1
|
Paulchamy C, Vakkattuthundi Premji S, Shanmugam S. Methanogens and what they tell us about how life might survive on Mars. Crit Rev Biochem Mol Biol 2024:1-26. [PMID: 39488737 DOI: 10.1080/10409238.2024.2418639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Space exploration and research are uncovering the potential for terrestrial life to survive in outer space, as well as the environmental factors that affect life during interplanetary transfer. The presence of methane in the Martian atmosphere suggests the possibility of methanogens, either extant or extinct, on Mars. Understanding how methanogens survive and adapt under space-exposed conditions is crucial for understanding the implications of extraterrestrial life. In this article, we discuss methanogens as model organisms for obtaining energy transducers and producing methane in a simulated Martian environment. We also explore the chemical evolution of cellular composition and growth maintenance to support survival in extraterrestrial environments. Neutral selective pressure is imposed on the chemical composition of cellular components to increase cell survival and reduce growth under physiological conditions. Energy limitation is an evolutionary driver of macromolecular polymerization, growth maintenance, and survival fitness of methanogens. Methanogens grown in a Martian environment may exhibit global alterations in their metabolic function and gene expression at the system scale. A space systems biology approach would further elucidate molecular survival mechanisms and adaptation to a drastic outer space environment. Therefore, identifying a genetically stable methanogenic community is essential for biomethane production from waste recycling to achieve sustainable space-life support functions.
Collapse
Affiliation(s)
- Chellapandi Paulchamy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Sreekutty Vakkattuthundi Premji
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Saranya Shanmugam
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
2
|
Scherf M, Lammer H, Spross L. Eta-Earth Revisited II: Deriving a Maximum Number of Earth-Like Habitats in the Galactic Disk. ASTROBIOLOGY 2024; 24:e916-e1061. [PMID: 39481023 DOI: 10.1089/ast.2023.0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In Lammer et al. (2024), we defined Earth-like habitats (EHs) as rocky exoplanets within the habitable zone of complex life (HZCL) on which Earth-like N2-O2-dominated atmospheres with minor amounts of CO2 can exist, and derived a formulation for estimating the maximum number of EHs in the galaxy given realistic probabilistic requirements that have to be met for an EH to evolve. In this study, we apply this formulation to the galactic disk by considering only requirements that are already scientifically quantifiable. By implementing literature models for star formation rate, initial mass function, and the mass distribution of the Milky Way, we calculate the spatial distribution of disk stars as functions of stellar mass and birth age. For the stellar part of our formulation, we apply existing models for the galactic habitable zone and evaluate the thermal stability of nitrogen-dominated atmospheres with different CO2 mixing ratios inside the HZCL by implementing the newest stellar evolution and upper atmosphere models. For the planetary part, we include the frequency of rocky exoplanets, the availability of surface water and subaerial land, and the potential requirement of hosting a large moon by evaluating their importance and implementing these criteria from minima to maxima values as found in the scientific literature. We also discuss further factors that are not yet scientifically quantifiable but may be requirements for EHs to evolve. Based on such an approach, we find that EHs are relatively rare by obtaining plausible maximum numbers of 2.5 - 2.4 + 71.6 × 10 5 and 0.6 - 0.59 + 27.1 × 10 5 planets that can potentially host N2-O2-dominated atmospheres with maximum CO2 mixing ratios of 10% and 1%, respectively, implying that, on average, a minimum of ∼ 10 3 - 10 6 rocky exoplanets in the HZCL are needed for 1 EH to evolve. The actual number of EHs, however, may be substantially lower than our maximum ranges since several requirements with unknown occurrence rates are not included in our model (e.g., the origin of life, working carbon-silicate and nitrogen cycles); this also implies extraterrestrial intelligence (ETI) to be significantly rarer still. Our results illustrate that not every star can host EHs nor can each rocky exoplanet within the HZCL evolve such that it might be able to host complex animal-like life or even ETIs. The Copernican Principle of Mediocrity therefore cannot be applied to infer that such life will be common in the galaxy.
Collapse
Affiliation(s)
- Manuel Scherf
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
| | - Laurenz Spross
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| |
Collapse
|
3
|
Kalapos MP, de Bari L. The evolutionary arch of bioenergetics from prebiotic mechanisms to the emergence of a cellular respiratory chain. Biosystems 2024; 244:105288. [PMID: 39128646 DOI: 10.1016/j.biosystems.2024.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
This article proposes an evolutionary trajectory for the development of biological energy producing systems. Six main stages of energy producing system evolution are described, from early evolutionary pyrite-pulled mechanism through the Last Universal Common Ancestor (LUCA) to contemporary systems. We define the Last Pure Chemical Entity (LPCE) as the last completely non-enzymatic entity. LPCE could have had some life-like properties, but lacked genetic information carriers, thus showed greater instability and environmental dependence than LUCA. A double bubble model is proposed for compartmentalization and cellularization as a prerequisite to both highly efficient protein synthesis and transmembrane ion-gradient. The article finds that although LUCA predominantly functioned anaerobically, it was a non-exclusive anaerobe, and sulfur dominated metabolism preceded phosphate dominated one.
Collapse
Affiliation(s)
| | - Lidia de Bari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| |
Collapse
|
4
|
Lee HE, Okumura T, Ooka H, Adachi K, Hikima T, Hirata K, Kawano Y, Matsuura H, Yamamoto M, Yamamoto M, Yamaguchi A, Lee JE, Takahashi H, Nam KT, Ohara Y, Hashizume D, McGlynn SE, Nakamura R. Osmotic energy conversion in serpentinite-hosted deep-sea hydrothermal vents. Nat Commun 2024; 15:8193. [PMID: 39322632 PMCID: PMC11424637 DOI: 10.1038/s41467-024-52332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
Cells harvest energy from ionic gradients by selective ion transport across membranes, and the same principle is recently being used for osmotic power generation from salinity gradients at ocean-river interfaces. Common to these ionic gradient conversions is that they require intricate nanoscale structures. Here, we show that natural submarine serpentinite-hosted hydrothermal vent (HV) precipitates are capable of converting ionic gradients into electrochemical energy by selective transport of Na+, K+, H+, and Cl-. Layered hydroxide nanocrystals are aligned radially outwards from the HV fluid channels, constituting confined nanopores that span millimeters in the HV wall. The nanopores change the surface charge depending on adsorbed ions, allowing the mineral to function as a cation- and anion-selective ion transport membrane. Our findings indicate that chemical disequilibria originating from flow and concentration gradients in geologic environments generate confined nanospaces which enable the spontaneous establishment of osmotic energy conversion.
Collapse
Affiliation(s)
- Hye-Eun Lee
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.
| | | | - Hideshi Ooka
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Kiyohiro Adachi
- RIKEN Center for Emergent Matter Science, Wako, Saitama, Japan
| | | | | | | | | | | | - Masahiro Yamamoto
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Akira Yamaguchi
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Ji-Eun Lee
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroya Takahashi
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea
| | - Yasuhiko Ohara
- Research Institute for Marine Geodynamics, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
- Hydrographic and Oceanographic Department of Japan, Tokyo, Japan
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | | | - Shawn Erin McGlynn
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Ryuhei Nakamura
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.
| |
Collapse
|
5
|
Zhu P, Wang C, Lang J, He D, Jin F. Prebiotic Synthesis of Microdroplets from Formate over a Bimetallic Cobalt-Nickel Nanomotif. J Am Chem Soc 2024; 146:25005-25015. [PMID: 39219062 DOI: 10.1021/jacs.4c06989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The hypothesis underlying the abiogenic origin of life suggests that the nonenzymatic synthesis of long-chain fatty acids led to the construction of vesicles for compartmentalization in an early stage during the transition from geochemistry to biochemistry. However, evidence for this theory remains elusive as C5+ carboxylic acids cannot be synthesized using current laboratory simulations. Here, we report the synthesis of long-chain carboxylic acids (C3-C7) with a 42 mmol/gCo+Ni yield and 87.7% selectivity from formate (an intermediate of the acetyl-CoA pathway) over a cobalt-nickel alloy under alkaline hydrothermal conditions and the subsequent formation of microdroplets from organics. Density functional theory (DFT) calculations confirmed that the synergistic effect of the bimetal catalyst is key for catalyzing C-C coupling. Investigations by infrared spectroscopy, electron paramagnetic resonance, and isotope-labeled experiments revealed that HCO* serves as a reaction intermediate and is involved in the subsequent elementary steps for synthesizing long-chain carboxylic acids from formate. Taken together, these findings may help explain how the first protocells emerged geochemically and provide support for the hypothesis of the abiogenic origin of life. The hydrothermal system developed may also be applicable for the sustainable synthesis of long-chain carboxylates from one-carbon substrates using nonnoble metal catalysts.
Collapse
Affiliation(s)
- Peidong Zhu
- School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunling Wang
- School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junyu Lang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Daoping He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Fangming Jin
- School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
6
|
Ravi J, Anantharaman V, Chen SZ, Brenner EP, Datta P, Aravind L, Gennaro ML. The phage shock protein (PSP) envelope stress response: discovery of novel partners and evolutionary history. mSystems 2024; 9:e0084723. [PMID: 38809013 PMCID: PMC11237479 DOI: 10.1128/msystems.00847-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/20/2024] [Indexed: 05/30/2024] Open
Abstract
Bacterial phage shock protein (PSP) systems stabilize the bacterial cell membrane and protect against envelope stress. These systems have been associated with virulence, but despite their critical roles, PSP components are not well characterized outside proteobacteria. Using comparative genomics and protein sequence-structure-function analyses, we systematically identified and analyzed PSP homologs, phyletic patterns, domain architectures, and gene neighborhoods. This approach underscored the evolutionary significance of the system, revealing that its core protein PspA (Snf7 in ESCRT outside bacteria) was present in the last universal common ancestor and that this ancestral functionality has since diversified into multiple novel, distinct PSP systems across life. Several novel partners of the PSP system were identified: (i) the Toastrack domain, likely facilitating assembly of sub-membrane stress-sensing and signaling complexes, (ii) the newly defined HTH-associated α-helical signaling domain-PadR-like transcriptional regulator pair system, and (iii) multiple independent associations with ATPase, CesT/Tir-like chaperone, and Band-7 domains in proteins thought to mediate sub-membrane dynamics. Our work also uncovered links between the PSP components and other domains, such as novel variants of SHOCT-like domains, suggesting roles in assembling membrane-associated complexes of proteins with disparate biochemical functions. Results are available at our interactive web app, https://jravilab.org/psp.IMPORTANCEPhage shock proteins (PSP) are virulence-associated, cell membrane stress-protective systems. They have mostly been characterized in Proteobacteria and Firmicutes. We now show that a minimal PSP system was present in the last universal common ancestor that evolved and diversified into newly identified functional contexts. Recognizing the conservation and evolution of PSP systems across bacterial phyla contributes to our understanding of stress response mechanisms in prokaryotes. Moreover, the newly discovered PSP modularity will likely prompt new studies of lineage-specific cell envelope structures, lifestyles, and adaptation mechanisms. Finally, our results validate the use of domain architecture and genetic context for discovery in comparative genomics.
Collapse
Affiliation(s)
- Janani Ravi
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA
| | - Samuel Zorn Chen
- Computer Science Engineering Undergraduate Program, Michigan State University, East Lansing, Michigan, USA
| | - Evan Pierce Brenner
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Pratik Datta
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Laura Gennaro
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
7
|
Piast RW. The bubble theory: exploring the transition from first replicators to cells and viruses in a landscape-based scenario. Theory Biosci 2024; 143:153-160. [PMID: 38722466 PMCID: PMC11127830 DOI: 10.1007/s12064-024-00417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/07/2024] [Indexed: 05/27/2024]
Abstract
This study proposes a landscape-based scenario for the origin of viruses and cells, focusing on the adaptability of preexisting replicons from the RNP (ribonucleoprotein) world. The scenario postulates that life emerged in a subterranean "warm little pond" where organic matter accumulated, resulting in a prebiotic soup rich in nucleotides, amino acids, and lipids, which served as nutrients for the first self-replicating entities. Over time, the RNA world, followed by the RNP world, came into existence. Replicators/replicons, along with the nutritious soup from the pond, were washed out into the river and diluted. Lipid bubbles, enclosing organic matter, provided the last suitable environment for replicons to replicate. Two survival strategies emerged under these conditions: cell-like structures that obtained nutrients by merging with new bubbles, and virus-like entities that developed various techniques to transmit themselves to fresh bubbles. The presented hypothesis provides the possibility for the common origin of cells and viruses on rocky worlds hosting liquid water, like Earth.
Collapse
Affiliation(s)
- Radoslaw W Piast
- Chemistry Department, Warsaw University, Pasteura 1, Warsaw, Poland.
| |
Collapse
|
8
|
Nitschke W, Farr O, Gaudu N, Truong C, Guyot F, Russell MJ, Duval S. The Winding Road from Origin to Emergence (of Life). Life (Basel) 2024; 14:607. [PMID: 38792628 PMCID: PMC11123232 DOI: 10.3390/life14050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Humanity's strive to understand why and how life appeared on planet Earth dates back to prehistoric times. At the beginning of the 19th century, empirical biology started to tackle this question yielding both Charles Darwin's Theory of Evolution and the paradigm that the crucial trigger putting life on its tracks was the appearance of organic molecules. In parallel to these developments in the biological sciences, physics and physical chemistry saw the fundamental laws of thermodynamics being unraveled. Towards the end of the 19th century and during the first half of the 20th century, the tensions between thermodynamics and the "organic-molecules-paradigm" became increasingly difficult to ignore, culminating in Erwin Schrödinger's 1944 formulation of a thermodynamics-compliant vision of life and, consequently, the prerequisites for its appearance. We will first review the major milestones over the last 200 years in the biological and the physical sciences, relevant to making sense of life and its origins and then discuss the more recent reappraisal of the relative importance of metal ions vs. organic molecules in performing the essential processes of a living cell. Based on this reassessment and the modern understanding of biological free energy conversion (aka bioenergetics), we consider that scenarios wherein life emerges from an abiotic chemiosmotic process are both thermodynamics-compliant and the most parsimonious proposed so far.
Collapse
Affiliation(s)
- Wolfgang Nitschke
- BIP (UMR 7281), CNRS, Aix-Marseille-University, 13009 Marseille, France; (O.F.); (N.G.); (C.T.); (S.D.)
| | - Orion Farr
- BIP (UMR 7281), CNRS, Aix-Marseille-University, 13009 Marseille, France; (O.F.); (N.G.); (C.T.); (S.D.)
- CINaM, CNRS, Aix-Marseille-University, 13009 Marseille, France
| | - Nil Gaudu
- BIP (UMR 7281), CNRS, Aix-Marseille-University, 13009 Marseille, France; (O.F.); (N.G.); (C.T.); (S.D.)
| | - Chloé Truong
- BIP (UMR 7281), CNRS, Aix-Marseille-University, 13009 Marseille, France; (O.F.); (N.G.); (C.T.); (S.D.)
| | - François Guyot
- IMPMC (UMR 7590), CNRS, Sorbonne University, 75005 Paris, France;
| | - Michael J. Russell
- Dipartimento di Chimica, Università degli Studi di Torino, 10124 Torino, Italy;
| | - Simon Duval
- BIP (UMR 7281), CNRS, Aix-Marseille-University, 13009 Marseille, France; (O.F.); (N.G.); (C.T.); (S.D.)
| |
Collapse
|
9
|
Reddy KD, Rasool B, Akher FB, Kutlešić N, Pant S, Boudker O. Evolutionary analysis reveals the origin of sodium coupling in glutamate transporters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.03.569786. [PMID: 38106174 PMCID: PMC10723334 DOI: 10.1101/2023.12.03.569786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Secondary active membrane transporters harness the energy of ion gradients to concentrate their substrates. Homologous transporters evolved to couple transport to different ions in response to changing environments and needs. The bases of such diversification, and thus principles of ion coupling, are unexplored. Employing phylogenetics and ancestral protein reconstruction, we investigated sodium-coupled transport in prokaryotic glutamate transporters, a mechanism ubiquitous across life domains and critical to neurotransmitter recycling in humans. We found that the evolutionary transition from sodium-dependent to independent substrate binding to the transporter preceded changes in the coupling mechanism. Structural and functional experiments suggest that the transition entailed allosteric mutations, making sodium binding dispensable without affecting ion-binding sites. Allosteric tuning of transporters' energy landscapes might be a widespread route of their functional diversification.
Collapse
Affiliation(s)
- Krishna D. Reddy
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Burha Rasool
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Farideh Badichi Akher
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Nemanja Kutlešić
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Swati Pant
- Dept. of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Olga Boudker
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
- Howard Hughes Medical Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| |
Collapse
|
10
|
Melrose J. Keratan sulfate, an electrosensory neurosentient bioresponsive cell instructive glycosaminoglycan. Glycobiology 2024; 34:cwae014. [PMID: 38376199 PMCID: PMC10987296 DOI: 10.1093/glycob/cwae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
The roles of keratan sulfate (KS) as a proton detection glycosaminoglycan in neurosensory processes in the central and peripheral nervous systems is reviewed. The functional properties of the KS-proteoglycans aggrecan, phosphacan, podocalyxcin as components of perineuronal nets in neurosensory processes in neuronal plasticity, cognitive learning and memory are also discussed. KS-glycoconjugate neurosensory gels used in electrolocation in elasmobranch fish species and KS substituted mucin like conjugates in some tissue contexts in mammals need to be considered in sensory signalling. Parallels are drawn between KS's roles in elasmobranch fish neurosensory processes and its roles in mammalian electro mechanical transduction of acoustic liquid displacement signals in the cochlea by the tectorial membrane and stereocilia of sensory inner and outer hair cells into neural signals for sound interpretation. The sophisticated structural and functional proteins which maintain the unique high precision physical properties of stereocilia in the detection, transmittance and interpretation of acoustic signals in the hearing process are important. The maintenance of the material properties of stereocilia are essential in sound transmission processes. Specific, emerging roles for low sulfation KS in sensory bioregulation are contrasted with the properties of high charge density KS isoforms. Some speculations are made on how the molecular and electrical properties of KS may be of potential application in futuristic nanoelectronic, memristor technology in advanced ultrafast computing devices with low energy requirements in nanomachines, nanobots or molecular switches which could be potentially useful in artificial synapse development. Application of KS in such innovative areas in bioregulation are eagerly awaited.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
11
|
Brabender M, Henriques Pereira DP, Mrnjavac N, Schlikker ML, Kimura ZI, Sucharitakul J, Kleinermanns K, Tüysüz H, Buckel W, Preiner M, Martin WF. Ferredoxin reduction by hydrogen with iron functions as an evolutionary precursor of flavin-based electron bifurcation. Proc Natl Acad Sci U S A 2024; 121:e2318969121. [PMID: 38513105 PMCID: PMC7615787 DOI: 10.1073/pnas.2318969121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Autotrophic theories for the origin of metabolism posit that the first cells satisfied their carbon needs from CO2 and were chemolithoautotrophs that obtained their energy and electrons from H2. The acetyl-CoA pathway of CO2 fixation is central to that view because of its antiquity: Among known CO2 fixing pathways it is the only one that is i) exergonic, ii) occurs in both bacteria and archaea, and iii) can be functionally replaced in full by single transition metal catalysts in vitro. In order to operate in cells at a pH close to 7, however, the acetyl-CoA pathway requires complex multi-enzyme systems capable of flavin-based electron bifurcation that reduce low potential ferredoxin-the physiological donor of electrons in the acetyl-CoA pathway-with electrons from H2. How can the acetyl-CoA pathway be primordial if it requires flavin-based electron bifurcation? Here, we show that native iron (Fe0), but not Ni0, Co0, Mo0, NiFe, Ni2Fe, Ni3Fe, or Fe3O4, promotes the H2-dependent reduction of aqueous Clostridium pasteurianum ferredoxin at pH 8.5 or higher within a few hours at 40 °C, providing the physiological function of flavin-based electron bifurcation, but without the help of enzymes or organic redox cofactors. H2-dependent ferredoxin reduction by iron ties primordial ferredoxin reduction and early metabolic evolution to a chemical process in the Earth's crust promoted by solid-state iron, a metal that is still deposited in serpentinizing hydrothermal vents today.
Collapse
Affiliation(s)
- Max Brabender
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Delfina P. Henriques Pereira
- Microcosm Earth Center, Research Group for Geochemical Protozymes, Max Planck Institute for Terrestrial Microbiology and Philipps University, Marburg35032, Germany
| | - Natalia Mrnjavac
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Manon Laura Schlikker
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Zen-Ichiro Kimura
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
- Department of Civil and Environmental Engineering, National Institute of Technology, Kure College, Kure, Hiroshima737-8506, Japan
| | - Jeerus Sucharitakul
- Department of Biochemistry, Chulalongkorn University, Patumwan, Bangkok10330, Thailand
| | - Karl Kleinermanns
- Institute for Physical Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Harun Tüysüz
- Max Planck Institute for Coal Research, Department of Heterogeneous Catalysis, Mülheim an der Ruhr45470, Germany
| | - Wolfgang Buckel
- Max Planck Institute for Terrestrial Microbiology, Marburg35043, Germany
- Laboratory for Microbiology, Department of Biology, Philipps University, Marburg35043, Germany
- Center for Synthetic Microbiology SYNMIKRO, Philipps University, Marburg35043, Germany
| | - Martina Preiner
- Microcosm Earth Center, Research Group for Geochemical Protozymes, Max Planck Institute for Terrestrial Microbiology and Philipps University, Marburg35032, Germany
| | - William F. Martin
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| |
Collapse
|
12
|
Drew D, Boudker O. Ion and lipid orchestration of secondary active transport. Nature 2024; 626:963-974. [PMID: 38418916 DOI: 10.1038/s41586-024-07062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
Transporting small molecules across cell membranes is an essential process in cell physiology. Many structurally diverse, secondary active transporters harness transmembrane electrochemical gradients of ions to power the uptake or efflux of nutrients, signalling molecules, drugs and other ions across cell membranes. Transporters reside in lipid bilayers on the interface between two aqueous compartments, where they are energized and regulated by symported, antiported and allosteric ions on both sides of the membrane and the membrane bilayer itself. Here we outline the mechanisms by which transporters couple ion and solute fluxes and discuss how structural and mechanistic variations enable them to meet specific physiological needs and adapt to environmental conditions. We then consider how general bilayer properties and specific lipid binding modulate transporter activity. Together, ion gradients and lipid properties ensure the effective transport, regulation and distribution of small molecules across cell membranes.
Collapse
Affiliation(s)
- David Drew
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Bai X, Huang D, Chen Y, Shao M, Wang N, Wang Q, Xu Q. Enhanced methane oxidation efficiency by digestate biochar in landfill cover soil: Microbial shifts and carbon metabolites insights. CHEMOSPHERE 2023; 343:140279. [PMID: 37758092 DOI: 10.1016/j.chemosphere.2023.140279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/24/2023] [Indexed: 09/30/2023]
Abstract
The ability of biochar to enhance the oxidation of methane (CH4) in landfill cover soil by promoting the growth and activity of methane-oxidizing bacteria (MOB) has attracted significant attention. However, the optimal characteristics of digestate-derived biochar (DBC) for promoting the MOB community and CH4 removal performance remain unclear. This study examined how the CH4 oxidation capacity and respiratory metabolism of MOB life process are affected by the application of DBC compared with the most commonly used woody-derived biochar (WBC). The addition of both WBC and DBC enhanced CH4 oxidation, with DBC exhibiting a nearly twofold increase in cumulative CH4 oxidation mass (7.14 mg CH4 g-1) compared to WBC. The high ion-exchange capacity of DBC was found to be more favorable for the growth of Type I MOB, which have more efficient metabolic pathways for CH4 oxidation. Type I MOB which are abundant in DBC may prefer monovalent positive ions, while the charge-rich nature of DBC may also have hindered extracellular protein aggregation. The superiority of DBC in terms of CH4 oxidation thus highlights the underlying mechanisms of biochar-MOB interactions, offering potential biochar options for landfill cover soil.
Collapse
Affiliation(s)
- Xinyue Bai
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China.
| | - Dandan Huang
- School of Ecology, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Yuke Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Mingshuai Shao
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Ning Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qian Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China.
| |
Collapse
|
14
|
Cvjetan N, Schuler LD, Ishikawa T, Walde P. Optimization and Enhancement of the Peroxidase-like Activity of Hemin in Aqueous Solutions of Sodium Dodecylsulfate. ACS OMEGA 2023; 8:42878-42899. [PMID: 38024761 PMCID: PMC10652838 DOI: 10.1021/acsomega.3c05915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Iron porphyrins play several important roles in present-day living systems and probably already existed in very early life forms. Hemin (= ferric protoporphyrin IX = ferric heme b), for example, is the prosthetic group at the active site of heme peroxidases, catalyzing the oxidation of a number of different types of reducing substrates after hemin is first oxidized by hydrogen peroxide as the oxidizing substrate of the enzyme. The active site of heme peroxidases consists of a hydrophobic pocket in which hemin is embedded noncovalently and kept in place through coordination of the iron atom to a proximal histidine side chain of the protein. It is this partially hydrophobic local environment of the enzyme which determines the efficiency with which the sequential reactions of the oxidizing and reducing substrates proceed at the active site. Free hemin, which has been separated from the protein moiety of heme peroxidases, is known to aggregate in an aqueous solution and exhibits low catalytic activity. Based on previous reports on the use of surfactant micelles to solubilize free hemin in a nonaggregated state, the peroxidase-like activity of hemin in the presence of sodium dodecyl sulfate (SDS) at concentrations below and above the critical concentration for SDS micelle formation (critical micellization concentration (cmc)) was systematically investigated. In most experiments, 3,3',5,5'-tetramethylbenzidine (TMB) was applied as a reducing substrate at pH = 7.2. The presence of SDS clearly had a positive effect on the reaction in terms of initial reaction rate and reaction yield, even at concentrations below the cmc. The highest activity correlated with the cmc value, as demonstrated for reactions at three different HEPES concentrations. The 4-(2-hydroxyethyl)-1-piperazineethanesulfonate salt (HEPES) served as a pH buffer substance and also had an accelerating effect on the reaction. At the cmc, the addition of l-histidine (l-His) resulted in a further concentration-dependent increase in the peroxidase-like activity of hemin until a maximal effect was reached at an optimal l-His concentration, probably corresponding to an ideal mono-l-His ligation to hemin. Some of the results obtained can be understood on the basis of molecular dynamics simulations, which indicated the existence of intermolecular interactions between hemin and HEPES and between hemin and SDS. Preliminary experiments with SDS/dodecanol vesicles at pH = 7.2 showed that in the presence of the vesicles, hemin exhibited similar peroxidase-like activity as in the case of SDS micelles. This supports the hypothesis that micelle- or vesicle-associated ferric or ferrous iron porphyrins may have played a role as primitive catalysts in membranous prebiotic compartment systems before cellular life emerged.
Collapse
Affiliation(s)
- Nemanja Cvjetan
- Department
of Materials, ETH-Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
| | | | - Takashi Ishikawa
- Department
of Biology and Chemistry, Paul Scherrer Institute and Department of
Biology, ETH-Zürich, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Peter Walde
- Department
of Materials, ETH-Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
15
|
Nunn AVW, Guy GW, Bell JD. Informing the Cannabis Conjecture: From Life's Beginnings to Mitochondria, Membranes and the Electrome-A Review. Int J Mol Sci 2023; 24:13070. [PMID: 37685877 PMCID: PMC10488084 DOI: 10.3390/ijms241713070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Before the late 1980s, ideas around how the lipophilic phytocannabinoids might be working involved membranes and bioenergetics as these disciplines were "in vogue". However, as interest in genetics and pharmacology grew, interest in mitochondria (and membranes) waned. The discovery of the cognate receptor for tetrahydrocannabinol (THC) led to the classification of the endocannabinoid system (ECS) and the conjecture that phytocannabinoids might be "working" through this system. However, the how and the "why" they might be beneficial, especially for compounds like CBD, remains unclear. Given the centrality of membranes and mitochondria in complex organisms, and their evolutionary heritage from the beginnings of life, revisiting phytocannabinoid action in this light could be enlightening. For example, life can be described as a self-organising and replicating far from equilibrium dissipating system, which is defined by the movement of charge across a membrane. Hence the building evidence, at least in animals, that THC and CBD modulate mitochondrial function could be highly informative. In this paper, we offer a unique perspective to the question, why and how do compounds like CBD potentially work as medicines in so many different conditions? The answer, we suggest, is that they can modulate membrane fluidity in a number of ways and thus dissipation and engender homeostasis, particularly under stress. To understand this, we need to embrace origins of life theories, the role of mitochondria in plants and explanations of disease and ageing from an adaptive thermodynamic perspective, as well as quantum mechanics.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Geoffrey W. Guy
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
| |
Collapse
|
16
|
Pierce S. Life's Mechanism. Life (Basel) 2023; 13:1750. [PMID: 37629607 PMCID: PMC10455287 DOI: 10.3390/life13081750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The multifarious internal workings of organisms are difficult to reconcile with a single feature defining a state of 'being alive'. Indeed, definitions of life rely on emergent properties (growth, capacity to evolve, agency) only symptomatic of intrinsic functioning. Empirical studies demonstrate that biomolecules including ratcheting or rotating enzymes and ribozymes undergo repetitive conformation state changes driven either directly or indirectly by thermodynamic gradients. They exhibit disparate structures, but govern processes relying on directional physical motion (DNA transcription, translation, cytoskeleton transport) and share the principle of repetitive uniplanar conformation changes driven by thermodynamic gradients, producing dependable unidirectional motion: 'heat engines' exploiting thermodynamic disequilibria to perform work. Recognition that disparate biological molecules demonstrate conformation state changes involving directional motion, working in self-regulating networks, allows a mechanistic definition: life is a self-regulating process whereby matter undergoes cyclic, uniplanar conformation state changes that convert thermodynamic disequilibria into directed motion, performing work that locally reduces entropy. 'Living things' are structures including an autonomous network of units exploiting thermodynamic gradients to drive uniplanar conformation state changes that perform work. These principles are independent of any specific chemical environment, and can be applied to other biospheres.
Collapse
Affiliation(s)
- Simon Pierce
- Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
17
|
Nicholls JWF, Chin JP, Williams TA, Lenton TM, O’Flaherty V, McGrath JW. On the potential roles of phosphorus in the early evolution of energy metabolism. Front Microbiol 2023; 14:1239189. [PMID: 37601379 PMCID: PMC10433651 DOI: 10.3389/fmicb.2023.1239189] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Energy metabolism in extant life is centered around phosphate and the energy-dense phosphoanhydride bonds of adenosine triphosphate (ATP), a deeply conserved and ancient bioenergetic system. Yet, ATP synthesis relies on numerous complex enzymes and has an autocatalytic requirement for ATP itself. This implies the existence of evolutionarily simpler bioenergetic pathways and potentially primordial alternatives to ATP. The centrality of phosphate in modern bioenergetics, coupled with the energetic properties of phosphorylated compounds, may suggest that primordial precursors to ATP also utilized phosphate in compounds such as pyrophosphate, acetyl phosphate and polyphosphate. However, bioavailable phosphate may have been notably scarce on the early Earth, raising doubts about the roles that phosphorylated molecules might have played in the early evolution of life. A largely overlooked phosphorus redox cycle on the ancient Earth might have provided phosphorus and energy, with reduced phosphorus compounds potentially playing a key role in the early evolution of energy metabolism. Here, we speculate on the biological phosphorus compounds that may have acted as primordial energy currencies, sources of environmental energy, or sources of phosphorus for the synthesis of phosphorylated energy currencies. This review encompasses discussions on the evolutionary history of modern bioenergetics, and specifically those pathways with primordial relevance, and the geochemistry of bioavailable phosphorus on the ancient Earth. We highlight the importance of phosphorus, not only in the form of phosphate, to early biology and suggest future directions of study that may improve our understanding of the early evolution of bioenergetics.
Collapse
Affiliation(s)
- Jack W. F. Nicholls
- School of Biological Sciences, Queen’s University of Belfast, Belfast, United Kingdom
| | - Jason P. Chin
- School of Biological Sciences, Queen’s University of Belfast, Belfast, United Kingdom
| | - Tom A. Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Timothy M. Lenton
- Global Systems Institute, University of Exeter, Exeter, United Kingdom
| | | | - John W. McGrath
- School of Biological Sciences, Queen’s University of Belfast, Belfast, United Kingdom
| |
Collapse
|
18
|
Sawers RG. Perspective elucidating the physiology of a microbial cell: Neidhardt's Holy Grail. Mol Microbiol 2023; 120:54-59. [PMID: 36855806 DOI: 10.1111/mmi.15051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
A living microbial cell represents a system of high complexity, integration, and extreme order. All processes within that cell interconvert free energy through a multitude of interconnected metabolic reactions that help to maintain the cell in a state of low entropy, which is a characteristic of all living systems. The study of macromolecular interactions outside this cellular environment yields valuable information about the molecular function of macromolecules but represents a system in comparative disorder. Consequently, care must always be taken in interpreting the information gleaned from such studies and must be compared with how the same macromolecules function in vivo, otherwise, discrepancies can arise. The importance of combining reductionist approaches with the study of whole-cell microbial physiology is discussed regarding the long-term aim of understanding how a cell functions in its entirety. This can only be achieved by the continued development of high-resolution structural and multi-omic technologies. It is only by studying the whole cell that we can ever hope to understand how living systems function.
Collapse
Affiliation(s)
- R Gary Sawers
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
19
|
Brown OR, Hullender DA. Biological evolution requires an emergent, self-organizing principle. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023:S0079-6107(23)00058-5. [PMID: 37343790 DOI: 10.1016/j.pbiomolbio.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/16/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
In this perspective review, we assess fundamental flaws in Darwinian evolution, including its modern versions. Fixed mutations 'explain' microevolution but not macroevolution including speciation events and the origination of all the major body plans of the Cambrian explosion. Complex, multifactorial change is required for speciation events and inevitably requires self-organization beyond what is accomplished by known mechanisms. The assembly of ribosomes and ATP synthase are specific examples. We propose their origin is a model for what is unexplained in biological evolution. Probability of evolution is modeled in Section 9 and values are absurdly improbable. Speciation and higher taxonomic changes become exponentially less probable as the number of required, genetically-based events increase. Also, the power required of the proposed selection mechanism (survival of the fittest) is nil for any biological advance requiring multiple changes, because they regularly occur in multiple generations (different genomes) and would not be selectively conserved by the concept survival of the fittest (a concept ultimately centered on the individual). Thus, survival of the fittest cannot 'explain' the origin of the millions of current and extinct species. We also focus on the inadequacies of laboratory chemistry to explain the complex, required biological self-organization seen in cells. We propose that a 'bioelectromagnetic' field/principle emerges in living cells. Synthesis by self-organization of massive molecular complexes involves biochemical responses to this emergent field/principle. There are ramifications for philosophy, science, and religion. Physics and mathematics must be more strongly integrated with biology and integration should receive dedicated funding with special emphasis for medical applications; treatment of cancer and genetic diseases are examples.
Collapse
Affiliation(s)
- Olen R Brown
- Emeritus of Biomedical Sciences, at the University of Missouri, Columbia, MO, USA.
| | - David A Hullender
- Mechanical and Aerospace Engineering at the University of Texas at Arlington, USA
| |
Collapse
|
20
|
Poet M, Vigier N, Bouret Y, Jarretou G, Gautier R, Bendahhou S, Balter V, Montanes M, Thibon F, Counillon L. Biological fractionation of lithium isotopes by cellular Na +/H + exchangers unravels fundamental transport mechanisms. iScience 2023; 26:106887. [PMID: 37324528 PMCID: PMC10265516 DOI: 10.1016/j.isci.2023.106887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/08/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Lithium (Li) has a wide range of uses in science, medicine, and industry, but its isotopy is underexplored, except in nuclear science and in geoscience. 6Li and 7Li isotopic ratio exhibits the second largest variation on earth's surface and constitutes a widely used tool for reconstructing past oceans and climates. As large variations have been measured in mammalian organs, plants or marine species, and as 6Li elicits stronger effects than natural Li (∼95% 7Li), a central issue is the identification and quantification of biological influence of Li isotopes distribution. We show that membrane ion channels and Na+-Li+/H+ exchangers (NHEs) fractionate Li isotopes. This systematic 6Li enrichment is driven by membrane potential for channels, and by intracellular pH for NHEs, where it displays cooperativity, a hallmark of dimeric transport. Evidencing that transport proteins discriminate between isotopes differing by one neutron opens new avenues for transport mechanisms, Li physiology, and paleoenvironments.
Collapse
Affiliation(s)
- Mallorie Poet
- Université Côte d’Azur, CNRS, Laboratoire de Physiomédecine Moléculaire (LP2M), Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Nathalie Vigier
- Oceanography Laboratory of Villefranche (LOV, IMEV), CNRS, Sorbonne University, Villefranche-sur-Mer, France
| | - Yann Bouret
- Université Côte d’Azur, CNRS, Institut de Physique de Nice (INPHYNI), Nice, France
- École Normale Supérieure de Lyon, CNRS, Laboratoire de Géologie de Lyon, Lyon, France
| | - Gisèle Jarretou
- Université Côte d’Azur, CNRS, Laboratoire de Physiomédecine Moléculaire (LP2M), Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Romain Gautier
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Saïd Bendahhou
- Université Côte d’Azur, CNRS, Laboratoire de Physiomédecine Moléculaire (LP2M), Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Vincent Balter
- École Normale Supérieure de Lyon, CNRS, Laboratoire de Géologie de Lyon, Lyon, France
| | - Maryline Montanes
- Oceanography Laboratory of Villefranche (LOV, IMEV), CNRS, Sorbonne University, Villefranche-sur-Mer, France
| | - Fanny Thibon
- Oceanography Laboratory of Villefranche (LOV, IMEV), CNRS, Sorbonne University, Villefranche-sur-Mer, France
| | - Laurent Counillon
- Université Côte d’Azur, CNRS, Laboratoire de Physiomédecine Moléculaire (LP2M), Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
21
|
Freire MÁ. The origins of photosynthetic systems: Clues from the phosphorus and sulphur chemical scenarios. Biosystems 2023; 226:104873. [PMID: 36906114 DOI: 10.1016/j.biosystems.2023.104873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Photosynthesis is the predominant biochemical process of carbon dioxide assimilation in the biosphere. To reduce carbon dioxide into organic compounds, photosynthetic organisms have one or two distinct photochemical reaction centre complexes with which they capture solar energy and generate ATP and reducing power. The core polypeptides of the photosynthetic reaction centres show low homologies but share overlapping structural folds, overall architecture, similar functional properties and highly conserved positions in protein sequences suggesting a common ancestry. However, the other biochemical components of photosynthetic apparatus appear to be a mosaic resulting from different evolutionary trajectories. The current proposal focusses on the nature and biosynthetic pathways of some organic redox cofactors that participate in the photosynthetic systems: quinones, chlorophyll and heme rings and their attached isoprenoid side chains, as well as on the coupled proton motive forces and associated carbon fixation pathways. This perspective highlights clues about the involvement of the phosphorus and sulphur chemistries that would have shaped the different types of photosynthetic systems.
Collapse
Affiliation(s)
- Miguel Ángel Freire
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Universidad Nacional de Córdoba (UNC), Facultad de Ciencias Exactas, Físicas y Naturales. Av. Vélez Sarsfield 299, CC 495, 5000, Córdoba, Argentina.
| |
Collapse
|
22
|
Unique H 2-utilizing lithotrophy in serpentinite-hosted systems. THE ISME JOURNAL 2023; 17:95-104. [PMID: 36207493 PMCID: PMC9751293 DOI: 10.1038/s41396-022-01197-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 11/08/2022]
Abstract
Serpentinization of ultramafic rocks provides molecular hydrogen (H2) that can support lithotrophic metabolism of microorganisms, but also poses extremely challenging conditions, including hyperalkalinity and limited electron acceptor availability. Investigation of two serpentinization-active systems reveals that conventional H2-/CO2-dependent homoacetogenesis is thermodynamically unfavorable in situ due to picomolar CO2 levels. Through metagenomics and thermodynamics, we discover unique taxa capable of metabolism adapted to the habitat. This included a novel deep-branching phylum, "Ca. Lithacetigenota", that exclusively inhabits serpentinite-hosted systems and harbors genes encoding alternative modes of H2-utilizing lithotrophy. Rather than CO2, these putative metabolisms utilize reduced carbon compounds detected in situ presumably serpentinization-derived: formate and glycine. The former employs a partial homoacetogenesis pathway and the latter a distinct pathway mediated by a rare selenoprotein-the glycine reductase. A survey of microbiomes shows that glycine reductases are diverse and nearly ubiquitous in serpentinite-hosted environments. "Ca. Lithacetigenota" glycine reductases represent a basal lineage, suggesting that catabolic glycine reduction is an ancient bacterial innovation by Terrabacteria for gaining energy from geogenic H2 even under hyperalkaline, CO2-poor conditions. Unique non-CO2-reducing metabolisms presented here shed light on potential strategies that extremophiles may employ for overcoming a crucial obstacle in serpentinization-associated environments, features potentially relevant to primordial lithotrophy in early Earth.
Collapse
|
23
|
Römling U. Is biofilm formation intrinsic to the origin of life? Environ Microbiol 2023; 25:26-39. [PMID: 36655713 PMCID: PMC10086821 DOI: 10.1111/1462-2920.16179] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/21/2023]
Abstract
Biofilms are multicellular, often surface-associated, communities of autonomous cells. Their formation is the natural mode of growth of up to 80% of microorganisms living on this planet. Biofilms refractory towards antimicrobial agents and the actions of the immune system due to their tolerance against multiple environmental stresses. But how did biofilm formation arise? Here, I argue that the biofilm lifestyle has its foundation already in the fundamental, surface-triggered chemical reactions and energy preserving mechanisms that enabled the development of life on earth. Subsequently, prototypical biofilm formation has evolved and diversified concomitantly in composition, cell morphology and regulation with the expansion of prokaryotic organisms and their radiation by occupation of diverse ecological niches. This ancient origin of biofilm formation thus mirrors the harnessing environmental conditions that have been the rule rather than the exception in microbial life. The subsequent emergence of the association of microbes, including recent human pathogens, with higher organisms can be considered as the entry into a nutritional and largely stress-protecting heaven. Nevertheless, basic mechanisms of biofilm formation have surprisingly been conserved and refunctionalized to promote sustained survival in new environments.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Tekin E, Salditt A, Schwintek P, Wunnava S, Langlais J, Saenz J, Tang D, Schwille P, Mast C, Braun D. Prebiotic Foam Environments to Oligomerize and Accumulate RNA. Chembiochem 2022; 23:e202200423. [PMID: 36354762 PMCID: PMC10100173 DOI: 10.1002/cbic.202200423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/24/2022] [Indexed: 11/12/2022]
Abstract
When water interacts with porous rocks, its wetting and surface tension properties create air bubbles in large number. To probe their relevance as a setting for the emergence of life, we microfluidically created foams that were stabilized with lipids. A persistent non-equilibrium setting was provided by a thermal gradient. The foam's large surface area triggers capillary flows and wet-dry reactions that accumulate, aggregate and oligomerize RNA, offering a compelling habitat for RNA-based early life as it offers both wet and dry conditions in direct neighborhood. Lipids were screened to stabilize the foams. The prebiotically more probable myristic acid stabilized foams over many hours. The capillary flow created by the evaporation at the water-air interface provided an attractive force for molecule localization and selection for molecule size. For example, self-binding oligonucleotide sequences accumulated and formed micrometer-sized aggregates which were shuttled between gas bubbles. The wet-dry cycles at the foam bubble interfaces triggered a non-enzymatic RNA oligomerization from 2',3'-cyclic CMP and GMP which despite the small dry reaction volume was superior to the corresponding dry reaction. The found characteristics make heated foams an interesting, localized setting for early molecular evolution.
Collapse
Affiliation(s)
- Emre Tekin
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| | - Annalena Salditt
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| | - Philipp Schwintek
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| | - Sreekar Wunnava
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| | - Juliette Langlais
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| | - James Saenz
- Center for Molecular BioengineeringTechnische Universität DresdenHelmholtzstrasse 1001069DresdenGermany
| | - Dora Tang
- Dynamic Protocellular SystemsMax-Planck Institute for Molecular Cell Biology and GeneticsPfotenhauerstrasse 10801307DresdenGermany
| | - Petra Schwille
- Cellular and Molecular BiophysicsMax-Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Christof Mast
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| | - Dieter Braun
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| |
Collapse
|
25
|
Nunn AVW, Guy GW, Brysch W, Bell JD. Understanding Long COVID; Mitochondrial Health and Adaptation-Old Pathways, New Problems. Biomedicines 2022; 10:3113. [PMID: 36551869 PMCID: PMC9775339 DOI: 10.3390/biomedicines10123113] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Many people infected with the SARS-CoV-2 suffer long-term symptoms, such as "brain fog", fatigue and clotting problems. Explanations for "long COVID" include immune imbalance, incomplete viral clearance and potentially, mitochondrial dysfunction. As conditions with sub-optimal mitochondrial function are associated with initial severity of the disease, their prior health could be key in resistance to long COVID and recovery. The SARs virus redirects host metabolism towards replication; in response, the host can metabolically react to control the virus. Resolution is normally achieved after viral clearance as the initial stress activates a hormetic negative feedback mechanism. It is therefore possible that, in some individuals with prior sub-optimal mitochondrial function, the virus can "tip" the host into a chronic inflammatory cycle. This might explain the main symptoms, including platelet dysfunction. Long COVID could thus be described as a virally induced chronic and self-perpetuating metabolically imbalanced non-resolving state characterised by mitochondrial dysfunction, where reactive oxygen species continually drive inflammation and a shift towards glycolysis. This would suggest that a sufferer's metabolism needs to be "tipped" back using a stimulus, such as physical activity, calorie restriction, or chemical compounds that mimic these by enhancing mitochondrial function, perhaps in combination with inhibitors that quell the inflammatory response.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Geoffrey W. Guy
- The Guy Foundation, Chedington Court, Beaminster, Dorset DT8 3HY, UK
| | | | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
26
|
Abstract
The consensus on the origins of life is that it involved organization of prebiotic chemicals according to the underlying principles of thermodynamics to dissipate energy derived from photochemical and/or geochemical sources. Leading theories tend to be chemistry-centric, revolving around either metabolism or information-containing polymers first. However, experimental data also suggest that bioelectricity and quantum effects play an important role in biology, which might suggest that a further factor is required to explain how life began. Intriguingly, in the early part of 20th century, the concept of the "morphogenetic field" was proposed by Gurwitsch to explain how the shape of an organism was determined, while a role for quantum mechanics in biology was suggested by Bohr and Schrödinger, among others. This raises the question as to the potential of these phenomena, especially bioelectric fields, to have been involved in the origin of life. It points to the possibility that as bioelectricity is universally prevalent in biological systems today, it represents a more complex echo of an electromagnetic skeleton which helped shape life into being. It could be argued that as a flow of ions creates an electric field, this could have been pivotal in the formation of an energy dissipating structure, for instance, in deep sea thermal vents. Moreover, a field theory might also hint at the potential involvement of nontrivial quantum effects in life. Not only might this perspective help indicate the origins of morphogenetic fields, but also perhaps suggest where life may have started, and whether metabolism or information came first. It might also help to provide an insight into aging, cancer, consciousness, and, perhaps, how we might identify life beyond our planet. In short, when thinking about life, not only do we have to consider the accepted chemistry, but also the fields that must also shape it. In effect, to fully understand life, as well as the yin of accepted particle-based chemistry, there is a yang of field-based interaction and an ethereal skeleton.
Collapse
Affiliation(s)
- Alistair V.W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom.,Address correspondence to: Alistair V.W. Nunn, PhD, Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | | | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
27
|
Twing KI, Ward LM, Kane ZK, Sanders A, Price RE, Pendleton HL, Giovannelli D, Brazelton WJ, McGlynn SE. Microbial ecology of a shallow alkaline hydrothermal vent: Strýtan Hydrothermal Field, Eyjafördur, northern Iceland. Front Microbiol 2022; 13:960335. [PMID: 36466646 PMCID: PMC9713835 DOI: 10.3389/fmicb.2022.960335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/05/2022] [Indexed: 10/20/2023] Open
Abstract
Strýtan Hydrothermal Field (SHF) is a submarine system located in Eyjafördur in northern Iceland composed of two main vents: Big Strýtan and Arnarnesstrýtan. The vents are shallow, ranging from 16 to 70 m water depth, and vent high pH (up to 10.2), moderate temperature (T max ∼70°C), anoxic, fresh fluids elevated in dissolved silica, with slightly elevated concentrations of hydrogen and methane. In contrast to other alkaline hydrothermal vents, SHF is unique because it is hosted in basalt and therefore the high pH is not created by serpentinization. While previous studies have assessed the geology and geochemistry of this site, the microbial diversity of SHF has not been explored in detail. Here we present a microbial diversity survey of the actively venting fluids and chimneys from Big Strýtan and Arnarnesstrýtan, using 16S rRNA gene amplicon sequencing. Community members from the vent fluids are mostly aerobic heterotrophic bacteria; however, within the chimneys oxic, low oxygen, and anoxic habitats could be distinguished, where taxa putatively capable of acetogenesis, sulfur-cycling, and hydrogen metabolism were observed. Very few archaea were observed in the samples. The inhabitants of SHF are more similar to terrestrial hot spring samples than other marine sites. It has been hypothesized that life on Earth (and elsewhere in the solar system) could have originated in an alkaline hydrothermal system, however all other studied alkaline submarine hydrothermal systems to date are fueled by serpentinization. SHF adds to our understandings of hydrothermal vents in relationship to microbial diversity, evolution, and possibly the origin of life.
Collapse
Affiliation(s)
- Katrina I. Twing
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, United States
- Department of Microbiology, Weber State University, Ogden, UT, United States
| | - L. M. Ward
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Department of Geosciences, Smith College, Northampton, MA, United States
| | - Zachary K. Kane
- Department of Microbiology, Weber State University, Ogden, UT, United States
| | - Alexa Sanders
- Department of Microbiology, Weber State University, Ogden, UT, United States
| | - Roy Edward Price
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - H. Lizethe Pendleton
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, United States
| | - Donato Giovannelli
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - William J. Brazelton
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, United States
| | - Shawn E. McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Center for Sustainable Resource Science, RIKEN, Saitama, Japan
| |
Collapse
|
28
|
Nunes Palmeira R, Colnaghi M, Harrison SA, Pomiankowski A, Lane N. The limits of metabolic heredity in protocells. Proc Biol Sci 2022; 289:20221469. [PMID: 36350219 PMCID: PMC9653231 DOI: 10.1098/rspb.2022.1469] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The universal core of metabolism could have emerged from thermodynamically favoured prebiotic pathways at the origin of life. Starting with H
2
and CO
2
, the synthesis of amino acids and mixed fatty acids, which self-assemble into protocells, is favoured under warm anoxic conditions. Here, we address whether it is possible for protocells to evolve greater metabolic complexity, through positive feedbacks involving nucleotide catalysis. Using mathematical simulations to model metabolic heredity in protocells, based on branch points in protometabolic flux, we show that nucleotide catalysis can indeed promote protocell growth. This outcome only occurs when nucleotides directly catalyse CO
2
fixation. Strong nucleotide catalysis of other pathways (e.g. fatty acids and amino acids) generally unbalances metabolism and slows down protocell growth, and when there is competition between catalytic functions cell growth collapses. Autocatalysis of nucleotide synthesis can promote growth but only if nucleotides also catalyse CO
2
fixation; autocatalysis alone leads to the accumulation of nucleotides at the expense of CO
2
fixation and protocell growth rate. Our findings offer a new framework for the emergence of greater metabolic complexity, in which nucleotides catalyse broad-spectrum processes such as CO
2
fixation, hydrogenation and phosphorylation important to the emergence of genetic heredity at the origin of life.
Collapse
Affiliation(s)
- Raquel Nunes Palmeira
- Department of Computer Science, Engineering Building, Malet Place, University College London, WC1E 7JG, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Marco Colnaghi
- Department of Computer Science, Engineering Building, Malet Place, University College London, WC1E 7JG, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Stuart A. Harrison
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew Pomiankowski
- Department of Computer Science, Engineering Building, Malet Place, University College London, WC1E 7JG, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
29
|
Harrison SA, Palmeira RN, Halpern A, Lane N. A biophysical basis for the emergence of the genetic code in protocells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148597. [PMID: 35868450 DOI: 10.1016/j.bbabio.2022.148597] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
The origin of the genetic code is an abiding mystery in biology. Hints of a 'code within the codons' suggest biophysical interactions, but these patterns have resisted interpretation. Here, we present a new framework, grounded in the autotrophic growth of protocells from CO2 and H2. Recent work suggests that the universal core of metabolism recapitulates a thermodynamically favoured protometabolism right up to nucleotide synthesis. Considering the genetic code in relation to an extended protometabolism allows us to predict most codon assignments. We show that the first letter of the codon corresponds to the distance from CO2 fixation, with amino acids encoded by the purines (G followed by A) being closest to CO2 fixation. These associations suggest a purine-rich early metabolism with a restricted pool of amino acids. The second position of the anticodon corresponds to the hydrophobicity of the amino acid encoded. We combine multiple measures of hydrophobicity to show that this correlation holds strongly for early amino acids but is weaker for later species. Finally, we demonstrate that redundancy at the third position is not randomly distributed around the code: non-redundant amino acids can be assigned based on size, specifically length. We attribute this to additional stereochemical interactions at the anticodon. These rules imply an iterative expansion of the genetic code over time with codon assignments depending on both distance from CO2 and biophysical interactions between nucleotide sequences and amino acids. In this way the earliest RNA polymers could produce non-random peptide sequences with selectable functions in autotrophic protocells.
Collapse
Affiliation(s)
- Stuart A Harrison
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland
| | - Raquel Nunes Palmeira
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland
| | - Aaron Halpern
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
30
|
Naz N, Liu D, Harandi BF, Kounaves SP. Microbial Growth in Martian Soil Simulants Under Terrestrial Conditions: Guiding the Search for Life on Mars. ASTROBIOLOGY 2022; 22:1210-1221. [PMID: 36000998 DOI: 10.1089/ast.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The search for life elsewhere in the Universe goes together with the search for liquid water. Life as we know it requires water; however, it is possible for microbial life to exist under hyperarid conditions with a minimal amount of water. We report on the ability of two typical terrestrial bacteria (Escherichia coli B and Eucapsis sp) and two extremophiles (Gloeocapsa-20201027-1 sp and Planococcus halocryophilus) to grow and survive in three martian soil (regolith) simulants (Mohave Mars Simulant-1 [MMS-1] F, Mars Global Simulant-1 [MGS-1], and JSC Mars-1A [JSC]). Survival and growth were assessed over a 21-day period under terrestrial conditions and with water:soil (vol:wt) ratios that varied from 0.25:1 to 5:1. We found that Eucapsis and Gloeocapsa sp grew best in the simulants MMS and JSC, respectively, while P. halocryophilus growth rates were better in the JSC simulant. As expected, E. coli did not show significant growth. Our results indicate that these martian simulants and thus martian regolith, with minimal or no added nutrients or water, can support the growth of extremophiles such as P. halocryphilus and Gloeocapsa. Similar extremophiles on early Mars may have survived to the present in near-surface ecological niches analogous to those where these organisms exist on Earth.
Collapse
Affiliation(s)
- Neveda Naz
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Dongyu Liu
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Bijan F Harandi
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Samuel P Kounaves
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
31
|
Furfural Influences Hydrogen Evolution and Energy Conversion in Photo-Fermentation by Rhodobacter capsulatus. Catalysts 2022. [DOI: 10.3390/catal12090979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Furfural, as a typical byproduct produced during the hydrolysis of lignocellulose biomass, is harmful to the photo fermentation hydrogen production. In this work, the effects of furfural on the photo fermentation hydrogen production by Rhodobacter capsulatus using glucose as substrate were investigated. The characteristics of cell growth, hydrogen production, and fermentation end-products with the addition of different concentrations of furfural (0–20 mM) were studied. The results showed that furfural negatively affected the maximum hydrogen production rate and total hydrogen yield. The maximum hydrogen yield of 2.59 ± 0.13 mol-H2/mol-glucose was obtained without furfural. However, 5 mM furfural showed a 40% increase in cell concentration. Furfural in high concentrations can favor the overproduction and accumulation of inhibitive end-products. Further analysis of energy conversion efficiency showed that most of the energy in the substrate was underused and unconverted when the furfural concentration was high. The maximum glucose consumption (93%) was achieved without furfural, while it dramatically declined to 7% with 20 mM furfural addition. The index of half-maximal inhibitory concentration was calculated as 13.40 mM. Moreover, the possible metabolic pathway of furfural and glucose was discussed.
Collapse
|
32
|
Akbari A, Palsson BO. Positively charged mineral surfaces promoted the accumulation of organic intermediates at the origin of metabolism. PLoS Comput Biol 2022; 18:e1010377. [PMID: 35976973 PMCID: PMC9423644 DOI: 10.1371/journal.pcbi.1010377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/29/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Identifying plausible mechanisms for compartmentalization and accumulation of the organic intermediates of early metabolic cycles in primitive cells has been a major challenge in theories of life's origins. Here, we propose a mechanism, where positive membrane potentials elevate the concentration of the organic intermediates. Positive membrane potentials are generated by positively charged surfaces of protocell membranes due to accumulation of transition metals. We find that (i) positive membrane potentials comparable in magnitude to those of modern cells can increase the concentration of the organic intermediates by several orders of magnitude; (ii) generation of large membrane potentials destabilize ion distributions; (iii) violation of electroneutrality is necessary to induce nonzero membrane potentials; and (iv) violation of electroneutrality enhances osmotic pressure and diminishes reaction efficiency, resulting in an evolutionary driving force for the formation of lipid membranes, specialized ion channels, and active transport systems.
Collapse
Affiliation(s)
- Amir Akbari
- Department of Bioengineering, University of California, San Diego, California, United States of America
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, California, United States of America
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
33
|
Mahato RR, Priyanka, Shandilya E, Maiti S. Perpetuating enzymatically induced spatiotemporal pH and catalytic heterogeneity of a hydrogel by nanoparticles. Chem Sci 2022; 13:8557-8566. [PMID: 35974757 PMCID: PMC9337733 DOI: 10.1039/d2sc02317b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
The attainment of spatiotemporally inhomogeneous chemical and physical properties within a system is gaining attention across disciplines due to the resemblance to environmental and biological heterogeneity. Notably, the origin of natural pH gradients and how they have been incorporated in cellular systems is one of the most important questions in understanding the prebiotic origin of life. Herein, we have demonstrated a spatiotemporal pH gradient formation pattern on a hydrogel surface by employing two different enzymatic reactions, namely, the reactions of glucose oxidase (pH decreasing) and urease (pH increasing). We found here a generic pattern of spatiotemporal change in pH and proton transfer catalytic activity that was completely altered in a cationic gold nanoparticle containing hydrogel. In the absence of nanoparticles, the gradually generated macroscopic pH gradient slowly diminished with time, whereas the presence of nanoparticles helped to perpetuate the generated gradient effect. This behavior is due to the differential responsiveness of the interface of the cationic nanoparticle in temporally changing surroundings with increasing or decreasing pH or ionic contents. Moreover, the catalytic proton transfer ability of the nanoparticle showed a concerted kinetic response following the spatiotemporal pH dynamics in the gel matrix. Notably, this nanoparticle-driven spatiotemporally resolved gel matrix will find applicability in the area of the membrane-free generation and control of spatially segregated chemistry at the macroscopic scale.
Collapse
Affiliation(s)
- Rishi Ram Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| | - Priyanka
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| | - Ekta Shandilya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| |
Collapse
|
34
|
Deamer D, Cary F, Damer B. Urability: A Property of Planetary Bodies That Can Support an Origin of Life. ASTROBIOLOGY 2022; 22:889-900. [PMID: 35675644 DOI: 10.1089/ast.2021.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The concept of habitability is now widely used to describe zones in a solar system in which planets with liquid water can sustain life. Because habitability does not explicitly incorporate the origin of life, this article proposes a new word-urability-which refers to the conditions that allow life to begin. The utility of the word is tested by applying it to combinations of multiple geophysical and geochemical factors that support plausible localized zones that are conducive to the chemical reactions and molecular assembly processes required for the origin of life. The concept of urable worlds, planetary bodies that can sustain an arising of life, is considered for bodies in our own solar system and exoplanets beyond.
Collapse
Affiliation(s)
- David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Francesca Cary
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Bruce Damer
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
35
|
Dong Y, Li H, Ilie A, Gao Y, Boucher A, Zhang XC, Orlowski J, Zhao Y. Structural basis of autoinhibition of the human NHE3-CHP1 complex. SCIENCE ADVANCES 2022; 8:eabn3925. [PMID: 35613257 PMCID: PMC9132474 DOI: 10.1126/sciadv.abn3925] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Sodium-proton exchanger 3 (NHE3/SLC9A3) located in the apical membrane of renal and gastrointestinal epithelia mediates salt and fluid absorption and regulates pH homeostasis. As an auxiliary regulatory factor of NHE proteins, calcineurin B homologous protein 1 (CHP1) facilitates NHE3 maturation, plasmalemmal expression, and pH sensitivity. Dysfunctions of NHE3 are associated with renal and digestive system disorders. Here, we report the cryo-electron microscopy structure of the human NHE3-CHP1 complex in its inward-facing conformation. We found that a cytosolic helix-loop-helix motif in NHE3 blocks the intracellular cavity formed between the core and dimerization domains, functioning as an autoinhibitory element and hindering substrate transport. Furthermore, two phosphatidylinositol molecules are found to bind to the peripheric juxtamembrane sides of the complex, function as anchors to stabilize the complex, and may thus enhance its transport activity.
Collapse
Affiliation(s)
- Yanli Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alina Ilie
- Department of Physiology, McGill University, Montreal, Canada
| | - Yiwei Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Annie Boucher
- Department of Physiology, McGill University, Montreal, Canada
| | - Xuejun Cai Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - John Orlowski
- Department of Physiology, McGill University, Montreal, Canada
| | - Yan Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
36
|
A fundamental limit to the search for the oldest fossils. Nat Ecol Evol 2022; 6:832-834. [PMID: 35577985 DOI: 10.1038/s41559-022-01777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Troy WC. Logarithmic spiral solutions of the Kopell-Howard lambda-omega reaction-diffusion equations. CHAOS (WOODBURY, N.Y.) 2022; 32:053104. [PMID: 35649994 DOI: 10.1063/5.0082736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Our investigation of logarithmic spirals is motivated by disparate experimental results: (i) the discovery of logarithmic spiral shaped precipitate formation in chemical garden experiments. Understanding precipitate formation in chemical gardens is important since analogous precipitates form in deep ocean hydrothermal vents, where conditions may be compatible with the emergence of life. (ii) The discovery that logarithmic spiral shaped waves of spreading depression can spontaneously form and cause macular degeneration in hypoglycemic chick retina. The role of reaction-diffusion mechanisms in spiral formation in these diverse experimental settings is poorly understood. To gain insight, we use the topological shooting to prove the existence of 0-bump stationary logarithmic spiral solutions, and rotating logarithmic spiral wave solutions, of the Kopell-Howard lambda-omega reaction-diffusion model.
Collapse
Affiliation(s)
- William C Troy
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
38
|
Fiore M, Chieffo C, Lopez A, Fayolle D, Ruiz J, Soulère L, Oger P, Altamura E, Popowycz F, Buchet R. Synthesis of Phospholipids Under Plausible Prebiotic Conditions and Analogies with Phospholipid Biochemistry for Origin of Life Studies. ASTROBIOLOGY 2022; 22:598-627. [PMID: 35196460 DOI: 10.1089/ast.2021.0059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phospholipids are essential components of biological membranes and are involved in cell signalization, in several enzymatic reactions, and in energy metabolism. In addition, phospholipids represent an evolutionary and non-negligible step in life emergence. Progress in the past decades has led to a deeper understanding of these unique hydrophobic molecules and their most pertinent functions in cell biology. Today, a growing interest in "prebiotic lipidomics" calls for a new assessment of these relevant biomolecules.
Collapse
Affiliation(s)
- Michele Fiore
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| | - Carolina Chieffo
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| | - Augustin Lopez
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| | - Dimitri Fayolle
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| | - Johal Ruiz
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
- Institut National Des Sciences Appliquées, INSA Lyon, Villeurbanne, France
| | - Laurent Soulère
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
- Institut National Des Sciences Appliquées, INSA Lyon, Villeurbanne, France
| | - Philippe Oger
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Université de Lyon, Claude Bernard Lyon 1, Villeurbanne, France
| | - Emiliano Altamura
- Chemistry Department, Università degli studi di Bari "Aldo Moro," Bari, Italy
| | - Florence Popowycz
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
- Institut National Des Sciences Appliquées, INSA Lyon, Villeurbanne, France
| | - René Buchet
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| |
Collapse
|
39
|
Wang Y, Li W, Baker BJ, Zhou Y, He L, Danchin A, Li Q, Gao Z. Carbon metabolism and adaptation of hyperalkaliphilic microbes in serpentinizing spring of Manleluag, the Philippines. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:308-319. [PMID: 35199456 DOI: 10.1111/1758-2229.13052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Reduced substrates produced by the serpentinization reaction under hydration of olivine may have fuelled biological processes on early Earth. To understand the adaptive strategies and carbon metabolism of the microbes in the serpentinizing ecosystems, we reconstructed 18 draft genomes representing dominant species of Omnitrophicaeota, Gammaproteobacteria and Methanobacteria from the Manleluag serpentinizing spring in Zambales, Philippines (hyperalkaline and rich in methane and hydrogen). Phylogenomics revealed that two genomes were affiliated with a candidate phylum NPL-UPA2 and the references of all our genomes were derived from ground waters, hot springs and the deep biosphere. C1 metabolism appears to be widespread as most of the genomes code for methanogenesis, CO oxidation and CO2 fixation. However, likely due to the low CO2 concentration and election acceptors, the biomass in the spring was extremely low (<103 cell/ml). Various Na+ and K+ transporters and Na+ -driving ATPases appear to be encoded by these genomes, suggesting that nutrient acquisition, bioenergetics and normal cytoplasmic pH were dependent on Na+ and K+ pumps. Our results advance our understanding of the metabolic potentials and bioenergetics of serpentinizing springs and provide a framework of the ecology of early Earth.
Collapse
Affiliation(s)
- Yong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Wenli Li
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, P. R. China
| | - Brett J Baker
- Department of Integrative Biology and Marine Science, University of Texas Austin, Austin, TX, 78373, USA
| | - Yingli Zhou
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lisheng He
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, P. R. China
| | - Antoine Danchin
- Kodikos Labs, Institut Cochin, 24 rue du Faubourg Saint Jacques, Paris, 75014, France
| | - Qingmei Li
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhaoming Gao
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, P. R. China
| |
Collapse
|
40
|
Dong Y, Zhang S, Zhao L. Unraveling the Structural Development of
Peptide‐Coordinated Iron‐Sulfur
Clusters: Prebiotic Evolution and Biosynthetic Strategies. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yijun Dong
- School of Life Sciences, Tsinghua University Beijing 100084 China
| | - Siqi Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
41
|
Modularity of membrane-bound charge-translocating protein complexes. Biochem Soc Trans 2021; 49:2669-2685. [PMID: 34854900 DOI: 10.1042/bst20210462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023]
Abstract
Energy transduction is the conversion of one form of energy into another; this makes life possible as we know it. Organisms have developed different systems for acquiring energy and storing it in useable forms: the so-called energy currencies. A universal energy currency is the transmembrane difference of electrochemical potential (Δμ~). This results from the translocation of charges across a membrane, powered by exergonic reactions. Different reactions may be coupled to charge-translocation and, in the majority of cases, these reactions are catalyzed by modular enzymes that always include a transmembrane subunit. The modular arrangement of these enzymes allows for different catalytic and charge-translocating modules to be combined. Thus, a transmembrane charge-translocating module can be associated with different catalytic subunits to form an energy-transducing complex. Likewise, the same catalytic subunit may be combined with a different membrane charge-translocating module. In this work, we analyze the modular arrangement of energy-transducing membrane complexes and discuss their different combinations, focusing on the charge-translocating module.
Collapse
|
42
|
Lewis AJO, Hegde RS. A unified evolutionary origin for the ubiquitous protein transporters SecY and YidC. BMC Biol 2021; 19:266. [PMID: 34911545 PMCID: PMC8675477 DOI: 10.1186/s12915-021-01171-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Protein transporters translocate hydrophilic segments of polypeptide across hydrophobic cell membranes. Two protein transporters are ubiquitous and date back to the last universal common ancestor: SecY and YidC. SecY consists of two pseudosymmetric halves, which together form a membrane-spanning protein-conducting channel. YidC is an asymmetric molecule with a protein-conducting hydrophilic groove that partially spans the membrane. Although both transporters mediate insertion of membrane proteins with short translocated domains, only SecY transports secretory proteins and membrane proteins with long translocated domains. The evolutionary origins of these ancient and essential transporters are not known. RESULTS The features conserved by the two halves of SecY indicate that their common ancestor was an antiparallel homodimeric channel. Structural searches with SecY's halves detect exceptional similarity with YidC homologs. The SecY halves and YidC share a fold comprising a three-helix bundle interrupted by a helical hairpin. In YidC, this hairpin is cytoplasmic and facilitates substrate delivery, whereas in SecY, it is transmembrane and forms the substrate-binding lateral gate helices. In both transporters, the three-helix bundle forms a protein-conducting hydrophilic groove delimited by a conserved hydrophobic residue. Based on these similarities, we propose that SecY originated as a YidC homolog which formed a channel by juxtaposing two hydrophilic grooves in an antiparallel homodimer. We find that archaeal YidC and its eukaryotic descendants use this same dimerisation interface to heterodimerise with a conserved partner. YidC's sufficiency for the function of simple cells is suggested by the results of reductive evolution in mitochondria and plastids, which tend to retain SecY only if they require translocation of large hydrophilic domains. CONCLUSIONS SecY and YidC share previously unrecognised similarities in sequence, structure, mechanism, and function. Our delineation of a detailed correspondence between these two essential and ancient transporters enables a deeper mechanistic understanding of how each functions. Furthermore, key differences between them help explain how SecY performs its distinctive function in the recognition and translocation of secretory proteins. The unified theory presented here explains the evolution of these features, and thus reconstructs a key step in the origin of cells.
Collapse
Affiliation(s)
- Aaron J O Lewis
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
43
|
Kořený L, Oborník M, Horáková E, Waller RF, Lukeš J. The convoluted history of haem biosynthesis. Biol Rev Camb Philos Soc 2021; 97:141-162. [PMID: 34472688 DOI: 10.1111/brv.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023]
Abstract
The capacity of haem to transfer electrons, bind diatomic gases, and catalyse various biochemical reactions makes it one of the essential biomolecules on Earth and one that was likely used by the earliest forms of cellular life. Since the description of haem biosynthesis, our understanding of this multi-step pathway has been almost exclusively derived from a handful of model organisms from narrow taxonomic contexts. Recent advances in genome sequencing and functional studies of diverse and previously neglected groups have led to discoveries of alternative routes of haem biosynthesis that deviate from the 'classical' pathway. In this review, we take an evolutionarily broad approach to illuminate the remarkable diversity and adaptability of haem synthesis, from prokaryotes to eukaryotes, showing the range of strategies that organisms employ to obtain and utilise haem. In particular, the complex evolutionary histories of eukaryotes that involve multiple endosymbioses and horizontal gene transfers are reflected in the mosaic origin of numerous metabolic pathways with haem biosynthesis being a striking case. We show how different evolutionary trajectories and distinct life strategies resulted in pronounced tensions and differences in the spatial organisation of the haem biosynthesis pathway, in some cases leading to a complete loss of a haem-synthesis capacity and, rarely, even loss of a requirement for haem altogether.
Collapse
Affiliation(s)
- Luděk Kořený
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| |
Collapse
|
44
|
Abstract
How mitochondria shaped the evolution of eukaryotic complexity has been controversial for decades. The discovery of the Asgard archaea, which harbor close phylogenetic ties to the eukaryotes, supports the idea that a critical endosymbiosis between an archaeal host and a bacterial endosymbiont transformed the selective constraints present at the origin of eukaryotes. Cultured Asgard archaea are typically prokaryotic in both size and internal morphology, albeit featuring extensive protrusions. The acquisition of the mitochondrial predecessor by an archaeal host cell fundamentally altered the topology of genes in relation to bioenergetic membranes. Mitochondria internalised not only the bioenergetic membranes but also the genetic machinery needed for local control of oxidative phosphorylation. Gene loss from mitochondria enabled expansion of the nuclear genome, giving rise to an extreme genomic asymmetry that is ancestral to all extant eukaryotes. This genomic restructuring gave eukaryotes thousands of fold more energy availability per gene. In principle, that difference can support more and larger genes, far more non-coding DNA, greater regulatory complexity, and thousands of fold more protein synthesis per gene. These changes released eukaryotes from the bioenergetic constraints on prokaryotes, facilitating the evolution of morphological complexity.
Collapse
Affiliation(s)
- Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| |
Collapse
|
45
|
'Whole Organism', Systems Biology, and Top-Down Criteria for Evaluating Scenarios for the Origin of Life. Life (Basel) 2021; 11:life11070690. [PMID: 34357062 PMCID: PMC8306273 DOI: 10.3390/life11070690] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022] Open
Abstract
While most advances in the study of the origin of life on Earth (OoLoE) are piecemeal, tested against the laws of chemistry and physics, ultimately the goal is to develop an overall scenario for life's origin(s). However, the dimensionality of non-equilibrium chemical systems, from the range of possible boundary conditions and chemical interactions, renders the application of chemical and physical laws difficult. Here we outline a set of simple criteria for evaluating OoLoE scenarios. These include the need for containment, steady energy and material flows, and structured spatial heterogeneity from the outset. The Principle of Continuity, the fact that all life today was derived from first life, suggests favoring scenarios with fewer non-analog (not seen in life today) to analog (seen in life today) transitions in the inferred first biochemical pathways. Top-down data also indicate that a complex metabolism predated ribozymes and enzymes, and that full cellular autonomy and motility occurred post-LUCA. Using these criteria, we find the alkaline hydrothermal vent microchamber complex scenario with a late evolving exploitation of the natural occurring pH (or Na+ gradient) by ATP synthase the most compelling. However, there are as yet so many unknowns, we also advocate for the continued development of as many plausible scenarios as possible.
Collapse
|
46
|
Skejo J, Garg SG, Gould SB, Hendriksen M, Tria FDK, Bremer N, Franjević D, Blackstone NW, Martin WF. Evidence for a Syncytial Origin of Eukaryotes from Ancestral State Reconstruction. Genome Biol Evol 2021; 13:evab096. [PMID: 33963405 PMCID: PMC8290118 DOI: 10.1093/gbe/evab096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Modern accounts of eukaryogenesis entail an endosymbiotic encounter between an archaeal host and a proteobacterial endosymbiont, with subsequent evolution giving rise to a unicell possessing a single nucleus and mitochondria. The mononucleate state of the last eukaryotic common ancestor (LECA) is seldom, if ever, questioned, even though cells harboring multiple (syncytia, coenocytes, and polykaryons) are surprisingly common across eukaryotic supergroups. Here, we present a survey of multinucleated forms. Ancestral character state reconstruction for representatives of 106 eukaryotic taxa using 16 different possible roots and supergroup sister relationships, indicate that LECA, in addition to being mitochondriate, sexual, and meiotic, was multinucleate. LECA exhibited closed mitosis, which is the rule for modern syncytial forms, shedding light on the mechanics of its chromosome segregation. A simple mathematical model shows that within LECA's multinucleate cytosol, relationships among mitochondria and nuclei were neither one-to-one, nor one-to-many, but many-to-many, placing mitonuclear interactions and cytonuclear compatibility at the evolutionary base of eukaryotic cell origin. Within a syncytium, individual nuclei and individual mitochondria function as the initial lower-level evolutionary units of selection, as opposed to individual cells, during eukaryogenesis. Nuclei within a syncytium rescue each other's lethal mutations, thereby postponing selection for viable nuclei and cytonuclear compatibility to the generation of spores, buffering transitional bottlenecks at eukaryogenesis. The prokaryote-to-eukaryote transition is traditionally thought to have left no intermediates, yet if eukaryogenesis proceeded via a syncytial common ancestor, intermediate forms have persisted to the present throughout the eukaryotic tree as syncytia but have so far gone unrecognized.
Collapse
Affiliation(s)
- Josip Skejo
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Faculty of Science, Division of Zoology, Department of Biology, University of Zagreb, Evolution Lab, Zagreb, Croatia
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Hendriksen
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Fernando D K Tria
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nico Bremer
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Damjan Franjević
- Faculty of Science, Division of Zoology, Department of Biology, University of Zagreb, Evolution Lab, Zagreb, Croatia
| | - Neil W Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - William F Martin
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
47
|
Britto DT, Coskun D, Kronzucker HJ. Potassium physiology from Archean to Holocene: A higher-plant perspective. JOURNAL OF PLANT PHYSIOLOGY 2021; 262:153432. [PMID: 34034042 DOI: 10.1016/j.jplph.2021.153432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 05/27/2023]
Abstract
In this paper, we discuss biological potassium acquisition and utilization processes over an evolutionary timescale, with emphasis on modern vascular plants. The quintessential osmotic and electrical functions of the K+ ion are shown to be intimately tied to K+-transport systems and membrane energization. Several prominent themes in plant K+-transport physiology are explored in greater detail, including: (1) channel mediated K+ acquisition by roots at low external [K+]; (2) K+ loading of root xylem elements by active transport; (3) variations on the theme of K+ efflux from root cells to the extracellular environment; (4) the veracity and utility of the "affinity" concept in relation to transport systems. We close with a discussion of the importance of plant-potassium relations to our human world, and current trends in potassium nutrition from farm to table.
Collapse
Affiliation(s)
- Dev T Britto
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Devrim Coskun
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Herbert J Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
48
|
A robotic prebiotic chemist probes long term reactions of complexifying mixtures. Nat Commun 2021; 12:3547. [PMID: 34112788 PMCID: PMC8192940 DOI: 10.1038/s41467-021-23828-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/17/2021] [Indexed: 11/08/2022] Open
Abstract
To experimentally test hypotheses about the emergence of living systems from abiotic chemistry, researchers need to be able to run intelligent, automated, and long-term experiments to explore chemical space. Here we report a robotic prebiotic chemist equipped with an automatic sensor system designed for long-term chemical experiments exploring unconstrained multicomponent reactions, which can run autonomously over long periods. The system collects mass spectrometry data from over 10 experiments, with 60 to 150 algorithmically controlled cycles per experiment, running continuously for over 4 weeks. We show that the robot can discover the production of high complexity molecules from simple precursors, as well as deal with the vast amount of data produced by a recursive and unconstrained experiment. This approach represents what we believe to be a necessary step towards the design of new types of Origin of Life experiments that allow testable hypotheses for the emergence of life from prebiotic chemistry.
Collapse
|
49
|
Hernansaiz-Ballesteros RD, Földi C, Cardelli L, Nagy LG, Csikász-Nagy A. Evolution of opposing regulatory interactions underlies the emergence of eukaryotic cell cycle checkpoints. Sci Rep 2021; 11:11122. [PMID: 34045495 PMCID: PMC8159995 DOI: 10.1038/s41598-021-90384-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/11/2021] [Indexed: 02/04/2023] Open
Abstract
In eukaryotes the entry into mitosis is initiated by activation of cyclin-dependent kinases (CDKs), which in turn activate a large number of protein kinases to induce all mitotic processes. The general view is that kinases are active in mitosis and phosphatases turn them off in interphase. Kinases activate each other by cross- and self-phosphorylation, while phosphatases remove these phosphate groups to inactivate kinases. Crucial exceptions to this general rule are the interphase kinase Wee1 and the mitotic phosphatase Cdc25. Together they directly control CDK in an opposite way of the general rule of mitotic phosphorylation and interphase dephosphorylation. Here we investigate why this opposite system emerged and got fixed in almost all eukaryotes. Our results show that this reversed action of a kinase-phosphatase pair, Wee1 and Cdc25, on CDK is particularly suited to establish a stable G2 phase and to add checkpoints to the cell cycle. We show that all these regulators appeared together in LECA (Last Eukaryote Common Ancestor) and co-evolved in eukaryotes, suggesting that this twist in kinase-phosphatase regulation was a crucial step happening at the emergence of eukaryotes.
Collapse
Affiliation(s)
- Rosa D Hernansaiz-Ballesteros
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
- Faculty of Medicine, Institute for Computational Biomedicine, Bioquant, Heidelberg University, 69120, Heidelberg, Germany
| | - Csenge Földi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, 6726, Hungary
| | - Luca Cardelli
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, 6726, Hungary
| | - Attila Csikász-Nagy
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, Budapest, 1083, Hungary.
| |
Collapse
|
50
|
Neidhöfer C. On the Evolution of the Biological Framework for Insight. PHILOSOPHIES 2021; 6:43. [DOI: 10.3390/philosophies6020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The details of abiogenesis, to date, remain a matter of debate and constitute a key mystery in science and philosophy. The prevailing scientific hypothesis implies an evolutionary process of increasing complexity on Earth starting from (self-) replicating polymers. Defining the cut-off point where life begins is another moot point beyond the scope of this article. We will instead walk through the known evolutionary steps that led from these first exceptional polymers to the vast network of living biomatter that spans our world today, focusing in particular on perception, from simple biological feedback mechanisms to the complexity that allows for abstract thought. We will then project from the well-known to the unknown to gain a glimpse into what the universe aims to accomplish with living matter, just to find that if the universe had ever planned to be comprehended, evolution still has a long way to go.
Collapse
|