1
|
Xu J, Song S, Nie C, Chen H, Hao K, Yu F, Zhao Z. Characterization of the Ictalurid herpesvirus 1 immediate-early gene ORF24 and its potential role in transcriptional regulation in yeast. Arch Virol 2024; 169:127. [PMID: 38789713 DOI: 10.1007/s00705-024-06045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/23/2024] [Indexed: 05/26/2024]
Abstract
Herpesviruses adhere to a precise temporal expression model in which immediate-early (IE) genes play a crucial role in regulating the viral life cycle. However, there is a lack of functional research on the IE genes in Ictalurid herpesvirus 1 (IcHV-1). In this study, we identified the IcHV-1 ORF24 as an IE gene via a metabolic inhibition assay, and subcellular analysis indicated its predominant localisation in the nucleus. To investigate its function, we performed yeast reporter assays using an ORF24 fusion protein containing the Gal4-BD domain and found that BD-ORF24 was able to activate HIS3/lacZ reporter genes without the Gal4-AD domain. Our findings provide concrete evidence that ORF24 is indeed an IE gene that likely functions as a transcriptional regulator during IcHV-1 infection. This work contributes to our understanding of the molecular mechanisms underlying fish herpesvirus IE gene expression.
Collapse
Affiliation(s)
- Jiehua Xu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China
| | - Siyang Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China
| | - Chunlan Nie
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China
| | - Hongxun Chen
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China
| | - Kai Hao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China
| | - Fei Yu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China.
- College of Oceanography, Hohai University, Nanjing, 210098, P.R. China.
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China.
- College of Oceanography, Hohai University, Nanjing, 210098, P.R. China.
| |
Collapse
|
2
|
Dickmander B, Hale A, Sanders W, Lenarcic E, Ziehr B, Moorman NJ. Specific RNA structures in the 5' untranslated region of the human cytomegalovirus major immediate early transcript are critical for efficient virus replication. mBio 2024; 15:e0262123. [PMID: 38165154 PMCID: PMC10865803 DOI: 10.1128/mbio.02621-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
Human cytomegalovirus (HCMV) requires the robust expression of two immediate early proteins, IE1 and IE2, immediately upon infection to suppress the antiviral response and promote viral gene expression. While transcriptional control of IE1 and IE2 has been extensively studied, the role of post-transcriptional regulation of IE1 and IE2 expression is relatively unexplored. We previously found that the shared major immediate early 5' untranslated region (MIE 5' UTR) of the mature IE1 and IE2 transcripts plays a critical role in facilitating the translation of the IE1 and IE2 mRNAs. As RNA secondary structure in 5' UTRs can regulate mRNA translation efficiency, we used selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) to identify RNA structures in the shared MIE 5' UTR. We found that the MIE 5' UTR contains three stable stem loop structures. Using a series of recombinant viruses to investigate the role of each stem loop in IE1 and IE2 protein synthesis, we found that the stem loop closest to the 5' end of the MIE 5' UTR (SL1) is both necessary and sufficient for efficient IE1 and IE2 mRNA translation and HCMV replication. The positive effect of SL1 on mRNA translation and virus replication was dependent on its location within the 5' UTR. Surprisingly, a synthetic stem loop with the same free energy as SL1 in its native location also supported wild type levels of IE1 and IE2 mRNA translation and virus replication, suggesting that the presence of RNA structure at a specific location in the 5' UTR, rather than the primary sequence of the RNA, is critical for efficient IE1 and IE2 protein synthesis. These data reveal a novel post-transcriptional regulatory mechanism controlling IE1 and IE2 expression and reinforce the critical role of RNA structure in regulating HCMV protein synthesis and replication.IMPORTANCEThese results reveal a new aspect of immediate early gene regulation controlled by non-coding RNA structures in viral mRNAs. Previous studies have largely focused on understanding viral gene expression at the level of transcriptional control. Our results show that a complete understanding of the control of viral gene expression must include an understanding of viral mRNA translation, which is driven in part by RNA structure(s) in the 5' UTR of viral mRNAs. Our results illustrate the importance of these additional layers of regulation by defining specific 5' UTR RNA structures regulating immediate early gene expression in the context of infection and identify important features of RNA structure that govern viral mRNA translation efficiency. These results may therefore broadly impact current thinking on how viral gene expression is regulated for human cytomegalovirus and other DNA viruses.
Collapse
Affiliation(s)
- Bekah Dickmander
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew Hale
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wes Sanders
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Erik Lenarcic
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ben Ziehr
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Parsons AJ, Ophir SI, Gardner TJ, Paredes JC, Stein KR, Kwasny SM, Cardinale SC, Torhan M, Prichard MN, James SH, Atanasoff KE, G-Dayanandan N, Bowlin TL, Opperman TJ, Tortorella D. Investigating N-arylpyrimidinamine (NAPA) compounds as early-stage inhibitors against human cytomegalovirus. Antiviral Res 2023; 209:105474. [PMID: 36511318 PMCID: PMC9907720 DOI: 10.1016/j.antiviral.2022.105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Human cytomegalovirus (CMV) is a ubiquitous β-herpesvirus that establishes latent asymptomatic infections in healthy individuals but can cause serious infections in immunocompromised people, resulting in increased risk of morbidity and mortality. The current FDA-approved CMV drugs target late stages of the CMV life-cycle. While these drugs are effective in most cases, they have serious drawbacks, including poor oral bioavailability, dose-limiting toxicity, and a low barrier to resistance. Given the clinical relevance of CMV-associated diseases, novel therapies are needed. Thus, a novel class of compounds that inhibits the early stages of the CMV life-cycle was identified and found to block infection of different strains in physiologically relevant cell types. This class of compounds, N-arylpyrimidinamine (NAPA), demonstrated potent anti-CMV activity against ganciclovir-sensitive and -resistant strains in in vitro replication assays, a selectivity index >30, and favorable in vitro ADME properties. Mechanism of action studies demonstrated that NAPA compounds inhibit an early step of virus infection. NAPA compounds are specific inhibitors of cytomegaloviruses and exhibited limited anti-viral activity against other herpesviruses. Collectively, we have identified a novel class of CMV inhibitor that effectively limits viral infection and proliferation.
Collapse
Affiliation(s)
- Andrea J Parsons
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sabrina I Ophir
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Thomas J Gardner
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jailene Casado Paredes
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kathryn R Stein
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | | | | - Mark N Prichard
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Scott H James
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Kristina E Atanasoff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | | | | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
4
|
Chaturvedi S, Pablo M, Wolf M, Rosas-Rivera D, Calia G, Kumar AJ, Vardi N, Du K, Glazier J, Ke R, Chan MF, Perelson AS, Weinberger LS. Disrupting autorepression circuitry generates "open-loop lethality" to yield escape-resistant antiviral agents. Cell 2022; 185:2086-2102.e22. [PMID: 35561685 PMCID: PMC9097017 DOI: 10.1016/j.cell.2022.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 03/01/2022] [Accepted: 04/14/2022] [Indexed: 12/27/2022]
Abstract
Across biological scales, gene-regulatory networks employ autorepression (negative feedback) to maintain homeostasis and minimize failure from aberrant expression. Here, we present a proof of concept that disrupting transcriptional negative feedback dysregulates viral gene expression to therapeutically inhibit replication and confers a high evolutionary barrier to resistance. We find that nucleic-acid decoys mimicking cis-regulatory sites act as "feedback disruptors," break homeostasis, and increase viral transcription factors to cytotoxic levels (termed "open-loop lethality"). Feedback disruptors against herpesviruses reduced viral replication >2-logs without activating innate immunity, showed sub-nM IC50, synergized with standard-of-care antivirals, and inhibited virus replication in mice. In contrast to approved antivirals where resistance rapidly emerged, no feedback-disruptor escape mutants evolved in long-term cultures. For SARS-CoV-2, disruption of a putative feedback circuit also generated open-loop lethality, reducing viral titers by >1-log. These results demonstrate that generating open-loop lethality, via negative-feedback disruption, may yield a class of antimicrobials with a high genetic barrier to resistance.
Collapse
Affiliation(s)
- Sonali Chaturvedi
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA.
| | - Michael Pablo
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Marie Wolf
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Daniel Rosas-Rivera
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Giuliana Calia
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Arjun J Kumar
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Noam Vardi
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kelvin Du
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Joshua Glazier
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ruian Ke
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Matilda F Chan
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Leor S Weinberger
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
5
|
Balázsi G. New antivirals exploit viral feedback tricks for a cure without resistance. Cell 2022; 185:2210-2212. [DOI: 10.1016/j.cell.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 10/17/2022]
|
6
|
Human Cytomegalovirus IE2 Both Activates and Represses Initiation and Modulates Elongation in a Context-Dependent Manner. mBio 2022; 13:e0033722. [PMID: 35579393 PMCID: PMC9239164 DOI: 10.1128/mbio.00337-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) immediate-early 2 (IE2) protein is a multifunctional transcription factor that is essential for lytic HCMV infection. IE2 functions as an activator of viral early genes, negatively regulates its own promoter, and is required for viral replication. The mechanisms by which IE2 executes these distinct functions are incompletely understood. Using PRO-Seq, which profiles nascent transcripts, and a recently developed DFF-chromatin immunoprecipitation (DFF-ChIP; employs chromatin digestion by the endonuclease DNA fragmentation factor prior to IP) approach that resolves occupancy and local chromatin environment, we show that IE2 controls viral gene transcription in three distinct capacities during late HCMV infection and reveal mechanisms that involve direct binding of IE2 to viral DNA. IE2 represses a subset of viral promoters by binding within their core promoter regions and blocking the assembly of preinitiation complexes (PICs). Remarkably, IE2 forms a repressive complex at the major immediate-early promoter region involving direct association of IE2 with nucleosomes and TBP. IE2 stimulates transcription by binding nearby, but not within, core promoter regions. In addition, IE2 functions as a direct roadblock to transcription elongation. At one locus, this function of IE2 appears to be important for the synthesis of a spliced viral RNA. Consistent with the minimal observed effects of IE2 depletion on host gene transcription, IE2 does not functionally engage the host genome. Our results reveal mechanisms of transcriptional control by IE2, uncover a previously unknown function of IE2 as a Pol II elongation modulator, and demonstrate that DFF-ChIP is a useful tool for probing transcription factor occupancy and interactions between transcription factors and nucleosomes at high resolution.
Collapse
|
7
|
Haidar Ahmad S, Pasquereau S, El Baba R, Nehme Z, Lewandowski C, Herbein G. Distinct Oncogenic Transcriptomes in Human Mammary Epithelial Cells Infected With Cytomegalovirus. Front Immunol 2022; 12:772160. [PMID: 35003089 PMCID: PMC8727587 DOI: 10.3389/fimmu.2021.772160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus is being recognized as a potential oncovirus beside its oncomodulation role. We previously isolated two clinical isolates, HCMV-DB (KT959235) and HCMV-BL (MW980585), which in primary human mammary epithelial cells promoted oncogenic molecular pathways, established anchorage-independent growth in vitro, and produced tumorigenicity in mice models, therefore named high-risk oncogenic strains. In contrast, other clinical HCMV strains such as HCMV-FS, KM, and SC did not trigger such traits, therefore named low-risk oncogenic strains. In this study, we compared high-risk oncogenic HCMV-DB and BL strains (high-risk) with low-risk oncogenic strains HCMV-FS, KM, and SC (low-risk) additionally to the prototypic HCMV-TB40/E, knowing that all strains infect HMECs in vitro. Numerous pro-oncogenic features including enhanced expression of oncogenes, cell survival, proliferation, and epithelial-mesenchymal transition genes were observed with HCMV-BL. In vitro, mammosphere formation was observed only in high-risk strains. HCMV-TB40/E showed an intermediate transcriptome landscape with limited mammosphere formation. Since we observed that Ki67 gene expression allows us to discriminate between high and low-risk HCMV strains in vitro, we further tested its expression in vivo. Among HCMV-positive breast cancer biopsies, we only detected high expression of the Ki67 gene in basal tumors which may correspond to the presence of high-risk HCMV strains within tumors. Altogether, the transcriptome of HMECs infected with HCMV clinical isolates displays an “oncogenic gradient” where high-risk strains specifically induce a prooncogenic environment which might participate in breast cancer development.
Collapse
Affiliation(s)
- Sandy Haidar Ahmad
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Sébastien Pasquereau
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Ranim El Baba
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Zeina Nehme
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Clara Lewandowski
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Georges Herbein
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France.,Department of Virology, Centre Hospitalier Universitaire (CHU) Besançon, Besançon, France
| |
Collapse
|
8
|
Poole EL, Nevels MM. Editorial: Cytomegalovirus Pathogenesis and Host Interactions. Front Cell Infect Microbiol 2021; 11:711551. [PMID: 34307201 PMCID: PMC8293988 DOI: 10.3389/fcimb.2021.711551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Emma L. Poole
- Division of Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michael M. Nevels
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
9
|
Collins-McMillen D, Kamil J, Moorman N, Goodrum F. Control of Immediate Early Gene Expression for Human Cytomegalovirus Reactivation. Front Cell Infect Microbiol 2020; 10:476. [PMID: 33072616 PMCID: PMC7533536 DOI: 10.3389/fcimb.2020.00476] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a beta herpesvirus that persists for life in the majority of the world's population. The persistence of HCMV in the human population is due to the exquisite ability of herpesviruses to establish a latent infection that evades elimination by the host immune response. How the virus moves into and out of the latent state has been an intense area of research focus and debate. The prevailing paradigm is that the major immediate early promoter (MIEP), which drives robust expression of the major immediate early (MIE) transactivators, is epigenetically silenced during the establishment of latency, and must be reactivated for the virus to exit latency and re-enter productive replication. While it is clear that the MIEP is silenced by the association of repressive chromatin remodeling factors and histone marks, the mechanisms by which HCMV de-represses MIE gene expression for reactivation are less well understood. We have identified alternative promoter elements within the MIE locus that drive a second or delayed phase of MIE gene expression during productive infection. In the context of reactivation in THP-1 macrophages and primary CD34+ human progenitor cells, MIE transcripts are predominantly derived from initiation at these alternative promoters. Here we review the mechanisms by which alternative viral promoters might tailor the control of viral gene expression and the corresponding pattern of infection to specific cell types. Alternative promoter control of the HCMV MIE locus increases versatility in the system and allows the virus to tightly repress viral gene expression for latency but retain the ability to sense and respond to cell type-specific host cues for reactivation of replication.
Collapse
Affiliation(s)
- Donna Collins-McMillen
- Department of Immunobiology and BIO5 Institute, University of Arizona, Tucson, AZ, United States
| | - Jeremy Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, United States
| | - Nathaniel Moorman
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Felicia Goodrum
- Department of Immunobiology and BIO5 Institute, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
10
|
Chaturvedi S, Klein J, Vardi N, Bolovan-Fritts C, Wolf M, Du K, Mlera L, Calvert M, Moorman NJ, Goodrum F, Huang B, Weinberger LS. A molecular mechanism for probabilistic bet hedging and its role in viral latency. Proc Natl Acad Sci U S A 2020; 117:17240-17248. [PMID: 32632017 PMCID: PMC7382263 DOI: 10.1073/pnas.1914430117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Probabilistic bet hedging, a strategy to maximize fitness in unpredictable environments by matching phenotypic variability to environmental variability, is theorized to account for the evolution of various fate-specification decisions, including viral latency. However, the molecular mechanisms underlying bet hedging remain unclear. Here, we report that large variability in protein abundance within individual herpesvirus virion particles enables probabilistic bet hedging between viral replication and latency. Superresolution imaging of individual virions of the human herpesvirus cytomegalovirus (CMV) showed that virion-to-virion levels of pp71 tegument protein-the major viral transactivator protein-exhibit extreme variability. This super-Poissonian tegument variability promoted alternate replicative strategies: high virion pp71 levels enhance viral replicative fitness but, strikingly, impede silencing, whereas low virion pp71 levels reduce fitness but promote silencing. Overall, the results indicate that stochastic tegument packaging provides a mechanism enabling probabilistic bet hedging between viral replication and latency.
Collapse
Affiliation(s)
- Sonali Chaturvedi
- Gladstone Institute for Virology and Immunology, Gladstone|University of California, San Francisco Center for Cell Circuitry, San Francisco, CA 94158
| | - Jonathan Klein
- Gladstone Institute for Virology and Immunology, Gladstone|University of California, San Francisco Center for Cell Circuitry, San Francisco, CA 94158
| | - Noam Vardi
- Gladstone Institute for Virology and Immunology, Gladstone|University of California, San Francisco Center for Cell Circuitry, San Francisco, CA 94158
| | - Cynthia Bolovan-Fritts
- Gladstone Institute for Virology and Immunology, Gladstone|University of California, San Francisco Center for Cell Circuitry, San Francisco, CA 94158
| | - Marie Wolf
- Gladstone Institute for Virology and Immunology, Gladstone|University of California, San Francisco Center for Cell Circuitry, San Francisco, CA 94158
| | - Kelvin Du
- Gladstone Institute for Virology and Immunology, Gladstone|University of California, San Francisco Center for Cell Circuitry, San Francisco, CA 94158
| | - Luwanika Mlera
- Department of Cell & Molecular Medicine, University of Arizona, Tucson, AZ 85721
| | - Meredith Calvert
- Gladstone Institute for Virology and Immunology, Gladstone|University of California, San Francisco Center for Cell Circuitry, San Francisco, CA 94158
| | - Nathaniel J Moorman
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Felicia Goodrum
- Department of Cell & Molecular Medicine, University of Arizona, Tucson, AZ 85721
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Leor S Weinberger
- Gladstone Institute for Virology and Immunology, Gladstone|University of California, San Francisco Center for Cell Circuitry, San Francisco, CA 94158;
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| |
Collapse
|
11
|
Chaturvedi S, Engel R, Weinberger L. The HSV-1 ICP4 Transcriptional Auto-Repression Circuit Functions as a Transcriptional "Accelerator" Circuit. Front Cell Infect Microbiol 2020; 10:265. [PMID: 32670890 PMCID: PMC7326776 DOI: 10.3389/fcimb.2020.00265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) is a significant human pathogen. Upon infection, HSV-1 expresses its immediate early (IE) genes, and the IE transcription factor ICP4 (infectious cell protein-4) plays a pivotal role in initiating the downstream gene-expression cascade. Using live-cell time-lapse fluorescence microscopy, flow cytometry, qPCR, and chromatin immunoprecipitation, we quantitatively monitored the expression of ICP4 in individual cells after infection. We find that extrinsic stimuli can accelerate ICP4 kinetics without increasing ICP4 protein or mRNA levels. The accelerated ICP4 kinetics-despite unchanged steady-state ICP4 protein or mRNA level-correlate with increased HSV-1 replicative fitness. Hence, the kinetics of ICP4 functionally mirror the kinetics of the human herpesvirus cytomegalovirus IE2 "accelerator" circuit, indicating that IE accelerator circuitry is shared among the alpha and beta herpesviruses. We speculate that this circuit motif is a common evolutionary countermeasure to throttle IE expression and thereby minimize the inherent cytotoxicity of these obligate viral transactivators.
Collapse
Affiliation(s)
- Sonali Chaturvedi
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Gladstone Center for Cell Circuitry, University of California, San Francisco, San Francisco, CA, United States
| | - Ruth Engel
- Gladstone Center for Cell Circuitry, University of California, San Francisco, San Francisco, CA, United States
| | - Leor Weinberger
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Gladstone Center for Cell Circuitry, University of California, San Francisco, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
- Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
12
|
Adamson CS, Nevels MM. Bright and Early: Inhibiting Human Cytomegalovirus by Targeting Major Immediate-Early Gene Expression or Protein Function. Viruses 2020; 12:v12010110. [PMID: 31963209 PMCID: PMC7019229 DOI: 10.3390/v12010110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
The human cytomegalovirus (HCMV), one of eight human herpesviruses, establishes lifelong latent infections in most people worldwide. Primary or reactivated HCMV infections cause severe disease in immunosuppressed patients and congenital defects in children. There is no vaccine for HCMV, and the currently approved antivirals come with major limitations. Most approved HCMV antivirals target late molecular processes in the viral replication cycle including DNA replication and packaging. “Bright and early” events in HCMV infection have not been exploited for systemic prevention or treatment of disease. Initiation of HCMV replication depends on transcription from the viral major immediate-early (IE) gene. Alternative transcripts produced from this gene give rise to the IE1 and IE2 families of viral proteins, which localize to the host cell nucleus. The IE1 and IE2 proteins are believed to control all subsequent early and late events in HCMV replication, including reactivation from latency, in part by antagonizing intrinsic and innate immune responses. Here we provide an update on the regulation of major IE gene expression and the functions of IE1 and IE2 proteins. We will relate this insight to experimental approaches that target IE gene expression or protein function via molecular gene silencing and editing or small chemical inhibitors.
Collapse
|
13
|
Gao R, Stock AM. Overcoming the Cost of Positive Autoregulation by Accelerating the Response with a Coupled Negative Feedback. Cell Rep 2019; 24:3061-3071.e6. [PMID: 30208328 PMCID: PMC6194859 DOI: 10.1016/j.celrep.2018.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/06/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
A fundamental trade-off between rapid response and optimal expression of genes below cytotoxic levels exists for many signaling circuits, particularly for positively autoregulated systems with an inherent response delay. Here, we describe a regulatory scheme in the E. coli PhoB-PhoR two-component system, which overcomes the cost of positive feedback and achieves both fast and optimal steadystate response for maximal fitness across different environments. Quantitation of the cellular activities enables accurate modeling of the response dynamics to describe how requirements for optimal protein concentrations place limits on response speed. An observed fast response that exceeds the limit led to the prediction and discovery of a coupled negative autoregulation, which allows fast gene expression without increasing steady-state levels. We demonstrate the fitness advantages for the coupled feedbacks in both dynamic and stable environments. Such regulatory schemes offer great flexibility for accurate control of gene expression levels and dynamics upon environmental changes. Positive autoregulation of transcription produces a delayed response. Gao and Stock describe the limit of response delay caused by requirements of optimal protein levels in the PhoBR twocomponent system. Coupled negative autoregulation is discovered to allow a strong promoter for fast response without incurring cost of increasing protein expression levels.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
14
|
Vardi N, Chaturvedi S, Weinberger LS. Feedback-mediated signal conversion promotes viral fitness. Proc Natl Acad Sci U S A 2018; 115:E8803-E8810. [PMID: 30150412 PMCID: PMC6140503 DOI: 10.1073/pnas.1802905115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A fundamental signal-processing problem is how biological systems maintain phenotypic states (i.e., canalization) long after degradation of initial catalyst signals. For example, to efficiently replicate, herpesviruses (e.g., human cytomegalovirus, HCMV) rapidly counteract cell-mediated silencing using transactivators packaged in the tegument of the infecting virion particle. However, the activity of these tegument transactivators is inherently transient-they undergo immediate proteolysis but delayed synthesis-and how transient activation sustains lytic viral gene expression despite cell-mediated silencing is unclear. By constructing a two-color, conditional-feedback HCMV mutant, we find that positive feedback in HCMV's immediate-early 1 (IE1) protein is of sufficient strength to sustain HCMV lytic expression. Single-cell time-lapse imaging and mathematical modeling show that IE1 positive feedback converts transient transactivation signals from tegument pp71 proteins into sustained lytic expression, which is obligate for efficient viral replication, whereas attenuating feedback decreases fitness by promoting a reversible silenced state. Together, these results identify a regulatory mechanism enabling herpesviruses to sustain expression despite transient activation signals-akin to early electronic transistors-and expose a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Noam Vardi
- Gladstone-University of California, San Francisco (UCSF) Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158
| | - Sonali Chaturvedi
- Gladstone-University of California, San Francisco (UCSF) Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158
| | - Leor S Weinberger
- Gladstone-University of California, San Francisco (UCSF) Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158;
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| |
Collapse
|
15
|
The transcriptome of human mammary epithelial cells infected with the HCMV-DB strain displays oncogenic traits. Sci Rep 2018; 8:12574. [PMID: 30135434 PMCID: PMC6105607 DOI: 10.1038/s41598-018-30109-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/21/2018] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates that human cytomegalovirus (HCMV) populations under the influence of host environment, can either be stable or rapidly differentiating, leading to tissue compartment colonization. We isolated previously from a 30-years old pregnant woman, a clinical isolate of HCMV, that we refered to as the HCMV-DB strain (accession number KT959235). The HCMV-DB clinical isolate demonstrated its ability to infect primary macrophages and to upregulate the proto-oncogene Bcl-3. We observed in this study that the genome of HCMV-DB strain is close to the genomes of other primary clinical isolates including the Toledo and the JP strains with the later having been isolated from a glandular tissue, the prostate. Using a phylogenetic analysis to compare the genes involved in virus entry, we observed that the HCMV-DB strain is close to the HCMV strain Merlin, the prototype HCMV strain. HCMV-DB infects human mammary epithelial cells (HMECs) which in turn display a ER−/PR−/HER2− phenotype, commonly refered to as triple negative. The transcriptome of HCMV-DB-infected HMECs presents the characteristics of a pro-oncogenic cellular environment with upregulated expression of numerous oncogenes, enhanced activation of pro-survival genes, and upregulated markers of cell proliferation, stemcellness and epithelial mesenchymal transition (EMT) that was confirmed by enhanced cellular proliferation and tumorsphere formation in vitro. Taken together our data indicate that some clinical isolates could be well adapted to the mammary tissue environment, as it is the case for the HCMV-DB strain. This could influence the viral fitness, ultimately leading to breast cancer development.
Collapse
|
16
|
Hansen MMK, Wen WY, Ingerman E, Razooky BS, Thompson CE, Dar RD, Chin CW, Simpson ML, Weinberger LS. A Post-Transcriptional Feedback Mechanism for Noise Suppression and Fate Stabilization. Cell 2018; 173:1609-1621.e15. [PMID: 29754821 PMCID: PMC6044448 DOI: 10.1016/j.cell.2018.04.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/19/2018] [Accepted: 04/03/2018] [Indexed: 11/25/2022]
Abstract
Diverse biological systems utilize fluctuations ("noise") in gene expression to drive lineage-commitment decisions. However, once a commitment is made, noise becomes detrimental to reliable function, and the mechanisms enabling post-commitment noise suppression are unclear. Here, we find that architectural constraints on noise suppression are overcome to stabilize fate commitment. Using single-molecule and time-lapse imaging, we find that-after a noise-driven event-human immunodeficiency virus (HIV) strongly attenuates expression noise through a non-transcriptional negative-feedback circuit. Feedback is established through a serial cascade of post-transcriptional splicing, whereby proteins generated from spliced mRNAs auto-deplete their own precursor unspliced mRNAs. Strikingly, this auto-depletion circuitry minimizes noise to stabilize HIV's commitment decision, and a noise-suppression molecule promotes stabilization. This feedback mechanism for noise suppression suggests a functional role for delayed splicing in other systems and may represent a generalizable architecture of diverse homeostatic signaling circuits.
Collapse
Affiliation(s)
- Maike M K Hansen
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Winnie Y Wen
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elena Ingerman
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Brandon S Razooky
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Cassandra E Thompson
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Roy D Dar
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Charles W Chin
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Bredesen Center, University of Tennessee, Knoxville, TN 37996, USA
| | - Michael L Simpson
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Bredesen Center, University of Tennessee, Knoxville, TN 37996, USA
| | - Leor S Weinberger
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
17
|
Kumar A, Tripathy MK, Pasquereau S, Al Moussawi F, Abbas W, Coquard L, Khan KA, Russo L, Algros MP, Valmary-Degano S, Adotevi O, Morot-Bizot S, Herbein G. The Human Cytomegalovirus Strain DB Activates Oncogenic Pathways in Mammary Epithelial Cells. EBioMedicine 2018; 30:167-183. [PMID: 29628341 PMCID: PMC5952350 DOI: 10.1016/j.ebiom.2018.03.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) establishes a persistent life-long infection and increasing evidence indicates HCMV infection can modulate signaling pathways associated with oncogenesis. Breast milk is an important route of HCMV transmission in humans and we hypothesized that mammary epithelial cells could be one of the main cellular targets of HCMV infection. Methods The infectivity of primary human mammary epithelial cells (HMECs) was assessed following infection with the HCMV-DB strain, a clinical isolate with a marked macrophage-tropism. The impact of HCMV-DB infection on expression of p53 and retinoblastoma proteins, telomerase activity and oncogenic pathways (c-Myc, Akt, Ras, STAT3) was studied. Finally the transformation of HCMV-DB infected HMECs was evaluated using soft agar assay. CTH cells (CMV Transformed HMECs) were detected in prolonged cultures of infected HMECs. Tumor formation was observed in NOD/SCID Gamma (NSG) mice injected with CTH cells. Detection of long non coding RNA4.9 (lncRNA4.9) gene was assessed in CTH cells, tumors isolated from xenografted NSG mice and biopsies of patients with breast cancer using qualitative and quantitative PCR. Results We found that HCMV, especially a clinical strain named HCMV-DB, infects HMECs in vitro. The clinical strain HCMV-DB replicates productively in HMECs as evidenced by detection of early and late viral transcripts and proteins. Following infection of HMECs with HCMV-DB, we observed the inactivation of retinoblastoma and p53 proteins, the activation of telomerase activity, the activation of the proto-oncogenes c-Myc and Ras, the activation of Akt and STAT3, and the upregulation of cyclin D1 and Ki67 antigen. Colony formation was observed in soft agar seeded with HCMV-DB-infected HMECs. Prolonged culture of infected HMECs resulted in the development of clusters of spheroid cells that we called CTH cells (CMV Transformed HMECs). CTH cells when injected in NOD/SCID Gamma (NSG) mice resulted in the development of tumors. We detected in CTH cells the presence of a HCMV signature corresponding to a sequence of the long noncoding RNA4.9 (lncRNA4.9) gene. We also found the presence of the HCMV lncRNA4.9 sequence in tumors isolated from xenografted NSG mice injected with CTH cells and in biopsies of patients with breast cancer using qualitative and quantitative PCR. Conclusions Our data indicate that key molecular pathways involved in oncogenesis are activated in HCMV-DB-infected HMECs that ultimately results in the transformation of HMECs in vitro with the appearance of CMV-transformed HMECs (CTH cells) in culture. CTH cells display a HCMV signature corresponding to a lncRNA4.9 genomic sequence and give rise to fast growing triple-negative tumors in NSG mice. A similar lncRNA4.9 genomic sequence was detected in tumor biopsies of patients with breast cancer. The infection of primary human mammary epithelial cells (HMECs) with the HCMV-DB strain results in a pro-oncogenic cellular environment. HCMV-DB transforms primary HMECs in vitro as measured by a soft agar assay. Prolonged culture of HMECs infected with HCMV-DB results in the appearance of clusters of spheroid cells that we called CTH cells (CMV Transformed HMECs). CTH cells when injected in NOD/SCID Gamma mice resulted in the development of breast tumor. The HCMV lncRNA4.9 sequence was detected in CTH cells, in tumors isolated from xenografted NSG mice injected with CTH cells and in biopsies of patients with breast cancer.
Research in Context: Worldwide breast cancer is the most common cancer diagnosed among women. Etiological factors involved in breast cancer include genetic and environmental risk factors and among these latter viruses could be involved with close to one-fifth of all cancers in the world caused by infectious agents. We found that the cytomegalovirus strain DB, a member of the herpesvirus family, activates oncogenic pathways in infected mammary epithelial cells, transforms these cells in culture and favors the appearance of tumors in xenografted mice. Our findings might lead to a better understanding of the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Amit Kumar
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Manoj Kumar Tripathy
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Sébastien Pasquereau
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France.
| | - Fatima Al Moussawi
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France; Lebanese University, Beyrouth, Lebanon
| | | | - Laurie Coquard
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Kashif Aziz Khan
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Laetitia Russo
- Department of Pathology, CHRU Besançon, F-25030 Besançon, France
| | | | | | - Olivier Adotevi
- INSERM UMR1098, University of Bourgogne Franche-Comté, Besançon, France; Department of Medical Oncology, CHRU Besancon, F-25030 Besancon, France.
| | | | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France; Department of Virology, CHRU Besancon, F-25030 Besancon, France.
| |
Collapse
|
18
|
miRNA-mediated targeting of human cytomegalovirus reveals biological host and viral targets of IE2. Proc Natl Acad Sci U S A 2018; 115:1069-1074. [PMID: 29339472 DOI: 10.1073/pnas.1719036115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (HCMV) impacts more than one-half of the human population owing to its capacity to manipulate the cell and create latent reservoirs in the host. Despite an extensive understanding of HCMV biology during acute infection in fibroblasts, the molecular basis for latency in myeloid cells remains incomplete. This knowledge gap is due largely to the fact that the existing genetic systems require virus rescue in fibroblasts, precluding the study of genes that are essential during acute infection, yet likely play unique roles in myeloid cells or the establishment of latency. Here we present a solution to address this restriction. Through the exploitation of a hematopoietic-specific microRNA, we demonstrate a one-step recombineering approach that enables gene silencing only in cells associated with latency. As a proof of concept, here we describe a TB40/E variant that undergoes hematopoietic targeting of the Immediate Early-2 (IE2) gene to explore its function during infection of myeloid cells. While virus replication of the hematopoietic-targeted IE2 variant was unimpaired in fibroblasts, we observed a >100-fold increase in virus titers in myeloid cells. Virus replication in myeloid cells demonstrated that IE2 has a significant transcriptional footprint on both viral and host genes. These data implicate IE2 as an essential mediator of virus biology in myeloid cells and illustrate the utility of cell-specific microRNA-based targeting.
Collapse
|
19
|
Linderman JA, Kobayashi M, Rayannavar V, Fak JJ, Darnell RB, Chao MV, Wilson AC, Mohr I. Immune Escape via a Transient Gene Expression Program Enables Productive Replication of a Latent Pathogen. Cell Rep 2017; 18:1312-1323. [PMID: 28147283 DOI: 10.1016/j.celrep.2017.01.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/30/2016] [Accepted: 01/09/2017] [Indexed: 12/28/2022] Open
Abstract
How type I and II interferons prevent periodic reemergence of latent pathogens in tissues of diverse cell types remains unknown. Using homogeneous neuron cultures latently infected with herpes simplex virus 1, we show that extrinsic type I or II interferon acts directly on neurons to induce unique gene expression signatures and inhibit the reactivation-specific burst of viral genome-wide transcription called phase I. Surprisingly, interferons suppressed reactivation only during a limited period early in phase I preceding productive virus growth. Sensitivity to type II interferon was selectively lost if viral ICP0, which normally accumulates later in phase I, was expressed before reactivation. Thus, interferons suppress reactivation by preventing initial expression of latent genomes but are ineffective once phase I viral proteins accumulate, limiting interferon action. This demonstrates that inducible reactivation from latency is only transiently sensitive to interferon. Moreover, it illustrates how latent pathogens escape host immune control to periodically replicate by rapidly deploying an interferon-resistant state.
Collapse
Affiliation(s)
- Jessica A Linderman
- Department of Microbiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | - Mariko Kobayashi
- Laboratory of Molecular Neuro-Oncology & Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave., Box 226, New York, NY 10065, USA
| | - Vinayak Rayannavar
- Department of Microbiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Kimmel Center for Biology & Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | - John J Fak
- Laboratory of Molecular Neuro-Oncology & Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave., Box 226, New York, NY 10065, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology & Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave., Box 226, New York, NY 10065, USA
| | - Moses V Chao
- Department of Cell Biology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Department of Physiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Department of Neuroscience, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Kimmel Center for Biology & Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | - Angus C Wilson
- Department of Microbiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center at NYU Medical Center, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center at NYU Medical Center, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA.
| |
Collapse
|
20
|
Aull KH, Tanner EJ, Thomson M, Weinberger LS. Transient Thresholding: A Mechanism Enabling Noncooperative Transcriptional Circuitry to Form a Switch. Biophys J 2017; 112:2428-2438. [PMID: 28591615 DOI: 10.1016/j.bpj.2017.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/20/2017] [Accepted: 05/01/2017] [Indexed: 01/27/2023] Open
Abstract
Threshold generation in fate-selection circuits is often achieved through deterministic bistability, which requires cooperativity (i.e., nonlinear activation) and associated hysteresis. However, the Tat positive-feedback loop that controls HIV's fate decision between replication and proviral latency lacks self-cooperativity and deterministic bistability. Absent cooperativity, it is unclear how HIV can temporarily remain in an off-state long enough for the kinetically slower epigenetic silencing mechanisms to act-expression fluctuations should rapidly trigger active positive feedback and replication, precluding establishment of latency. Here, using flow cytometry and single-cell imaging, we find that the Tat circuit exhibits a transient activation threshold. This threshold largely disappears after ∼40 h-accounting for the lack of deterministic bistability-and promoter activation shortens the lifetime of this transient threshold. Continuous differential equation models do not recapitulate this phenomenon. However, chemical reaction (master equation) models where the transcriptional transactivator and promoter toggle between inactive and active states can recapitulate the phenomenon because they intrinsically create a single-molecule threshold transiently requiring excess molecules in the inactive state to achieve at least one molecule (rather than a continuous fractional value) in the active state. Given the widespread nature of promoter toggling and transcription factor modifications, transient thresholds may be a general feature of inducible promoters.
Collapse
Affiliation(s)
- Katherine H Aull
- Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, California
| | - Elizabeth J Tanner
- Gladstone Institutes (Virology and Immunology), San Francisco, California
| | - Matthew Thomson
- Division of Biology and Biological Engineering, Caltech, Pasadena, California
| | - Leor S Weinberger
- Gladstone Institutes (Virology and Immunology), San Francisco, California; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
21
|
Abstract
Current antivirals effectively target diverse viruses at various stages of their life cycles. Nevertheless, curative therapy has remained elusive for important pathogens, such as human immunodeficiency virus type 1 (HIV-1) and herpesviruses, in large part due to viral latency and the evolution of resistance to existing therapies. Here, we review the discovery of viral master circuits: virus-encoded autoregulatory gene networks that autonomously control viral expression programs (i.e., between active, latent, and abortive fates). These circuits offer the opportunity for a new class of antivirals that could lead to intrinsic combination-antiviral therapies within a single molecule-evolutionary escape from such circuit-disrupting antivirals would require simultaneous evolution of both the viral cis regulatory element (e.g., the DNA-binding site) and the trans element (e.g., the transcription factor) in order for the virus to recapitulate a circuit that would not be disrupted. We review the architectures of these fate-regulating master circuits in HIV-1 and the human herpesvirus cytomegalovirus along with potential circuit-disruption strategies that may ultimately enable escape-resistant antiviral therapies.
Collapse
Affiliation(s)
- Anand Pai
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158;
| | - Leor S Weinberger
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158; .,Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| |
Collapse
|
22
|
Bohn-Wippert K, Tevonian EN, Megaridis MR, Dar RD. Similarity in viral and host promoters couples viral reactivation with host cell migration. Nat Commun 2017; 8:15006. [PMID: 28462923 PMCID: PMC5418578 DOI: 10.1038/ncomms15006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 02/20/2017] [Indexed: 11/29/2022] Open
Abstract
Viral–host interactomes map the complex architecture of an evolved arms race during host cell invasion. mRNA and protein interactomes reveal elaborate targeting schemes, yet evidence is lacking for genetic coupling that results in the co-regulation of promoters. Here we compare viral and human promoter sequences and expression to test whether genetic coupling exists and investigate its phenotypic consequences. We show that viral–host co-evolution is imprinted within promoter gene sequences before transcript or protein interactions. Co-regulation of human immunodeficiency virus (HIV) and human C-X-C chemokine receptor-4 (CXCR4) facilitates migration of infected cells. Upon infection, HIV can actively replicate or remain dormant. Migrating infected cells reactivate from dormancy more than non-migrating cells and exhibit differential migration–reactivation responses to drugs. Cells producing virus pose a risk for reinitiating infection within niches inaccessible to drugs, and tuning viral control of migration and reactivation improves strategies to eliminate latent HIV. Viral–host genetic coupling establishes a mechanism for synchronizing transcription and guiding potential therapies. The coevolution of viruses and host cells can be mapped with interactomics. Here the authors identify coupling of human and viral promoters, and show that HIV-reactivation from dormancy is coincident with migration of HIV-infected cells owing to coupling of human CXCR4 and HIV LTR promoters.
Collapse
Affiliation(s)
- Kathrin Bohn-Wippert
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Lab, MC-278, 1304W Springfield Avenue, Urbana, Illinois 61801, USA
| | - Erin N Tevonian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Lab, MC-278, 1304W Springfield Avenue, Urbana, Illinois 61801, USA
| | - Melina R Megaridis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Lab, MC-278, 1304W Springfield Avenue, Urbana, Illinois 61801, USA
| | - Roy D Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Lab, MC-278, 1304W Springfield Avenue, Urbana, Illinois 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206W Gregory Drive, Urbana, Illinois 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, USA
| |
Collapse
|
23
|
Saykally VR, Rast LI, Sasaki J, Jung SY, Bolovan-Fritts C, Weinberger LS. A Bioreactor Method to Generate High-titer, Genetically Stable, Clinical-isolate Human Cytomegalovirus. Bio Protoc 2017; 7:e2589. [PMID: 29226181 DOI: 10.21769/bioprotoc.2589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection is a major cause of morbidity and mortality in transplant patients and a leading cause of congenital birth defects (Saint Louis, 2016). Vaccination and therapeutic studies often require scalable cell culture production of wild type virus, represented by clinical isolates. Obtaining sufficient stocks of wild-type clinical HCMV is often labor intensive and inefficient due to low yield and genetic loss, presenting a barrier to studies of clinical isolates. Here we report a bioreactor method based on continuous infection, where retinal pigment epithelial (ARPE-19) cells adhered to microcarrier beads are infected in a bioreactor and used to produce high-titers of clinical isolate HCMV that maintain genetic integrity of key viral tropism factors and the viral genome. In this bioreactor, an end-stage infection can be maintained by regular addition of uninfected ARPE-19 cells, providing convenient preparation of 107-108 pfu/ml of concentrated TB40/E IE2-EYFP stocks without daily cell passaging or trypsinization. Overall, this represents a 100-fold increase in gain of virus production of 100-times compared to conventional static-culture plates, while requiring 90% less handling time. Moreover, this continuous infection environment has the potential to monitor infection dynamics with applications for real-time tracking of viral evolution.
Collapse
Affiliation(s)
- Victoria R Saykally
- Gladstone Institute for Virology and Immunology, University of California, San Francisco, California, USA
| | - Luke I Rast
- Gladstone Institute for Virology and Immunology, University of California, San Francisco, California, USA
| | - Jeff Sasaki
- Gladstone Institute for Virology and Immunology, University of California, San Francisco, California, USA
| | - Seung-Yong Jung
- Gladstone Institute for Virology and Immunology, University of California, San Francisco, California, USA
| | - Cynthia Bolovan-Fritts
- Gladstone Institute for Virology and Immunology, University of California, San Francisco, California, USA
| | - Leor S Weinberger
- Gladstone Institute for Virology and Immunology, University of California, San Francisco, California, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA.,QB3, California Institute for Quantitative Biosciences, University of California, San Francisco, California, USA
| |
Collapse
|
24
|
Convallatoxin-Induced Reduction of Methionine Import Effectively Inhibits Human Cytomegalovirus Infection and Replication. J Virol 2016; 90:10715-10727. [PMID: 27654292 DOI: 10.1128/jvi.01050-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous human pathogen that increases the morbidity and mortality of immunocompromised individuals. The current FDA-approved treatments for CMV infection are intended to be virus specific, yet they have significant adverse side effects, including nephrotoxicity and hematological toxicity. Thus, there is a medical need for safer and more effective CMV therapeutics. Using a high-content screen, we identified the cardiac glycoside convallatoxin as an effective compound that inhibits CMV infection. Using a panel of cardiac glycoside variants, we assessed the structural elements critical for anti-CMV activity by both experimental and in silico methods. Analysis of the antiviral effects, toxicities, and pharmacodynamics of different variants of cardiac glycosides identified the mechanism of inhibition as reduction of methionine import, leading to decreased immediate-early gene translation without significant toxicity. Also, convallatoxin was found to dramatically reduce the proliferation of clinical CMV strains, implying that its mechanism of action is an effective strategy to block CMV dissemination. Our study has uncovered the mechanism and structural elements of convallatoxin, which are important for effectively inhibiting CMV infection by targeting the expression of immediate-early genes. IMPORTANCE Cytomegalovirus is a highly prevalent virus capable of causing severe disease in certain populations. The current FDA-approved therapeutics all target the same stage of the viral life cycle and induce toxicity and viral resistance. We identified convallatoxin, a novel cell-targeting antiviral that inhibits CMV infection by decreasing the synthesis of viral proteins. At doses low enough for cells to tolerate, convallatoxin was able to inhibit primary isolates of CMV, including those resistant to the anti-CMV drug ganciclovir. In addition to identifying convallatoxin as a novel antiviral, limiting mRNA translation has a dramatic impact on CMV infection and proliferation.
Collapse
|
25
|
The Microtubule Inhibitor Podofilox Inhibits an Early Entry Step of Human Cytomegalovirus. Viruses 2016; 8:v8100295. [PMID: 27783035 PMCID: PMC5086627 DOI: 10.3390/v8100295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus is a ubiquitous β-herpesvirus that infects many different cell types through an initial binding to cell surface receptors followed by a fusion event at the cell membrane or endocytic vesicle. A recent high-throughput screen to identify compounds that block a step prior to viral gene expression identified podofilox as a potent and nontoxic inhibitor. Time-of-addition studies in combination with quantitative-PCR analysis demonstrated that podofilox limits an early step of virus entry at the cell surface. Podofilox was also able to drastically reduce infection by herpes simplex 1, an α-herpesvirus with a very similar entry process to CMV. Podofilox caused a reduced maximal plateau inhibition of infection by viruses with single step binding processes prior to fusion-like Newcastle disease virus, Sendai virus, and influenza A virus or viruses that enter via endocytosis like vesicular stomatitis virus and a clinical-like strain of CMV. These results indicate that microtubules appear to be participating in the post-binding step of virus entry including the pre- and post-penetration events. Modulation of the plasma membrane is required to promote virus entry for herpesviruses, and that podofilox, unlike colchicine or nocodazole, is able to preferentially target microtubule networks at the plasma membrane.
Collapse
|
26
|
Levy G, Habib N, Guzzardi MA, Kitsberg D, Bomze D, Ezra E, Uygun BE, Uygun K, Trippler M, Schlaak JF, Shibolet O, Sklan EH, Cohen M, Timm J, Friedman N, Nahmias Y. Nuclear receptors control pro-viral and antiviral metabolic responses to hepatitis C virus infection. Nat Chem Biol 2016; 12:1037-1045. [PMID: 27723751 DOI: 10.1038/nchembio.2193] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
Viruses lack the basic machinery needed to replicate and therefore must hijack the host's metabolism to propagate. Virus-induced metabolic changes have yet to be systematically studied in the context of host transcriptional regulation, and such studies shoul offer insight into host-pathogen metabolic interplay. In this work we identified hepatitis C virus (HCV)-responsive regulators by coupling system-wide metabolic-flux analysis with targeted perturbation of nuclear receptors in primary human hepatocytes. We found HCV-induced upregulation of glycolysis, ketogenesis and drug metabolism, with glycolysis controlled by activation of HNF4α, ketogenesis by PPARα and FXR, and drug metabolism by PXR. Pharmaceutical inhibition of HNF4α reversed HCV-induced glycolysis, blocking viral replication while increasing apoptosis in infected cells showing virus-induced dependence on glycolysis. In contrast, pharmaceutical inhibition of PPARα or FXR reversed HCV-induced ketogenesis but increased viral replication, demonstrating a novel host antiviral response. Our results show that virus-induced changes to a host's metabolism can be detrimental to its life cycle, thus revealing a biologically complex relationship between virus and host.
Collapse
Affiliation(s)
- Gahl Levy
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Habib
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Maria Angela Guzzardi
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Daniel Kitsberg
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Bomze
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elishai Ezra
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Faculty of Engineering, Jerusalem College of Technology, Jerusalem, Israel
| | - Basak E Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Korkut Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Martin Trippler
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Joerg F Schlaak
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Oren Shibolet
- Liver Unit, Department of Gastroenterology, Tel-Aviv Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Ella H Sklan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Merav Cohen
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joerg Timm
- Institute for Virology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Nir Friedman
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
27
|
An intein-mediated modulation of protein stability system and its application to study human cytomegalovirus essential gene function. Sci Rep 2016; 6:26167. [PMID: 27188239 PMCID: PMC4870628 DOI: 10.1038/srep26167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/27/2016] [Indexed: 01/30/2023] Open
Abstract
Functional analysis of the essential proteins encoded by human cytomegalovirus (HCMV) is hindered by the lack of complementing systems. To overcome this difficulty, we have established a novel approach, termed the intein-mediated modulation of protein stability (imPS), in which a destabilizing domain and part of a split intein are fused to the essential protein. The growth of the mutant virus can then be regulated by the degradation and splicing of the protein. We found that an ultrafast gp41-1 split intein was able to rescue or degrade the protein of interest (POI) by removing or adding a strong degron through protein splicing. As a result, the function of the POI was turned on or off during the process. Using HCMV essential gene IE1/IE2, we confirmed that imPS worked remarkably well in conditionally regulating protein stability during viral infection. This conditional approach is likely to be applicable for dissecting the gene functions of HCMV or other viruses.
Collapse
|
28
|
Ziehr B, Lenarcic E, Cecil C, Moorman NJ. The eIF4AIII RNA helicase is a critical determinant of human cytomegalovirus replication. Virology 2016; 489:194-201. [PMID: 26773380 DOI: 10.1016/j.virol.2015.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 01/08/2023]
Abstract
Human cytomegalovirus (HCMV) was recently shown to encode a large number of spliced mRNAs. While the nuclear export of unspliced viral transcripts has been extensively studied, the role of host mRNA export factors in HCMV mRNA trafficking remains poorly defined. We found that the eIF4AIII RNA helicase, a component of the exon junction complex, was necessary for efficient virus replication. Depletion of eIF4AIII limited viral DNA accumulation, export of viral mRNAs from the nucleus, and the production of progeny virus. However eIF4AIII was dispensable for the association of viral transcripts with ribosomes. We found that pateamine A, a natural compound that inhibits both eIF4AI/II and eIF4AIII, has potent antiviral activity and inhibits HCMV replication throughout the virus lytic cycle. Our results demonstrate that eIF4AIII is required for efficient HCMV replication, and suggest that eIF4A family helicases may be a new class of targets for the development of host-directed antiviral therapeutics.
Collapse
Affiliation(s)
- Ben Ziehr
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erik Lenarcic
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chad Cecil
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathaniel J Moorman
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
29
|
Yuan J, Li M, Torres YR, Galle CS, Meier JL. Differentiation-Coupled Induction of Human Cytomegalovirus Replication by Union of the Major Enhancer Retinoic Acid, Cyclic AMP, and NF-κB Response Elements. J Virol 2015; 89:12284-98. [PMID: 26423948 PMCID: PMC4665231 DOI: 10.1128/jvi.00965-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 09/08/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Triggers and regulatory pathways that effectively link human cytomegalovirus (HCMV) major immediate early (MIE) latent-lytic switch activation with progeny production are incompletely understood. In the quiescently infected human NTera2 cell model of primitive neural stem cells, we found that costimulation with vasoactive intestinal peptide (V) and phorbol ester (P) synergistically activated viral infection, but this effect waned over time. Coupling retinoic acid (R), an inducer of neuronal differentiation, to VP pulse stimulation attenuated the decline in viral activity and promoted the spread of the active infection through concentric layers of neighboring cells as cellular differentiation progressed. R stimulation alone was unable to activate the infection. The MIE enhancer cis-regulatory mechanisms responsible for this result were characterized by a strategy of combinatorial mutagenesis of five cis-acting element types (retinoic acid receptor binding elements [RARE], cyclic AMP [cAMP] response elements [CRE], NF-κB binding sites [kB], serum response element, and ETS/ELK-1 binding site) and multiple methods of assessment. We found that the CRE and kB combination sets the preinduction enhancer tone, is the major initiator and amplifier of RVP-induced MIE gene expression, and cooperates with RARE during cellular differentiation to enhance viral spread. In predifferentiated NTera2, we also found that the CRE-kB combination functions as initiator and amplifier of unstimulated HCMV MIE gene expression and cooperatively interacts with RARE to enhance viral spread. We conclude that RVP-stimulated signaling cascades and cellular differentiation operate through the enhancer CRE-kB-RARE core in strengthening induction of HCMV MIE gene expression in linkage with viral propagation. IMPORTANCE Cytomegalovirus-seropositive persons commonly lack detectable levels of cytomegalovirus replication, even when profoundly immunocompromised. In a human NTera2 cell model of primitive neural stem cells carrying resting cytomegalovirus genomes, we show that costimulation of protein kinase A and C-delta signaling cascades in conjunction with retinoic acid-induced neuronal differentiation brings about progeny virus propagation. Iterated DNA binding sites for retinoic acid receptor, CREB, and NF-κB family members in the cytomegalovirus major enhancer are at the crux in the pathway to HCMV activation. The stimulated CREB and NF-κB binding site combination vigorously initiates and amplifies the active cytomegalovirus infection and cooperates with activated retinoic acid receptor binding sites to further promote viral proliferation and spread between differentiated cells. These results support a paradigm in which a specific combination of stimuli coupled with cellular differentiation satisfies a core cis-activating code that unlocks enhancer silence to repower the cycle of cytomegalovirus propagation.
Collapse
Affiliation(s)
- Jinxiang Yuan
- University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ming Li
- University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Courtney S Galle
- University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jeffery L Meier
- Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
30
|
Ono C, Sato M, Taka H, Asano SI, Matsuura Y, Bando H. Tightly regulated expression of Autographa californica multicapsid nucleopolyhedrovirus immediate early genes emerges from their interactions and possible collective behaviors. PLoS One 2015; 10:e0119580. [PMID: 25816136 PMCID: PMC4376880 DOI: 10.1371/journal.pone.0119580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 01/29/2015] [Indexed: 11/18/2022] Open
Abstract
To infect their hosts, DNA viruses must successfully initiate the expression of viral genes that control subsequent viral gene expression and manipulate the host environment. Viral genes that are immediately expressed upon infection play critical roles in the early infection process. In this study, we investigated the expression and regulation of five canonical regulatory immediate-early (IE) genes of Autographa californica multicapsid nucleopolyhedrovirus: ie0, ie1, ie2, me53, and pe38. A systematic transient gene-expression analysis revealed that these IE genes are generally transactivators, suggesting the existence of a highly interactive regulatory network. A genetic analysis using gene knockout viruses demonstrated that the expression of these IE genes was tolerant to the single deletions of activator IE genes in the early stage of infection. A network graph analysis on the regulatory relationships observed in the transient expression analysis suggested that the robustness of IE gene expression is due to the organization of the IE gene regulatory network and how each IE gene is activated. However, some regulatory relationships detected by the genetic analysis were contradictory to those observed in the transient expression analysis, especially for IE0-mediated regulation. Statistical modeling, combined with genetic analysis using knockout alleles for ie0 and ie1, showed that the repressor function of ie0 was due to the interaction between ie0 and ie1, not ie0 itself. Taken together, these systematic approaches provided insight into the topology and nature of the IE gene regulatory network.
Collapse
Affiliation(s)
- Chikako Ono
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Masanao Sato
- National Institute for Basic Biology, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Higashiyama, Myodaiji, Okazaki, Japan
| | - Hitomi Taka
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shin-ichiro Asano
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hisanori Bando
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
31
|
Gardner TJ, Cohen T, Redmann V, Lau Z, Felsenfeld D, Tortorella D. Development of a high-content screen for the identification of inhibitors directed against the early steps of the cytomegalovirus infectious cycle. Antiviral Res 2014; 113:49-61. [PMID: 25446405 DOI: 10.1016/j.antiviral.2014.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 01/06/2023]
Abstract
Human cytomegalovirus (CMV) is a latent and persistent virus whose proliferation increases morbidity and mortality of immune-compromised individuals. The current anti-CMV therapeutics targeting the viral DNA polymerase or the major immediate-early (MIE) gene locus are somewhat effective at limiting CMV-associated disease. However, due to low bioavailability, severe toxicity, and the development of drug resistant CMV strains following prolonged treatment, current anti-CMV therapeutics are insufficient. To help address this shortfall, we established a high-content assay to identify inhibitors targeting CMV entry and the early steps of infection. The infection of primary human fibroblasts with a variant of the CMV laboratory strain AD169 expressing a chimeric IE2-yellow fluorescence protein (YFP) (AD169IE2-YFP) provided the basis for the high-content assay. The localization of IE2-YFP to the nucleus shortly following an AD169IE2-YFP infection induced a robust fluorescent signal that was quantified using confocal microscopy. The assay was optimized to achieve outstanding assay fitness and high Z' scores. We then screened a bioactive chemical library consisting of 2080 compounds and identified hit compounds based on the decrease of fluorescence signal from IE2-YFP nuclear expression. The hit compounds likely target various cellular processes involved in the early steps of infection including capsid transport, chromatin remodeling, and viral gene expression. Extensive secondary assays confirmed the ability of a hit compound, convallatoxin, to inhibit infection of both laboratory and clinical CMV strains and limit virus proliferation. Collectively, the data demonstrate that we have established a robust high-content screen to identify compounds that limit the early steps of the CMV life cycle, and that novel inhibitors of early infection events may serve as viable CMV therapeutics.
Collapse
Affiliation(s)
- Thomas J Gardner
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY 10029, USA
| | - Tobias Cohen
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY 10029, USA
| | - Veronika Redmann
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY 10029, USA
| | - Zerlina Lau
- Icahn School of Medicine at Mount Sinai, Integrated Screening Core, Experimental Therapeutics Institute, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Dan Felsenfeld
- Icahn School of Medicine at Mount Sinai, Integrated Screening Core, Experimental Therapeutics Institute, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Domenico Tortorella
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY 10029, USA
| |
Collapse
|
32
|
The 19S proteasome activator promotes human cytomegalovirus immediate early gene expression through proteolytic and nonproteolytic mechanisms. J Virol 2014; 88:11782-90. [PMID: 25078702 DOI: 10.1128/jvi.01720-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteasomes are large, multisubunit complexes that support normal cellular activities by executing the bulk of protein turnover. During infection, many viruses have been shown to promote viral replication by using proteasomes to degrade cellular factors that restrict viral replication. For example, the human cytomegalovirus (HCMV) pp71 protein induces the proteasomal degradation of Daxx, a cellular transcriptional repressor that can silence viral immediate early (IE) gene expression. We previously showed that this degradation requires both the proteasome catalytic 20S core particle (CP) and the 19S regulatory particle (RP). The 19S RP associates with the 20S CP to facilitate protein degradation but also plays a 20S CP-independent role promoting transcription. Here, we present a nonproteolytic role of the 19S RP in HCMV IE gene expression. We demonstrate that 19S RP subunits are recruited to the major immediate early promoter (MIEP) that directs IE transcription. Depletion of 19S RP subunits generated a defect in RNA polymerase II elongation through the MIE locus during HCMV infection. Our results reveal that HCMV commandeers proteasome components for both proteolytic and nonproteolytic roles to promote HCMV lytic infection. Importance: Proteasome inhibitors decrease or eliminate 20S CP activity and are garnering increasing interest as chemotherapeutics. However, an increasing body of evidence implicates 19S RP subunits in important proteolytic-independent roles during transcription. Thus, pharmacological inhibition of the 20S CP as a means to modulate proteasome function toward therapeutic effect is an incomplete capitalization on the potential of this approach. Here, we provide an additional example of nonproteolytic 19S RP function in promoting HCMV transcription. These data provide a novel system with which to study the roles of different proteasome components during transcription, a rationale for previously described shifts in 19S RP subunit localization during HCMV infection, and a potential therapeutic intervention point at a pre-immediate early stage for the inhibition of HCMV infection.
Collapse
|
33
|
Bordi I, Ricigliano VAG, Umeton R, Ristori G, Grassi F, Crisanti A, Sutera A, Salvetti M. Noise in multiple sclerosis: unwanted and necessary. Ann Clin Transl Neurol 2014; 1:502-11. [PMID: 25356421 PMCID: PMC4184780 DOI: 10.1002/acn3.72] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/12/2014] [Accepted: 05/17/2014] [Indexed: 12/25/2022] Open
Abstract
As our knowledge about the etiology of multiple sclerosis (MS) increases, deterministic paradigms appear insufficient to describe the pathogenesis of the disease, and the impression is that stochastic phenomena (i.e. random events not necessarily resulting in disease in all individuals) may contribute to the development of MS. However, sources and mechanisms of stochastic behavior have not been investigated and there is no proposed framework to incorporate nondeterministic processes into disease biology. In this report, we will first describe analogies between physics of nonlinear systems and cell biology, showing how small-scale random perturbations can impact on large-scale phenomena, including cell function. We will then review growing and solid evidence showing that stochastic gene expression (or gene expression “noise”) can be a driver of phenotypic variation. Moreover, we will describe new methods that open unprecedented opportunities for the study of such phenomena in patients and the impact of this information on our understanding of MS course and therapy.
Collapse
Affiliation(s)
- Isabella Bordi
- Department of Physics, Sapienza University of Rome Rome, Italy
| | - Vito A G Ricigliano
- Neurology and Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome Rome, Italy ; Neuroimmunology Unit, Fondazione Santa Lucia, (I.R.C.C.S.) Rome, Italy
| | - Renato Umeton
- Neurology and Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome Rome, Italy
| | - Giovanni Ristori
- Neurology and Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome Rome, Italy
| | - Francesca Grassi
- Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| | - Andrea Crisanti
- Department of Physics, Sapienza University of Rome Rome, Italy
| | - Alfonso Sutera
- Department of Physics, Sapienza University of Rome Rome, Italy
| | - Marco Salvetti
- Neurology and Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome Rome, Italy
| |
Collapse
|
34
|
Wang T, Qian D, Hu M, Li L, Zhang L, Chen H, Yang R, Wang B. Human cytomegalovirus inhibits apoptosis by regulating the activating transcription factor 5 signaling pathway in human malignant glioma cells. Oncol Lett 2014; 8:1051-1057. [PMID: 25120656 PMCID: PMC4114579 DOI: 10.3892/ol.2014.2264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/13/2014] [Indexed: 12/25/2022] Open
Abstract
The activating transcription factor 5 (ATF5), also termed ATFx, is a member of the ATF/cAMP response element-binding protein (CREB) family of basic zipper proteins. ATF5 is an anti-apoptotic protein that is highly expressed in malignant glioma and is essential for glioma cell survival. Accumulating evidence indicates that human malignant gliomas are universally infected with human cytomegalovirus (HCMV). Recent studies have shown that HCMV may be resistant to the induction of apoptosis by disrupting cellular pathways in glioblastoma. To investigate the potential anti-apoptotic function of HCMV in glioma, malignant U87 glioma cells were infected with HCMV. The present study showed that HCMV infection suppressed apoptosis in glioblastoma U87 cells by regulating the expression of ATF5. Furthermore, in glioblastoma U87 cells, HCMV infection induced cellular proliferation in parallel with an increase in the expression level of ATF5 and B-cell lymphoma/leukemia-2 to Bcl-2-associated X protein ratio. Loss of ATF5 function was achieved using a dominant-negative form of ATF5 in U87 cells, whereby cells appeared to grow marginally following HCMV infection when compared with the control. However, the anti-apoptotic ability was appeared to decline in the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. These results indicate that ATF5 signaling pathways may be important in the anti-apoptotic activity of HCMV-infected glioblastoma cells; therefore, the anti-apoptotic molecular mechanisms of HCMV in human glioblastoma cells were investigated in the current study. Prevention of HCMV infection may present a potential and promising approach for the treatment of malignant gliomas.
Collapse
Affiliation(s)
- Tongmei Wang
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Dongmeng Qian
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Ming Hu
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Ling Li
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Li Zhang
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Hao Chen
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Rui Yang
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Bin Wang
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
35
|
Kew VG, Yuan J, Meier J, Reeves MB. Mitogen and stress activated kinases act co-operatively with CREB during the induction of human cytomegalovirus immediate-early gene expression from latency. PLoS Pathog 2014; 10:e1004195. [PMID: 24945302 PMCID: PMC4055774 DOI: 10.1371/journal.ppat.1004195] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 05/06/2014] [Indexed: 11/19/2022] Open
Abstract
The devastating clinical consequences associated with human cytomegalovirus (HCMV) infection and reactivation underscores the importance of understanding triggers of HCMV reactivation in dendritic cells (DC). Here we show that ERK-mediated reactivation is dependent on the mitogen and stress activated kinase (MSK) family. Furthermore, this MSK mediated response is dependent on CREB binding to the viral major immediate early promoter (MIEP). Specifically, CREB binding to the MIEP provides the target for MSK recruitment. Importantly, MSK mediated phosphorylation of histone H3 is required to promote histone de-methylation and the subsequent exit of HCMV from latency. Taken together, these data suggest that CREB binding to the MIEP is necessary for the recruitment of the kinase activity of MSKs to initiate the chromatin remodelling at the MIEP required for reactivation. Thus the importance of CREB during HCMV reactivation is to promote chromatin modifications conducive for viral gene expression as well as acting as a classical transcription factor. Clearly, specific inhibition of this interaction between CREB and MSKs could provide a strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Verity G. Kew
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Jinxiang Yuan
- Department of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jeffery Meier
- Department of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Matthew B. Reeves
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
- Institute of Immunity & Transplantation, Division of Infection & Immunity, Royal Free Hospital, University College London, London, United Kingdom
| |
Collapse
|
36
|
Umashankar M, Rak M, Bughio F, Zagallo P, Caviness K, Goodrum FD. Antagonistic determinants controlling replicative and latent states of human cytomegalovirus infection. J Virol 2014; 88:5987-6002. [PMID: 24623432 PMCID: PMC4093889 DOI: 10.1128/jvi.03506-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/05/2014] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED The mechanisms by which viruses persist and particularly those by which viruses actively contribute to their own latency have been elusive. Here we report the existence of opposing functions encoded by genes within a polycistronic locus of the human cytomegalovirus (HCMV) genome that regulate cell type-dependent viral fates: replication and latency. The locus, referred to as the UL133-UL138 (UL133/8) locus, encodes four proteins, pUL133, pUL135, pUL136, and pUL138. As part of the ULb' region of the genome, the UL133/8 locus is lost upon serial passage of clinical strains of HCMV in cultured fibroblasts and is therefore considered dispensable for replication in this context. Strikingly, we could not reconstitute infection in permissive fibroblasts from bacterial artificial chromosome clones of the HCMV genome where UL135 alone was disrupted. The loss of UL135 resulted in complex phenotypes and could ultimately be overcome by infection at high multiplicities. The requirement for UL135 but not the entire locus led us to hypothesize that another gene in this locus suppressed virus replication in the absence of UL135. The defect associated with the loss of UL135 was largely rescued by the additional disruption of the UL138 latency determinant, indicating a requirement for UL135 for virus replication when UL138 is expressed. In the CD34(+) hematopoietic progenitor model of latency, viruses lacking only UL135 were defective for viral genome amplification and reactivation. Taken together, these data indicate that UL135 and UL138 comprise a molecular switch whereby UL135 is required to overcome UL138-mediated suppression of virus replication to balance states of latency and reactivation. IMPORTANCE Mechanisms by which viruses persist in their host remain one of the most poorly understood phenomena in virology. Herpesviruses, including HCMV, persist in an incurable, latent state that has profound implications for immunocompromised individuals, including transplant patients. Further, the latent coexistence of HCMV may increase the risk of age-related pathologies, including vascular disease. The key to controlling or eradicating HCMV lies in understanding the molecular basis for latency. In this work, we describe the complex interplay between two viral proteins, pUL135 and pUL138, which antagonize one another in infection to promote viral replication or latency, respectively. We previously described the role of pUL138 in suppressing virus replication for latency. Here we demonstrate a role of pUL135 in overcoming pUL138-mediated suppression for viral reactivation. From this work, we propose that pUL135 and pUL138 constitute a molecular switch balancing states of latency and reactivation.
Collapse
Affiliation(s)
| | - Michael Rak
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Farah Bughio
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Patricia Zagallo
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | - Katie Caviness
- Graduate Interdisciplinary Program in Genetics, University of Arizona, Tucson, Arizona, USA
| | - Felicia D. Goodrum
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Genetics, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
37
|
Sahin U, Ferhi O, Jeanne M, Benhenda S, Berthier C, Jollivet F, Niwa-Kawakita M, Faklaris O, Setterblad N, de Thé H, Lallemand-Breitenbach V. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. ACTA ACUST UNITED AC 2014; 204:931-45. [PMID: 24637324 PMCID: PMC3998805 DOI: 10.1083/jcb.201305148] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PML multimerization into nuclear bodies following its oxidation promotes sumoylation and sequestration of partner proteins in these structures. The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO–SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss.
Collapse
Affiliation(s)
- Umut Sahin
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis 1, 75475 Paris Cedex 10, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
An epistatic relationship between the viral protein kinase UL97 and the UL133-UL138 latency locus during the human cytomegalovirus lytic cycle. J Virol 2014; 88:6047-60. [PMID: 24623439 DOI: 10.1128/jvi.00447-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED We report that UL133-UL138 (UL133/8), a transcriptional unit within the ULb' region (ULb') of the human cytomegalovirus (HCMV) genome, and UL97, a viral protein kinase encoded by HCMV, play epistatic roles in facilitating progression of the viral lytic cycle. In studies with HCMV strain TB40/E, pharmacological blockade or genetic ablation of UL97 significantly reduced the levels of mRNA and protein for IE2 and viral early and early-late genes during a second wave of viral gene expression that commenced at between 24 and 48 h postinfection. These effects were accompanied by significant defects in viral DNA synthesis and viral replication. Interestingly, deletion of UL133/8 likewise caused significant defects in viral DNA synthesis, viral gene expression, and viral replication, which were not exacerbated upon UL97 inhibition. When UL133/8 was restored to HCMV laboratory strain AD169, which otherwise lacks the locus, the resulting recombinant virus replicated similarly to the parental virus. However, during UL97 inhibitor treatment, the virus in which UL133/8 was restored showed significantly exacerbated defects in viral DNA synthesis, viral gene expression, and production of infectious progeny virus, thus recapitulating the differences between wild-type TB40/E and its UL133/8-null derivative. Phenotypic evaluation of mutants null for specific open reading frames within UL133/8 revealed a role for UL135 in promoting viral gene expression, viral DNA synthesis, and viral replication, which depended on UL97. Taken together, our findings suggest that UL97 and UL135 play interdependent roles in promoting the progression of a second phase of the viral lytic cycle and that these roles are crucial for efficient viral replication. IMPORTANCE A unique feature of the herpesviruses, such as human cytomegalovirus (HCMV), is that they can undergo latency, a state during which the virus silences its gene expression, which allows lifelong viral persistence in immunocompetent hosts. We have uncovered an unexpected link between a cluster of HCMV genes involved in latency, UL133-UL138, and a virally encoded protein kinase, UL97, which plays crucial roles in manipulating the cell cycle during HCMV lytic replication. Although viral immediate early (IE) gene expression is essential for HCMV lytic replication, the activation of IE gene expression in latently infected cells is not sufficient to result in production of infectious virus. Our findings here and in an accompanying study (M. Umashankar, M. Rak, F. Bughio, P. Zagallo, K. Caviness, and F. D. Goodrum, J. Virol. 88:5987-6002, 2014) show that proteins expressed from the UL133-UL138 latency locus and UL97 play interdependent roles in overcoming checkpoints that restrict the viral lytic replication cycle, findings which suggest intriguing implications for establishment of and reactivation from HCMV latency.
Collapse
|
39
|
Miller MS, Gardner TJ, Krammer F, Aguado LC, Tortorella D, Basler CF, Palese P. Neutralizing antibodies against previously encountered influenza virus strains increase over time: a longitudinal analysis. Sci Transl Med 2014; 5:198ra107. [PMID: 23946196 DOI: 10.1126/scitranslmed.3006637] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Antigenic diversity shapes immunity in distinct and unexpected ways. This is particularly true of the humoral response generated against influenza A viruses. Although it is known that immunological memory developed against previously encountered influenza A virus strains affects the outcome of subsequent infections, exactly how sequential exposures to antigenically variant viruses shape the humoral immune response in humans remains poorly understood. To address this important question, we performed a longitudinal analysis of antibody titers against various pandemic and seasonal strains of influenza virus spanning a 20-year period (1987 to 2008) with samples from 40 individuals (birth dates, 1917 to 1952) obtained from the Framingham Heart Study. Longitudinal increases in neutralizing antibody titers were observed against previously encountered pandemic H2N2, H3N2, and H1N1 influenza A virus strains. Antibody titers against seasonal strains encountered later in life also increased longitudinally at a rate similar to that against their pandemic predecessors. Titers of cross-reactive antibodies specific to the hemagglutinin stalk domain were also investigated because they are influenced by exposure to antigenically diverse influenza A viruses. These titers rose modestly over time, even in the absence of major antigenic shifts. No sustained increase in neutralizing antibody titers against an antigenically more stable virus (human cytomegalovirus) was observed. The results herein describe a role for antigenic variation in shaping the humoral immune compartment and provide a rational basis for the hierarchical nature of antibody titers against influenza A viruses in humans.
Collapse
Affiliation(s)
- Matthew S Miller
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Lee S, Song J, Kim S, Kim J, Hong Y, Kim Y, Kim D, Baek D, Ahn K. Selective degradation of host MicroRNAs by an intergenic HCMV noncoding RNA accelerates virus production. Cell Host Microbe 2013; 13:678-90. [PMID: 23768492 DOI: 10.1016/j.chom.2013.05.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/01/2013] [Accepted: 05/01/2013] [Indexed: 12/12/2022]
Abstract
Virulence of human cytomegalovirus (HCMV) clinical isolates correlates with carriage of a 15 kb segment in the UL/b' region of the viral genome, which is absent from attenuated strains. The mechanisms by which this segment contributes to HCMV virulence remain obscure. We observed that intergenic RNA sequences within the 15 kb segment function as a microRNA (miRNA) decay element (miRDE) and direct the selective, sequence-specific turnover of mature miR-17 and miR-20a encoded within the host miR-17-92 cluster. Unlike canonical miRNA-mRNA interactions, the miRNA-miRDE interactions did not repress miRDE expression. miRNA binding site mutations retargeted miRDE to other miR-17-92 cluster miRNAs, which are otherwise resistant to miRDE-mediated decay. miRDE function was required to accelerate virus production in the context of lytic HCMV infection. These results indicate a role for viral noncoding RNA in regulating cellular miRNAs during HCMV pathogenesis and suggest that noncoding RNAs may play a role in mature miRNA turnover.
Collapse
Affiliation(s)
- Sanghyun Lee
- National Creative Research Initiatives Center for Antigen Presentation, Seoul 151-747, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Qin Q, Lee SH, Liang R, Kalejta RF. Insertion of myeloid-active elements into the human cytomegalovirus major immediate early promoter is not sufficient to drive its activation upon infection of undifferentiated myeloid cells. Virology 2013; 448:125-32. [PMID: 24314643 DOI: 10.1016/j.virol.2013.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/29/2013] [Accepted: 10/07/2013] [Indexed: 12/13/2022]
Abstract
The Major Immediate Early Promoter (MIEP) of human cytomegalovirus (HCMV) controls viral Immediate Early (IE) gene expression, which must be activated to initiate productive infection and repressed to establish latency. Regulation of the MIEP is critical for both viral spread and persistence. In addition to the Daxx-mediated intrinsic cellular defense that regulates the MIEP, the cell-type specific balance between cellular activators and repressors of the promoter may help dictate whether viral IE genes will be expressed or silenced. For example, in undifferentiated myeloid cells, transcriptional repressors of the MIEP may outnumber transcriptional activators, leading to promoter silencing and latency establishment. We created a recombinant viral genome in which a myeloid-active promoter replaced part of the MIEP. The viable virus generated failed to express the viral IE genes in an undifferentiated myeloid cell line. These observations have mechanistic implications regarding how viral IE gene expression is regulated during latency.
Collapse
Affiliation(s)
- Qingsong Qin
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
42
|
Gardner TJ, Bolovan-Fritts C, Teng MW, Redmann V, Kraus TA, Sperling R, Moran T, Britt W, Weinberger LS, Tortorella D. Development of a high-throughput assay to measure the neutralization capability of anti-cytomegalovirus antibodies. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:540-50. [PMID: 23389931 PMCID: PMC3623408 DOI: 10.1128/cvi.00644-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/30/2013] [Indexed: 11/20/2022]
Abstract
Infection by human cytomegalovirus (CMV) elicits a strong humoral immune response and robust anti-CMV antibody production. Diagnosis of virus infection can be carried out by using a variety of serological assays; however, quantification of serum antibodies against CMV may not present an accurate measure of a patient's ability to control a virus infection. CMV strains that express green fluorescent protein (GFP) fusion proteins can be used as screening tools for evaluating characteristics of CMV infection in vitro. In this study, we employed a CMV virus strain, AD169, that ectopically expresses a yellow fluorescent protein (YFP) fused to the immediate-early 2 (IE2) protein product (AD169IE2-YFP) to quantify a CMV infection in human cells. We created a high-throughput cell-based assay that requires minimal amounts of material and provides a platform for rapid analysis of the initial phase of virus infection, including virus attachment, fusion, and immediate-early viral gene expression. The AD169IE2-YFP cell infection system was utilized to develop a neutralization assay with a monoclonal antibody against the viral surface glycoprotein gH. The high-throughput assay was extended to measure the neutralization capacity of serum from CMV-positive subjects. These findings describe a sensitive and specific assay for the quantification of a key immunological response that plays a role in limiting CMV dissemination and transmission. Collectively, we have demonstrated that a robust high-throughput infection assay can analyze the early steps of the CMV life cycle and quantify the potency of biological reagents to attenuate a virus infection.
Collapse
Affiliation(s)
- Thomas J. Gardner
- Mount Sinai School of Medicine, Department of Microbiology, New York, New York, USA
| | | | | | - Veronika Redmann
- Mount Sinai School of Medicine, Department of Microbiology, New York, New York, USA
| | - Thomas A. Kraus
- Department of Obstetrics, Gynecology and Reproductive Medicine
| | - Rhoda Sperling
- Department of Obstetrics, Gynecology and Reproductive Medicine
| | - Thomas Moran
- Mount Sinai School of Medicine, Department of Microbiology, New York, New York, USA
| | - William Britt
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Leor S. Weinberger
- Gladstone Institutes, San Francisco, California, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Domenico Tortorella
- Mount Sinai School of Medicine, Department of Microbiology, New York, New York, USA
| |
Collapse
|