cornell Medicine, New York, NY10065, USA
| |
Collapse
|
23
|
Rinaldi S, Moroni E, Rozza R, Magistrato A. Frontiers and Challenges of Computing ncRNAs Biogenesis, Function and Modulation. J Chem Theory Comput 2024; 20:993-1018. [PMID: 38287883 DOI: 10.1021/acs.jctc.3c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Non-coding RNAs (ncRNAs), generated from nonprotein coding DNA sequences, constitute 98-99% of the human genome. Non-coding RNAs encompass diverse functional classes, including microRNAs, small interfering RNAs, PIWI-interacting RNAs, small nuclear RNAs, small nucleolar RNAs, and long non-coding RNAs. With critical involvement in gene expression and regulation across various biological and physiopathological contexts, such as neuronal disorders, immune responses, cardiovascular diseases, and cancer, non-coding RNAs are emerging as disease biomarkers and therapeutic targets. In this review, after providing an overview of non-coding RNAs' role in cell homeostasis, we illustrate the potential and the challenges of state-of-the-art computational methods exploited to study non-coding RNAs biogenesis, function, and modulation. This can be done by directly targeting them with small molecules or by altering their expression by targeting the cellular engines underlying their biosynthesis. Drawing from applications, also taken from our work, we showcase the significance and role of computer simulations in uncovering fundamental facets of ncRNA mechanisms and modulation. This information may set the basis to advance gene modulation tools and therapeutic strategies to address unmet medical needs.
Collapse
Affiliation(s)
- Silvia Rinaldi
- National Research Council of Italy (CNR) - Institute of Chemistry of OrganoMetallic Compounds (ICCOM), c/o Area di Ricerca CNR di Firenze Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Elisabetta Moroni
- National Research Council of Italy (CNR) - Institute of Chemical Sciences and Technologies (SCITEC), via Mario Bianco 9, 20131 Milano, Italy
| | - Riccardo Rozza
- National Research Council of Italy (CNR) - Institute of Material Foundry (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| | - Alessandra Magistrato
- National Research Council of Italy (CNR) - Institute of Material Foundry (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| |
Collapse
|
24
|
Zhen X, Xu X, Ye L, Xie S, Huang Z, Yang S, Wang Y, Li J, Long F, Ouyang S. Structural basis of antiphage immunity generated by a prokaryotic Argonaute-associated SPARSA system. Nat Commun 2024; 15:450. [PMID: 38200015 PMCID: PMC10781750 DOI: 10.1038/s41467-023-44660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Argonaute (Ago) proteins are ubiquitous across all kingdoms of life. Eukaryotic Agos (eAgos) use small RNAs to recognize transcripts for RNA silencing in eukaryotes. In contrast, the functions of prokaryotic counterparts (pAgo) are less well known. Recently, short pAgos in conjunction with the associated TIR or Sir2 (SPARTA or SPARSA) were found to serve as antiviral systems to combat phage infections. Herein, we present the cryo-EM structures of nicotinamide adenine dinucleotide (NAD+)-bound SPARSA with and without nucleic acids at resolutions of 3.1 Å and 3.6 Å, respectively. Our results reveal that the APAZ (Analogue of PAZ) domain and the short pAgo form a featured architecture similar to the long pAgo to accommodate nucleic acids. We further identified the key residues for NAD+ binding and elucidated the structural basis for guide RNA and target DNA recognition. Using structural comparisons, molecular dynamics simulations, and biochemical experiments, we proposed a putative mechanism for NAD+ hydrolysis in which an H186 loop mediates nucleophilic attack by catalytic water molecules. Overall, our study provides mechanistic insight into the antiphage role of the SPARSA system.
Collapse
Affiliation(s)
- Xiangkai Zhen
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Xiaolong Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China Wuhan University, Wuhan, 430071, China
| | - Le Ye
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Song Xie
- College of Chemistry, Fuzhou University, 350116, Fuzhou, China
| | - Zhijie Huang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Sheng Yang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yanhui Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China Wuhan University, Wuhan, 430071, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, 350116, Fuzhou, China.
| | - Feng Long
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China Wuhan University, Wuhan, 430071, China.
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
25
|
Dhotre K, Dass D, Banerjee A, Nema V, Mukherjee A. A Computational Approach for Designing and Validating Small Interfering RNA against SARS-CoV-2 Variants. Curr Comput Aided Drug Des 2024; 20:876-887. [PMID: 37622690 DOI: 10.2174/1573409920666230825111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023]
Abstract
AIMS The aim of this study is to develop a novel antiviral strategy capable of efficiently targeting a broad set of SARS-CoV-2 variants. BACKGROUND Since the first emergence of SARS-CoV-2, it has rapidly transformed into a global pandemic, posing an unprecedented threat to public health. SARS-CoV-2 is prone to mutation and continues to evolve, leading to the emergence of new variants capable of escaping immune protection achieved due to previous SARS-CoV-2 infections or by vaccination. OBJECTIVE RNA interference (RNAi) is a remarkable biological mechanism that can induce gene silencing by targeting complementary mRNA and inhibiting its translation. METHODS In this study, using the computational approach, we predicted the most efficient siRNA capable of inhibiting SARS-CoV-2 variants of concern (VoCs). RESULTS The presented siRNA was characterized and evaluated for its thermodynamic properties, offsite-target hits, and in silico validation by molecular docking and molecular dynamics simulations (MD) with Human AGO2 protein. CONCLUSION The study contributes to the possibility of designing and developing an effective response strategy against existing variants of concerns and preventing further.
Collapse
Affiliation(s)
- Kishore Dhotre
- Division of Virology, ICMR-National AIDS Research Institute, Pune, MH, India
| | - Debashree Dass
- Division of Virology, ICMR-National AIDS Research Institute, Pune, MH, India
| | - Anwesha Banerjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune, MH, India
| | - Vijay Nema
- Division of Molecular Biology, ICMR-National AIDS Research Institute, Pune, MH, India
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune, MH, India
| |
Collapse
|
26
|
Nakanishi K. When Argonaute takes out the ribonuclease sword. J Biol Chem 2024; 300:105499. [PMID: 38029964 PMCID: PMC10772731 DOI: 10.1016/j.jbc.2023.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
Argonaute (AGO) proteins in all three domains of life form ribonucleoprotein or deoxyribonucleoprotein complexes by loading a guide RNA or DNA, respectively. Since all AGOs retain a PIWI domain that takes an RNase H fold, the ancestor was likely an endoribonuclease (i.e., a slicer). In animals, most miRNA-mediated gene silencing occurs slicer independently. However, the slicer activity of AGO is indispensable in specific events, such as development and differentiation, which are critical for vertebrates and thus cannot be replaced by the slicer-independent regulation. This review highlights the distinctions in catalytic activation mechanisms among slicing-competent AGOs, shedding light on the roles of two metal ions in target recognition and cleavage. The precision of the target specificity by the RNA-induced silencing complexes is reevaluated and redefined. The possible coevolutionary relationship between slicer-independent gene regulation and AGO-binding protein, GW182, is also explored. These discussions reveal that numerous captivating questions remain unanswered regarding the timing and manner in which AGOs employ their slicing activity.
Collapse
Affiliation(s)
- Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
27
|
Gao X, Shang K, Zhu K, Wang L, Mu Z, Fu X, Yu X, Qin B, Zhu H, Ding W, Cui S. Nucleic-acid-triggered NADase activation of a short prokaryotic Argonaute. Nature 2024; 625:822-831. [PMID: 37783228 DOI: 10.1038/s41586-023-06665-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Argonaute (Ago) proteins mediate RNA- or DNA-guided inhibition of nucleic acids1,2. Although the mechanisms used by eukaryotic Ago proteins and long prokaryotic Ago proteins (pAgos) are known, that used by short pAgos remains elusive. Here we determined the cryo-electron microscopy structures of a short pAgo and the associated TIR-APAZ proteins (SPARTA) from Crenotalea thermophila (Crt): a free-state Crt-SPARTA; a guide RNA-target DNA-loaded Crt-SPARTA; two Crt-SPARTA dimers with distinct TIR organization; and a Crt-SPARTA tetramer. These structures reveal that Crt-SPARTA is composed of a bilobal-fold Ago lobe that connects with a TIR lobe. Whereas the Crt-Ago contains a MID and a PIWI domain, Crt-TIR-APAZ has a TIR domain, an N-like domain, a linker domain and a trigger domain. The bound RNA-DNA duplex adopts a B-form conformation that is recognized by base-specific contacts. Nucleic acid binding causes conformational changes because the trigger domain acts as a 'roadblock' that prevents the guide RNA 5' ends and the target DNA 3' ends from reaching their canonical pockets; this disorders the MID domain and promotes Crt-SPARTA dimerization. Two RNA-DNA-loaded Crt-SPARTA dimers form a tetramer through their TIR domains. Four Crt-TIR domains assemble into two parallel head-to-tail-organized TIR dimers, indicating an NADase-active conformation, which is supported by our mutagenesis study. Our results reveal the structural basis of short-pAgo-mediated defence against invading nucleic acids, and provide insights for optimizing the detection of SPARTA-based programmable DNA sequences.
Collapse
Affiliation(s)
- Xiaopan Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Kun Shang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Medical School, Yan'an University, Yan'an, China
| | - Kaixiang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Linyue Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Zhixia Mu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Xingke Fu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xia Yu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Hongtao Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
| | - Wei Ding
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China.
| |
Collapse
|
28
|
Belliveau J, Thompson W, Papoutsakis ET. Kinetic and functional analysis of abundant microRNAs in extracellular vesicles from normal and stressed cultures of Chinese hamster ovary cells. Biotechnol Bioeng 2024; 121:118-130. [PMID: 37859509 DOI: 10.1002/bit.28570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Chinese hamster ovary (CHO) cells release and exchange large quantities of extracellular vesicles (EVs). EVs are highly enriched in microRNAs (miRs, or miRNAs), which are responsible for most of their biological effects. We have recently shown that the miR content of CHO EVs varies significantly under culture stress conditions. Here, we provide a novel stoichiometric ("per-EV") quantification of miR and protein levels in large CHO EVs produced under ammonia, lactate, osmotic, and age-related stress. Each stress resulted in distinct EV miR levels, with selective miR loading by parent cells. Our data provide a proof of concept for the use of CHO EV cargo as a diagnostic tool for identifying culture stress. We also tested the impact of three select miRs (let-7a, miR-21, and miR-92a) on CHO cell growth and viability. Let-7a-abundant in CHO EVs from stressed cultures-reduced CHO cell viability, while miR-92a-abundant in CHO EVs from unstressed cultures-promoted cell survival. Overexpression of miR-21 had a slight detrimental impact on CHO cell growth and viability during late exponential-phase culture, an unexpected result based on the reported antiapoptotic role of miR-21 in other mammalian cell lines. These findings provide novel relationships between CHO EV cargo and cell phenotype, suggesting that CHO EVs may exert both pro- and antiapoptotic effects on target cells, depending on the conditions under which they were produced.
Collapse
Affiliation(s)
- Jessica Belliveau
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Will Thompson
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Eleftherios T Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
29
|
Parsamanesh N, Poudineh M, Siami H, Butler AE, Almahmeed W, Sahebkar A. RNA interference-based therapies for atherosclerosis: Recent advances and future prospects. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 204:1-43. [PMID: 38458734 DOI: 10.1016/bs.pmbts.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Atherosclerosis represents a pathological state that affects the arterial system of the organism. This chronic, progressive condition is typified by the accumulation of atheroma within arterial walls. Modulation of RNA molecules through RNA-based therapies has expanded the range of therapeutic options available for neurodegenerative diseases, infectious diseases, cancer, and, more recently, cardiovascular disease (CVD). Presently, microRNAs and small interfering RNAs (siRNAs) are the most widely employed therapeutic strategies for targeting RNA molecules, and for regulating gene expression and protein production. Nevertheless, for these agents to be developed into effective medications, various obstacles must be overcome, including inadequate binding affinity, instability, challenges of delivering to the tissues, immunogenicity, and off-target toxicity. In this comprehensive review, we discuss in detail the current state of RNA interference (RNAi)-based therapies.
Collapse
Affiliation(s)
- Negin Parsamanesh
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Haleh Siami
- School of Medicine, Islamic Azad University of Medical Science, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Shang R, Lee S, Senavirathne G, Lai EC. microRNAs in action: biogenesis, function and regulation. Nat Rev Genet 2023; 24:816-833. [PMID: 37380761 PMCID: PMC11087887 DOI: 10.1038/s41576-023-00611-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/30/2023]
Abstract
Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR-Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future.
Collapse
Affiliation(s)
- Renfu Shang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Gayan Senavirathne
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
31
|
Kozłowska-Masłoń J, Guglas K, Kolenda T, Lamperska K, Makałowska I. miRNA in head and neck squamous cell carcinomas: promising but still distant future of personalized oncology. Rep Pract Oncol Radiother 2023; 28:681-697. [PMID: 38179293 PMCID: PMC10764040 DOI: 10.5603/rpor.96666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/24/2023] [Indexed: 01/06/2024] Open
Abstract
Head and neck squamous cell carcinoma is one of the most common and fatal cancers worldwide. Lack of appropriate preventive screening tests, late detection, and high heterogeneity of these tumors are the main reasons for the unsatisfactory effects of therapy and, consequently, unfavorable outcomes for patients. An opportunity to improve the quality of diagnostics and treatment of this group of cancers are microRNAs (miRNAs) - molecules with a great potential both as biomarkers and therapeutic targets. This review aims to present the characteristics of these short non-coding RNAs (ncRNAs) and summarize the current reports on their use in oncology focused on medical strategies tailored to patients' needs.
Collapse
Affiliation(s)
- Joanna Kozłowska-Masłoń
- Laboratory of Cancer Genetics, Greater oland Cancer Centre, Poznan, Poland
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater oland Cancer Centre, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater oland Cancer Centre, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Poznan, Poland
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater oland Cancer Centre, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Poznan, Poland
| | - Izabela Makałowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
32
|
Cui Y, Wu X, Jin J, Man W, Li J, Li X, Li Y, Yao H, Zhong R, Chen S, Wu J, Zhu T, Lin Y, Xu J, Wang Y. CircHERC1 promotes non-small cell lung cancer cell progression by sequestering FOXO1 in the cytoplasm and regulating the miR-142-3p-HMGB1 axis. Mol Cancer 2023; 22:179. [PMID: 37932766 PMCID: PMC10626661 DOI: 10.1186/s12943-023-01888-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Noncoding RNAs such as circular RNAs (circRNAs) are abundant in the human body and influence the occurrence and development of various diseases. Non-small cell lung cancer (NSCLC) is one of the most common malignant cancers. Information on the functions and mechanism of circRNAs in lung cancer is limited; thus, the topic needs more exploration. The purpose of this study was to identify aberrantly expressed circRNAs in lung cancer, unravel their roles in NSCLC progression, and provide new targets for lung cancer diagnosis and therapy. METHODS High-throughput sequencing was used to analyze differential circRNA expression in patients with lung cancer. qRT‒PCR was used to determine the level of circHERC1 in lung cancer tissues and plasma samples. Gain- and loss-of-function experiments were implemented to observe the impacts of circHERC1 on the growth, invasion, and metastasis of lung cancer cells in vitro and in vivo. Mechanistically, dual luciferase reporter assays, fluorescence in situ hybridization (FISH), RNA immunoprecipitation (RIP) and RNA pull-down experiments were performed to confirm the underlying mechanisms of circHERC1. Nucleocytoplasmic localization of FOXO1 was determined by nucleocytoplasmic isolation and immunofluorescence. The interaction of circHERC1 with FOXO1 was verified by RNA pull-down, RNA immunoprecipitation (RIP) and western blot assays. The proliferation and migration of circHERC1 in vivo were verified by subcutaneous and tail vein injection in nude mice. RESULTS CircHERC1 was significantly upregulated in lung cancer tissues and cells, ectopic expression of circHERC1 strikingly facilitated the proliferation, invasion and metastasis, and inhibited the apoptosis of lung cancer cells in vitro and in vivo. However, knockdown of circHERC1 exerted the opposite effects. CircHERC1 was mainly distributed in the cytoplasm. Further mechanistic research indicated that circHERC1 acted as a competing endogenous RNA of miR-142-3p to relieve the repressive effect of miR-142-3p on its target HMGB1, activating the MAPK/ERK and NF-κB pathways and promoting cell migration and invasion. More importantly, we found that circHERC1 could bind FOXO1 and sequester it in the cytoplasm, adjusting the feedback AKT pathway. The accumulation of FOXO1 in the cytosol and nuclear exclusion promoted cell proliferation and inhibited apoptosis. CircHERC1 is a new circRNA that promotes tumor function in NSCLC and may serve as a potential prognostic biomarker and therapeutic target for NSCLC. CONCLUSIONS CircHERC1 is a new circRNA that promotes tumor function in NSCLC and may serve as a potential diagnosis biomarker and therapeutic target for NSCLC. Our findings indicate that circHERC1 facilitates the invasion and metastasis of NSCLC cells by regulating the miR-142-3p/HMGB1 axis and activating the MAPK/ERK and NF-κB pathways. In addition, circHERC1 can promote cell proliferation and inhibit apoptosis by sequestering FOXO1 in the cytoplasm to regulate AKT activity and BIM transcription.
Collapse
Affiliation(s)
- Yumeng Cui
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaojie Wu
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jie Jin
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Weiling Man
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jie Li
- Department of Thoracic Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100850, China
| | - Xiang Li
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yanghua Li
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - He Yao
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Rongbin Zhong
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Shiyun Chen
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jiahui Wu
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Tianhao Zhu
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yanli Lin
- Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Junjie Xu
- Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Youliang Wang
- Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
33
|
Sapkota S, Pillman K, Dredge B, Liu D, Bracken J, Kachooei S, Chereda B, Gregory P, Bracken C, Goodall G. On the rules of engagement for microRNAs targeting protein coding regions. Nucleic Acids Res 2023; 51:9938-9951. [PMID: 37522357 PMCID: PMC10570018 DOI: 10.1093/nar/gkad645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Abstract
MiRNAs post-transcriptionally repress gene expression by binding to mRNA 3'UTRs, but the extent to which they act through protein coding regions (CDS regions) is less well established. MiRNA interaction studies show a substantial proportion of binding occurs in CDS regions, however sequencing studies show much weaker effects on mRNA levels than from 3'UTR interactions, presumably due to competition from the translating ribosome. Consequently, most target prediction algorithms consider only 3'UTR interactions. However, the consequences of CDS interactions may have been underestimated, with the reporting of a novel mode of miRNA-CDS interaction requiring base pairing of the miRNA 3' end, but not the canonical seed site, leading to repression of translation with little effect on mRNA turnover. Using extensive reporter, western blotting and bioinformatic analyses, we confirm that miRNAs can indeed suppress genes through CDS-interaction in special circumstances. However, in contrast to that previously reported, we find repression requires extensive base-pairing, including of the canonical seed, but does not strictly require base pairing of the 3' miRNA terminus and is mediated through reducing mRNA levels. We conclude that suppression of endogenous genes can occur through miRNAs binding to CDS, but the requirement for extensive base-pairing likely limits the regulatory impacts to modest effects on a small subset of targets.
Collapse
Affiliation(s)
- Sunil Sapkota
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - B Kate Dredge
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Dawei Liu
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Julie M Bracken
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Saba Ataei Kachooei
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Bradley Chereda
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
- School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Adelaide
| | - Gregory J Goodall
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
- School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Adelaide
| |
Collapse
|
34
|
Matsuda S, Bala S, Liao JY, Datta D, Mikami A, Woods L, Harp JM, Gilbert JA, Bisbe A, Manoharan RM, Kim M, Theile CS, Guenther DC, Jiang Y, Agarwal S, Maganti R, Schlegel MK, Zlatev I, Charisse K, Rajeev KG, Castoreno A, Maier M, Janas MM, Egli M, Chaput JC, Manoharan M. Shorter Is Better: The α-(l)-Threofuranosyl Nucleic Acid Modification Improves Stability, Potency, Safety, and Ago2 Binding and Mitigates Off-Target Effects of Small Interfering RNAs. J Am Chem Soc 2023; 145:19691-19706. [PMID: 37638886 DOI: 10.1021/jacs.3c04744] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Chemical modifications are necessary to ensure the metabolic stability and efficacy of oligonucleotide-based therapeutics. Here, we describe analyses of the α-(l)-threofuranosyl nucleic acid (TNA) modification, which has a shorter 3'-2' internucleotide linkage than the natural DNA and RNA, in the context of small interfering RNAs (siRNAs). The TNA modification enhanced nuclease resistance more than 2'-O-methyl or 2'-fluoro ribose modifications. TNA-containing siRNAs were prepared as triantennary N-acetylgalactosamine conjugates and were tested in cultured cells and mice. With the exceptions of position 2 of the antisense strand and position 11 of the sense strand, the TNA modification did not inhibit the activity of the RNA interference machinery. In a rat toxicology study, TNA placed at position 7 of the antisense strand of the siRNA mitigated off-target effects, likely due to the decrease in the thermodynamic binding affinity relative to the 2'-O-methyl residue. Analysis of the crystal structure of an RNA octamer with a single TNA on each strand showed that the tetrose sugar adopts a C4'-exo pucker. Computational models of siRNA antisense strands containing TNA bound to Argonaute 2 suggest that TNA is well accommodated in the region kinked by the enzyme. The combined data indicate that the TNA nucleotides are promising modifications expected to increase the potency, duration of action, and safety of siRNAs.
Collapse
Affiliation(s)
- Shigeo Matsuda
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Saikat Bala
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - Jen-Yu Liao
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - Dhrubajyoti Datta
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Atsushi Mikami
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Lauren Woods
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Joel M Harp
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-0146, United States
| | - Jason A Gilbert
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Anna Bisbe
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Rajar M Manoharan
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - MaryBeth Kim
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Christopher S Theile
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Dale C Guenther
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Yongfeng Jiang
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Saket Agarwal
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Rajanikanth Maganti
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Mark K Schlegel
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Ivan Zlatev
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Klaus Charisse
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | | | - Adam Castoreno
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Martin Maier
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Maja M Janas
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-0146, United States
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
35
|
Shen Z, Yang XY, Xia S, Huang W, Taylor DJ, Nakanishi K, Fu TM. Oligomerization-mediated activation of a short prokaryotic Argonaute. Nature 2023; 621:154-161. [PMID: 37494956 PMCID: PMC11332595 DOI: 10.1038/s41586-023-06456-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Although eukaryotic and long prokaryotic Argonaute proteins (pAgos) cleave nucleic acids, some short pAgos lack nuclease activity and hydrolyse NAD(P)+ to induce bacterial cell death1. Here we present a hierarchical activation pathway for SPARTA, a short pAgo consisting of an Argonaute (Ago) protein and TIR-APAZ, an associated protein2. SPARTA progresses through distinct oligomeric forms, including a monomeric apo state, a monomeric RNA-DNA-bound state, two dimeric RNA-DNA-bound states and a tetrameric RNA-DNA-bound active state. These snapshots together identify oligomerization as a mechanistic principle of SPARTA activation. The RNA-DNA-binding channel of apo inactive SPARTA is occupied by an auto-inhibitory motif in TIR-APAZ. After the binding of RNA-DNA, SPARTA transitions from a monomer to a symmetric dimer and then an asymmetric dimer, in which two TIR domains interact through charge and shape complementarity. Next, two dimers assemble into a tetramer with a central TIR cluster responsible for hydrolysing NAD(P)+. In addition, we observe unique features of interactions between SPARTA and RNA-DNA, including competition between the DNA 3' end and the auto-inhibitory motif, interactions between the RNA G2 nucleotide and Ago, and splaying of the RNA-DNA duplex by two loops exclusive to short pAgos. Together, our findings provide a mechanistic basis for the activation of short pAgos, a large section of the Ago superfamily.
Collapse
Affiliation(s)
- Zhangfei Shen
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center and Center for Cancer Metabolism, The Ohio State University, Columbus, OH, USA
| | - Xiao-Yuan Yang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center and Center for Cancer Metabolism, The Ohio State University, Columbus, OH, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Shiyu Xia
- Divison of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA.
- Comprehensive Cancer Center and Center for Cancer Metabolism, The Ohio State University, Columbus, OH, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
36
|
Zhang Y, Zhao Z, Huang LA, Liu Y, Yao J, Sun C, Li Y, Zhang Z, Ye Y, Yuan F, Nguyen TK, Garlapati NR, Wu A, Egranov SD, Caudle AS, Sahin AA, Lim B, Beretta L, Calin GA, Yu D, Hung MC, Curran MA, Rezvani K, Gan B, Tan Z, Han L, Lin C, Yang L. Molecular mechanisms of snoRNA-IL-15 crosstalk in adipocyte lipolysis and NK cell rejuvenation. Cell Metab 2023; 35:1457-1473.e13. [PMID: 37329887 PMCID: PMC10712687 DOI: 10.1016/j.cmet.2023.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/03/2023] [Accepted: 05/18/2023] [Indexed: 06/19/2023]
Abstract
Obesity, in which the functional importance of small nucleolar RNAs (snoRNAs) remains elusive, correlates with risk for many cancer types. Here, we identify that the serum copies of adipocyte-expressed SNORD46 correlate with body mass index (BMI), and serum SNORD46 antagonizes interleukin-15 (IL-15) signaling. Mechanically, SNORD46 binds IL-15 via G11, and G11A (a mutation that significantly enhances binding affinity) knockin drives obesity in mice. Functionally, SNORD46 blocks IL-15-induced, FER kinase-dependent phosphorylation of platelet glycoprotein 4 (CD36) and monoglyceride lipase (MGLL) in adipocytes, leading to inhibited lipolysis and browning. In natural killer (NK) cells, SNORD46 suppresses the IL-15-dependent autophagy, leading to reduced viability of obese NK. SNORD46 power inhibitors exhibit anti-obesity effects, concurring with improved viability of obese NK and anti-tumor immunity of CAR-NK cell therapy. Hence, our findings demonstrate the functional importance of snoRNAs in obesity and the utility of snoRNA power inhibitors for antagonizing obesity-associated immune resistance.
Collapse
Affiliation(s)
- Yaohua Zhang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zilong Zhao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lisa A Huang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuan Liu
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chengcao Sun
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yajuan Li
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Fei Yuan
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tina K Nguyen
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nikhil Reddy Garlapati
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Wu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sergey D Egranov
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Abigail S Caudle
- Department of Breast Surgical Oncology, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aysegul A Sahin
- Department of Pathology, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bora Lim
- Oncology/Medicine, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A Calin
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung 406, Taiwan
| | - Michael A Curran
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katayoun Rezvani
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boyi Gan
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Experimental Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhi Tan
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA; Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Johnson KC, Kilikevicius A, Hofman C, Hu J, Liu Y, Aguilar S, Graswich J, Han Y, Wang T, Westcott JM, Brekken RA, Peng L, Karagkounis G, Corey DR. Nuclear Localization of Argonaute is affected by Cell Density and May Relieve Repression by microRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548119. [PMID: 37461596 PMCID: PMC10350042 DOI: 10.1101/2023.07.07.548119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Argonaute protein is associated with post-transcriptional control of cytoplasmic gene expression through miRNA-induced silencing complexes (miRISC). Specific cellular and environmental conditions can trigger AGO protein to accumulate in the nucleus. Localization of AGO is central to understanding miRNA action, yet the consequences of AGO being in the nucleus are undefined. We show nuclear enrichment of AGO2 in HCT116 cells grown in two-dimensional culture to high density, HCT116 cells grown in three-dimensional tumor spheroid culture, and human colon tumors. The shift in localization of AGO2 from cytoplasm to nucleus de-represses cytoplasmic AGO2-eCLIP targets that were candidates for canonical regulation by miRISC. Constitutive nuclear localization of AGO2 using an engineered nuclear localization signal increases cell migration. Critical RNAi factors also affect the localization of AGO2. Knocking out an enzyme essential for miRNA biogenesis, DROSHA, depletes mature miRNAs and restricts AGO2 localization to the cytoplasm, while knocking out the miRISC scaffolding protein, TNRC6, results in nuclear localization of AGO2. These data suggest that AGO2 localization and miRNA activity can be regulated depending on environmental conditions, expression of mature miRNAs, and expression of miRISC cofactors. Localization and expression of core miRISC protein machinery should be considered when investigating the roles of miRNAs.
Collapse
Affiliation(s)
- Krystal C Johnson
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Audrius Kilikevicius
- current address, Eli Lilly, Lilly Cambridge Innovation Center, Cambridge, MA 02142
| | - Cristina Hofman
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Jiaxin Hu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Yang Liu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Selina Aguilar
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Jon Graswich
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Yi Han
- UT Southwestern Medical Center, Quantitative Biomedical Research Center, Department of Population and Data Sciences, Dallas, TX 75235
| | - Tao Wang
- UT Southwestern Medical Center, Quantitative Biomedical Research Center, Department of Population and Data Sciences, Dallas, TX 75235
| | - Jill M Westcott
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235
| | - Rolf A Brekken
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235
| | - Lan Peng
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Pathology, Dallas, TX 75235
| | - Georgios Karagkounis
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235
| | - David R Corey
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| |
Collapse
|
38
|
Bressendorff S, Kausika S, Sjøgaard IMZ, Oksbjerg ED, Michels A, Poulsen C, Brodersen P. The N-coil and the globular N-terminal domain of plant ARGONAUTE1 are interaction hubs for regulatory factors. Biochem J 2023; 480:957-974. [PMID: 37278687 DOI: 10.1042/bcj20230025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
The effector complex of RNA interference (RNAi) contains at its core an ARGONAUTE (AGO) protein bound to a small guide RNA. AGO proteins adopt a two-lobed structure in which the N-terminal (N) and Piwi-Argonaute-Zwille (PAZ) domains make up one lobe, while the middle (MID) and Piwi domains make up the other. Specific biochemical functions of PAZ, MID and Piwi domains of eukaryotic AGO proteins have been described, but the functions of the N domain remain less clear. Here, we use yeast two-hybrid screening with the N domain of the founding member of the AGO protein family, Arabidopsis AGO1, to reveal that it interacts with many factors involved in regulated proteolysis. Interaction with a large group of proteins, including the autophagy cargo receptors ATI1 and ATI2, requires residues in a short, linear region, the N-coil, that joins the MID-Piwi lobe in the three-dimensional structure of AGO. In contrast, the F-box protein AUF1 interacts with AGO1 independently of the N-coil and requires distinct residues in the globular N domain itself. Mutation of AGO1 residues necessary for interaction with protein degradation factors in yeast stabilizes reporters fused to the AGO1 N domain in plants, supporting their in vivo relevance. Our results define distinct regions of the N domain implicated in protein-protein interaction, and point to a particular importance of the AGO1 N-coil as a site of interaction with regulatory factors.
Collapse
Affiliation(s)
- Simon Bressendorff
- Copenhagen Plant Science Center, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Swathi Kausika
- Copenhagen Plant Science Center, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Ida Marie Zobbe Sjøgaard
- Copenhagen Plant Science Center, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Emilie Duus Oksbjerg
- Copenhagen Plant Science Center, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Alec Michels
- Copenhagen Plant Science Center, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Christian Poulsen
- Copenhagen Plant Science Center, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Peter Brodersen
- Copenhagen Plant Science Center, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
39
|
Liu Q, Chen W, Zhang Y, Hu F, Jiang X, Wang F, Liu Y, Ma L. A programmable pAgo nuclease with RNA target-cleavage specificity from the mesophilic bacterium Verrucomicrobia. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1204-1212. [PMID: 37431184 PMCID: PMC10448046 DOI: 10.3724/abbs.2023110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/10/2023] [Indexed: 07/12/2023] Open
Abstract
Argonaute (Ago) proteins are conserved programmable nucleases present in eukaryotes and prokaryotes and provide defense against mobile genetic elements. Almost all characterized pAgos prefer to cleave DNA targets. Here, we describe a novel pAgo from Verrucomicrobia bacterium (VbAgo) that can specifically cleave RNA targets rather than DNA targets at 37°C and function as a multiple-turnover enzyme showing prominent catalytic capacity. VbAgo utilizes DNA guides (gDNAs) to cleave RNA targets at the canonical cleavage site. Meanwhile, the cleavage activity is remarkably strengthened at low concentrations of NaCl. In addition, VbAgo presents a weak tolerance for mismatches between gDNAs and RNA targets, and single-nucleotide mismatches at positions 11‒12 and dinucleotide mismatches at positions 3‒15 dramatically reduce target cleavage. Moreover, VbAgo can efficiently cleave highly structured RNA targets at 37°C. These properties of VbAgo broaden our understanding of Ago proteins and expand the pAgo-based RNA manipulation toolbox.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resourcesHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062China
| | - Wanping Chen
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resourcesHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062China
- School of PharmacyQingdao UniversityQingdao266071China
| | - Yue Zhang
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resourcesHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062China
| | - Fengyang Hu
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resourcesHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062China
| | - Xiaoman Jiang
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resourcesHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resourcesHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062China
- Hubei Jiangxia LaboratoryWuhan430200China
| | - Yang Liu
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resourcesHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resourcesHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062China
| |
Collapse
|
40
|
Jones BT, Han J, Zhang H, Hammer RE, Evers BM, Rakheja D, Acharya A, Mendell JT. Target-directed microRNA degradation regulates developmental microRNA expression and embryonic growth in mammals. Genes Dev 2023; 37:661-674. [PMID: 37553261 PMCID: PMC10499020 DOI: 10.1101/gad.350906.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play critical roles in development and disease. Target-directed miRNA degradation (TDMD), a pathway in which miRNAs that bind to specialized targets with extensive complementarity are rapidly decayed, has emerged as a potent mechanism of controlling miRNA levels. Nevertheless, the biological role and scope of miRNA regulation by TDMD in mammals remains poorly understood. To address these questions, we generated mice with constitutive or conditional deletion of Zswim8, which encodes an essential TDMD factor. Loss of Zswim8 resulted in developmental defects in the heart and lungs, growth restriction, and perinatal lethality. Small RNA sequencing of embryonic tissues revealed widespread miRNA regulation by TDMD and greatly expanded the known catalog of miRNAs regulated by this pathway. These experiments also uncovered novel features of TDMD-regulated miRNAs, including their enrichment in cotranscribed clusters and examples in which TDMD underlies "arm switching," a phenomenon wherein the dominant strand of a miRNA precursor changes in different tissues or conditions. Importantly, deletion of two miRNAs, miR-322 and miR-503, rescued growth of Zswim8-null embryos, directly implicating the TDMD pathway as a regulator of mammalian body size. These data illuminate the broad landscape and developmental role of TDMD in mammals.
Collapse
Affiliation(s)
- Benjamin T Jones
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jaeil Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - He Zhang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Robert E Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Asha Acharya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
41
|
Jones BT, Han J, Zhang H, Hammer RE, Evers BM, Rakheja D, Acharya A, Mendell JT. Target-directed microRNA degradation regulates developmental microRNA expression and embryonic growth in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546601. [PMID: 37425885 PMCID: PMC10327180 DOI: 10.1101/2023.06.26.546601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play critical roles in development and disease. Target-directed miRNA degradation (TDMD), a pathway in which miRNAs that bind to specialized targets with extensive complementarity are rapidly decayed, has emerged as a potent mechanism of controlling miRNA levels. Nevertheless, the biological role and scope of miRNA regulation by TDMD in mammals remains poorly understood. To address these questions, we generated mice with constitutive or conditional deletion of Zswim8 , which encodes an essential TDMD factor. Loss of Zswim8 resulted in developmental defects in heart and lung, growth restriction, and perinatal lethality. Small RNA sequencing of embryonic tissues revealed widespread miRNA regulation by TDMD and greatly expanded the known catalog of miRNAs regulated by this pathway. These experiments also uncovered novel features of TDMD-regulated miRNAs, including their enrichment in co-transcribed clusters and examples in which TDMD underlies 'arm switching', a phenomenon wherein the dominant strand of a miRNA precursor changes in different tissues or conditions. Importantly, deletion of two miRNAs, miR-322 and miR-503, rescued growth of Zswim8 null embryos, directly implicating the TDMD pathway as a regulator of mammalian body size. These data illuminate the broad landscape and developmental role of TDMD in mammals.
Collapse
Affiliation(s)
- Benjamin T Jones
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jaeil Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - He Zhang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert E. Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bret M. Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Asha Acharya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T. Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
42
|
Dai Z, Yang Q, Chen D, Li B, Que J, Hu L, Zhang B, Zhang Z, Chen K, Zhang S, Lai Z. ZmAGO18b negatively regulates maize resistance against southern leaf blight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:158. [PMID: 37341790 DOI: 10.1007/s00122-023-04405-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
KEY MESSAGE Here, we report that ZmAGO18b encoding an argonaute protein is a negative regulator of maize resistance against southern leaf blight. Southern leaf blight caused by fungal pathogen Cochliobolus heterostrophus is a destructive disease on maize throughout the world. Argonaute (AGO) proteins, key regulators in small RNA pathway, play important roles in plant defense. But whether they have function in maize resistance against C. heterostrophus is unknown. Association analysis between the nucleic variation of 18 ZmAGO loci with disease phenotype against C. heterostrophus was performed, and the ZmAGO18b locus was identified to be associated with resistance against C. heterostrophus. Overexpression of ZmAGO18b gene suppresses maize resistance against C. heterostrophus, and mutation of ZmAGO18b enhances maize resistance against C. heterostrophus. Further, we identified the resistant haplotype of ZmAGO18b by association analysis of natural variation in ZmAGO18b genomic DNA sequences with seedling resistance phenotypes against C. heterostrophus and confirmed the resistant haplotype is co-segregated with resistance phenotypes against C. heterostrophus in two F2 populations. In sum, this study reports that ZmAGO18b negatively regulates maize resistance against C. heterostrophus.
Collapse
Affiliation(s)
- Zhikang Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qianhui Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Donghai Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Bingchen Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jiamin Que
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Long Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Bao Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Kun Chen
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Shukuan Zhang
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
| |
Collapse
|
43
|
Lisitskaya L, Kropocheva E, Agapov A, Prostova M, Panteleev V, Yudin D, Ryazansky S, Kuzmenko A, Aravin A, Esyunina D, Kulbachinskiy A. Bacterial Argonaute nucleases reveal different modes of DNA targeting in vitro and in vivo. Nucleic Acids Res 2023; 51:5106-5124. [PMID: 37094066 PMCID: PMC10250240 DOI: 10.1093/nar/gkad290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
Prokaryotic Argonaute proteins (pAgos) are homologs of eukaryotic Argonautes (eAgos) and are also thought to play a role in cell defense against invaders. However, pAgos are much more diverse than eAgos and little is known about their functional activities and target specificities in vivo. Here, we describe five pAgos from mesophilic bacteria that act as programmable DNA endonucleases and analyze their ability to target chromosomal and invader DNA. In vitro, the analyzed proteins use small guide DNAs for precise cleavage of single-stranded DNA at a wide range of temperatures. Upon their expression in Escherichia coli, all five pAgos are loaded with small DNAs preferentially produced from plasmids and chromosomal regions of replication termination. One of the tested pAgos, EmaAgo from Exiguobacterium marinum, can induce DNA interference between homologous sequences resulting in targeted processing of multicopy plasmid and genomic elements. EmaAgo also protects bacteria from bacteriophage infection, by loading phage-derived guide DNAs and decreasing phage DNA content and phage titers. Thus, the ability of pAgos to target multicopy elements may be crucial for their protective function. The wide spectrum of pAgo activities suggests that they may have diverse functions in vivo and paves the way for their use in biotechnology.
Collapse
Affiliation(s)
- Lidiya Lisitskaya
- Institute of Gene Biology, Russian Academy of Sciences, Moscow119334, Russia
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow123182, Russia
| | - Ekaterina Kropocheva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow119334, Russia
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow123182, Russia
| | - Aleksei Agapov
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow123182, Russia
| | - Maria Prostova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow119334, Russia
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow123182, Russia
| | - Vladimir Panteleev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow119334, Russia
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow123182, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny141700, Russia
| | - Denis Yudin
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow123182, Russia
| | - Sergei Ryazansky
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow123182, Russia
| | - Anton Kuzmenko
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow123182, Russia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexei A Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Daria Esyunina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow119334, Russia
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow123182, Russia
| | - Andrey Kulbachinskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow119334, Russia
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow123182, Russia
| |
Collapse
|
44
|
Datta D, Theile CS, Wassarman K, Qin J, Racie T, Schmidt K, Jiang Y, Sigel R, Janas MM, Egli M, Manoharan M. Rational optimization of siRNA to ensure strand bias in the interaction with the RNA-induced silencing complex. Chem Commun (Camb) 2023; 59:6347-6350. [PMID: 37144553 DOI: 10.1039/d3cc01143g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
To ensure specificity of small interfering RNAs (siRNAs), the antisense strand must be selected by the RNA-induced silencing complex (RISC). We have previously demonstrated that a 5'-morpholino-modified nucleotide at the 5'-end of the sense strand inhibits its interaction with RISC ensuring selection of the desired antisense strand. To improve this antagonizing binding property even further, a new set of morpholino-based analogues, Mo2 and Mo3, and a piperidine analogue, Pip, were designed based on the known structure of Argonaute2, the slicer enzyme component of RISC. Sense strands of siRNAs were modified with these new analogues, and the siRNAs were evaluated in vitro and in mice for RNAi activity. Our data demonstrated that Mo2 is the best RISC inhibitor among the modifications tested and that it effectively mitigates sense strand-based off-target activity of siRNA.
Collapse
Affiliation(s)
- Dhrubajyoti Datta
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Christopher S Theile
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Kelly Wassarman
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - June Qin
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Tim Racie
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Karyn Schmidt
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Yongfeng Jiang
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Rachel Sigel
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Maja M Janas
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| |
Collapse
|
45
|
Sudhakar S, Barkau CL, Chilamkurthy R, Barber HM, Pater AA, Moran SD, Damha MJ, Pradeepkumar PI, Gagnon KT. Binding to the conserved and stably folded guide RNA pseudoknot induces Cas12a conformational changes during ribonucleoprotein assembly. J Biol Chem 2023; 299:104700. [PMID: 37059184 PMCID: PMC10200996 DOI: 10.1016/j.jbc.2023.104700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023] Open
Abstract
Ribonucleoproteins (RNPs) comprise one or more RNA and protein molecules that interact to form a stable complex, which commonly involves conformational changes in the more flexible RNA components. Here, we propose that Cas12a RNP assembly with its cognate CRISPR RNA (crRNA) guide instead proceeds primarily through Cas12a conformational changes during binding to more stable, prefolded crRNA 5' pseudoknot handles. Phylogenetic reconstructions and sequence and structure alignments revealed that the Cas12a proteins are divergent in sequence and structure while the crRNA 5' repeat region, which folds into a pseudoknot and anchors binding to Cas12a, is highly conserved. Molecular dynamics simulations of three Cas12a proteins and their cognate guides revealed substantial flexibility for unbound apo-Cas12a. In contrast, crRNA 5' pseudoknots were predicted to be stable and independently folded. Limited trypsin hydrolysis, differential scanning fluorimetry, thermal denaturation, and CD analyses supported conformational changes of Cas12a during RNP assembly and an independently folded crRNA 5' pseudoknot. This RNP assembly mechanism may be rationalized by evolutionary pressure to conserve CRISPR loci repeat sequence, and therefore guide RNA structure, to maintain function across all phases of the CRISPR defense mechanism.
Collapse
Affiliation(s)
- Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Christopher L Barkau
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois, USA
| | - Ramadevi Chilamkurthy
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois, USA
| | - Halle M Barber
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Adrian A Pater
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois, USA
| | - Sean D Moran
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| | - Keith T Gagnon
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois, USA; Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois, USA.
| |
Collapse
|
46
|
Egli M, Schlegel MK, Manoharan M. Acyclic ( S)-glycol nucleic acid ( S-GNA) modification of siRNAs improves the safety of RNAi therapeutics while maintaining potency. RNA (NEW YORK, N.Y.) 2023; 29:402-414. [PMID: 36725319 PMCID: PMC10019370 DOI: 10.1261/rna.079526.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Glycol nucleic acid (GNA) is an acyclic nucleic acid analog connected via phosphodiester bonds. Crystal structures of RNA-GNA chimeric duplexes indicated that nucleotides of the right-handed (S)-GNA were better accommodated in the right-handed RNA duplex than were the left-handed (R)-isomers. GNA nucleotides adopt a rotated nucleobase orientation within all duplex contexts, pairing with complementary RNA in a reverse Watson-Crick mode, which explains the inabilities of GNA C and G to form strong base pairs with complementary nucleotides. Transposition of the hydrogen bond donor and acceptor pairs using novel (S)-GNA isocytidine and isoguanosine nucleotides resulted in stable base-pairing with the complementary G and C ribonucleotides, respectively. GNA nucleotide or dinucleotide incorporation into an oligonucleotide increased resistance against 3'-exonuclease-mediated degradation. Consistent with the structural observations, small interfering RNAs (siRNAs) modified with (S)-GNA had greater in vitro potencies than identical sequences containing (R)-GNA. (S)-GNA is well tolerated in the seed regions of antisense and sense strands of a GalNAc-conjugated siRNA in vitro. The siRNAs containing a GNA base pair in the seed region had in vivo potency when subcutaneously injected into mice. Importantly, seed pairing destabilization resulting from a single GNA nucleotide at position 7 of the antisense strand mitigated RNAi-mediated off-target effects in a rodent model. Two GNA-modified siRNAs have shown an improved safety profile in humans compared with their non-GNA-modified counterparts, and several additional siRNAs containing the GNA modification are currently in clinical development.
Collapse
Affiliation(s)
- Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Mark K Schlegel
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
47
|
Dominic AJ, Sayer T, Cao S, Markland TE, Huang X, Montoya-Castillo A. Building insightful, memory-enriched models to capture long-time biochemical processes from short-time simulations. Proc Natl Acad Sci U S A 2023; 120:e2221048120. [PMID: 36920924 PMCID: PMC10041170 DOI: 10.1073/pnas.2221048120] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
The ability to predict and understand complex molecular motions occurring over diverse timescales ranging from picoseconds to seconds and even hours in biological systems remains one of the largest challenges to chemical theory. Markov state models (MSMs), which provide a memoryless description of the transitions between different states of a biochemical system, have provided numerous important physically transparent insights into biological function. However, constructing these models often necessitates performing extremely long molecular simulations to converge the rates. Here, we show that by incorporating memory via the time-convolutionless generalized master equation (TCL-GME) one can build a theoretically transparent and physically intuitive memory-enriched model of biochemical processes with up to a three order of magnitude reduction in the simulation data required while also providing a higher temporal resolution. We derive the conditions under which the TCL-GME provides a more efficient means to capture slow dynamics than MSMs and rigorously prove when the two provide equally valid and efficient descriptions of the slow configurational dynamics. We further introduce a simple averaging procedure that enables our TCL-GME approach to quickly converge and accurately predict long-time dynamics even when parameterized with noisy reference data arising from short trajectories. We illustrate the advantages of the TCL-GME using alanine dipeptide, the human argonaute complex, and FiP35 WW domain.
Collapse
Affiliation(s)
| | - Thomas Sayer
- Department of Chemistry, University of Colorado, Boulder, CO80309
| | - Siqin Cao
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | | | - Xuhui Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | | |
Collapse
|
48
|
Xu Y, Zhang Y, Li Z, Soloria AK, Potter S, Chen X. The N-terminal extension of Arabidopsis ARGONAUTE 1 is essential for microRNA activities. PLoS Genet 2023; 19:e1010450. [PMID: 36888599 PMCID: PMC9994745 DOI: 10.1371/journal.pgen.1010450] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
microRNAs (miRNAs) regulate target gene expression through their ARGONAUTE (AGO) effector protein, mainly AGO1 in Arabidopsis thaliana. In addition to the highly conserved N, PAZ, MID and PIWI domains with known roles in RNA silencing, AGO1 contains a long, unstructured N-terminal extension (NTE) of little-known function. Here, we show that the NTE is indispensable for the functions of Arabidopsis AGO1, as a lack of the NTE leads to seedling lethality. Within the NTE, the region containing amino acids (a.a.) 91 to 189 is essential for rescuing an ago1 null mutant. Through global analyses of small RNAs, AGO1-associated small RNAs, and miRNA target gene expression, we show that the region containing a.a. 91-189 is required for the loading of miRNAs into AGO1. Moreover, we show that reduced nuclear partitioning of AGO1 did not affect its profiles of miRNA and ta-siRNA association. Furthermore, we show that the 1-to-90a.a. and 91-to-189a.a. regions of the NTE redundantly promote the activities of AGO1 in the biogenesis of trans-acting siRNAs. Together, we report novel roles of the NTE of Arabidopsis AGO1.
Collapse
Affiliation(s)
- Ye Xu
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
- Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
| | - Yong Zhang
- Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
| | - Zhenfang Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Alyssa K. Soloria
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
| | - Savannah Potter
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
| | - Xuemei Chen
- Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
| |
Collapse
|
49
|
Banijamali E, Baronti L, Becker W, Sajkowska-Kozielewicz JJ, Huang T, Palka C, Kosek D, Sweetapple L, Müller J, Stone MD, Andersson ER, Petzold K. RNA:RNA interaction in ternary complexes resolved by chemical probing. RNA (NEW YORK, N.Y.) 2023; 29:317-329. [PMID: 36617673 PMCID: PMC9945442 DOI: 10.1261/rna.079190.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
RNA regulation can be performed by a second targeting RNA molecule, such as in the microRNA regulation mechanism. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) probes the structure of RNA molecules and can resolve RNA:protein interactions, but RNA:RNA interactions have not yet been addressed with this technique. Here, we apply SHAPE to investigate RNA-mediated binding processes in RNA:RNA and RNA:RNA-RBP complexes. We use RNA:RNA binding by SHAPE (RABS) to investigate microRNA-34a (miR-34a) binding its mRNA target, the silent information regulator 1 (mSIRT1), both with and without the Argonaute protein, constituting the RNA-induced silencing complex (RISC). We show that the seed of the mRNA target must be bound to the microRNA loaded into RISC to enable further binding of the compensatory region by RISC, while the naked miR-34a is able to bind the compensatory region without seed interaction. The method presented here provides complementary structural evidence for the commonly performed luciferase-assay-based evaluation of microRNA binding-site efficiency and specificity on the mRNA target site and could therefore be used in conjunction with it. The method can be applied to any nucleic acid-mediated RNA- or RBP-binding process, such as splicing, antisense RNA binding, or regulation by RISC, providing important insight into the targeted RNA structure.
Collapse
Affiliation(s)
- Elnaz Banijamali
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Lorenzo Baronti
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Walter Becker
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | | | - Ting Huang
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Christina Palka
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | - David Kosek
- Department of Cell and Molecular Biology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Lara Sweetapple
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Juliane Müller
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
50
|
Sprenkle NT, Serezani CH, Pua HH. MicroRNAs in Macrophages: Regulators of Activation and Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:359-368. [PMID: 36724439 PMCID: PMC10316964 DOI: 10.4049/jimmunol.2200467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/13/2022] [Indexed: 02/03/2023]
Abstract
Macrophages are sentinels of the innate immune system that maintain tissue homeostasis and contribute to inflammatory responses. Their broad scope of action depends on both functional heterogeneity and plasticity. Small noncoding RNAs called microRNAs (miRNAs) contribute to macrophage function as post-transcriptional inhibitors of target gene networks. Genetic and pharmacologic studies have uncovered genes regulated by miRNAs that control macrophage cellular programming and macrophage-driven pathology. miRNAs control proinflammatory M1-like activation, immunoregulatory M2-like macrophage activation, and emerging macrophage functions in metabolic disease and innate immune memory. Understanding the gene networks regulated by individual miRNAs enhances our understanding of the spectrum of macrophage function at steady state and during responses to injury or pathogen invasion, with the potential to develop miRNA-based therapies. This review aims to consolidate past and current studies investigating the complexity of the miRNA interactome to provide the reader with a mechanistic view of how miRNAs shape macrophage behavior.
Collapse
Affiliation(s)
| | - C Henrique Serezani
- Department of Pathology, Microbiology, and Immunology
- Department of Medicine, Division of Infectious Diseases
- Vanderbilt Center for Immunobiology, Nashville, Tennessee 37232, USA
- Vandebilt Institute of Infection, Immunology and Inflammation; Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Heather H Pua
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, Nashville, Tennessee 37232, USA
- Vandebilt Institute of Infection, Immunology and Inflammation; Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|