1
|
Pfanner N, den Brave F, Becker T. Mitochondrial protein import stress. Nat Cell Biol 2025:10.1038/s41556-024-01590-w. [PMID: 39843636 DOI: 10.1038/s41556-024-01590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025]
Abstract
Mitochondria have to import a large number of precursor proteins from the cytosol. Chaperones keep these proteins in a largely unfolded state and guide them to the mitochondrial import sites. Premature folding, mitochondrial stress and import defects can cause clogging of import sites and accumulation of non-imported precursors, representing a critical burden for cellular proteostasis. Here we discuss how cells respond to mitochondrial protein import stress by regenerating clogged import sites and inducing stress responses. The mitochondrial protein import machinery has a dual role by serving as sensor for detecting mitochondrial dysfunction and inducing stress-response pathways. The production of chaperones that fold or sequester precursor proteins in deposits is induced and the proteasomal activity is increased to remove the excess precursor proteins. Together, these pathways reveal how mitochondria are tightly integrated into a cellular proteostasis and stress response network to maintain cell viability.
Collapse
Affiliation(s)
- Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMB, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Górska E, Tylicka M, Kamińska J, Hermanowicz A, Matuszczak E, Ołdak Ł, Gorodkiewicz E, Karpińska E, Socha K, Kochanowicz J, Jakoniuk M, Homšak E, Koper-Lenkiewicz OM. 20S constitutive proteasome, 20S immunoproteasome, and cathepsin S are high-sensitivity and independent markers of immunological activity in relapsing-remitting type of multiple sclerosis. J Neurochem 2024; 168:2880-2892. [PMID: 38923513 DOI: 10.1111/jnc.16165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Research on the markers of autoimmune response in multiple sclerosis (MS) is still of great importance. The aim of our study was the evaluation of plasma 20S constitutive proteasome, 20S immunoproteasome, and cathepsin S concentrations as potential biomarkers of a relapsing-remitting type of MS (RRMS). Surface plasmon resonance imaging (SPRI) biosensors were used for the evaluation of protein concentrations. Plasma 20S constitutive proteasome, 20S immunoproteasome, and cathepsin S concentrations were significantly higher in RRMS patients compared to the control group. All three parameters were characterized by excellent usefulness in differentiating MS patients from healthy individuals (AUC equal to or close to 1.000). The plasma concentration of analyzed parameters was not correlated with severity of disability in the course of RRMS (EDSS value), the number of years from the first MS symptoms, the number of years from MS diagnosis, or the number of relapses within the 24-month observational period. Our study has shown that plasma concentrations of 20S constitutive proteasome, 20S immunoproteasome, and cathepsin S have promising potential in differentiating RRMS patients from healthy individuals. All of the analyzed parameters were found to be independent of the time of MS relapse and the severity of neurological symptoms. Hence, their potential as highly sensitive and independent circulating markers of RRMS suggests a stronger association with immunological activity (inflammatory processes) than with the severity of the disease.
Collapse
Affiliation(s)
- Ewelina Górska
- Neurological Private Practice, Bialystok, Poland
- Department of Pediatric Surgery, Medical University of Bialystok, Bialystok, Poland
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Bialystok, Poland
| | - Marzena Tylicka
- Department of Biophysics, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Adam Hermanowicz
- Department of Pediatric Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Matuszczak
- Department of Pediatric Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Łukasz Ołdak
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Bialystok, Poland
| | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Bialystok, Poland
| | - Elżbieta Karpińska
- Department of Bromatology, Medical University of Białystok, Białystok, Poland
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Białystok, Białystok, Poland
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Białystok, Białystok, Poland
| | - Marta Jakoniuk
- Department of Invasive Neurology, Medical University of Białystok, Białystok, Poland
| | - Evgenija Homšak
- Department for Laboratory Diagnostics, University Clinical Centre Maribor, Maribor, Slovenia
- Department for Clinical Biochemistry, Medical Faculty, University Maribor, Maribor, Slovenia
| | | |
Collapse
|
3
|
Malek N, Gladysz R, Stelmach N, Drag M. Targeting Microglial Immunoproteasome: A Novel Approach in Neuroinflammatory-Related Disorders. ACS Chem Neurosci 2024; 15:2532-2544. [PMID: 38970802 PMCID: PMC11258690 DOI: 10.1021/acschemneuro.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
It is widely acknowledged that the aging process is linked to the accumulation of damaged and misfolded proteins. This phenomenon is accompanied by a decrease in proteasome (c20S) activity, concomitant with an increase in immunoproteasome (i20S) activity. These changes can be attributed, in part, to the chronic neuroinflammation that occurs in brain tissues. Neuroinflammation is a complex process characterized by the activation of immune cells in the central nervous system (CNS) in response to injury, infection, and other pathological stimuli. In certain cases, this immune response becomes chronic, contributing to the pathogenesis of various neurological disorders, including chronic pain, Alzheimer's disease, Parkinson's disease, brain traumatic injury, and others. Microglia, the resident immune cells in the brain, play a crucial role in the neuroinflammatory response. Recent research has highlighted the involvement of i20S in promoting neuroinflammation, increased activity of which may lead to the presentation of self-antigens, triggering an autoimmune response against the CNS, exacerbating inflammation, and contributing to neurodegeneration. Furthermore, since i20S plays a role in breaking down accumulated proteins during inflammation within the cell body, any disruption in its activity could lead to a prolonged state of inflammation and subsequent cell death. Given the pivotal role of i20S in neuroinflammation, targeting this proteasome subtype has emerged as a potential therapeutic approach for managing neuroinflammatory diseases. This review delves into the mechanisms of neuroinflammation and microglia activation, exploring the potential of i20S inhibitors as a promising therapeutic strategy for managing neuroinflammatory disorders.
Collapse
Affiliation(s)
- Natalia Malek
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Radoslaw Gladysz
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Natalia Stelmach
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marcin Drag
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
4
|
Nie Y, Ma Z, Zhang B, Sun M, Zhang D, Li HH, Song X. The role of the immunoproteasome in cardiovascular disease. Pharmacol Res 2024; 204:107215. [PMID: 38744399 DOI: 10.1016/j.phrs.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The ubiquitinproteasome system (UPS) is the main mechanism responsible for the intracellular degradation of misfolded or damaged proteins. Under inflammatory conditions, the immunoproteasome, an isoform of the proteasome, can be induced, enhancing the antigen-presenting function of the UPS. Furthermore, the immunoproteasome also serves nonimmune functions, such as maintaining protein homeostasis and regulating signalling pathways, and is involved in the pathophysiological processes of various cardiovascular diseases (CVDs). This review aims to provide a comprehensive summary of the current research on the involvement of the immunoproteasome in cardiovascular diseases, with the ultimate goal of identifying novel strategies for the treatment of these conditions.
Collapse
Affiliation(s)
- Yifei Nie
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Zhao Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Baoen Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Meichen Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Dongfeng Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
5
|
Wróbel M, Zuzanna Z, Ołdak Ł, Kalicka A, Mańka G, Kiecka M, Spaczyński RZ, Piekarski P, Banaszewska B, Jakimiuk A, Issat T, Rokita W, Młodawski J, Szubert M, Sieroszewski P, Raba G, Szczupak K, Kluz T, Kluza M, Pierzyński P, Wojtyła C, Lipa M, Warzecha D, Wielgoś M, Sawicki W, Gorodkiewicz E, Laudański P. Evaluation of Proteasome and Immunoproteasome Levels in Plasma and Peritoneal Fluid in Patients with Endometriosis. Int J Mol Sci 2023; 24:14363. [PMID: 37762666 PMCID: PMC10532336 DOI: 10.3390/ijms241814363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Endometriosis is a chronic disease in which the endometrium cells are located outside the uterine cavity. The aim of this study was to evaluate circulating 20S proteasome and 20S immunoproteasome levels in plasma and peritoneal fluid in women with and without endometriosis in order to assess their usefulness as biomarkers of disease. Concentrations were measured using surface plasmon resonance imaging biosensors. Patients with suspected endometriosis were included in the study-plasma was collected in 112 cases and peritoneal fluid in 75. Based on the presence of endometriosis lesions detected during laparoscopy, patients were divided into a study group (confirmed endometriosis) and a control group (patients without endometriosis). Proteasome and immunoproteasome levels in both the plasma (p = 0.174; p = 0.696, respectively) and the peritoneal fluid (p = 0.909; p = 0.284, respectively) did not differ between those groups. There was a statistically significant difference in the plasma proteasome levels between patients in the control group and those with mild (Stage I and II) endometriosis (p = 0.047) and in the plasma immunoproteasome levels in patients with ovarian cysts compared to those without (p = 0.017). The results of our study do not support the relevance of proteasome and immunoproteasome determination as biomarkers of the disease but suggest a potentially active role in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Monika Wróbel
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland
| | - Zielińska Zuzanna
- Bioanalysis Laboratory, Doctoral School of Exact and Natural Science, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (Z.Z.); (Ł.O.)
| | - Łukasz Ołdak
- Bioanalysis Laboratory, Doctoral School of Exact and Natural Science, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (Z.Z.); (Ł.O.)
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland;
| | - Aleksandra Kalicka
- Faculty of Medicine, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland;
| | - Grzegorz Mańka
- Angelius Provita Hospital, 40-611 Katowice, Poland; (G.M.); (M.K.)
| | - Mariusz Kiecka
- Angelius Provita Hospital, 40-611 Katowice, Poland; (G.M.); (M.K.)
| | - Robert Z. Spaczyński
- Center for Gynecology, Obstetrics and Infertility Treatment Pastelova, 60-198 Poznan, Poland;
| | - Piotr Piekarski
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Beata Banaszewska
- Chair and Department of Laboratory Diagnostics, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Artur Jakimiuk
- Department of Reproductive Health, Institute of Mother and Child in Warsaw, 01-211 Warsaw, Poland;
- Department of Obstetrics and Gynecology, Central Clinical Hospital of the Ministry of Interior, 02-507 Warsaw, Poland
| | - Tadeusz Issat
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, 01-211 Warsaw, Poland;
| | - Wojciech Rokita
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-516 Kielce, Poland (J.M.)
- Clinic of Obstetrics and Gynecology, Provincial Combined Hospital in Kielce, 25-736 Kielce, Poland
| | - Jakub Młodawski
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-516 Kielce, Poland (J.M.)
- Clinic of Obstetrics and Gynecology, Provincial Combined Hospital in Kielce, 25-736 Kielce, Poland
| | - Maria Szubert
- Department of Gynecology and Obstetrics, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (P.S.)
- Department of Surgical Gynecology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Piotr Sieroszewski
- Department of Gynecology and Obstetrics, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (P.S.)
- Department of Fetal Medicine and Gynecology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Grzegorz Raba
- Clinic of Obstetric and Gynecology in Przemysl, 37-700 Przemysl, Poland; (G.R.); (K.S.)
- Department of Obstetrics and Gynecology, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Kamil Szczupak
- Clinic of Obstetric and Gynecology in Przemysl, 37-700 Przemysl, Poland; (G.R.); (K.S.)
- Department of Obstetrics and Gynecology, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland; (T.K.); (M.K.)
| | - Marek Kluza
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland; (T.K.); (M.K.)
| | - Piotr Pierzyński
- OVIklinika Infertility Center, 31 Połczyńska Street, 01-377 Warsaw, Poland; (P.P.); (D.W.)
| | - Cezary Wojtyła
- OVIklinika Infertility Center, 31 Połczyńska Street, 01-377 Warsaw, Poland; (P.P.); (D.W.)
| | - Michał Lipa
- City South Hospital Warsaw, 02-781 Warsaw, Poland;
| | - Damian Warzecha
- OVIklinika Infertility Center, 31 Połczyńska Street, 01-377 Warsaw, Poland; (P.P.); (D.W.)
- City South Hospital Warsaw, 02-781 Warsaw, Poland;
| | - Mirosław Wielgoś
- Premium Medical Clinic, 04-359 Warsaw, Poland;
- Medical Faculty, Lazarski University, 02-662 Warsaw, Poland
| | - Włodzimierz Sawicki
- Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, 03-242 Warsaw, Poland;
| | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland;
| | - Piotr Laudański
- OVIklinika Infertility Center, 31 Połczyńska Street, 01-377 Warsaw, Poland; (P.P.); (D.W.)
- Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, 03-242 Warsaw, Poland;
- Women’s Health Research Institute, Calisia University, 62-800 Kalisz, Poland
| |
Collapse
|
6
|
Sultana S, Abdullah M, Li J, Hochstrasser M, Kachroo AH. Species-specific protein-protein interactions govern the humanization of the 20S proteasome in yeast. Genetics 2023; 225:iyad117. [PMID: 37364278 PMCID: PMC10471208 DOI: 10.1093/genetics/iyad117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Yeast and humans share thousands of genes despite a billion years of evolutionary divergence. While many human genes can functionally replace their yeast counterparts, nearly half of the tested shared genes cannot. For example, most yeast proteasome subunits are "humanizable," except subunits comprising the β-ring core, including β2c (HsPSMB7, a constitutive proteasome subunit). We developed a high-throughput pipeline to humanize yeast proteasomes by generating a large library of Hsβ2c mutants and screening them for complementation of a yeast β2 (ScPup1) knockout. Variants capable of replacing ScPup1 included (1) those impacting local protein-protein interactions (PPIs), with most affecting interactions between the β2c C-terminal tail and the adjacent β3 subunit, and (2) those affecting β2c proteolytic activity. Exchanging the full-length tail of human β2c with that of ScPup1 enabled complementation. Moreover, wild-type human β2c could replace yeast β2 if human β3 was also provided. Unexpectedly, yeast proteasomes bearing a catalytically inactive HsPSMB7-T44A variant that blocked precursor autoprocessing were viable, suggesting an intact propeptide stabilizes late assembly intermediates. In contrast, similar modifications in human β2i (HsPSMB10), an immunoproteasome subunit and the co-ortholog of yeast β2, do not enable complementation in yeast, suggesting distinct interactions are involved in human immunoproteasome core assembly. Broadly, our data reveal roles for specific PPIs governing functional replaceability across vast evolutionary distances.
Collapse
Affiliation(s)
- Sarmin Sultana
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC H3G 1M8, Canada
| | - Mudabir Abdullah
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC H3G 1M8, Canada
| | - Jianhui Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Aashiq H Kachroo
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC H3G 1M8, Canada
| |
Collapse
|
7
|
Varani J, McClintock SD, Nadeem DM, Harber I, Zeidan D, Aslam MN. A multi-mineral intervention to counter pro-inflammatory activity and to improve the barrier in human colon organoids. Front Cell Dev Biol 2023; 11:1132905. [PMID: 37476158 PMCID: PMC10354648 DOI: 10.3389/fcell.2023.1132905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction: Ulcerative colitis is a chronic inflammatory condition, and continuous inflammatory stimulus may lead to barrier dysfunction. The goal of this study was to assess barrier proteomic expression by a red algae-derived multi-mineral intervention in the absence or presence of pro-inflammatory insult. Methods: Human colon organoids were maintained in a control culture medium alone or exposed to lipopolysaccharide with a combination of three pro-inflammatory cytokines [tumor necrosis factor-α, interleukin-1β and interferon-γ (LPS-cytokines)] to mimic the environment in the inflamed colon. Untreated organoids and those exposed to LPS-cytokines were concomitantly treated for 14 days with a multi-mineral product (Aquamin®) that has previously been shown to improve barrier structure/function. The colon organoids were subjected to proteomic analysis to obtain a broad view of the protein changes induced by the two interventions alone and in combination. In parallel, confocal fluorescence microscopy, tissue cohesion and transepithelial electrical resistance (TEER) measurements were used to assess barrier structure/function. Results: The LPS-cytokine mix altered the expression of multiple proteins that influence innate immunity and promote inflammation. Several of these were significantly decreased with Aquamin® alone but only a modest decrease in a subset of these proteins was detected by Aquamin® in the presence of LPS-cytokines. Among these, a subset of inflammation-related proteins including fibrinogen-β and -γ chains (FGB and FGG), phospholipase A2 (PLA2G2A) and SPARC was significantly downregulated in the presence of Aquamin® (alone and in combination with LPS-cytokines); another subset of proteins with anti-inflammatory, antioxidant or anti-microbial activity was upregulated by Aquamin® treatment. When provided alone, Aquamin® strongly upregulated proteins that contribute to barrier formation and tissue strength. Concomitant treatment with LPS-cytokines did not inhibit barrier formation in response to Aquamin®. Confocal microscopy also displayed increased expression of desmoglein-2 (DSG2) and cadherin-17 (CDH17) with Aquamin®, either alone or in the presence of the pro-inflammatory stimulus. Increased cohesion and TEER with Aquamin® (alone or in the presence of LPS-cytokines) indicates improved barrier function. Conclusion: Taken together, these findings suggest that multi-mineral intervention (Aquamin®) may provide a novel approach to combating inflammation in the colon by improving barrier structure/function as well as by directly altering the expression of certain pro-inflammatory proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Muhammad N. Aslam
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Davidson K, Pickering AM. The proteasome: A key modulator of nervous system function, brain aging, and neurodegenerative disease. Front Cell Dev Biol 2023; 11:1124907. [PMID: 37123415 PMCID: PMC10133520 DOI: 10.3389/fcell.2023.1124907] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
The proteasome is a large multi-subunit protease responsible for the degradation and removal of oxidized, misfolded, and polyubiquitinated proteins. The proteasome plays critical roles in nervous system processes. This includes maintenance of cellular homeostasis in neurons. It also includes roles in long-term potentiation via modulation of CREB signaling. The proteasome also possesses roles in promoting dendritic spine growth driven by proteasome localization to the dendritic spines in an NMDA/CaMKIIα dependent manner. Proteasome inhibition experiments in varied organisms has been shown to impact memory, consolidation, recollection and extinction. The proteasome has been further shown to impact circadian rhythm through modulation of a range of 'clock' genes, and glial function. Proteasome function is impaired as a consequence both of aging and neurodegenerative diseases. Many studies have demonstrated an impairment in 26S proteasome function in the brain and other tissues as a consequence of age, driven by a disassembly of 26S proteasome in favor of 20S proteasome. Some studies also show proteasome augmentation to correct age-related deficits. In amyotrophic lateral sclerosis Alzheimer's, Parkinson's and Huntington's disease proteasome function is impaired through distinct mechanisms with impacts on disease susceptibility and progression. Age and neurodegenerative-related deficits in the function of the constitutive proteasome are often also accompanied by an increase in an alternative form of proteasome called the immunoproteasome. This article discusses the critical role of the proteasome in the nervous system. We then describe how proteasome dysfunction contributes to brain aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Kanisa Davidson
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew M. Pickering
- Center for Neurodegeneration and Experimental Therapeutics (CNET), Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Li J, Liu N, Zhou H, Xian P, Song Y, Tang X, Li Y, Basler M. Immunoproteasome inhibition prevents progression of castration-resistant prostate cancer. Br J Cancer 2023; 128:1377-1390. [PMID: 36681728 PMCID: PMC10050322 DOI: 10.1038/s41416-022-02129-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) is refractory to hormone treatment. This study aims to explore the effect and underlying mechanisms of immunoproteasome inhibition, a novel immunotherapy, on the progression of CRPC. METHODS The immunoproteasome subunit LMP7 was silenced by using gene knockout or inhibited by the epoxyketone inhibitor ONX 0914 in a mouse CRPC tumour graft model and in interferon-γ-pretreated human CRPC cell lines in vitro. RESULTS CRPC tissues reveal a significant "tumour-elicited" Th17-type inflammatory response which induces immunoproteasome subunit expression. LMP7 deficiency in host mice or in CRPC tumour grafts had no effect on the "tumour-elicited" Th17-type inflammatory response and tumour progression. However, the selective LMP7 inhibitor ONX 0914 strongly suppressed the "tumour-elicited" Th17-type inflammatory response and CRPC tumour progression. Treatment of wild-type mice receiving LMP7-deficient CRPC tumour grafts with ONX 0914 further suggested that immunoproteasome inhibition prevents CRPC progression through suppressing IL-17-induced angiogenesis and epithelial-mesenchymal transition via inactivation of COX-2/VEGF-A signalling and β-catenin/Snail signalling. Treatment of LMP7-deficient mice receiving wild-type CRPC tumour grafts with ONX 0914 and inhibition of LMP7 in PC3 and 22Rv.1 cells with ONX 0914 showed that immunoproteasome inhibition also prevents CRPC progression through inducing CRPC cell apoptosis via activation of the unfolded protein response. CONCLUSIONS We define a critical role of the immunoproteasome in CRPC and propose immunoproteasome inhibition as a promising therapeutic approach to suppress CRPC progression.
Collapse
Affiliation(s)
- Jun Li
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China.
| | - Nan Liu
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Hong Zhou
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Peng Xian
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Yanping Song
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Xianli Tang
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Yuan Li
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, D-78457, Konstanz, Germany.
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.
| |
Collapse
|
10
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
11
|
Gao H, Zhou Y, Jin PS, Wu DG, Wang YN, Zhao X, Zhao B. Molecular alteration of the proteasome contributes to AD-like pathology in the brain of HFD-STZ diabetic rats. Metab Brain Dis 2022; 38:1013-1024. [PMID: 36580191 DOI: 10.1007/s11011-022-01151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Diabetes-related cognitive impairment has been shown in diverse epidemiological investigations and lab-based studies, although the underlying pathological mechanisms remain unclear. Unbalanced protein homeostasis may contribute to cognitive decline by inducing abnormal protein aggregation in the diabetic brain. This study aimed to determine possible changes in the proteasome, which is an important pathway involved in abnormal protein degradation. To this end, we examined potential alterations of proteasomal subunits and hydrolytic activity in the brain of diabetic rats fed with high-fat diet combined with small doses of streptozotocin (STZ). Furthermore, lactacystin were used to inhibit proteasomal activity in vivo and typical Alzheimer's disease (AD)-like pathologies were detected, including amyloid-beta, tau phosphorylation, and oxidative protein changes. Our results showed that proteasomal activity increased in the brains of diabetic rats compared to age-matched control rats. After proteasome inhibition, the levels of tau phosphorylation and protein oxidative modification significantly increased; however, no changes were detected in the pathway involved in amyloid production. These results indicated that changes in protein homeostasis balance in diabetes play a role in some typical AD-like changes, especially in oxidative protein degradation, providing evidence that prevention of diabetes-induced protein imbalance may be a potential therapeutic target.
Collapse
Affiliation(s)
- Han Gao
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China
| | - Ye Zhou
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China
| | - Peng-Shuai Jin
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China
- Zhalantun Vocational College, 20Th Zhongyang Road, Hulunbuir, NeiMonggol Autonomous Region, People's Republic of China
| | - Dong-Gui Wu
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China
- Zhuhai City People's Hospital, Zhuhai, Guangdong Province, People's Republic of China
| | - Yu-Na Wang
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China
| | - Xi Zhao
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China
| | - Bei Zhao
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China.
- Li Yunqing Expert Workstation of Yunnan Province (No.202005AF150014), Dali University, 6Th Xue-Ren Road, Dali, Yunnan Province, People's Republic of China.
| |
Collapse
|
12
|
The dichotomous role of immunoproteasome in cancer: Friend or foe? Acta Pharm Sin B 2022; 13:1976-1989. [DOI: 10.1016/j.apsb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022] Open
|
13
|
Novel treatment strategies for acetylcholine receptor antibody-positive myasthenia gravis and related disorders. Autoimmun Rev 2022; 21:103104. [PMID: 35452851 DOI: 10.1016/j.autrev.2022.103104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022]
Abstract
The presence of autoantibodies directed against the muscle nicotinic acetylcholine receptor (AChR) is the most common cause of myasthenia gravis (MG). These antibodies damage the postsynaptic membrane of the neuromuscular junction and cause muscle weakness by depleting AChRs and thus impairing synaptic transmission. As one of the best-characterized antibody-mediated autoimmune diseases, AChR-MG has often served as a reference model for other autoimmune disorders. Classical pharmacological treatments, including broad-spectrum immunosuppressive drugs, are effective in many patients. However, complete remission cannot be achieved in all patients, and 10% of patients do not respond to currently used therapies. This may be attributed to production of autoantibodies by long-lived plasma cells which are resistant to conventional immunosuppressive drugs. Hence, novel therapies specifically targeting plasma cells might be a suitable therapeutic approach for selected patients. Additionally, in order to reduce side effects of broad-spectrum immunosuppression, targeted immunotherapies and symptomatic treatments will be required. This review presents established therapies as well as novel therapeutic approaches for MG and related conditions, with a focus on AChR-MG.
Collapse
|
14
|
Functional Differences between Proteasome Subtypes. Cells 2022; 11:cells11030421. [PMID: 35159231 PMCID: PMC8834425 DOI: 10.3390/cells11030421] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/30/2022] Open
Abstract
Four proteasome subtypes are commonly present in mammalian tissues: standard proteasomes, which contain the standard catalytic subunits β1, β2 and β5; immunoproteasomes containing the immuno-subunits β1i, β2i and β5i; and two intermediate proteasomes, containing a mix of standard and immuno-subunits. Recent studies revealed the expression of two tissue-specific proteasome subtypes in cortical thymic epithelial cells and in testes: thymoproteasomes and spermatoproteasomes. In this review, we describe the mechanisms that enable the ATP- and ubiquitin-dependent as well as the ATP- and ubiquitin-independent degradation of proteins by the proteasome. We focus on understanding the role of the different proteasome subtypes in maintaining protein homeostasis in normal physiological conditions through the ATP- and ubiquitin-dependent degradation of proteins. Additionally, we discuss the role of each proteasome subtype in the ATP- and ubiquitin-independent degradation of disordered proteins. We also discuss the role of the proteasome in the generation of peptides presented by MHC class I molecules and the implication of having different proteasome subtypes for the peptide repertoire presented at the cell surface. Finally, we discuss the role of the immunoproteasome in immune cells and its modulation as a potential therapy for autoimmune diseases.
Collapse
|
15
|
The Function of Immunoproteasomes-An Immunologists' Perspective. Cells 2021; 10:cells10123360. [PMID: 34943869 PMCID: PMC8699091 DOI: 10.3390/cells10123360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023] Open
Abstract
Proteasomes are responsible for intracellular proteolysis and play an important role in cellular protein homeostasis. Cells of the immune system assemble a specialized form of proteasomes, known as immunoproteasomes, in which the constitutive catalytic sites are replaced for cytokine-inducible homologues. While immunoproteasomes may fulfill all standard proteasome’ functions, they seem specially adapted for a role in MHC class I antigen processing and CD8+ T-cell activation. In this way, they may contribute to CD8+ T-cell-mediated control of intracellular infections, but also to the immunopathogenesis of autoimmune diseases. Starting at the discovery of its catalytic subunits in the genome, here, we review the observations shaping our current understanding of immunoproteasome function, and the consequential novel opportunities for immune intervention.
Collapse
|
16
|
On the Role of the Immunoproteasome in Protein Homeostasis. Cells 2021; 10:cells10113216. [PMID: 34831438 PMCID: PMC8621243 DOI: 10.3390/cells10113216] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
Numerous cellular processes are controlled by the proteasome, a multicatalytic protease in the cytosol and nucleus of all eukaryotic cells, through regulated protein degradation. The immunoproteasome is a special type of proteasome which is inducible under inflammatory conditions and constitutively expressed in hematopoietic cells. MECL-1 (β2i), LMP2 (β1i), and LMP7 (β5i) are the proteolytically active subunits of the immunoproteasome (IP), which is known to shape the antigenic repertoire presented on major histocompatibility complex (MHC) class I molecules. Furthermore, the immunoproteasome is involved in T cell expansion and inflammatory diseases. In recent years, targeting the immunoproteasome in cancer, autoimmune diseases, and transplantation proved to be therapeutically effective in preclinical animal models. However, the prime function of standard proteasomes and immunoproteasomes is the control of protein homeostasis in cells. To maintain protein homeostasis in cells, proteasomes remove proteins which are not properly folded, which are damaged by stress conditions such as reactive oxygen species formation, or which have to be degraded on the basis of regular protein turnover. In this review we summarize the latest insights on how the immunoproteasome influences protein homeostasis.
Collapse
|
17
|
Bi M, Du X, Xiao X, Dai Y, Jiao Q, Chen X, Zhang L, Jiang H. Deficient immunoproteasome assembly drives gain of α-synuclein pathology in Parkinson's disease. Redox Biol 2021; 47:102167. [PMID: 34662812 PMCID: PMC8577461 DOI: 10.1016/j.redox.2021.102167] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 01/07/2023] Open
Abstract
Aberrant α-synuclein (α-Syn) accumulation resulting from proteasome dysfunction is considered as a prominent factor to initiate and aggravate the neurodegeneration in Parkinson's disease (PD). Although the involvement of 26S proteasome in proteostasis imbalance has been widely accepted, our knowledge about the regulation of immunoproteasome function and its potential role in α-Syn pathology remains limited. Immunoproteasome abundance and proteolytic activities depend on the finely tuned assembly process, especially β-ring formation mediated by the only well-known chaperone proteasome maturation protein (POMP). Here, we identified that α-Syn overexpression was associated with a reduction in immunoproteasome function, which in turn limited the degradation of polo-like kinase 2 (PLK2), exacerbated α-Syn Ser129 phosphorylation and aggregation, ultimately leading to the neurodegeneration. These effects could be dramatically attenuated by β5i overexpression. Mechanistically, α-Syn suppressed the transcriptional regulation of POMP by nuclear factor erythroid 2-related factor 2 (NRF2), thereby preventing the assembly of immunoproteasome β subunits. Dopaminergic neurons-specific overexpression of NRF2-POMP axis effectively rescued the aggregation of α-Syn and PD-like phenotypes. These findings characterized abnormal immunoproteasome assembly as a key contributor governing α-Syn accumulation and neurodegeneration, which might open up a new perspective for the implication of immunoproteasome in PD and provide approaches of manipulating immunoproteasome assembly for therapeutic purposes. α-Syn negatively regulated immunoproteasome by inhibiting POMP-mediated assembly. Immunoproteasome deficiency prevented PLK2 degradation to aggravate neurotoxicity. Enhanced immunoproteasome assembly via NRF2-POMP axis alleviated α-Syn pathology.
Collapse
Affiliation(s)
- Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xue Xiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yingying Dai
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
18
|
Immunoproteasome Function in Normal and Malignant Hematopoiesis. Cells 2021; 10:cells10071577. [PMID: 34206607 PMCID: PMC8305381 DOI: 10.3390/cells10071577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a central part of protein homeostasis, degrading not only misfolded or oxidized proteins but also proteins with essential functions. The fact that a healthy hematopoietic system relies on the regulation of protein homeostasis and that alterations in the UPS can lead to malignant transformation makes the UPS an attractive therapeutic target for the treatment of hematologic malignancies. Herein, inhibitors of the proteasome, the last and most important component of the UPS enzymatic cascade, have been approved for the treatment of these malignancies. However, their use has been associated with side effects, drug resistance, and relapse. Inhibitors of the immunoproteasome, a proteasomal variant constitutively expressed in the cells of hematopoietic origin, could potentially overcome the encountered problems of non-selective proteasome inhibition. Immunoproteasome inhibitors have demonstrated their efficacy and safety against inflammatory and autoimmune diseases, even though their development for the treatment of hematologic malignancies is still in the early phases. Various immunoproteasome inhibitors have shown promising preliminary results in pre-clinical studies, and one inhibitor is currently being investigated in clinical trials for the treatment of multiple myeloma. Here, we will review data on immunoproteasome function and inhibition in hematopoietic cells and hematologic cancers.
Collapse
|
19
|
de Freitas Chama LL, Ebstein F, Wiesrecker B, Wagh PR, Hammer E, Weiss FU, Junker H, Studencka-Turski M, Lerch MM, Krüger E, Sendler M. Immunoproteasome impairment via β5i/LMP7-deletion leads to sustained pancreatic injury from experimental pancreatitis. J Cell Mol Med 2021; 25:6786-6799. [PMID: 34132031 PMCID: PMC8278072 DOI: 10.1111/jcmm.16682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Uncovering potential new targets involved in pancreatitis may permit the development of new therapies and improvement of patient's outcome. Acute pancreatitis is a primarily sterile disease characterized by a severe systemic inflammatory response associated with extensive necrosis and a mortality rate of up to 24%. Considering that one of the reported disease mechanisms comprises the endoplasmic reticulum (ER) stress response and that the immunoproteasome is a key regulator to prevent proteotoxic stress in an inflammatory context, we investigated its role in acute pancreatitis. In this study, we demonstrate that immunoproteasome deficiency by deletion of the β5i/LMP7-subunit leads to persistent pancreatic damage. Interestingly, immunoproteasome-deficient mice unveil increased activity of pancreatic enzymes in the acute disease phase as well as higher secretion of Interleukin-6 and transcript expression of the Interleukin IL-1β, IFN-β cytokines and the CXCL-10 chemokine. Cell death was increased in immunoproteasome-deficient mice, which appears to be due to the increased accumulation of ubiquitin-protein conjugates and prolonged unfolded protein response. Accordingly, our findings suggest that the immunoproteasome plays a protective role in acute pancreatitis via its role in the clearance of damaged proteins and the balance of ER stress responses in pancreatic acini and in macrophages cytokine production.
Collapse
Affiliation(s)
| | - Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Birthe Wiesrecker
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Preshit R Wagh
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,German Center for Cardiovascular Research, Partner Site Greifswald, Greifswald, Germany
| | - Frank U Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Heike Junker
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Maja Studencka-Turski
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
20
|
Fletcher E, Gordon PM. Obesity-induced alterations to the immunoproteasome: a potential link to intramuscular lipotoxicity. Appl Physiol Nutr Metab 2021; 46:485-493. [PMID: 33186056 DOI: 10.1139/apnm-2020-0655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the mechanisms are unclear, inflammation and/or lipotoxicity likely contribute to obese muscle pathology. The immunoproteasome is known to respond to inflammation and oxidative damage and may aid muscle regeneration. We sought to determine whether diet-induced obesity (DIO) influences the immunoproteasome subunits LMP7 and MECL-1 in mouse muscle with and without exercise-induced muscle damage (EIMD). Muscle mass, regeneration, macrophage content and lipid peroxidation (8-isoprostane) were also assessed. Sixty male, 4-week-old C57BL/6J mice were fed a high-fat (HFD) or low-fat diet for 12 weeks. Mice were then subdivided into EIMD or no muscle damage (NMD) groups. The gastrocnemius muscle was excised 1 or 5 days after EIMD, producing 6 groups (n = 10/group). Body mass was greater; however, relative gastrocnemius mass was lower in HFD-fed mice. Despite no macrophage or MECL-1 alterations, LMP7 and 8-isoprostane were increased in obese mice in the NMD and 1 day post-EIMD groups. However, 8-isoprostane was reduced in obese mice 5 days post-EIMD, and accompanied by increased muscle LMP7, MECL-1 and macrophage content. Consequently, DIO may impair the immunoproteasome's ability to control muscle lipid peroxidation but is reversed with eccentric exercise. Although muscle regeneration was unchanged, immunoproteasome dysregulation occurs in obese muscle and may contribute to muscle pathology. Novelty: DIO may impair the intramuscular immunoproteasome response to lipid peroxidation. Acute eccentric exercise may protect obese individuals from muscle lipotoxicity via immunoproteasome upregulation.
Collapse
Affiliation(s)
- Emma Fletcher
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX 76798, USA
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX 76798, USA
| | - Paul M Gordon
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX 76798, USA
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
21
|
Basler M, Christ M, Goebel H, Groettrup M. Immunoproteasome Upregulation Is Not Required to Control Protein Homeostasis during Viral Infection. THE JOURNAL OF IMMUNOLOGY 2021; 206:1697-1708. [PMID: 33731337 DOI: 10.4049/jimmunol.2000822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Abstract
The prime function of proteasomes is the control of protein homeostasis in cells (i.e., the removal of proteins that are not properly folded, damaged by stress conditions like reactive oxygen species formation, or degraded on the basis of regular protein turnover). During viral infection, the standard proteasome is replaced by the so-called immunoproteasome (IP) in an IFN-γ-dependent manner. It has been proposed that the IP is required to protect cell viability under conditions of IFN-induced oxidative stress. In this study, we investigated the requirement for IP to cope with the enhanced need for protein degradation during lymphocytic choriomeningitis virus (LCMV) infection in mice lacking the IP subunit LMP7. We found that IP are upregulated in the liver but not in the spleen during LCMV infection, although the total proteasome content was not altered. The expression of standard proteasome subunits is not induced in LMP7-deficient mice, indicating that enhanced proteasomal activity is not required during viral infection. Furthermore, ubiquitin accumulation, apoptosis induction, and viral titers were similar in LCMV-infected mice lacking LMP7 compared with wild-type mice. Taken together, these data indicate that the IP is not required to regulate protein homeostasis during LCMV infection.
Collapse
Affiliation(s)
- Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; and .,Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Marleen Christ
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; and
| | - Heike Goebel
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; and
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; and.,Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| |
Collapse
|
22
|
Zhou D, Borsa M, Simon AK. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell 2021; 20:e13316. [PMID: 33524238 PMCID: PMC7884036 DOI: 10.1111/acel.13316] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
The ageing of the global population brings about unprecedented challenges. Chronic age-related diseases in an increasing number of people represent an enormous burden for health and social care. The immune system deteriorates during ageing and contributes to many of these age-associated diseases due to its pivotal role in pathogen clearance, tissue homeostasis and maintenance. Moreover, in order to develop treatments for COVID-19, we urgently need to acquire more knowledge about the aged immune system, as older adults are disproportionally and more severely affected. Changes with age lead to impaired responses to infections, malignancies and vaccination, and are accompanied by chronic, low-degree inflammation, which together is termed immunosenescence. However, the molecular and cellular mechanisms that underlie immunosenescence, termed immune cell senescence, are mostly unknown. Cellular senescence, characterised by an irreversible cell cycle arrest, is thought to be the cause of tissue and organismal ageing. Thus, better understanding of cellular senescence in immune populations at single-cell level may provide us with insight into how immune cell senescence develops over the life time of an individual. In this review, we will briefly introduce the phenotypic characterisation of aged innate and adaptive immune cells, which also contributes to overall immunosenescence, including subsets and function. Next, we will focus on the different hallmarks of cellular senescence and cellular ageing, and the detection techniques most suitable for immune cells. Applying these techniques will deepen our understanding of immune cell senescence and to discover potential druggable pathways, which can be modulated to reverse immune ageing.
Collapse
Affiliation(s)
- Dingxi Zhou
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Mariana Borsa
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | | |
Collapse
|
23
|
Sun C, Jia G, Wang X, Wang Y, Liu Y. Immunoproteasome is up-regulated in rotenone-induced Parkinson's disease rat model. Neurosci Lett 2020; 738:135360. [PMID: 32905834 DOI: 10.1016/j.neulet.2020.135360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/14/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
The study was to investigate whether immunoproteasome (i-proteasome) and its downstream pathway are related to the pathogenesis of Parkinson's disease (PD). Rats were treated with rotenone showed significant weight loss and dyskinesia, which is consistent with the degeneration of TH-positive neurons and the activation of Iba-1-positive microglia/macrophages. Two major catalytic subunits of i-proteasome (PSMB9 and PSMB8) were seldom expressed in rat substantia nigra (SN) under normal condition, but they were significantly up-regulated with the release of TNF-α and IFN-γ after exposure to rotenone. In addition, compared with control group, the antigen presentation-related proteins antigen peptide transporter (TAP) 1, TAP2, major histocompatibility complex (MHC)-I and MHC-II levels were significantly up-regulated in rotenone group, which was in line with the accumulation of α-syn. These findings suggested that i-proteasome and antigen presentation pathways (related proteins) were upregulated by rotenone in a PD rat model.
Collapse
Affiliation(s)
- Congcong Sun
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, 250012, China
| | - Guoyong Jia
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, 250012, China
| | - Xingbang Wang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, 250012, China
| | - Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221000, China
| | - Yiming Liu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
24
|
Yang Y, Liu W, Hu D, Su R, Ji M, Huang Y, Shereen MA, Xu X, Luo Z, Zhang Q, Liu F, Wu K, Liu Y, Wu J. HIV-1 Nef Interacts with LMP7 To Attenuate Immunoproteasome Formation and Major Histocompatibility Complex Class I Antigen Presentation. mBio 2020; 11:e02221-19. [PMID: 33109760 PMCID: PMC7593969 DOI: 10.1128/mbio.02221-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/21/2020] [Indexed: 01/03/2023] Open
Abstract
The proteasome is a major protein degradation machinery with essential and diverse biological functions. Upon induction by cytokines, proteasome subunits β1, β2, and β5 are replaced by β1i/LMP2, β2i/MECL-1, and β5i/LMP7, resulting in the formation of an immunoproteasome (iProteasome). iProteasome-degraded products are loaded onto the major histocompatibility complex class I (MHC-I), regulating immune responses and inducing cytotoxic T lymphocytes (CTLs). Human immunodeficiency virus type 1 (HIV-1) is the causal agent of AIDS. HIV-1-specific CTLs represent a critical immune mechanism limiting viral replication. HIV-1 negative regulatory factor (Nef) counteracts host immunity, particularly the response involving MHC-I/CTL. This study identifies a distinct mechanism by which Nef facilitates immune evasion via suppressing the function of iProteasome and MHC-I. Nef interacts with LMP7 on the endoplasmic reticulum (ER), downregulating the incorporation of LMP7 into iProteasome and thereby attenuating its formation. Moreover, Nef represses the iProteasome function of protein degradation, MHC-I trafficking, and antigen presentation.IMPORTANCE The ubiquitin-proteasome system (UPS) is essential for the degradation of damaged proteins, which takes place in the proteasome. Upon activation by cytokines, the catalytic subunits of the proteasome are replaced by distinct isoforms resulting in the formation of an immunoproteasome (iProteasome). iProteasome generates peptides used by major histocompatibility complex class I (MHC-I) for antigen presentation and is essential for immune responses. HIV-1 is the causative agent of AIDS, and HIV-1-specific cytotoxic T lymphocytes (CTLs) provide immune responses limiting viral replication. This study identifies a distinct mechanism by which HIV-1 promotes immune evasion. The viral protein negative regulatory factor (Nef) interacts with a component of iProteasome, LMP7, attenuating iProteasome formation and protein degradation function, and thus repressing the MHC-I antigen presentation activity of MHC-I. Therefore, HIV-1 targets LMP7 to inhibit iProteasome activation, and LMP7 may be used as the target for the development of anti-HIV-1/AIDS therapy.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weiyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dan Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Rui Su
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Man Ji
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuqing Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaodi Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
25
|
Reduced Proteasome Activity and Enhanced Autophagy in Blood Cells of Psoriatic Patients. Int J Mol Sci 2020; 21:ijms21207608. [PMID: 33066703 PMCID: PMC7589048 DOI: 10.3390/ijms21207608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a skin disease that is accompanied by oxidative stress resulting in modification of cell components, including proteins. Therefore, we investigated the relationship between the intensity of oxidative stress and the expression and activity of the proteasomal system as well as autophagy, responsible for the degradation of oxidatively modified proteins in the blood cells of patients with psoriasis. Our results showed that the caspase-like, trypsin-like, and chymotrypsin-like activity of the 20S proteasome in lymphocytes, erythrocytes, and granulocytes was lower, while the expression of constitutive proteasome and immunoproteasome subunits in lymphocytes was increased cells of psoriatic patients compared to healthy subjects. Conversely, the expression of constitutive subunits in erythrocytes, and both constitutive and immunoproteasomal subunits in granulocytes were reduced. However, a significant increase in the autophagy flux (assessed using LC3BII/LC3BI ratio) independent of the AKT pathway was observed. The levels of 4-HNE, 4-HNE-protein adducts, and proteins carbonyl groups were significantly higher in the blood cells of psoriatic patients. The decreased activity of the 20S proteasome together with the increased autophagy and the significantly increased level of proteins carbonyl groups and 4-HNE-protein adducts indicate a proteostatic imbalance in the blood cells of patients with psoriasis.
Collapse
|
26
|
Proteostasis Disturbances and Inflammation in Neurodegenerative Diseases. Cells 2020; 9:cells9102183. [PMID: 32998318 PMCID: PMC7601929 DOI: 10.3390/cells9102183] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis) disturbances and inflammation are evident in normal aging and some age-related neurodegenerative diseases. While the proteostasis network maintains the integrity of intracellular and extracellular functional proteins, inflammation is a biological response to harmful stimuli. Cellular stress conditions can cause protein damage, thus exacerbating protein misfolding and leading to an eventual overload of the degradation system. The regulation of proteostasis network is particularly important in postmitotic neurons due to their limited regenerative capacity. Therefore, maintaining balanced protein synthesis, handling unfolding, refolding, and degrading misfolded proteins are essential to preserve all cellular functions in the central nervous sysytem. Failing proteostasis may trigger inflammatory responses in glial cells, and the consequent release of inflammatory mediators may lead to disturbances in proteostasis. Here, we review the mechanisms of proteostasis and inflammatory response, emphasizing their role in the pathological hallmarks of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Furthermore, we discuss the interplay between proteostatic stress and excessive immune response that activates inflammation and leads to dysfunctional proteostasis.
Collapse
|
27
|
Efficiency of the four proteasome subtypes to degrade ubiquitinated or oxidized proteins. Sci Rep 2020; 10:15765. [PMID: 32978409 PMCID: PMC7519072 DOI: 10.1038/s41598-020-71550-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/19/2020] [Indexed: 01/22/2023] Open
Abstract
The proteasome is responsible for selective degradation of proteins. It exists in mammalian cells under four main subtypes, which differ by the combination of their catalytic subunits: the standard proteasome (β1–β2–β5), the immunoproteasome (β1i–β2i–β5i) and the two intermediate proteasomes (β1–β2–β5i and β1i–β2–β5i). The efficiency of the four proteasome subtypes to degrade ubiquitinated or oxidized proteins remains unclear. Using cells expressing exclusively one proteasome subtype, we observed that ubiquitinated p21 and c-myc were degraded at similar rates, indicating that the four 26S proteasomes degrade ubiquitinated proteins equally well. Under oxidative stress, we observed a partial dissociation of 26S into 20S proteasomes, which can degrade non-ubiquitinated oxidized proteins. Oxidized calmodulin and hemoglobin were best degraded in vitro by the three β5i-containing 20S proteasomes, while their native forms were not degraded. Circular dichroism analyses indicated that ubiquitin-independent recognition of oxidized proteins by 20S proteasomes was triggered by the disruption of their structure. Accordingly, β5i-containing 20S proteasomes degraded unoxidized naturally disordered protein tau, while 26S proteasomes did not. Our results suggest that the three β5i-containing 20S proteasomes, namely the immunoproteasome and the two intermediate proteasomes, might help cells to eliminate proteins containing disordered domains, including those induced by oxidative stress.
Collapse
|
28
|
Gan T, Li Y, Zhou XJ, Zhang H. Immunoproteasome in IgA Nephropathy: State-of-Art and Future Perspectives. Int J Biol Sci 2020; 16:2518-2526. [PMID: 32792854 PMCID: PMC7415421 DOI: 10.7150/ijbs.48330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
IgA nephropathy (IgAN) is a leading cause of chronic kidney disease and renal failure. The exact pathogenesis of IgAN is not well defined, but some genetic studies have led to a novel discovery that the immunoproteasome probably plays an important role in IgAN. The immunoproteasome is a proteasome variant that is expressed when cells are stressed or receive inflammatory signals. While immunoproteasome is suggested to be mainly involved in major histocompatibility complex-I (MHC-I) antigen presentation, recent studies indicate that it may assert broad functions in trafficking events that activate both innate and adaptive immunity. In this review, we first summarize new insights into its functions in immunity, and discuss how it underlies its associations with IgAN. We also highlight its potential as a therapeutic target for the future.
Collapse
Affiliation(s)
- Ting Gan
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences
| | - Yang Li
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences
| | - Hong Zhang
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences
| |
Collapse
|
29
|
Schregle R, Mueller S, Legler DF, Rossy J, Krueger WA, Groettrup M. FAT10 localises in dendritic cell aggresome-like induced structures and contributes to their disassembly. J Cell Sci 2020; 133:jcs240085. [PMID: 32546531 DOI: 10.1242/jcs.240085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/04/2020] [Indexed: 08/31/2023] Open
Abstract
Dendritic cell (DC) aggresome-like induced structures (DALIS) are protein aggregates of polyubiquitylated proteins that form transiently during DC maturation. DALIS scatter randomly throughout the cytosol and serve as antigen storage sites synchronising DC maturation and antigen presentation. Maturation of DCs is accompanied by the induction of the ubiquitin-like modifier FAT10 (also known as UBD), which localises to aggresomes, structures that are similar to DALIS. FAT10 is conjugated to substrate proteins and serves as a signal for their rapid and irreversible degradation by the 26S proteasome similar to, yet independently of ubiquitin, thereby contributing to antigen presentation. Here, we have investigated whether FAT10 is involved in the formation and turnover of DALIS, and whether proteins accumulating in DALIS can be modified through conjunction to FAT10 (FAT10ylated). We found that FAT10 localises to DALIS in maturing DCs and that this localisation occurs independently of its conjugation to substrates. Additionally, we investigated the DALIS turnover in FAT10-deficient and -proficient DCs, and observed FAT10-mediated disassembly of DALIS. Thus, we report further evidence that FAT10 is involved in antigen processing, which may provide a functional rationale as to why FAT10 is selectively induced upon DC maturation.
Collapse
Affiliation(s)
- Richard Schregle
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Stefanie Mueller
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Daniel F Legler
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
| | - Jérémie Rossy
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
| | | | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
| |
Collapse
|
30
|
Korfei M, MacKenzie B, Meiners S. The ageing lung under stress. Eur Respir Rev 2020; 29:29/156/200126. [DOI: 10.1183/16000617.0126-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023] Open
Abstract
Healthy ageing of the lung involves structural changes but also numerous cell-intrinsic and cell-extrinsic alterations. Among them are the age-related decline in central cellular quality control mechanisms such as redox and protein homeostasis. In this review, we would like to provide a conceptual framework of how impaired stress responses in the ageing lung, as exemplified by dysfunctional redox and protein homeostasis, may contribute to onset and progression of COPD and idiopathic pulmonary fibrosis (IPF). We propose that age-related imbalanced redox and protein homeostasis acts, amongst others (e.g.cellular senescence), as a “first hit” that challenges the adaptive stress-response pathways of the cell, increases the level of oxidative stress and renders the lung susceptible to subsequent injury and disease. In both COPD and IPF, additional environmental insults such as smoking, air pollution and/or infections then serve as “second hits” which contribute to persistently elevated oxidative stress that overwhelms the already weakened adaptive defence and repair pathways in the elderly towards non-adaptive, irremediable stress thereby promoting development and progression of respiratory diseases. COPD and IPF are thus distinct horns of the same devil, “lung ageing”.
Collapse
|
31
|
Evaluating the immunoproteasome as a potential therapeutic target in cisplatin-resistant small cell and non-small cell lung cancer. Cancer Chemother Pharmacol 2020; 85:843-853. [PMID: 32232513 DOI: 10.1007/s00280-020-04061-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE We evaluated the expression of proteasome subunits to assess whether the proteasome could be a therapeutic target in cisplatin-resistant lung cancer cells. METHODS Cisplatin-resistant (CR) variants were established from three non-small cell lung cancer (NSCLC) cell lines (A549, H1299, and H1975) and two small cell lung cancer (SCLC) cell lines (SBC3 and SBC5). The expression of proteasome subunits, the sensitivity to immunoproteasome inhibitors, and 20S proteasomal proteolytic activity were examined in the CR variants of the lung cancer cell lines. RESULTS All five CR cell lines highly expressed one or both of the immunoproteasome subunit genes, PSMB8 and PSMB9, while no clear trend was observed in the expression of constitutive proteasome subunits. The CR cells expressed significantly higher levels of PSMB8 and PSMB9 proteins, as well. The CR variants of the H1299 and SBC3 cell lines were more sensitive to immunoproteasome inhibitors, and had significantly more proteasomal proteolytic activity than their parental counterparts. CONCLUSIONS The immunoproteasome may be an effective therapeutic target in a subset of CR lung cancers. Proteasomal proteolytic activity may be a predictive marker for the efficacy of immunoproteasome inhibitors in cisplatin-resistant SCLC and NSCLC.
Collapse
|
32
|
Wang X, Meul T, Meiners S. Exploring the proteasome system: A novel concept of proteasome inhibition and regulation. Pharmacol Ther 2020; 211:107526. [PMID: 32173559 DOI: 10.1016/j.pharmthera.2020.107526] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/08/2020] [Indexed: 12/13/2022]
Abstract
The proteasome is a well-identified therapeutic target for cancer treatment. It acts as the main protein degradation system in the cell and degrades key mediators of cell growth, survival and function. The term "proteasome" embraces a whole family of distinct complexes, which share a common proteolytic core, the 20S proteasome, but differ by their attached proteasome activators. Each of these proteasome complexes plays specific roles in the control of cellular function. In addition, distinct proteasome interacting proteins regulate proteasome activity in subcellular compartments and in response to cellular signals. Proteasome activators and regulators may thus serve as building blocks to fine-tune proteasome function in the cell according to cellular needs. Inhibitors of the proteasome, e.g. the FDA approved drugs Velcade™, Kyprolis™, Ninlaro™, inactivate the catalytic 20S core and effectively block protein degradation of all proteasome complexes in the cell resulting in inhibition of cell growth and induction of apoptosis. Efficacy of these inhibitors, however, is hampered by their pronounced cytotoxic side-effects as well as by the emerging development of resistance to catalytic proteasome inhibitors. Targeted inhibition of distinct buiding blocks of the proteasome system, i.e. proteasome activators or regulators, represents an alternative strategy to overcome these limitations. In this review, we stress the importance of the diversity of the proteasome complexes constituting an entire proteasome system. Our building block concept provides a rationale for the defined targeting of distinct proteasome super-complexes in disease. We thereby aim to stimulate the development of innovative therapeutic approaches beyond broad catalytic proteasome inhibition.
Collapse
Affiliation(s)
- Xinyuan Wang
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Thomas Meul
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, German Center for Lung Research (DZL), 81377 Munich, Germany.
| |
Collapse
|
33
|
Greenberg SA. Inclusion body myositis: clinical features and pathogenesis. Nat Rev Rheumatol 2020; 15:257-272. [PMID: 30837708 DOI: 10.1038/s41584-019-0186-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Inclusion body myositis (IBM) is often viewed as an enigmatic disease with uncertain pathogenic mechanisms and confusion around diagnosis, classification and prospects for treatment. Its clinical features (finger flexor and quadriceps weakness) and pathological features (invasion of myofibres by cytotoxic T cells) are unique among muscle diseases. Although IBM T cell autoimmunity has long been recognized, enormous attention has been focused for decades on several biomarkers of myofibre protein aggregates, which are present in <1% of myofibres in patients with IBM. This focus has given rise, together with the relative treatment refractoriness of IBM, to a competing view that IBM is not an autoimmune disease. Findings from the past decade that implicate autoimmunity in IBM include the identification of a circulating autoantibody (anti-cN1A); the absence of any statistically significant genetic risk factor other than the common autoimmune disease 8.1 MHC haplotype in whole-genome sequencing studies; the presence of a marked cytotoxic T cell signature in gene expression studies; and the identification in muscle and blood of large populations of clonal highly differentiated cytotoxic CD8+ T cells that are resistant to many immunotherapies. Mounting evidence that IBM is an autoimmune T cell-mediated disease provides hope that future therapies directed towards depleting these cells could be effective.
Collapse
Affiliation(s)
- Steven A Greenberg
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA. .,Children's Hospital Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Coux O, Zieba BA, Meiners S. The Proteasome System in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:55-100. [DOI: 10.1007/978-3-030-38266-7_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Shanley KL, Hu CL, Bizzozero OA. Decreased levels of constitutive proteasomes in experimental autoimmune encephalomyelitis may be caused by a combination of subunit displacement and reduced Nfe2l1 expression. J Neurochem 2019; 152:585-601. [PMID: 31709534 DOI: 10.1111/jnc.14912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 11/28/2022]
Abstract
The goal of this study was to determine if subunit displacement and/or alterations in proteasome biosynthesis could explain the changes observed in the levels of constitutive proteasomes (c-20S) and immunoproteasomes (i-20S) in the spinal cords of mice with experimental autoimmune encephalomyelitis (EAE). To this end, EAE was induced in C57BL/6 mice by immunization with MOG35-55 peptide. Spinal cords were collected at different times during the disease course and used for western blotting, RNA analysis, and immunohistochemistry. The results show that, as expression of i-20S and the activator PA28 rise in EAE, there is a concomitant decline in that of c-20S at the mRNA and protein level. These changes are observed in neurons and astrocytes but not in oligodendrocytes. The increased amounts of the i-20S-specific subunit β5i and PA28α/β in EAE correlate with the levels of interferon-γ and its downstream effectors p-signal transducer and activator of transcription 1 and interferon regulatory factor-1, but not with those of nuclear factor kappa-light-chain-enhancer of activated B cells. This suggests that the signal transducer and activator of transcription 1/interferon regulatory factor-1 pathway is solely responsible for the induction of these subunits. The decrease in the mRNA and protein levels corresponding to the c-20S-specific subunit β5 may also be due to reduced expression of the nuclear factor (erythroid-derived 2)-like-1 (Nrf1 or Nfe2l1), specifically Nrf1α and Nrf1β. Low Nfe2l1 mRNA expression is unlikely caused by reduced mammalian target of rapamycin signaling but could be the result of diminished pre-B-cell leukemia homeobox-1 transcription factor levels. Together, these findings suggest that a combination of subunit displacement and reduced Nrf1 expression may be responsible for c-20S impairment in EAE. The present work provides insights into the dynamics of proteasome expression in the CNS of EAE mice and is the first to explore Nrf1 signaling in an inflammatory demyelinating disorder.
Collapse
Affiliation(s)
- Kara L Shanley
- Department of Cell Biology and Physiology, University of New Mexico - Health Sciences Center, Albuquerque, New Mexico, USA
| | - Che-Lin Hu
- Department of Cell Biology and Physiology, University of New Mexico - Health Sciences Center, Albuquerque, New Mexico, USA
| | - Oscar A Bizzozero
- Department of Cell Biology and Physiology, University of New Mexico - Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
36
|
Li S, Dai X, Gong K, Song K, Tai F, Shi J. PA28α/β Promote Breast Cancer Cell Invasion and Metastasis via Down-Regulation of CDK15. Front Oncol 2019; 9:1283. [PMID: 31824858 PMCID: PMC6883405 DOI: 10.3389/fonc.2019.01283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022] Open
Abstract
PA28α/β activated immunoproteasome frequently participates in MHC class I antigen processing, however, whether it is involved in breast tumor progression remains largely unclear. Here, our evidences show that PA28α/β proteins are responsible for breast cancer cell migration, invasion, and metastasis. Knockdown of immunoproteasome core subunit β5i also robustly suppresses the tumor cell migration and invasion. Interestingly, silencing of PA28α/β and β5i up-regulates the protein expression of cyclin-dependent kinase 15 (CDK15). Our data further indicate that the loss of CDK15 is important for breast tumor cell invasion and metastasis. Taken together, this study implicates that targeting of PA28α/β represents a potential way for treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Shengnan Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangdong, China
| | - Xiaoqin Dai
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangdong, China.,Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Kunxiang Gong
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangdong, China
| | - Kai Song
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangdong, China
| | - Fang Tai
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangdong, China
| | - Jian Shi
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangdong, China
| |
Collapse
|
37
|
Zerfas BL, Maresh ME, Trader DJ. The Immunoproteasome: An Emerging Target in Cancer and Autoimmune and Neurological Disorders. J Med Chem 2019; 63:1841-1858. [PMID: 31670954 DOI: 10.1021/acs.jmedchem.9b01226] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immunoproteasome (iCP) is an isoform of the 20S proteasome that is expressed when cells are stressed or receive an inflammatory signal. The primary role of the iCP is to hydrolyze proteins into peptides that are compatible with being loaded into a MHC-I complex. When the activity of the iCP is dysregulated or highly expressed, it can lead to unwanted cell death. Some cancer types express the iCP rather than the standard proteasome, and selective inhibitors have been developed to exploit this difference. Here, we describe diseases known to be influenced by iCP activity and the current status for targeting the iCP to elicit a therapeutic response. We also describe a variety of chemical tools that have been developed to monitor the activity of the iCP in cells. Finally, we present the future outlook for targeting the iCP in a variety of disease types and with mechanisms besides inhibition.
Collapse
Affiliation(s)
- Breanna L Zerfas
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Marianne E Maresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
38
|
Morozov AV, Karpov VL. Proteasomes and Several Aspects of Their Heterogeneity Relevant to Cancer. Front Oncol 2019; 9:761. [PMID: 31456945 PMCID: PMC6700291 DOI: 10.3389/fonc.2019.00761] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/29/2019] [Indexed: 01/19/2023] Open
Abstract
The life of every organism is dependent on the fine-tuned mechanisms of protein synthesis and breakdown. The degradation of most intracellular proteins is performed by the ubiquitin proteasome system (UPS). Proteasomes are central elements of the UPS and represent large multisubunit protein complexes directly responsible for the protein degradation. Accumulating data indicate that there is an intriguing diversity of cellular proteasomes. Different proteasome forms, containing different subunits and attached regulators have been described. In addition, proteasomes specific for a particular tissue were identified. Cancer cells are highly dependent on the proper functioning of the UPS in general, and proteasomes in particular. At the same time, the information regarding the role of different proteasome forms in cancer is limited. This review describes the functional and structural heterogeneity of proteasomes, their association with cancer as well as several established and novel proteasome-directed therapeutic strategies.
Collapse
Affiliation(s)
- Alexey V. Morozov
- Laboratory of Regulation of Intracellular Proteolysis, W.A. Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | |
Collapse
|
39
|
Kors S, Geijtenbeek K, Reits E, Schipper-Krom S. Regulation of Proteasome Activity by (Post-)transcriptional Mechanisms. Front Mol Biosci 2019; 6:48. [PMID: 31380390 PMCID: PMC6646590 DOI: 10.3389/fmolb.2019.00048] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022] Open
Abstract
Intracellular protein synthesis, folding, and degradation are tightly controlled processes to ensure proper protein homeostasis. The proteasome is responsible for the degradation of the majority of intracellular proteins, which are often targeted for degradation via polyubiquitination. However, the degradation rate of proteins is also affected by the capacity of proteasomes to recognize and degrade these substrate proteins. This capacity is regulated by a variety of proteasome modulations including (1) changes in complex composition, (2) post-translational modifications, and (3) altered transcription of proteasomal subunits and activators. Various diseases are linked to proteasome modulation and altered proteasome function. A better understanding of these modulations may offer new perspectives for therapeutic intervention. Here we present an overview of these three proteasome modulating mechanisms to give better insight into the diversity of proteasomes.
Collapse
Affiliation(s)
- Suzan Kors
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Karlijne Geijtenbeek
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eric Reits
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sabine Schipper-Krom
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
40
|
Cell Clearing Systems Bridging Neuro-Immunity and Synaptic Plasticity. Int J Mol Sci 2019; 20:ijms20092197. [PMID: 31060234 PMCID: PMC6538995 DOI: 10.3390/ijms20092197] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, functional interconnections emerged between synaptic transmission, inflammatory/immune mediators, and central nervous system (CNS) (patho)-physiology. Such interconnections rose up to a level that involves synaptic plasticity, both concerning its molecular mechanisms and the clinical outcomes related to its behavioral abnormalities. Within this context, synaptic plasticity, apart from being modulated by classic CNS molecules, is strongly affected by the immune system, and vice versa. This is not surprising, given the common molecular pathways that operate at the cross-road between the CNS and immune system. When searching for a common pathway bridging neuro-immune and synaptic dysregulations, the two major cell-clearing cell clearing systems, namely the ubiquitin proteasome system (UPS) and autophagy, take center stage. In fact, just like is happening for the turnover of key proteins involved in neurotransmitter release, antigen processing within both peripheral and CNS-resident antigen presenting cells is carried out by UPS and autophagy. Recent evidence unravelling the functional cross-talk between the cell-clearing pathways challenged the traditional concept of autophagy and UPS as independent systems. In fact, autophagy and UPS are simultaneously affected in a variety of CNS disorders where synaptic and inflammatory/immune alterations concur. In this review, we discuss the role of autophagy and UPS in bridging synaptic plasticity with neuro-immunity, while posing a special emphasis on their interactions, which may be key to defining the role of immunity in synaptic plasticity in health and disease.
Collapse
|
41
|
Limanaqi F, Biagioni F, Gaglione A, Busceti CL, Fornai F. A Sentinel in the Crosstalk Between the Nervous and Immune System: The (Immuno)-Proteasome. Front Immunol 2019; 10:628. [PMID: 30984192 PMCID: PMC6450179 DOI: 10.3389/fimmu.2019.00628] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022] Open
Abstract
The wealth of recent evidence about a bi-directional communication between nerve- and immune- cells revolutionized the traditional concept about the brain as an “immune-privileged” organ while opening novel avenues in the pathophysiology of CNS disorders. In fact, altered communication between the immune and nervous system is emerging as a common hallmark in neuro-developmental, neurodegenerative, and neuro-immunological diseases. At molecular level, the ubiquitin proteasome machinery operates as a sentinel at the crossroad between the immune system and brain. In fact, the standard proteasome and its alternative/inducible counterpart, the immunoproteasome, operate dynamically and coordinately in both nerve- and immune- cells to modulate neurotransmission, oxidative/inflammatory stress response, and immunity. When dysregulations of the proteasome system occur, altered amounts of standard- vs. immune-proteasome subtypes translate into altered communication between neurons, glia, and immune cells. This contributes to neuro-inflammatory pathology in a variety of neurological disorders encompassing Parkinson's, Alzheimer's, and Huntingtin's diseases, brain trauma, epilepsy, and Multiple Sclerosis. In the present review, we analyze those proteasome-dependent molecular interactions which sustain communication between neurons, glia, and brain circulating T-lymphocytes both in baseline and pathological conditions. The evidence here discussed converges in that upregulation of immunoproteasome to the detriment of the standard proteasome, is commonly implicated in the inflammatory- and immune- biology of neurodegeneration. These concepts may foster additional studies investigating the role of immunoproteasome as a potential target in neurodegenerative and neuro-immunological disorders.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,I.R.C.C.S Neuromed, Pozzilli, Italy
| |
Collapse
|
42
|
Sun C, Mo M, Wang Y, Yu W, Song C, Wang X, Chen S, Liu Y. Activation of the immunoproteasome protects SH-SY5Y cells from the toxicity of rotenone. Neurotoxicology 2019; 73:112-119. [PMID: 30904435 DOI: 10.1016/j.neuro.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
This study investigated the expression and role of immunoproteasome (i-proteasome) in a cell model of Parkinson's disease (PD). The cytotoxicity of rotenone was measured by CCK-8 assay. The i-proteasome β1i subunit PSMB9 was suppressed by a specific shRNA or transfected with an overexpression plasmid in the SH-SY5Y cells. Under the exposure to rotenone or not, the expression of constitutive proteasome β subunits, i-proteasome βi subunits, antigen presentation related proteins, α-syn and TH were detected by Western blot in PSMB9-silenced or -overexpressed cells, and the proteasomal activities were detected by fluorogenic peptide substrates. The location of i-proteasome βi subunits and α-syn were detected by immunofluorescence staining. The levels of ROS, GSH and MDA were measured by commercial kits. Cell apoptosis was detected by flow cytometry. Besides impairing the constitutive proteasomes, rotenone induced the expression of βi subunits of i-proteasome and antigen presentation related proteins such as TAP1, TAP2 and MHC-I. Silencing or overexpressing PSMB9 had no obvious effect on the levels of other subunits, but could regulate the chymotrypsin-like activity of 20S proteasome and the expression of TAP1, TAP2 and MHC-I. Three βi subunits (PSMB9, PSMB10, PSMB8) of i-proteasome were all co-localized with α-syn. PSMB9 knockdown aggravated accumulation of α-syn, degradation of TH, release of ROS, increased level of MDA, decreased level of GSH and eventually promoted apoptosis in SH-SY5Y cells after rotenone treatment, while over-expression of PSMB9 could attenuate these toxic effects of rotenone. I-proteasome is activated in SH-SY5Y cells treated with rotenone and may play a neuroprotective role.
Collapse
Affiliation(s)
- Congcong Sun
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Mingshu Mo
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, China
| | - Wenfei Yu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Chengyuan Song
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xingbang Wang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Si Chen
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yiming Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China; Brain Science Research Institute, Shandong University, Jinan, 250012, China.
| |
Collapse
|
43
|
Lee MJ, Miller Z, Park JE, Bhattarai D, Lee W, Kim KB. H727 cells are inherently resistant to the proteasome inhibitor carfilzomib, yet require proteasome activity for cell survival and growth. Sci Rep 2019; 9:4089. [PMID: 30858500 PMCID: PMC6411724 DOI: 10.1038/s41598-019-40635-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/20/2019] [Indexed: 01/06/2023] Open
Abstract
The second-in-class proteasome inhibitor (PI) carfilzomib (Kyprolis, Cfz) has contributed to a substantial advancement in multiple myeloma treatment by improving patient survival and quality of life. A considerable portion of patients however display intrinsic resistance to Cfz. Our mechanistic understanding of intrinsic Cfz resistance is limited due to a lack of suitable cell-based models. We report that H727 human bronchial carcinoid cells are inherently resistant to Cfz, yet susceptible to other PIs and inhibitors targeting upstream components of the ubiquitin-proteasome system (UPS). These results indicate that H727 cells remain dependent on the UPS for cell survival and growth despite harboring intrinsic resistance to Cfz. Alterations in the composition of proteasome catalytic subunits via interferon-γ treatment or siRNA knockdown results in sensitization of H727 cells to Cfz. We postulate that a potential link may exist between the composition of proteasome catalytic subunits and the cellular response to Cfz. Overall, H727 cells may serve as a useful cell-based model for de novo Cfz resistance and our results suggest previously unexplored mechanisms of de novo PI resistance.
Collapse
Affiliation(s)
- Min Jae Lee
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Zachary Miller
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Ji Eun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Deepak Bhattarai
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
44
|
Kudriaeva A, Kuzina ES, Zubenko O, Smirnov IV, Belogurov A. Charge‐mediated proteasome targeting. FASEB J 2019; 33:6852-6866. [DOI: 10.1096/fj.201802237r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
| | - Ekaterina S. Kuzina
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
| | - Oleg Zubenko
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
| | - Ivan V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
- Kazan Federal UniversityKazanRussian Federation
| | - Alexey Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
- Department of Fundamental MedicineLomonosov Moscow State UniversityMoscowRussian Federation
| |
Collapse
|
45
|
Goichon A, Bahlouli W, Ghouzali I, Chan P, Vaudry D, Déchelotte P, Ducrotté P, Coëffier M. Colonic Proteome Signature in Immunoproteasome-Deficient Stressed Mice and Its Relevance for Irritable Bowel Syndrome. J Proteome Res 2018; 18:478-492. [DOI: 10.1021/acs.jproteome.8b00793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alexis Goichon
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
| | - Wafa Bahlouli
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
| | - Ibtissem Ghouzali
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
| | - Philippe Chan
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
- Platform in proteomics PISSARO, Normandie University, UNIROUEN, Rouen, F-76821, France
| | - David Vaudry
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
- Platform in proteomics PISSARO, Normandie University, UNIROUEN, Rouen, F-76821, France
- INSERM unit 1239, Normandie University, UNIROUEN, Rouen, F-76821, France
| | - Pierre Déchelotte
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
- Nutrition Department, Rouen University Hospital, Rouen, F-76031, France
| | - Philippe Ducrotté
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
- Gastroenterology Department, Rouen University Hospital, Rouen, F-76031, France
| | - Moïse Coëffier
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
- Nutrition Department, Rouen University Hospital, Rouen, F-76031, France
| |
Collapse
|
46
|
Morozov AV, Karpov VL. Biological consequences of structural and functional proteasome diversity. Heliyon 2018; 4:e00894. [PMID: 30417153 PMCID: PMC6218844 DOI: 10.1016/j.heliyon.2018.e00894] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/25/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
Cell homeostasis and regulation of metabolic pathways are ensured by synthesis, proper folding and efficient degradation of a vast amount of proteins. Ubiquitin-proteasome system (UPS) degrades most intracellular proteins and thus, participates in regulation of cellular metabolism. Within the UPS, proteasomes are the elements that perform substrate cleavage. However, the proteasomes in the organism are diverse. Structurally different proteasomes are present not only in different types of cells, but also in a single cell. The reason for proteasome heterogeneity is not fully understood. This review briefly encompasses mammalian proteasome structure and function, and discusses biological relevance of proteasome diversity for a range of important cellular functions including internal and external signaling.
Collapse
Affiliation(s)
- Alexey V Morozov
- W.A. Engelhardt Institute of Molecular Biology, RAS, 119991, Moscow, Russia
| | - Vadim L Karpov
- W.A. Engelhardt Institute of Molecular Biology, RAS, 119991, Moscow, Russia
| |
Collapse
|
47
|
Schmidt C, Berger T, Groettrup M, Basler M. Immunoproteasome Inhibition Impairs T and B Cell Activation by Restraining ERK Signaling and Proteostasis. Front Immunol 2018; 9:2386. [PMID: 30416500 PMCID: PMC6212513 DOI: 10.3389/fimmu.2018.02386] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022] Open
Abstract
Immunoproteasome (IP) inhibition holds potential as a novel treatment option for various immune-mediated pathologies. The IP inhibitor ONX 0914 reduced T cell cytokine secretion and Th17 polarization and showed pre-clinical efficacy in a range of autoimmune disorders, transplant-allograft rejection, virus-mediated tissue damage, and colon cancer progression. However, the molecular basis of these effects has remained largely elusive. Here, we have analyzed the effects of ONX 0914 in primary human and mouse lymphocytes. ONX 0914-treatment impaired primary T cell activation in vitro and in vivo. IP inhibition reduced ERK-phosphorylation sustainment, while leaving NF-κB and other signaling pathways unaffected. Naïve T and B cells expressed nearly exclusively immuno- or mixed proteasomes but no standard proteasomes and IP inhibition but not IP-deficiency induced mild proteostasis stress, reduced DUSP5 expression and enhanced DUSP6 protein levels due to impaired degradation. However, accumulation of DUSP6 did not cause the reduced ERK-phosphorylation in a non-redundant manner. We show that broad-spectrum proteasome inhibition and immunoproteasome inhibition have distinct effects on T cell activation at the molecular level. Notably, ONX 0914-treated T cells recovered from proteostasis stress without apoptosis induction, apparently via Nrf1-mediated up-regulation of standard proteasomes. In contrast, B cells were more susceptible to apoptosis after ONX 0914-treatment. Our data thus provide mechanistic insights how IP inhibition functionally impedes T and B cells likely accounting for its therapeutic benefits.
Collapse
Affiliation(s)
- Christian Schmidt
- Chair of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Thilo Berger
- Chair of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marcus Groettrup
- Chair of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Michael Basler
- Chair of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
48
|
Ugras S, Daniels MJ, Fazelinia H, Gould NS, Yocum AK, Luk KC, Luna E, Ding H, McKennan C, Seeholzer S, Martinez D, Evans P, Brown D, Duda JE, Ischiropoulos H. Induction of the Immunoproteasome Subunit Lmp7 Links Proteostasis and Immunity in α-Synuclein Aggregation Disorders. EBioMedicine 2018; 31:307-319. [PMID: 29759483 PMCID: PMC6014061 DOI: 10.1016/j.ebiom.2018.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 01/22/2023] Open
Abstract
Accumulation of aggregated α-synuclein into Lewy bodies is thought to contribute to the onset and progression of dopaminergic neuron degeneration in Parkinson's disease (PD) and related disorders. Although protein aggregation is associated with perturbation of proteostasis, how α-synuclein aggregation affects the brain proteome and signaling remains uncertain. In a mouse model of α-synuclein aggregation, 6% of 6215 proteins and 1.6% of 8183 phosphopeptides changed in abundance, indicating conservation of proteostasis and phosphorylation signaling. The proteomic analysis confirmed changes in abundance of proteins that regulate dopamine synthesis and transport, synaptic activity and integrity, and unearthed changes in mRNA binding, processing and protein translation. Phosphorylation signaling changes centered on axonal and synaptic cytoskeletal organization and structural integrity. Proteostatic responses included a significant increase in the levels of Lmp7, a component of the immunoproteasome. Increased Lmp7 levels and activity were also quantified in postmortem human brains with PD and dementia with Lewy bodies. Functionally, the immunoproteasome degrades α-synuclein aggregates and generates potentially antigenic peptides. Expression and activity of the immunoproteasome may represent testable targets to induce adaptive responses that maintain proteome integrity and modulate immune responses in protein aggregation disorders.
Collapse
Affiliation(s)
- Scott Ugras
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malcolm J Daniels
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hossein Fazelinia
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Neal S Gould
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | | | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Esteban Luna
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hua Ding
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Chris McKennan
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA; Department of Statistics, University of Chicago, 60637, USA
| | - Steven Seeholzer
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Dan Martinez
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Perry Evans
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel Brown
- Parkinson's Disease Research, Education and Clinical Center, Michael J. Crescenz VA Medical Center, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, USA
| | - John E Duda
- Parkinson's Disease Research, Education and Clinical Center, Michael J. Crescenz VA Medical Center, USA; Neurology, Perelman School of Medicine, University of Pennsylvania, USA
| | - Harry Ischiropoulos
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA; Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Children's Hospital of Philadelphia Research Institute and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Mo MS, Li GH, Sun CC, Huang SX, Wei L, Zhang LM, Zhou MM, Wu ZH, Guo WY, Yang XL, Chen CJ, Qu SG, He JX, Xu PY. Dopaminergic neurons show increased low-molecular-mass protein 7 activity induced by 6-hydroxydopamine in vitro and in vivo. Transl Neurodegener 2018; 7:19. [PMID: 30128145 PMCID: PMC6097308 DOI: 10.1186/s40035-018-0125-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/30/2018] [Indexed: 02/08/2023] Open
Abstract
Background Abnormal expression of major histocompatibility complex class I (MHC-I) is increased in dopaminergic (DA) neurons in the substantia nigra (SN) in Parkinson’s disease (PD). Low-molecular-mass protein 7 (β5i) is a proteolytic subunit of the immunoproteasome that regulates protein degradation and the MHC pathway in immune cells. Methods In this study, we investigated the role of β5i in DA neurons using a 6-hydroxydopamine (6-OHDA) model in vitro and vivo. Results We showed that 6-OHDA upregulated β5i expression in DA neurons in a concentration- and time-dependent manner. Inhibition and downregulation of β5i induced the expression of glucose-regulated protein (Bip) and exacerbated 6-OHDA neurotoxicity in DA neurons. The inhibition of β5i further promoted the activation of Caspase 3-related pathways induced by 6-OHDA. β5i also activated transporter associated with antigen processing 1 (TAP1) and promoted MHC-I expression on DA neurons. Conclusion Taken together, our data suggest that β5i is activated in DA neurons under 6-OHDA treatment and may play a neuroprotective role in PD. Electronic supplementary material The online version of this article (10.1186/s40035-018-0125-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-Shu Mo
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Gui-Hua Li
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Cong-Cong Sun
- 2Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong China
| | - Shu-Xuan Huang
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Lei Wei
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Li-Min Zhang
- 3Department of Neurology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Miao-Miao Zhou
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Zhuo-Hua Wu
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Wen-Yuan Guo
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Xin-Ling Yang
- 4Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumchi, 830011 Xinjiang China
| | - Chao-Jun Chen
- Clinic Brain Center, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510800 Guangdong China
| | - Shao-Gang Qu
- 6Department of Blood Transfusion, Fifth Affiliated Hospital Southern Medical University, Guangzhou, 510900 Guangdong China
| | - Jian-Xing He
- 7Department of Thoracic Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Ping-Yi Xu
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China.,4Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumchi, 830011 Xinjiang China
| |
Collapse
|
50
|
Cao Y, Chen M, Tang D, Yan H, Ding X, Zhou F, Zhang M, Xu G, Zhang W, Zhang S, Zhuge Y, Wang L, Zou X. The proton pump inhibitor pantoprazole disrupts protein degradation systems and sensitizes cancer cells to death under various stresses. Cell Death Dis 2018; 9:604. [PMID: 29789637 PMCID: PMC5964200 DOI: 10.1038/s41419-018-0642-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/12/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023]
Abstract
Proton pump inhibitors (PPIs) play a role in antitumor activity, with studies showing specialized impacts of PPIs on cancer cell apoptosis, metastasis, and autophagy. In this study, we demonstrated that pantoprazole (PPI) increased autophagosomes formation and affected autophagic flux depending on the pH conditions. PPI specifically elevated SQSTM1 protein levels by increasing SQSTM1 transcription via NFE2L2 activation independent of the specific effect of PPI on autophagic flux. Via decreasing proteasome subunits expression, PPI significantly impaired the function of the proteasome, accompanied by the accumulation of undegraded poly-ubiquitinated proteins. Notably, PPI-induced autophagy functioned as a downstream response of proteasome inhibition by PPI, while suppressing protein synthesis abrogated autophagy. Blocking autophagic flux in neutral pH condition or further impairing proteasome function with proteasome inhibitors, significantly aggravated PPI cytotoxicity by worsening protein degradation ability. Interestingly, under conditions of mitochondrial stress, PPI showed significant synergism when combined with Bcl-2 inhibitors. Taken together, these findings provide a new understanding of the impact of PPIs on cancer cells’ biological processes and highlight the potential to develop more efficient and effective combination therapies.
Collapse
Affiliation(s)
- Yu Cao
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Min Chen
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Dehua Tang
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Hongli Yan
- Department of Laboratory Medicine, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Xiwei Ding
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Fan Zhou
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Mingming Zhang
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Guifang Xu
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Weijie Zhang
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Department of General Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shu Zhang
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Lei Wang
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China. .,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China.
| | - Xiaoping Zou
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China. .,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China.
| |
Collapse
|