1
|
Gera R, Arora R, Chhabra P, Sharma U, Parsad R, Ahlawat S, Mir MA, Singh MK, Kumar R. Exploring transcriptomic mechanisms underlying pulmonary adaptation to diverse environments in Indian rams. Mol Biol Rep 2024; 51:1111. [PMID: 39485559 DOI: 10.1007/s11033-024-10067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND The Changthangi sheep thrive at high altitudes in the cold desert regions of Ladakh, India while Muzaffarnagri sheep are well-suited to the low altitude plains of northern India. This study investigates the molecular mechanisms of pulmonary adaptation to diverse environments by analyzing gene expression profiles of lung tissues through RNA sequencing. METHODS AND RESULTS Four biological replicates of lung tissue from each breed were utilized to generate the transcriptomic data. Differences in gene expression analysis revealed discrete expression profiles in lungs of each breed. In Changthangi sheep, genes related to immune responses, particularly cytokine signaling, were significantly enriched. Pathway analysis highlighted the activation of NF-kB signaling, a key mediator of inflammation and immune response. Additionally, the gene network analysis indicated a strong association between cytokine signaling, hypoxia-inducible factor (HIF) and NF-kB activation, suggesting a coordinated response to hypoxic stress in lungs of Changthangi sheep. In Muzaffarnagri sheep, the gene expression profiles were enriched for pathways related to energy metabolism, homeostasis and lung physiology. Key pathways identified include collagen formation and carbohydrate metabolism, both of which are crucial for maintaining lung function and structural integrity. Gene network analysis further reinforced this by revealing a strong connection between genes associated with lung structure and function. CONCLUSIONS Our findings shed light on the valuable insights into gene expression mechanisms that enable these sheep breeds to adapt to their respective environments and contribute to a better understanding of high altitude adaptation in livestock.
Collapse
Affiliation(s)
- Ritika Gera
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
- UIET, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India.
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Ram Parsad
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Mohsin Ayoub Mir
- Mountain Research Centre for Sheep and Goat, SKUAST, Aulestang, 190006, Shuhama, Kashmir, India
| | - Manoj Kumar Singh
- ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, 281122, Uttar Pradesh, India
| | - Rajesh Kumar
- UIET, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| |
Collapse
|
2
|
Masuda S, Kurabayashi N, Nunokawa R, Otobe Y, Kozuka-Hata H, Oyama M, Shibata Y, Inoue JI, Koebis M, Aiba A, Yoshitane H, Fukada Y. TRAF7 determines circadian period through ubiquitination and degradation of DBP. Commun Biol 2024; 7:1280. [PMID: 39379486 PMCID: PMC11461874 DOI: 10.1038/s42003-024-07002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
D-site binding protein, DBP, is a clock-controlled transcription factor and drives daily rhythms of physiological processes through the regulation of an array of genes harboring a DNA binding motif, D-box. DBP protein levels show a circadian oscillation with an extremely robust peak/trough ratio, but it is elusive how the temporal pattern is regulated by post-translational regulation. In this study, we show that DBP protein levels are down-regulated by the ubiquitin-proteasome pathway. Analysis using 19 dominant-negative forms of E2 enzymes have revealed that UBE2G1 and UBE2T mediate the degradation of DBP. A proteomic analysis of DBP-interacting proteins and database screening have identified Tumor necrosis factor Receptor-Associated Factor 7 (TRAF7), a RING-type E3 ligase, that forms a complex with UBE2G1 and/or UBE2T. Ubiquitination analysis have revealed that TRAF7 enhances K48-linked polyubiquitination of DBP in cultured cells. Overexpression of TRAF7 down-regulates DBP protein level, while knockdown of TRAF7 up-regulates DBP in cultured cells. Knockout of TRAF7 in NIH3T3 cells have revealed that TRAF7 mediates the time-of-the-day-dependent regulation of DBP levels. Furthermore, TRAF7 has a period-shortening effect on the cellular clock. Together, TRAF7 plays an important role in circadian clock oscillation through destabilization of DBP.
Collapse
Affiliation(s)
- Shusaku Masuda
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
| | - Nobuhiro Kurabayashi
- Circadiain Clock Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Rina Nunokawa
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuta Otobe
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
- Circadiain Clock Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuri Shibata
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jun-Ichiro Inoue
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Michinori Koebis
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsu Aiba
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan.
- Circadiain Clock Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan.
- Circadiain Clock Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Lyubetsky VA, Shilovsky GA, Yang JR, Seliverstov AV, Zverkov OA. The Change Rate of the Fbxl21 Gene and the Amino Acid Composition of Its Protein Correlate with the Species-Specific Lifespan in Placental Mammals. BIOLOGY 2024; 13:792. [PMID: 39452101 PMCID: PMC11505486 DOI: 10.3390/biology13100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
This article proposes a methodology for establishing a relationship between the change rate of a given gene (relative to a given taxon) together with the amino acid composition of the proteins encoded by this gene and the traits of the species containing this gene. The methodology is illustrated based on the mammalian genes responsible for regulating the circadian rhythms that underlie a number of human disorders, particularly those associated with aging. The methods used are statistical and bioinformatic ones. A systematic search for orthologues, pseudogenes, and gene losses was performed using our previously developed methods. It is demonstrated that the least conserved Fbxl21 gene in the Euarchontoglires superorder exhibits a statistically significant connection of genomic characteristics (the median of dN/dS for a gene relative to all the other orthologous genes of a taxon, as well as the preference or avoidance of certain amino acids in its protein) with species-specific lifespan and body weight. In contrast, no such connection is observed for Fbxl21 in the Laurasiatheria superorder. This study goes beyond the protein-coding genes, since the accumulation of amino acid substitutions in the course of evolution leads to pseudogenization and even gene loss, although the relationship between the genomic characteristics and the species traits is still preserved. The proposed methodology is illustrated using the examples of circadian rhythm genes and proteins in placental mammals, e.g., longevity is connected with the rate of Fbxl21 gene change, pseudogenization or gene loss, and specific amino acid substitutions (e.g., asparagine at the 19th position of the CRY-binding domain) in the protein encoded by this gene.
Collapse
Affiliation(s)
- Vassily A. Lyubetsky
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), 127051 Moscow, Russia; (V.A.L.); (G.A.S.); (A.V.S.)
| | - Gregory A. Shilovsky
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), 127051 Moscow, Russia; (V.A.L.); (G.A.S.); (A.V.S.)
| | - Jian-Rong Yang
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Alexandr V. Seliverstov
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), 127051 Moscow, Russia; (V.A.L.); (G.A.S.); (A.V.S.)
| | - Oleg A. Zverkov
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), 127051 Moscow, Russia; (V.A.L.); (G.A.S.); (A.V.S.)
| |
Collapse
|
4
|
Swaminathan A, Kenzior A, McCoin C, Price A, Weaver K, Hintermann A, Morris N, Keene AC, Rohner N. A repeatedly evolved mutation in Cryptochrome-1 of subterranean animals alters behavioral and molecular circadian rhythms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613894. [PMID: 39386508 PMCID: PMC11463651 DOI: 10.1101/2024.09.19.613894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The repeated evolution of similar phenotypes in independent lineages often occurs in response to similar environmental pressures, through similar or different molecular pathways. Recently, a repeatedly occurring mutation R263Q in a conserved domain of the protein Cryptochrome-1 (CRY1) was reported in multiple species inhabiting subterranean environments. Cryptochromes regulate circadian rhythms, and glucose and lipid metabolism. Subterranean species show changes to their circadian rhythm and metabolic pathways, making it likely that this mutation in CRY1 contributes to adaptive phenotypic changes. To identify the functional consequences of the CRY1 R263Q mutation, we generated a mouse model homozygous for this mutation. Indirect calorimetry experiments revealed delayed energy expenditure, locomotor activity and feeding patterns of mutant mice in the dark phase, but no further metabolic phenotypes - unlike a full loss of function of CRY1. Gene expression analyses showed altered expression of several canonical circadian genes in the livers of the mutant mice, fortifying the notion that CRY1 R263Q impacts metabolism. Our data provide the first characterization of a novel mutation that has repeatedly evolved in subterranean environments, supporting the idea that shared environmental constraints can drive the evolution of similar phenotypes through similar genetic changes.
Collapse
|
5
|
Gabriel CH, del Olmo M, Rizki Widini A, Roshanbin R, Woyde J, Hamza E, Gutu NN, Zehtabian A, Ewers H, Granada A, Herzel H, Kramer A. Circadian period is compensated for repressor protein turnover rates in single cells. Proc Natl Acad Sci U S A 2024; 121:e2404738121. [PMID: 39141353 PMCID: PMC11348271 DOI: 10.1073/pnas.2404738121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024] Open
Abstract
Most mammalian cells have molecular circadian clocks that generate widespread rhythms in transcript and protein abundance. While circadian clocks are robust to fluctuations in the cellular environment, little is known about the mechanisms by which the circadian period compensates for fluctuating metabolic states. Here, we exploit the heterogeneity of single cells both in circadian period and a metabolic parameter-protein stability-to study their interdependence without the need for genetic manipulation. We generated cells expressing key circadian proteins (CRYPTOCHROME1/2 (CRY1/2) and PERIOD1/2 (PER1/2)) as endogenous fusions with fluorescent proteins and simultaneously monitored circadian rhythms and degradation in thousands of single cells. We found that the circadian period compensates for fluctuations in the turnover rates of circadian repressor proteins and uncovered possible mechanisms using a mathematical model. In addition, the stabilities of the repressor proteins are circadian phase dependent and correlate with the circadian period in a phase-dependent manner, in contrast to the prevailing model.
Collapse
Affiliation(s)
- Christian H. Gabriel
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| | - Marta del Olmo
- Institute for Theoretical Biology, Charité–Universitätsmedizin Berlin, Berlin10115, Germany
| | - Arunya Rizki Widini
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| | - Rashin Roshanbin
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| | - Jonas Woyde
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| | - Ebrahim Hamza
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| | - Nica-Nicoleta Gutu
- Charité Comprehensive Cancer Center, Charité–Universitätsmedizin Berlin, Berlin10117, Germany
| | - Amin Zehtabian
- Department of Biology, Chemistry and Pharmacy, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin14195, Germany
| | - Helge Ewers
- Department of Biology, Chemistry and Pharmacy, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin14195, Germany
| | - Adrian Granada
- Charité Comprehensive Cancer Center, Charité–Universitätsmedizin Berlin, Berlin10117, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité–Universitätsmedizin Berlin, Berlin10115, Germany
| | - Achim Kramer
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| |
Collapse
|
6
|
DeOliveira CC, Crane BR. A structural decryption of cryptochromes. Front Chem 2024; 12:1436322. [PMID: 39220829 PMCID: PMC11362059 DOI: 10.3389/fchem.2024.1436322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cryptochromes (CRYs), which are signaling proteins related to DNA photolyases, play pivotal roles in sensory responses throughout biology, including growth and development, metabolic regulation, circadian rhythm entrainment and geomagnetic field sensing. This review explores the evolutionary relationships and functional diversity of cryptochromes from the perspective of their molecular structures. In general, CRY biological activities derive from their core structural architecture, which is based on a Photolyase Homology Region (PHR) and a more variable and functionally specific Cryptochrome C-terminal Extension (CCE). The α/β and α-helical domains within the PHR bind FAD, modulate redox reactive residues, accommodate antenna cofactors, recognize small molecules and provide conformationally responsive interaction surfaces for a range of partners. CCEs add structural complexity and divergence, and in doing so, influence photoreceptor reactivity and tailor function. Primary and secondary pockets within the PHR bind myriad moieties and collaborate with the CCEs to tune recognition properties and propagate chemical changes to downstream partners. For some CRYs, changes in homo and hetero-oligomerization couple to light-induced conformational changes, for others, changes in posttranslational modifications couple to cascades of protein interactions with partners and effectors. The structural exploration of cryptochromes underscores how a broad family of signaling proteins with close relationship to light-dependent enzymes achieves a wide range of activities through conservation of key structural and chemical properties upon which function-specific features are elaborated.
Collapse
Affiliation(s)
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
7
|
Yamaguchi Y. Arginine vasopressin: Critical regulator of circadian homeostasis. Peptides 2024; 177:171229. [PMID: 38663583 DOI: 10.1016/j.peptides.2024.171229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Circadian rhythms optimally regulate numerous physiological processes in an organism and synchronize them with the external environment. The suprachiasmatic nucleus (SCN), the center of the circadian clock in mammals, is composed of multiple cell types that form a network that provides the basis for the remarkable stability of the circadian clock. Among the neuropeptides expressed in the SCN, arginine vasopressin (AVP) has attracted much attention because of its deep involvement in the function of circadian rhythms, as elucidated in particular by studies using genetically engineered mice. This review briefly summarizes the current knowledge on the peptidergic distribution and topographic neuronal organization in the SCN, the molecular mechanisms of the clock genes, and the relationship between the SCN and peripheral clocks. With respect to the physiological roles of AVP and AVP-expressing neurons, in addition to a sex-dependent action of AVP in the SCN, studies using AVP receptor knockout mice and mice genetically manipulated to alter the clock properties of AVP neurons are summarized here, highlighting its importance in maintaining circadian homeostasis and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Yoshiaki Yamaguchi
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan.
| |
Collapse
|
8
|
Otobe Y, Jeong EM, Ito S, Shinohara Y, Kurabayashi N, Aiba A, Fukada Y, Kim JK, Yoshitane H. Phosphorylation of DNA-binding domains of CLOCK-BMAL1 complex for PER-dependent inhibition in circadian clock of mammalian cells. Proc Natl Acad Sci U S A 2024; 121:e2316858121. [PMID: 38805270 PMCID: PMC11161756 DOI: 10.1073/pnas.2316858121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
In mammals, CLOCK and BMAL1 proteins form a heterodimer that binds to E-box sequences and activates transcription of target genes, including Period (Per). Translated PER proteins then bind to the CLOCK-BMAL1 complex to inhibit its transcriptional activity. However, the molecular mechanism and the impact of this PER-dependent inhibition on the circadian clock oscillation remain elusive. We previously identified Ser38 and Ser42 in a DNA-binding domain of CLOCK as phosphorylation sites at the PER-dependent inhibition phase. In this study, knockout rescue experiments showed that nonphosphorylatable (Ala) mutations at these sites shortened circadian period, whereas their constitutive-phospho-mimetic (Asp) mutations completely abolished the circadian rhythms. Similarly, we found that nonphosphorylatable (Ala) and constitutive-phospho-mimetic (Glu) mutations at Ser78 in a DNA-binding domain of BMAL1 also shortened the circadian period and abolished the rhythms, respectively. The mathematical modeling predicted that these constitutive-phospho-mimetic mutations weaken the DNA binding of the CLOCK-BMAL1 complex and that the nonphosphorylatable mutations inhibit the PER-dependent displacement (reduction of DNA-binding ability) of the CLOCK-BMAL1 complex from DNA. Biochemical experiments supported the importance of these phosphorylation sites for displacement of the complex in the PER2-dependent inhibition. Our results provide direct evidence that phosphorylation of CLOCK-Ser38/Ser42 and BMAL1-Ser78 plays a crucial role in the PER-dependent inhibition and the determination of the circadian period.
Collapse
Affiliation(s)
- Yuta Otobe
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
- Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo156-8506, Japan
| | - Eui Min Jeong
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon34141, Republic of Korea
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Shunsuke Ito
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
- Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo156-8506, Japan
| | - Yuta Shinohara
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-Ku, Sapporo060-0815, Japan
| | - Nobuhiro Kurabayashi
- Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo156-8506, Japan
| | - Atsu Aiba
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
- Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo156-8506, Japan
| | - Jae Kyoung Kim
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon34141, Republic of Korea
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
- Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo156-8506, Japan
| |
Collapse
|
9
|
Zeng Y, Guo Z, Wu M, Chen F, Chen L. Circadian rhythm regulates the function of immune cells and participates in the development of tumors. Cell Death Discov 2024; 10:199. [PMID: 38678017 PMCID: PMC11055927 DOI: 10.1038/s41420-024-01960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Circadian rhythms are present in almost all cells and play a crucial role in regulating various biological processes. Maintaining a stable circadian rhythm is essential for overall health. Disruption of this rhythm can alter the expression of clock genes and cancer-related genes, and affect many metabolic pathways and factors, thereby affecting the function of the immune system and contributing to the occurrence and progression of tumors. This paper aims to elucidate the regulatory effects of BMAL1, clock and other clock genes on immune cells, and reveal the molecular mechanism of circadian rhythm's involvement in tumor and its microenvironment regulation. A deeper understanding of circadian rhythms has the potential to provide new strategies for the treatment of cancer and other immune-related diseases.
Collapse
Affiliation(s)
- Yuen Zeng
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Zichan Guo
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Mengqi Wu
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Fulin Chen
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China.
| |
Collapse
|
10
|
Liu XL, Duan Z, Yu M, Liu X. Epigenetic control of circadian clocks by environmental signals. Trends Cell Biol 2024:S0962-8924(24)00028-X. [PMID: 38423855 DOI: 10.1016/j.tcb.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Circadian clocks have evolved to enable organisms to respond to daily environmental changes. Maintaining a robust circadian rhythm under various perturbations and stresses is essential for the fitness of an organism. In the core circadian oscillator conserved in eukaryotes (from fungi to mammals), a negative feedback loop based on both transcription and translation drives circadian rhythms. The expression of circadian clock genes depends both on the binding of transcription activators at the promoter and on the chromatin state of the clock genes, and epigenetic modifications of chromatin are crucial for transcriptional regulation of circadian clock genes. Herein we review current knowledge of epigenetic regulation of circadian clock mechanisms and discuss how environmental cues can control clock gene expression by affecting chromatin states.
Collapse
Affiliation(s)
- Xiao-Lan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zeyu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Muqun Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Zhang H, Zhou Z, Guo J. The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species. Int J Mol Sci 2024; 25:2574. [PMID: 38473819 DOI: 10.3390/ijms25052574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Circadian clocks drive a large array of physiological and behavioral activities. At the molecular level, circadian clocks are composed of positive and negative elements that form core oscillators generating the basic circadian rhythms. Over the course of the circadian period, circadian negative proteins undergo progressive hyperphosphorylation and eventually degrade, and their stability is finely controlled by complex post-translational pathways, including protein modifications, genetic codon preference, protein-protein interactions, chaperon-dependent conformation maintenance, degradation, etc. The effects of phosphorylation on the stability of circadian clock proteins are crucial for precisely determining protein function and turnover, and it has been proposed that the phosphorylation of core circadian clock proteins is tightly correlated with the circadian period. Nonetheless, recent studies have challenged this view. In this review, we summarize the research progress regarding the function, regulation, and mechanism of protein stability in the circadian clock systems of multiple model organisms, with an emphasis on Neurospora crassa, in which circadian mechanisms have been extensively investigated. Elucidation of the highly complex and dynamic regulation of protein stability in circadian clock networks would greatly benefit the integrated understanding of the function, regulation, and mechanism of protein stability in a wide spectrum of other biological processes.
Collapse
Affiliation(s)
- Haoran Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengxuan Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhu Guo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Surme S, Ergun C, Gul S, Akyel YK, Gul ZM, Ozcan O, Ipek OS, Akarlar BA, Ozlu N, Taskin AC, Turkay M, Gören AC, Baris I, Ozturk N, Guzel M, Aydin C, Okyar A, Kavakli IH. TW68, cryptochromes stabilizer, regulates fasting blood glucose levels in diabetic ob/ob and high fat-diet-induced obese mice. Biochem Pharmacol 2023; 218:115896. [PMID: 37898388 DOI: 10.1016/j.bcp.2023.115896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Cryptochromes (CRYs), transcriptional repressors of the circadian clock in mammals, inhibit cAMP production when glucagon activates G-protein coupled receptors. Therefore, molecules that modulate CRYs have the potential to regulate gluconeogenesis. In this study, we discovered a new molecule called TW68 that interacts with the primary pockets of mammalian CRY1/2, leading to reduced ubiquitination levels and increased stability. In cell-based circadian rhythm assays using U2OS Bmal1-dLuc cells, TW68 extended the period length of the circadian rhythm. Additionally, TW68 decreased the transcriptional levels of two genes, Phosphoenolpyruvate carboxykinase 1 (PCK1) and Glucose-6-phosphatase (G6PC), which play crucial roles in glucose biosynthesis during glucagon-induced gluconeogenesis in HepG2 cells. Oral administration of TW68 in mice showed good tolerance, a good pharmacokinetic profile, and remarkable bioavailability. Finally, when administered to fasting diabetic animals from ob/ob and HFD-fed obese mice, TW68 reduced blood glucose levels by enhancing CRY stabilization and subsequently decreasing the transcriptional levels of Pck1 and G6pc. These findings collectively demonstrate the antidiabetic efficacy of TW68 in vivo, suggesting its therapeutic potential for controlling fasting glucose levels in the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Saliha Surme
- Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, Istanbul, Türkiye
| | - Cagla Ergun
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Istanbul, Türkiye
| | - Seref Gul
- Istanbul University, Department of Biology, Biotechnology Division, TR-34116 Beyazit-İstanbul, Türkiye; Current address: Bezmialem Vakif University, Institute of Life Sciences and Biotechnology, Beykoz, Istanbul, Türkiye
| | - Yasemin Kubra Akyel
- Istanbul Medipol University, School of Medicine, Department of Medical Pharmacology, İstanbul, Türkiye; Istanbul University, Faculty of Pharmacy Department of Pharmacology, TR-34116 Beyazit-İstanbul, Türkiye
| | - Zeynep Melis Gul
- Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, Istanbul, Türkiye
| | - Onur Ozcan
- Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, Istanbul, Türkiye
| | - Ozgecan Savlug Ipek
- Istanbul Medipol University, Regenerative and Restorative Medicine Research Center (REMER), Kavacik Campus, Kavacik-Beykoz/İstanbul 34810, Türkiye
| | - Busra Aytul Akarlar
- Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, Istanbul, Türkiye
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, Istanbul, Türkiye
| | - Ali Cihan Taskin
- Department of Laboratory Animal Science, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye
| | - Metin Turkay
- Department of Industrial Engineering, Koc University, Rumelifeneri Yolu, İstanbul, Türkiye
| | - Ahmet Ceyhan Gören
- Gebze Technical University, Department of Chemistry, Gebze, Kocaeli, Türkiye
| | - Ibrahim Baris
- Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, Istanbul, Türkiye
| | - Nuri Ozturk
- Gebze Technical University, Department of Molecular Biology and Genetics, Gebze, Kocaeli, Türkiye
| | - Mustafa Guzel
- Istanbul Medipol University, Regenerative and Restorative Medicine Research Center (REMER), Kavacik Campus, Kavacik-Beykoz/İstanbul 34810, Türkiye
| | - Cihan Aydin
- Department of Molecular Biology and Genetics, Istanbul Medeniyet University, Istanbul, Türkiye
| | - Alper Okyar
- Istanbul University, Faculty of Pharmacy Department of Pharmacology, TR-34116 Beyazit-İstanbul, Türkiye
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, Istanbul, Türkiye; Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Istanbul, Türkiye.
| |
Collapse
|
13
|
Parlak GC, Baris I, Gul S, Kavakli IH. Functional characterization of the CRY2 circadian clock component variant p.Ser420Phe revealed a new degradation pathway for CRY2. J Biol Chem 2023; 299:105451. [PMID: 37951306 PMCID: PMC10731238 DOI: 10.1016/j.jbc.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023] Open
Abstract
Cryptochromes (CRYs) are essential components of the circadian clock, playing a pivotal role as transcriptional repressors. Despite their significance, the precise mechanisms underlying CRYs' involvement in the circadian clock remain incompletely understood. In this study, we identified a rare CRY2 variant, p.Ser420Phe, from the 1000 Genomes Project and Ensembl database that is located in the functionally important coiled-coil-like helix (CC-helix) region. Functional characterization of this variant at the cellular level revealed that p.Ser420Phe CRY2 had reduced repression activity on CLOCK:BMAL1-driven transcription due to its reduced affinity to the core clock protein PER2 and defective translocation into the nucleus. Intriguingly, the CRY2 variant exhibited an unexpected resistance to degradation via the canonical proteasomal pathway, primarily due to the loss of interactions with E3 ligases (FBXL3 and FBXL21), which suggests Ser-420 of CRY2 is required for the interaction with E3 ligases. Further studies revealed that wild-type and CRY2 variants are degraded by the lysosomal-mediated degradation pathway, a mechanism not previously associated with CRY2. Surprisingly, our complementation study with Cry1-/-Cry2-/- double knockout mouse embryonic fibroblast cells indicated that the CRY2 variant caused a 7 h shorter circadian period length in contrast to the observed prolonged period length in CRY2-/- cell lines. In summary, this study reveals a hitherto unknown degradation pathway for CRY2, shedding new light on the regulation of circadian rhythm period length.
Collapse
Affiliation(s)
- Gizem Cagla Parlak
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkiye
| | - Ibrahim Baris
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkiye
| | - Seref Gul
- Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, Turkiye
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkiye; Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkiye.
| |
Collapse
|
14
|
Abstract
Glioblastoma (GBM) is the most prevalent malignant primary brain tumor, accounting for 14.2% of all diagnosed tumors and 50.1% of all malignant tumors, and the median survival time is approximately 8 months irrespective of whether a patient receives treatment without significant improvement despite expansive research (Ostrom QT, Price M, Neff C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019. Neurooncology. 2022; 24(suppl 5):v1-v95.). Recently, important roles for the circadian clock in GBM tumorigenesis have been reported. Positive regulators of circadian-controlled transcription, brain and muscle ARNT-like 1 (BMAL1), and circadian locomotor output cycles kaput (CLOCK), are highly expressed also in GBM and correlated with poor patient prognosis. BMAL1 and CLOCK promote the maintenance of GBM stem cells (GSCs) and the establishment of a pro-tumorigenic tumor microenvironment (TME), suggesting that targeting the core clock proteins may augment GBM treatment. Here, we review findings that highlight the critical role the circadian clock plays in GBM biology and the strategies by which the circadian clock can be leveraged for GBM treatment in the clinic moving forward.
Collapse
Affiliation(s)
- Priscilla Chan
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeremy N Rich
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
15
|
Laothamatas I, Rasmussen ES, Green CB, Takahashi JS. Metabolic and chemical architecture of the mammalian circadian clock. Cell Chem Biol 2023; 30:1033-1052. [PMID: 37708890 PMCID: PMC10631358 DOI: 10.1016/j.chembiol.2023.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/20/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
Circadian rhythms are endogenous periodic biological processes that occur on a daily timescale. These rhythms are generated by a transcriptional/translational feedback loop that consists of the CLOCK-BMAL1 heterodimeric transcriptional activator complex and the PER1/2-CRY1/2-CK1δ/ε repressive complex. The output pathways of this molecular feedback loop generate circadian rhythmicity in various biological processes. Among these, metabolism is a primary regulatory target of the circadian clock which can also feedback to modulate clock function. This intertwined relationship between circadian rhythms and metabolism makes circadian clock components promising therapeutic targets. Despite this, pharmacological therapeutics that target the circadian clock are relatively rare. In this review, we hope to stimulate interest in chemical chronobiology by providing a comprehensive background on the molecular mechanism of mammalian circadian rhythms and their connection to metabolism, highlighting important studies in the chemical approach to circadian research, and offering our perspectives on future developments in the field.
Collapse
Affiliation(s)
- Isara Laothamatas
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Emil Sjulstok Rasmussen
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Carla B Green
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
16
|
Jiang H, Wang X, Ma J, Xu G. The fine-tuned crosstalk between lysine acetylation and the circadian rhythm. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194958. [PMID: 37453648 DOI: 10.1016/j.bbagrm.2023.194958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Circadian rhythm is a roughly 24-h wake and sleep cycle that almost all of the organisms on the earth follow when they execute their biological functions and physiological activities. The circadian clock is mainly regulated by the transcription-translation feedback loop (TTFL), consisting of the core clock proteins, including BMAL1, CLOCK, PERs, CRYs, and a series of accessory factors. The circadian clock and the downstream gene expression are not only controlled at the transcriptional and translational levels but also precisely regulated at the post-translational modification level. Recently, it has been discovered that CLOCK exhibits lysine acetyltransferase activities and could acetylate protein substrates. Core clock proteins are also acetylated, thereby altering their biological functions in the regulation of the expression of downstream genes. Studies have revealed that many protein acetylation events exhibit oscillation behavior. However, the biological function of acetylation on circadian rhythm has only begun to explore. This review will briefly introduce the acetylation and deacetylation of the core clock proteins and summarize the proteins whose acetylation is regulated by CLOCK and circadian rhythm. Then, we will also discuss the crosstalk between lysine acetylation and the circadian clock or other post-translational modifications. Finally, we will briefly describe the possible future perspectives in the field.
Collapse
Affiliation(s)
- Honglv Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaohui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
17
|
Gršković P, Korać P. Circadian Gene Variants in Diseases. Genes (Basel) 2023; 14:1703. [PMID: 37761843 PMCID: PMC10531145 DOI: 10.3390/genes14091703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The circadian rhythm is a self-sustaining 24 h cycle that regulates physiological processes within the body, including cycles of alertness and sleepiness. Cells have their own intrinsic clock, which consists of several proteins that regulate the circadian rhythm of each individual cell. The core of the molecular clock in human cells consists of four main circadian proteins that work in pairs. The CLOCK-BMAL1 heterodimer and the PER-CRY heterodimer each regulate the other pair's expression, forming a negative feedback loop. Several other proteins are involved in regulating the expression of the main circadian genes, and can therefore also influence the circadian rhythm of cells. This review focuses on the existing knowledge regarding circadian gene variants in both the main and secondary circadian genes, and their association with various diseases, such as tumors, metabolic diseases, cardiovascular diseases, and sleep disorders.
Collapse
Affiliation(s)
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia;
| |
Collapse
|
18
|
Lavie J, Lalou C, Mahfouf W, Dupuy JW, Lacaule A, Cywinska AA, Lacombe D, Duchêne AM, Raymond AA, Rezvani HR, Ngondo RP, Bénard G. The E3 ubiquitin ligase FBXL6 controls the quality of newly synthesized mitochondrial ribosomal proteins. Cell Rep 2023; 42:112579. [PMID: 37267103 DOI: 10.1016/j.celrep.2023.112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/03/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023] Open
Abstract
In mammals, about 99% of mitochondrial proteins are synthesized in the cytosol as precursors that are subsequently imported into the organelle. The mitochondrial health and functions rely on an accurate quality control of these imported proteins. Here, we show that the E3 ubiquitin ligase F box/leucine-rich-repeat protein 6 (FBXL6) regulates the quality of cytosolically translated mitochondrial proteins. Indeed, we found that FBXL6 substrates are newly synthesized mitochondrial ribosomal proteins. This E3 binds to chaperones involved in the folding and trafficking of newly synthesized peptide and to ribosomal-associated quality control proteins. Deletion of these interacting partners is sufficient to hamper interactions between FBXL6 and its substrate. Furthermore, we show that cells lacking FBXL6 fail to degrade specifically mistranslated mitochondrial ribosomal proteins. Finally, showing the role of FBXL6-dependent mechanism, FBXL6-knockout (KO) cells display mitochondrial ribosomal protein aggregations, altered mitochondrial metabolism, and inhibited cell cycle in oxidative conditions.
Collapse
Affiliation(s)
- Julie Lavie
- Laboratoire Maladies Rares: Génétique et Métabolisme, INSERM U1211, 33076 Bordeaux, France; Université de Bordeaux, 33000 Bordeaux, France
| | - Claude Lalou
- Laboratoire Maladies Rares: Génétique et Métabolisme, INSERM U1211, 33076 Bordeaux, France; Université de Bordeaux, 33000 Bordeaux, France
| | - Walid Mahfouf
- Université de Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, INSERM, UMR1312, Bordeaux Institute of Oncology, Bordeaux, France
| | - Jean-William Dupuy
- Université de Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, Plateforme Protéome, 33000 Bordeaux, France
| | - Aurélie Lacaule
- Laboratoire Maladies Rares: Génétique et Métabolisme, INSERM U1211, 33076 Bordeaux, France; Université de Bordeaux, 33000 Bordeaux, France
| | - Agata Ars Cywinska
- Laboratoire Maladies Rares: Génétique et Métabolisme, INSERM U1211, 33076 Bordeaux, France; Université de Bordeaux, 33000 Bordeaux, France
| | - Didier Lacombe
- Laboratoire Maladies Rares: Génétique et Métabolisme, INSERM U1211, 33076 Bordeaux, France; Université de Bordeaux, 33000 Bordeaux, France; CHU Bordeaux, Service de Génétique Médicale, 33076 Bordeaux, France
| | - Anne-Marie Duchêne
- Université de Strasbourg, CNRS, Institut de Biologie Moléculaire des Plantes, UPR2357, 67000 Strasbourg, France
| | - Anne-Aurélie Raymond
- Université de Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, INSERM, UMR1312, Bordeaux Institute of Oncology, Bordeaux, France; Plateforme Oncoprot, TBM-Core US 005, 33000 Bordeaux, France
| | - Hamid Reza Rezvani
- Université de Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, INSERM, UMR1312, Bordeaux Institute of Oncology, Bordeaux, France
| | - Richard Patryk Ngondo
- Université de Strasbourg, CNRS, Institut de Biologie Moléculaire des Plantes, UPR2357, 67000 Strasbourg, France; Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, 67000 Strasbourg, France
| | - Giovanni Bénard
- Laboratoire Maladies Rares: Génétique et Métabolisme, INSERM U1211, 33076 Bordeaux, France; Université de Bordeaux, 33000 Bordeaux, France.
| |
Collapse
|
19
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: Implications for brain development and autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538959. [PMID: 37205520 PMCID: PMC10187231 DOI: 10.1101/2023.05.01.538959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNAseq data obtained from fetal mouse brains 3 hr after VPA administration revealed that VPA significantly [p(FDR) ≤ 0.025] increased or decreased the expression of approximately 7,300 genes. No significant sex differences in VPA-induced gene expression were observed. Expression of genes associated with neurodevelopmental disorders such as autism as well as neurogenesis, axon growth and synaptogenesis, GABAergic, glutaminergic and dopaminergic synaptic transmission, perineuronal nets, and circadian rhythms was dysregulated by VPA. Moreover, expression of 400 autism risk genes was significantly altered by VPA as was expression of 247 genes that have been reported to play fundamental roles in the development of the nervous system, but are not linked to autism by GWAS. The goal of this study was to identify mouse genes that are: (a) significantly up- or down-regulated by VPA in the fetal brain and (b) known to be associated with autism and/or to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity in the postnatal and adult brain. The set of genes meeting these criteria provides potential targets for future hypothesis-driven approaches to elucidating the proximal underlying causes of defective brain connectivity in neurodevelopmental disorders such as autism.
Collapse
|
20
|
Xia K, Li S, Yang Y, Shi X, Zhao B, Lv L, Xin Z, Kang J, Ren P, Wu H. Cryptochrome 2 acetylation attenuates its antiproliferative effect in breast cancer. Cell Death Dis 2023; 14:250. [PMID: 37024472 PMCID: PMC10079955 DOI: 10.1038/s41419-023-05762-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer, and its global impact is increasing. Its onset and progression are influenced by multiple cues, one of which is the disruption of the internal circadian clock. Cryptochrome 2 (Cry2) genetic dysregulation may lead to the development of some diseases and even tumors. In addition, post-translational modifications can alter the Cry2 function. Here, we aimed to elucidate the post-translational regulations of Cry2 and its role in breast cancer pathogenesis. We identified p300-drived acetylation as a novel Cry2 post-translational modification, which histone deacetylase 6 (HDAC6) could reverse. Furthermore, we found that Cry2 inhibits breast cancer proliferation, but its acetylation impairs this effect. Finally, bioinformatics analysis revealed that genes repressed by Cry2 in breast cancer were mainly enriched in the NF-κB pathway, and acetylation reversed this repression. Collectively, these results indicate a novel Cry2 regulation mechanism and provide a rationale for its role in breast tumorigenesis.
Collapse
Affiliation(s)
- Kangkai Xia
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Yuxi Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Xiaoxia Shi
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Binggong Zhao
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Linlin Lv
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Zhiqiang Xin
- The Second Hospital of Dalian Medical University, Dalian, 116024, China
| | - Jie Kang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Ping Ren
- The Second Hospital of Dalian Medical University, Dalian, 116024, China.
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
21
|
The Circadian Clocks, Oscillations of Pain-Related Mediators, and Pain. Cell Mol Neurobiol 2023; 43:511-523. [PMID: 35179680 DOI: 10.1007/s10571-022-01205-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/06/2022] [Indexed: 01/07/2023]
Abstract
The circadian clock is a biochemical oscillator that is synchronized with solar time. Normal circadian rhythms are necessary for many physiological functions. Circadian rhythms have also been linked with many physiological functions, several clinical symptoms, and diseases. Accumulating evidence suggests that the circadian clock appears to modulate the processing of nociceptive information. Many pain conditions display a circadian fluctuation pattern clinically. Thus, the aim of this review is to summarize the existing knowledge about the circadian clocks involved in diurnal rhythms of pain. Possible cellular and molecular mechanisms regarding the connection between the circadian clocks and pain are discussed.
Collapse
|
22
|
Albrecht U. The circadian system and mood related behavior in mice. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:269-291. [PMID: 37709379 DOI: 10.1016/bs.apcsb.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Most organisms on earth have evolved an internal clock in order to predict daily recurring events. This clock called circadian clock has a period of about 24 h and allows organisms to organize biochemical and physiological processes over one day. Changes in lighting conditions as they occur naturally over seasons, or man made by jet lag or shift work, advance or delay clock phase in order to synchronize an organism's physiology to the environment. A misalignment of the clock to its environment results in sleep disturbances and mood disorders. Although there are strong associations between the circadian clock and mood disorders such as depression, the underlying molecular mechanisms are not well understood. This review describes the currently known molecular links between circadian clock components and mood related behaviors in mice, which will help to understand the causal links between the clock and mood in humans in the future.
Collapse
Affiliation(s)
- U Albrecht
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
23
|
Takeuchi K, Matsuka M, Shinohara T, Hamada M, Tomiyama Y, Tomioka K. Fbxl4 Regulates the Photic Entrainment of Circadian Locomotor Rhythms in the Cricket Gryllus bimaculatus. Zoolog Sci 2023; 40:53-63. [PMID: 36744710 DOI: 10.2108/zs220047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/12/2022] [Indexed: 01/18/2023]
Abstract
Photic entrainment is an essential property of the circadian clock that sets the appropriate timing of daily behavioral and physiological events. However, the molecular mechanisms underlying the entrainment remain largely unknown. In the cricket Gryllus bimaculatus, the immediate early gene c-fosB plays an important role in photic entrainment, followed by a mechanism involving cryptochromes (crys). However, the association between c-fosB expression and crys remains unclear. In the present study, using RNA-sequencing analysis, we found that five Fbxl family genes (Fbxl4, Fbxl5, Fbxl16, Fbxl-like1, and Fbxl-like2) encoding F-box and leucine-rich repeat proteins are likely involved in the mechanism following light-dependent c-fosB induction. RNA interference (RNAi) of c-fosA/B significantly downregulated Fbxls expression, whereas RNAi of the Fbxl genes exerted no effect on c-fosB expression. The Fbxl genes showed rhythmic expression under light-dark cycles (LDs) with higher expression levels in early day (Fbxl16), whole day (Fbxl-like1), or day-to-early night (Fbxl4, Fbxl5, and Fbxl-like2), whereas their expression was reduced in the dark. We then examined the effect of their RNAi on the photic entrainment of the locomotor rhythm and found that RNAi of Fbxl4 either disrupted or significantly delayed the re-entrainment of the locomotor rhythm to shifted LDs. These results suggest that light-induced c-fosB expression stimulates Fbxl4 expression to reset the circadian clock.
Collapse
Affiliation(s)
- Kazuki Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Mirai Matsuka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Tsugumichi Shinohara
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Mayuko Hamada
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Okayama 701-4303, Japan
| | - Yasuaki Tomiyama
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan,
| |
Collapse
|
24
|
Martin RA, Viggars MR, Esser KA. Metabolism and exercise: the skeletal muscle clock takes centre stage. Nat Rev Endocrinol 2023; 19:272-284. [PMID: 36726017 DOI: 10.1038/s41574-023-00805-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Circadian rhythms that influence mammalian homeostasis and overall health have received increasing interest over the past two decades. The molecular clock, which is present in almost every cell, drives circadian rhythms while being a cornerstone of physiological outcomes. The skeletal muscle clock has emerged as a primary contributor to metabolic health, as the coordinated expression of the core clock factors BMAL1 and CLOCK with the muscle-specific transcription factor MYOD1 facilitates the circadian and metabolic programme that supports skeletal muscle physiology. The phase of the skeletal muscle clock is sensitive to the time of exercise, which provides a rationale for exploring the interactions between the skeletal muscle clock, exercise and metabolic health. Here, we review the underlying mechanisms of the skeletal muscle clock that drive muscle physiology, with a particular focus on metabolic health. Additionally, we highlight the interaction between exercise and the skeletal muscle clock as a means of reinforcing metabolic health and discuss the possible implications of the time of exercise as a chronotherapeutic approach.
Collapse
Affiliation(s)
- Ryan A Martin
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Mark R Viggars
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA.
- Myology Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
25
|
Calloni G, Vabulas RM. The structural and functional roles of the flavin cofactor FAD in mammalian cryptochromes. Front Mol Biosci 2023; 9:1081661. [PMID: 36660433 PMCID: PMC9845712 DOI: 10.3389/fmolb.2022.1081661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
The importance of circadian rhythms in human health and disease calls for a thorough understanding of the underlying molecular machinery, including its key components, the flavin adenine dinucleotide (FAD)-containing flavoproteins cryptochrome 1 and 2. Contrary to their Drosophila counterparts, mammalian cryptochromes are direct suppressors of circadian transcription and act independently of light. Light-independence poses the question regarding the role of the cofactor FAD in mammalian cryptochromes. The weak binding of the cofactor in vitro argues against its relevance and might be a functionless evolutionary remnant. From the other side, the FAD-binding pocket constitutes the part of mammalian cryptochromes directly related to their ubiquitylation by the ubiquitin ligase Fbxl3 and is the target for protein-stabilizing small molecules. Increased supplies of FAD stabilize cryptochromes in cell culture, and the depletion of the FAD precursor riboflavin with simultaneous knock-down of riboflavin kinase affects the expression of circadian genes in mice. This review presents the classical and more recent studies in the field, which help to comprehend the role of FAD for the stability and function of mammalian cryptochromes.
Collapse
Affiliation(s)
| | - R. Martin Vabulas
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany,*Correspondence: R. Martin Vabulas,
| |
Collapse
|
26
|
Yoo SH. Circadian regulation of cardiac muscle function and protein degradation. Chronobiol Int 2023; 40:4-12. [PMID: 34521283 PMCID: PMC8918439 DOI: 10.1080/07420528.2021.1957911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
The circadian clock plays a fundamental role in physiology. In particular, the heart is a target organ where the clock orchestrates various aspects of cardiac function. At the molecular level, the clock machinery governs daily rhythms of gene expression. Such circadian regulation is in tune with the dynamic nature of heart structure and function, and provides the foundation for chronotherapeutic applications in cardiovascular diseases. In comparison, a regulatory role of the clock in cardiac protein degradation is poorly documented. Sarcomere is the structural and functional unit responsible for cardiac muscle contraction, and sarcomere components are closely regulated by protein folding and proteolysis. Emerging evidence supports a role of the circadian clock in governing sarcomere integrity and function. Particularly, recent studies uncovered a circadian regulation of a core sarcomere component TCAP. It is possible that circadian regulation of the cardiac muscle protein turnover is a key regulatory mechanism underlying cardiac remodeling in response to physiological and environmental stimuli. While the detailed regulatory mechanisms and the molecular links to cardiac (patho)physiology remain to be further studied, therapeutic strategies targeting circadian control in the heart may markedly enhance intervention outcomes against cardiovascular disease.
Collapse
Affiliation(s)
- Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
27
|
Kalita E, Panda M, Prajapati VK. The interplay between circadian clock and viral infections: A molecular perspective. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:293-330. [PMID: 37709380 DOI: 10.1016/bs.apcsb.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The circadian clock influences almost every aspect of mammalian behavioral, physiological and metabolic processes. Being a hierarchical network, the circadian clock is driven by the central clock in the brain and is composed of several peripheral tissue-specific clocks. It orchestrates and synchronizes the daily oscillations of biological processes to the environment. Several pathological events are influenced by time and seasonal variations and as such implicate the clock in pathogenesis mechanisms. In context with viral infections, circadian rhythmicity is closely associated with host susceptibility, disease severity, and pharmacokinetics and efficacies of antivirals and vaccines. Leveraging the circadian molecular mechanism insights has increased our understanding of clock infection biology and proposes new avenues for viral diagnostics and therapeutics. In this chapter, we address the molecular interplay between the circadian clock and viral infections and discuss the importance of chronotherapy as a complementary approach to conventional medicines, emphasizing the significance of virus-clock studies.
Collapse
Affiliation(s)
- Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India..
| |
Collapse
|
28
|
Wu Z, Hu H, Zhang Q, Wang T, Li H, Qin Y, Ai X, Yi W, Wei X, Gao W, Ouyang C. Four circadian rhythm-related genes predict incidence and prognosis in hepatocellular carcinoma. Front Oncol 2022; 12:937403. [PMID: 36439444 PMCID: PMC9691441 DOI: 10.3389/fonc.2022.937403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/12/2022] [Indexed: 10/13/2023] Open
Abstract
Circadian dysregulation can be involved in the development of malignant tumors, though its relationship with the progression of hepatocellular carcinoma is not yet fully understood. We identified genes related to circadian rhythms from the Cancer Genome Atlas (TCGA), measured gene expression, and conducted genomic difference analysis to construct a circadian rhythm-related signature. The resulting prognosis model proved to be an effective biomarker, as demonstrated by Kaplan-Meier survival analysis for both the training (n = 370, P = 2.687e-10) and external validation cohorts (n = 230, P = 1.45e-02). Further, we found that patients considered 'high risk', with an associated poor prognosis, displayed elevated levels of immune checkpoint genes and immune filtration. We also conducted functional enrichment, which indicated that the risk model showed a significant positive correlation with certain malignant phenotypes, including G2M checkpoint, MYC targets, and the MTORC1 signaling pathway. In summary, we identified a novel circadian rhythm-related signature allowing assessment of prognosis for hepatocellular carcinoma patients, and further can be used to predict immune infiltration sensitivity.
Collapse
|
29
|
Gul S, Akyel YK, Gul ZM, Isin S, Ozcan O, Korkmaz T, Selvi S, Danis I, Ipek OS, Aygenli F, Taskin AC, Akarlar BA, Ozlu N, Ozturk N, Ozturk N, Ünal DÖ, Guzel M, Turkay M, Okyar A, Kavakli IH. Discovery of a small molecule that selectively destabilizes Cryptochrome 1 and enhances life span in p53 knockout mice. Nat Commun 2022; 13:6742. [PMID: 36347873 PMCID: PMC9643396 DOI: 10.1038/s41467-022-34582-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Cryptochromes are negative transcriptional regulators of the circadian clock in mammals. It is not clear how reducing the level of endogenous CRY1 in mammals will affect circadian rhythm and the relation of such a decrease with apoptosis. Here, we discovered a molecule (M47) that destabilizes Cryptochrome 1 (CRY1) both in vitro and in vivo. The M47 selectively enhanced the degradation rate of CRY1 by increasing its ubiquitination and resulted in increasing the circadian period length of U2OS Bmal1-dLuc cells. In addition, subcellular fractionation studies from mice liver indicated that M47 increased degradation of the CRY1 in the nucleus. Furthermore, M47-mediated CRY1 reduction enhanced oxaliplatin-induced apoptosis in Ras-transformed p53 null fibroblast cells. Systemic repetitive administration of M47 increased the median lifespan of p53-/- mice by ~25%. Collectively our data suggest that M47 is a promising molecule to treat forms of cancer depending on the p53 mutation.
Collapse
Affiliation(s)
- Seref Gul
- grid.15876.3d0000000106887552Department of Chemical and Biological Engineering, Koc University, 34450 Sariyer-Istanbul, Turkey ,grid.9601.e0000 0001 2166 6619Present Address: Department of Biology, Biotechnology Division, İstanbul University, TR-34116 Beyazit-Istanbul, Turkey
| | - Yasemin Kubra Akyel
- grid.9601.e0000 0001 2166 6619Faculty of Pharmacy, Department of Pharmacology, İstanbul University, TR-34116 Beyazit-Istanbul, Turkey ,grid.411781.a0000 0004 0471 9346Present Address: School of Medicine, Department of Medical Pharmacology, Istanbul Medipol University, Istanbul, Turkey
| | - Zeynep Melis Gul
- grid.15876.3d0000000106887552Department of Molecular Biology and Genetics, Koc University, İstanbul, Turkey
| | - Safak Isin
- grid.15876.3d0000000106887552Department of Molecular Biology and Genetics, Koc University, İstanbul, Turkey
| | - Onur Ozcan
- grid.15876.3d0000000106887552Department of Molecular Biology and Genetics, Koc University, İstanbul, Turkey
| | - Tuba Korkmaz
- grid.448834.70000 0004 0595 7127Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Saba Selvi
- grid.448834.70000 0004 0595 7127Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Ibrahim Danis
- grid.9601.e0000 0001 2166 6619Faculty of Pharmacy, Department of Analytical Chemistry, İstanbul University, TR-34116 Beyazit-Istanbul, Turkey ,grid.9601.e0000 0001 2166 6619İstanbul University Drug Research and Application Center (ILAM), TR-34116 Beyazıt-Istanbul, Turkey
| | - Ozgecan Savlug Ipek
- grid.411781.a0000 0004 0471 9346Regenerative and Restorative Medicine Research Center (REMER), İstanbul Medipol University, Kavacik Campus, Kavacik-Beykoz/Istanbul, 34810 Turkey ,grid.38575.3c0000 0001 2337 3561Department of Chemistry, Graduate School of Natural and Applied Sciences, Yildiz Technical University, Besiktas/Istanbul, 34349 Turkey
| | - Fatih Aygenli
- grid.448834.70000 0004 0595 7127Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Ali Cihan Taskin
- grid.15876.3d0000000106887552Animal Research Facility, Research Center for Translational Medicine, Koc University, Rumelifeneri yolu, 34450 Sariyer-Istanbul, Turkey
| | - Büşra Aytül Akarlar
- grid.15876.3d0000000106887552Department of Molecular Biology and Genetics, Koc University, İstanbul, Turkey
| | - Nurhan Ozlu
- grid.15876.3d0000000106887552Department of Molecular Biology and Genetics, Koc University, İstanbul, Turkey
| | - Nuri Ozturk
- grid.448834.70000 0004 0595 7127Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Narin Ozturk
- grid.9601.e0000 0001 2166 6619Faculty of Pharmacy, Department of Pharmacology, İstanbul University, TR-34116 Beyazit-Istanbul, Turkey
| | - Durişehvar Özer Ünal
- grid.9601.e0000 0001 2166 6619Faculty of Pharmacy, Department of Analytical Chemistry, İstanbul University, TR-34116 Beyazit-Istanbul, Turkey ,grid.9601.e0000 0001 2166 6619İstanbul University Drug Research and Application Center (ILAM), TR-34116 Beyazıt-Istanbul, Turkey
| | - Mustafa Guzel
- grid.411781.a0000 0004 0471 9346Regenerative and Restorative Medicine Research Center (REMER), İstanbul Medipol University, Kavacik Campus, Kavacik-Beykoz/Istanbul, 34810 Turkey ,grid.411781.a0000 0004 0471 9346International School of Medicine, Department of Medical Pharmacology, Kavacik Campus, İstanbul Medipol University, Kavacik-Beykoz/Istanbul, 34810 Turkey
| | - Metin Turkay
- grid.15876.3d0000000106887552Department of Industrial Engineering, Koc University, Istanbul, Turkey
| | - Alper Okyar
- grid.9601.e0000 0001 2166 6619Faculty of Pharmacy, Department of Pharmacology, İstanbul University, TR-34116 Beyazit-Istanbul, Turkey
| | - Ibrahim Halil Kavakli
- grid.15876.3d0000000106887552Department of Chemical and Biological Engineering, Koc University, 34450 Sariyer-Istanbul, Turkey ,grid.15876.3d0000000106887552Department of Molecular Biology and Genetics, Koc University, İstanbul, Turkey
| |
Collapse
|
30
|
Mood phenotypes in rodent models with circadian disturbances. Neurobiol Sleep Circadian Rhythms 2022; 13:100083. [PMID: 36345502 PMCID: PMC9636574 DOI: 10.1016/j.nbscr.2022.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Many physiological functions with approximately 24-h rhythmicity (circadian rhythms) are generated by an internal time-measuring system of the circadian clock. While sleep/wake cycles, feeding patterns, and body temperature are the most widely known physiological functions under the regulation of the circadian clock, physiological regulation by the circadian clock extends to higher brain functions. Accumulating evidence suggests strong associations between the circadian clock and mood disorders such as depression, but the underlying mechanisms of the functional relationship between them are obscure. This review overviews rodent models with disrupted circadian rhythms on depression-related responses. The animal models with circadian disturbances (by clock gene mutations and artifactual interventions) will help understand the causal link between the circadian clock and depression. The molecular mechanisms of the mammalian circadian rhythm are systematically overviewed. We overview how genetic and pharmacological manipulations of clock (related) genes are linked to mood phenotypes. We overview how artificial perturbations, such as SCN lesions and aberrant light, affect circadian rhythm and mood.
Collapse
|
31
|
Su K, Din ZU, Cui B, Peng F, Zhou Y, Wang C, Zhang X, Lu J, Luo H, He B, Kelley KW, Liu Q. A broken circadian clock: The emerging neuro-immune link connecting depression to cancer. Brain Behav Immun Health 2022; 26:100533. [PMID: 36281466 PMCID: PMC9587523 DOI: 10.1016/j.bbih.2022.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
Circadian clocks orchestrate daily rhythms in many organisms and are essential for optimal health. Circadian rhythm disrupting events, such as jet-lag, shift-work, night-light exposure and clock gene alterations, give rise to pathologic conditions that include cancer and clinical depression. This review systemically describes the fundamental mechanisms of circadian clocks and the interacting relationships among a broken circadian clock, cancer and depression. We propose that this broken clock is an emerging link that connects depression and cancer development. Importantly, broken circadian clocks, cancer and depression form a vicious feedback loop that threatens systemic fitness. Arresting this harmful loop by restoring normal circadian rhythms is a potential therapeutic strategy for treating both cancer and depression.
Collapse
Affiliation(s)
- Keyu Su
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China
| | - Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China
| | - Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, 651 Dongfeng East Road, Guangzhou, Guangdong Province, 510060, China,Corresponding author. Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China.
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China
| | - Yuzhao Zhou
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China
| | - Jinxin Lu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China
| | - Huandong Luo
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China
| | - Bin He
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China
| | - Keith W. Kelley
- Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, 212 Edward R. Madigan Laboratory, 1201 West Gregory Drive, Urbana, Il, 61801, USA
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, 651 Dongfeng East Road, Guangzhou, Guangdong Province, 510060, China,Corresponding author. Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China.
| |
Collapse
|
32
|
Sakamoto T, Odera K, Onozato M, Sugasawa H, Takahashi R, Fujimaki Y, Fukushima T. Direct Fluorescence Evaluation of d-Amino Acid Oxidase Activity Using a Synthetic d-Kynurenine Derivative. Anal Chem 2022; 94:14530-14536. [PMID: 36222234 DOI: 10.1021/acs.analchem.2c00775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
d-Amino acid oxidase (DAO) has been suggested to be associated with the central nervous system diseases, such as schizophrenia. We newly synthesized a nonfluorescent 5-methylthio-d-kynurenine (MeS-d-KYN), which was converted to blue-fluorescent 6-MeS-kynurenic acid (MeS-KYNA, λex = 364 nm, λem = 450 nm) through a one-step reaction by incubation with DAO. It was revealed that fluorescence intensity increased accompanied by commercial porcine kidney DAO activity (unit) with a good correlation (R2 = 0.9972), suggesting that the fluorometric evaluation of DAO activity using MeS-d-KYN is feasible. MeS-d-KYN was applied to fluorescent DAO imaging in cultured LLC-PK1 cells, and the blue fluorescence of MeS-KYNA overlapped considerably with the location of peroxisomes, which was suggested to be the location of DAO in the cells. Because fluorescence was diminished in the presence of 6-chloro-1,2-benzisoxazol-3(2H)-one (CBIO), a DAO inhibitor, it was considered that DAO activity in cells could be directly evaluated using MeS-d-KYN as the substrate.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba274-8510, Japan
| | - Keiko Odera
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba274-8510, Japan
| | - Mayu Onozato
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba274-8510, Japan
| | - Hiroshi Sugasawa
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba274-8510, Japan
| | - Ryoya Takahashi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba274-8510, Japan
| | - Yasuto Fujimaki
- Tokyo Metropolitan Industrial Technology Research Institute, Jonan Branch, 1-20-20 minamikamata, Ota-ku, Tokyo144-0035, Japan
| | - Takeshi Fukushima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba274-8510, Japan
| |
Collapse
|
33
|
Zhang Z, Zhang C, Zhang CS, Wang WB, Feng YL. Differences and related physiological mechanisms in effects of ammonium on the invasive plant Xanthium strumarium and its native congener X. sibiricum. FRONTIERS IN PLANT SCIENCE 2022; 13:999748. [PMID: 36275581 PMCID: PMC9581188 DOI: 10.3389/fpls.2022.999748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Few studies explore the effects of nitrogen forms on exotic plant invasions, and all of them are conducted from the perspective of nitrogen form utilization without considering the effects of ammonium toxicity. The invasive plant Xanthium strumarium prefers to use nitrate, while its native congener X. sibiricum prefers to use ammonium, and the invader is more sensitive to high ammonium based on our preliminary observations. To further reveal the effects of nitrogen forms on invasiveness of X. strumarium, we studied the difference and related physiological mechanisms in sensitivity to ammonium between these species. With increasing ammonium, total biomass, root to shoot ratio and leaf chlorophyll content of X. strumarium decreased, showing ammonium toxicity. For X. sibiricum, however, ammonium toxicity did not occurr. With increasing ammonium, ammonium concentration increased in leaves and roots of X. strumarium, which is associated with the decreased activities of glutamine synthetase and glutamate synthase and the increased ammonium uptake; and consequently the contents of hydrogen peroxide and malondialdehyde also increased, which is associated with the decreased contents of reduced glutathione and ascorbic acid. By contrast, the abilities of ammonium assimilation and antioxidation of X. sibiricum were less affected by the increase of ammonium, and the contents of ammonium nitrogen, hydrogen peroxide and malondialdehyde in leaves and roots were significantly lower than those in X. strumarium. Our results indicate that ammonium accumulation and oxidative damage may be the physiological mechanisms for the ammonium toxicity of X. strumarium, providing a possible explanation that it generally invades nitrate-dominated and disturbed habitats and a theoretical basis for future studies on the control of invasive plants by regulating soil nitrogen.
Collapse
Affiliation(s)
- Zheng Zhang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Chang Zhang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Chun-Sha Zhang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Wei-Bin Wang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yu-Long Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
34
|
He Y, Yu Y, Wang X, Qin Y, Su C, Wang L. Aschoff's rule on circadian rhythms orchestrated by blue light sensor CRY2 and clock component PRR9. Nat Commun 2022; 13:5869. [PMID: 36198686 PMCID: PMC9535003 DOI: 10.1038/s41467-022-33568-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Circadian pace is modulated by light intensity, known as the Aschoff’s rule, with largely unrevealed mechanisms. Here we report that photoreceptor CRY2 mediates blue light input to the circadian clock by directly interacting with clock core component PRR9 in blue light dependent manner. This physical interaction dually blocks the accessibility of PRR9 protein to its co-repressor TPL/TPRs and the resulting kinase PPKs. Notably, phosphorylation of PRR9 by PPKs is critical for its DNA binding and repressive activity, hence to ensure proper circadian speed. Given the labile nature of CRY2 in strong blue light, our findings provide a mechanistic explanation for Aschoff’s rule in plants, i.e., blue light triggers CRY2 turnover in proportional to its intensity, which accordingly releasing PRR9 to fine tune circadian speed. Our findings not only reveal a network mediating light input into the circadian clock, but also unmask a mechanism by which the Arabidopsis circadian clock senses light intensity. Circadian pace is modulated by light intensity. Here the authors show that CRY2 interacts with PRR9 to mediate blue light input to the circadian clock and is degraded at higher light intensity offering a mechanistic explanation as to how intensity can modify clock place.
Collapse
Affiliation(s)
- Yuqing He
- Key laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingjun Yu
- Key laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiling Wang
- Key laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yumei Qin
- Key laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Su
- Key laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- Key laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
35
|
CRY2 isoform selectivity of a circadian clock modulator with antiglioblastoma efficacy. Proc Natl Acad Sci U S A 2022; 119:e2203936119. [PMID: 36161947 PMCID: PMC9546630 DOI: 10.1073/pnas.2203936119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian cryptochrome isoforms, CRY1 and CRY2, are core circadian clock regulators that work redundantly. Recent studies revealed distinct roles of these closely related homologs in clock output pathways. Isoform-selective control of CRY1 and CRY2 is critical for further understanding their redundant and distinct roles. KL001 was the first identified small-molecule CRY modulator that activates both CRY1 and CRY2. SHP656 is an orally available KL001 derivative and has shown efficacy in blood glucose control and inhibition of glioblastoma stem cell (GSC) growth in animal models. However, CRY isoform selectivity of SHP656 was uncharacterized, limiting understanding of the roles of CRY1 and CRY2. Here, we report the elucidation of CRY2 selectivity of SHP656. SHP656 lengthened cellular circadian period in a CRY2-dependent manner and selectively interacted with CRY2. By determining the X-ray crystal structure of CRY2 in complex with SHP656 and performing molecular dynamics simulations, we elucidated compound interaction mechanisms. SHP656 binding was compatible with the intrinsic CRY2 gatekeeper W417 "in" orientation and also a close "further in" conformation. Perturbation of W417 interaction with the lid loop resulted in a reduced effect of SHP656 on CRY2, supporting an important role of gatekeeper orientation in isoform selectivity. We also identified the R form of SHP656 (called SHP1703) as the active isomer. Treatment with SHP1703 effectively reduced GSC viability. Our results suggest a direct role of CRY2 in glioblastoma antitumorigenesis and provide a rationale for the selective modulation of CRY isoforms in the therapeutic treatment of glioblastoma and other circadian clock-related diseases.
Collapse
|
36
|
O'Siorain JR, Curtis AM. Circadian Control of Redox Reactions in the Macrophage Inflammatory Response. Antioxid Redox Signal 2022; 37:664-678. [PMID: 35166129 DOI: 10.1089/ars.2022.0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Macrophages are immune sentinels located throughout the body that function in both amplification and resolution of the inflammatory response. The circadian clock has emerged as a central regulator of macrophage inflammation. Reduction-oxidation (redox) reactions are central to both the circadian clock and macrophage function. Recent Advances: Circadian regulation of metabolism controls the macrophage inflammatory response, whereby disruption of the clock causes dysfunctional inflammation. Altering metabolism and reactive oxygen/nitrogen species (RONS) production rescues the inflammatory phenotype of clock-disrupted macrophages. Critical Issues: The circadian clock possesses many layers of regulation. Understanding how redox reactions coordinate clock function is critical to uncover the full extent of circadian regulation of macrophage inflammation. We provide insights into how circadian regulation of redox affects macrophage pattern recognition receptor signaling, immunometabolism, phagocytosis, and inflammasome activation. Future Directions: Many diseases associated with aberrant macrophage-derived inflammation exhibit time-of-day rhythms in disease symptoms and severity and are sensitive to circadian disruption. Macrophage function is highly dependent on redox reactions that signal through RONS. Future studies are needed to evaluate the extent of circadian control of macrophage inflammation, specifically in the context of redox signaling. Antioxid. Redox Signal. 37, 664-678.
Collapse
Affiliation(s)
- James R O'Siorain
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Annie M Curtis
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
37
|
Abdalla OHMH, Mascarenhas B, Cheng HYM. Death of a Protein: The Role of E3 Ubiquitin Ligases in Circadian Rhythms of Mice and Flies. Int J Mol Sci 2022; 23:ijms231810569. [PMID: 36142478 PMCID: PMC9502492 DOI: 10.3390/ijms231810569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/04/2022] Open
Abstract
Circadian clocks evolved to enable organisms to anticipate and prepare for periodic environmental changes driven by the day–night cycle. This internal timekeeping mechanism is built on autoregulatory transcription–translation feedback loops that control the rhythmic expression of core clock genes and their protein products. The levels of clock proteins rise and ebb throughout a 24-h period through their rhythmic synthesis and destruction. In the ubiquitin–proteasome system, the process of polyubiquitination, or the covalent attachment of a ubiquitin chain, marks a protein for degradation by the 26S proteasome. The process is regulated by E3 ubiquitin ligases, which recognize specific substrates for ubiquitination. In this review, we summarize the roles that known E3 ubiquitin ligases play in the circadian clocks of two popular model organisms: mice and fruit flies. We also discuss emerging evidence that implicates the N-degron pathway, an alternative proteolytic system, in the regulation of circadian rhythms. We conclude the review with our perspectives on the potential for the proteolytic and non-proteolytic functions of E3 ubiquitin ligases within the circadian clock system.
Collapse
Affiliation(s)
- Osama Hasan Mustafa Hasan Abdalla
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Brittany Mascarenhas
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Correspondence:
| |
Collapse
|
38
|
Moeller JS, Bever SR, Finn SL, Phumsatitpong C, Browne MF, Kriegsfeld LJ. Circadian Regulation of Hormonal Timing and the Pathophysiology of Circadian Dysregulation. Compr Physiol 2022; 12:4185-4214. [PMID: 36073751 DOI: 10.1002/cphy.c220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are endogenously generated, daily patterns of behavior and physiology that are essential for optimal health and disease prevention. Disruptions to circadian timing are associated with a host of maladies, including metabolic disease and obesity, diabetes, heart disease, cancer, and mental health disturbances. The circadian timing system is hierarchically organized, with a master circadian clock located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks throughout the CNS and periphery. The SCN receives light information via a direct retinal pathway, synchronizing the master clock to environmental time. At the cellular level, circadian rhythms are ubiquitous, with rhythms generated by interlocking, autoregulatory transcription-translation feedback loops. At the level of the SCN, tight cellular coupling maintains rhythms even in the absence of environmental input. The SCN, in turn, communicates timing information via the autonomic nervous system and hormonal signaling. This signaling couples individual cellular oscillators at the tissue level in extra-SCN brain loci and the periphery and synchronizes subordinate clocks to external time. In the modern world, circadian disruption is widespread due to limited exposure to sunlight during the day, exposure to artificial light at night, and widespread use of light-emitting electronic devices, likely contributing to an increase in the prevalence, and the progression, of a host of disease states. The present overview focuses on the circadian control of endocrine secretions, the significance of rhythms within key endocrine axes for typical, homeostatic functioning, and implications for health and disease when dysregulated. © 2022 American Physiological Society. Compr Physiol 12: 1-30, 2022.
Collapse
Affiliation(s)
- Jacob S Moeller
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA
| | - Savannah R Bever
- Department of Psychology, University of California, Berkeley, California, USA
| | - Samantha L Finn
- Department of Psychology, University of California, Berkeley, California, USA
| | | | - Madison F Browne
- Department of Psychology, University of California, Berkeley, California, USA
| | - Lance J Kriegsfeld
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA.,Department of Psychology, University of California, Berkeley, California, USA.,Department of Integrative Biology, University of California, Berkeley, California, USA.,The Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
39
|
Parlak GC, Camur BB, Gul S, Ozcan O, Baris I, Kavakli IH. The secondary pocket of cryptochrome 2 is important for the regulation of its stability and localization. J Biol Chem 2022; 298:102334. [PMID: 35933018 PMCID: PMC9442382 DOI: 10.1016/j.jbc.2022.102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022] Open
Abstract
Human clock-gene variations contribute to the phenotypic differences observed in various behavioral and physiological processes, such as diurnal preference, sleep, metabolism, mood regulation, addiction, and fertility. However, little is known about the possible effects of identified variations at the molecular level. In this study, we performed a functional characterization at the cellular level of rare cryptochrome 2 (CRY2) missense variations that were identified from the Ensembl database. Our structural studies revealed that three variations (p.Pro123Leu, p.Asp406His, and p.Ser410Ile) are located at the rim of the secondary pocket of CRY2. We show that these variants were unable to repress CLOCK (circadian locomotor output cycles kaput)/BMAL1 (brain and muscle ARNT-like-1)-driven transcription in a cell-based reporter assay and had reduced affinity to CLOCK-BMAL1. Furthermore, our biochemical studies indicated that the variants were less stable than the WT CRY2, which could be rescued in the presence of period 2 (PER2), another core clock protein. Finally, we found that these variants were unable to properly localize to the nucleus and thereby were unable to rescue the circadian rhythm in a Cry1-/-Cry2-/- double KO mouse embryonic fibroblast cell line. Collectively, our data suggest that the rim of the secondary pocket of CRY2 plays a significant role in its nuclear localization independently of PER2 and in the intact circadian rhythm at the cellular level.
Collapse
Affiliation(s)
- Gizem Cagla Parlak
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Bilge Bahar Camur
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Seref Gul
- Biotechnology Division, Department of Biology, Istanbul University, Istanbul, Turkey
| | - Onur Ozcan
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Ibrahim Baris
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey; Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey.
| |
Collapse
|
40
|
Singla R, Mishra A, Cao R. The trilateral interactions between mammalian target of rapamycin (mTOR) signaling, the circadian clock, and psychiatric disorders: an emerging model. Transl Psychiatry 2022; 12:355. [PMID: 36045116 PMCID: PMC9433414 DOI: 10.1038/s41398-022-02120-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Circadian (~24 h) rhythms in physiology and behavior are evolutionarily conserved and found in almost all living organisms. The rhythms are endogenously driven by daily oscillatory activities of so-called "clock genes/proteins", which are widely distributed throughout the mammalian brain. Mammalian (mechanistic) target of rapamycin (mTOR) signaling is a fundamental intracellular signal transduction cascade that controls important neuronal processes including neurodevelopment, synaptic plasticity, metabolism, and aging. Dysregulation of the mTOR pathway is associated with psychiatric disorders including autism spectrum disorders (ASD) and mood disorders (MD), in which patients often exhibit disrupted daily physiological rhythms and abnormal circadian gene expression in the brain. Recent work has found that the activities of mTOR signaling are temporally controlled by the circadian clock and exhibit robust circadian oscillations in multiple systems. In the meantime, mTOR signaling regulates fundamental properties of the central and peripheral circadian clocks, including period length, entrainment, and synchronization. Whereas the underlying mechanisms remain to be fully elucidated, increasing clinical and preclinical evidence support significant crosstalk between mTOR signaling, the circadian clock, and psychiatric disorders. Here, we review recent progress in understanding the trilateral interactions and propose an "interaction triangle" model between mTOR signaling, the circadian clock, and psychiatric disorders (focusing on ASD and MD).
Collapse
Affiliation(s)
- Rubal Singla
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Abhishek Mishra
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA. .,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
41
|
Hollis HC, Francis JN, Anafi RC. Multi-tissue transcriptional changes and core circadian clock disruption following intensive care. Front Physiol 2022; 13:942704. [PMID: 36045754 PMCID: PMC9420996 DOI: 10.3389/fphys.2022.942704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Both critical illness and current care have been hypothesized to upset daily rhythms and impair molecular circadian function. However, the influence of critical illness on clock function in different tissues and on circadian output genes are unknown. Here we evaluate the effect of critical care and illness on transcription, focusing on the functional organization of the core circadian oscillator. Methods: We downloaded RNAseq count data from the Genotype-Tissue Expression (GTEx) project. Treating mechanical ventilation as a marker for intensive care, we stratified samples into acute death (AD) and intensive care (IC) groups based on the documented Hardy Death Scale. We restricted our analysis to the 25 tissues with >50 samples in each group. Using the edgeR package and controlling for collection center, gender, and age, we identified transcripts differentially expressed between the AD and IC groups. Overrepresentation and enrichment methods were used to identify gene sets modulated by intensive care across tissues. For each tissue, we then calculated the delta clock correlation distance (ΔCCD), a comparative measure of the functional organization of the core circadian oscillator, in the both the AD and IC groups. The statistical significance of the ΔCCD was assessed by permutation, modifying a pre-existing R package to control for confounding variables. Results: Intensive care, as marked by ventilation, significantly modulated the expression of thousands of genes. Transcripts that were modulated in ≥75% of tissues were enriched for genes involved in mitochondrial energetics, cellular stress, metabolism, and notably circadian regulation. Transcripts that were more markedly affected, in ≥10 tissues, were enriched for inflammation, complement and immune pathways. Oscillator organization, as assessed by ΔCCD, was significantly reduced in the intensive care group in 11/25 tissues. Conclusion: Our findings support the hypothesis that patients in intensive care have impaired molecular circadian rhythms. Tissues involved in metabolism and energetics demonstrated the most marked changes in oscillator organization. In adipose tissue, there was a significant overlap between transcripts previously established to be modulated by sleep deprivation and fasting with those modulated by critical care. This work suggests that intensive care protocols that restore sleep/wake and nutritional rhythms may be of benefit.
Collapse
Affiliation(s)
- Henry C. Hollis
- School of Biomedical Engineering and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Julian N. Francis
- Department of Mathematics, Howard University, Washington, DC, United States
| | - Ron C. Anafi
- Division of Sleep Medicine and Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: Ron C. Anafi,
| |
Collapse
|
42
|
The duper mutation reveals previously unsuspected functions of Cryptochrome 1 in circadian entrainment and heart disease. Proc Natl Acad Sci U S A 2022; 119:e2121883119. [PMID: 35930669 PMCID: PMC9371649 DOI: 10.1073/pnas.2121883119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Cryptochrome 1 (Cry1)-deficient duper mutant hamster has a short free-running period in constant darkness (τDD) and shows large phase shifts in response to brief light pulses. We tested whether this measure of the lability of the circadian phase is a general characteristic of Cry1-null animals and whether it indicates resistance to jet lag. Upon advance of the light:dark (LD) cycle, both duper hamsters and Cry1-/- mice re-entrained locomotor rhythms three times as fast as wild types. However, accelerated re-entrainment was dissociated from the amplified phase-response curve (PRC): unlike duper hamsters, Cry1-/- mice show no amplification of the phase response to 15' light pulses. Neither the amplified acute shifts nor the increased rate of re-entrainment in duper mutants is due to acceleration of the circadian clock: when mutants drank heavy water to lengthen the period, these aspects of the phenotype persisted. In light of the health consequences of circadian misalignment, we examined effects of duper and phase shifts on a hamster model of heart disease previously shown to be aggravated by repeated phase shifts. The mutation shortened the lifespan of cardiomyopathic hamsters relative to wild types, but this effect was eliminated when mutants experienced 8-h phase shifts every second week, to which they rapidly re-entrained. Our results reveal previously unsuspected roles of Cry1 in phase shifting and longevity in the face of heart disease. The duper mutant offers new opportunities to understand the basis of circadian disruption and jet lag.
Collapse
|
43
|
Suo Z, Yang J, Zhou B, Qu Y, Xu W, Li M, Xiao T, Zheng H, Ni C. Whole-transcriptome sequencing identifies neuroinflammation, metabolism and blood-brain barrier related processes in the hippocampus of aged mice during perioperative period. CNS Neurosci Ther 2022; 28:1576-1595. [PMID: 35899365 PMCID: PMC9437242 DOI: 10.1111/cns.13901] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/28/2022] Open
Abstract
AIM Perioperative neurocognitive disorders (PND) occur frequently after surgery and anesthesia, especially in aged patients. Previous studies have shown multiple PND related mechanisms in the hippocampus; however, their relationships remain unclear. Meanwhile, the perioperative neuropathological processes are sophisticated and changeable, single period study could not reveal the accurate mechanisms. Thus, multiperiod whole-transcriptome study is necessary to elucidate the gene expression patterns during perioperative period. METHODS Aged C57BL/6 mice were subjected to exploratory laparotomy under sevoflurane anesthesia. Whole-transcriptome sequencing (RNA-seq analysis) was performed on the hippocampi from control condition (Con), 30 min (Day0), 2 days (Day2), and 7 days (Day7) after surgery. Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analyses, quantitative real-time PCR, immunofluorescence, and fear conditioning test were also performed to elucidate the pathological processes and modulation networks during the period. RESULTS Through RNA-seq analysis, 328, 3597, and 4179 differentially expressed genes (DEGs) were screened out in intraoperative period (Day0 vs. Con), early postoperative period (Day2 vs. Day0), and late postoperative period (Day7 vs. Day2). The involved GO biological processes were divided into 9 categories, and positive-regulated processes were more than negative-regulated ones. Seventy-four transcription factors were highlighted. The potential synaptic and neuroinflammatory pathways were constructed for Neurotransmitter, Synapse and Neuronal alteration categories with 9 genes (Htr1a, Rims1, and Ezh2, etc.). The metabolic and mitochondrial pathways were constructed for metabolism, oxidative stress, and biological rhythm categories with 9 genes (Gpld1, Sirt1, and Cry2, etc.). The blood-brain barrier and neurotoxicity related pathways were constructed for blood-brain barrier, neurotoxicity, and cognitive function categories with 10 genes (Mmp2, Itpr1, and Nrf1, etc.). CONCLUSION The results revealed gene expression patterns and modulation networks in the aged hippocampus during perioperative period, which provide insights into overall mechanisms and potential therapeutic targets for prevention and treatment of perioperative central nervous system diseases, such as PND, from the genetic level.
Collapse
Affiliation(s)
- Zizheng Suo
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Bowen Zhou
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinyin Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Wenjie Xu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
44
|
Vanmunster M, Rojo Garcia AV, Pacolet A, Dalle S, Koppo K, Jonkers I, Lories R, Suhr F. Mechanosensors control skeletal muscle mass, molecular clocks, and metabolism. Cell Mol Life Sci 2022; 79:321. [PMID: 35622133 PMCID: PMC11072145 DOI: 10.1007/s00018-022-04346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Skeletal muscles (SkM) are mechanosensitive, with mechanical unloading resulting in muscle-devastating conditions and altered metabolic properties. However, it remains unexplored whether these atrophic conditions affect SkM mechanosensors and molecular clocks, both crucial for their homeostasis and consequent physiological metabolism. METHODS We induced SkM atrophy through 14 days of hindlimb suspension (HS) in 10 male C57BL/6J mice and 10 controls (CTR). SkM histology, gene expressions and protein levels of mechanosensors, molecular clocks and metabolism-related players were examined in the m. Gastrocnemius and m. Soleus. Furthermore, we genetically reduced the expression of mechanosensors integrin-linked kinase (Ilk1) and kindlin-2 (Fermt2) in myogenic C2C12 cells and analyzed the gene expression of mechanosensors, clock components and metabolism-controlling genes. RESULTS Upon hindlimb suspension, gene expression levels of both core molecular clocks and mechanosensors were moderately upregulated in m. Gastrocnemius but strongly downregulated in m. Soleus. Upon unloading, metabolism- and protein biosynthesis-related genes were moderately upregulated in m. Gastrocnemius but downregulated in m. Soleus. Furthermore, we identified very strong correlations between mechanosensors, metabolism- and circadian clock-regulating genes. Finally, genetically induced downregulations of mechanosensors Ilk1 and Fermt2 caused a downregulated mechanosensor, molecular clock and metabolism-related gene expression in the C2C12 model. CONCLUSIONS Collectively, these data shed new lights on mechanisms that control muscle loss. Mechanosensors are identified to crucially control these processes, specifically through commanding molecular clock components and metabolism.
Collapse
Affiliation(s)
- Mathias Vanmunster
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Ana Victoria Rojo Garcia
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Alexander Pacolet
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Sebastiaan Dalle
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Katrien Koppo
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Ilse Jonkers
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Rik Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, 3000, Leuven, Belgium
| | - Frank Suhr
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
45
|
Protein interaction networks of the mammalian core clock proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:207-233. [PMID: 35871891 DOI: 10.1016/bs.apcsb.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Circadian rhythm is a 24-h cycle that regulates the biochemical and behavioral changes of organisms. It controls a wide range of functions, from gene expression to behavior, allowing organisms to anticipate daily changes in their environment. In mammals, circadian rhythm is generated by a complex transcriptional and translational feedback loop mechanism. The binding of CLOCK/BMAL1 heterodimer to the E-box of DNA located within the promoter region initiates transcription of clock control genes including the transcription of the other two core clock genes of Periods (Pers) and Cryptochromes (Crys). Then PERs and CRYs along with casein kinase 1ɛ/Δ translocate into the nucleus where they suppress CLOCK/BMAL1 transactivation and, in turn, clock-regulated gene expression. Various clock components must be operational to aid in their stabilization and period extension in circadian rhythm. In this review, we have highlighted the recent progress for the core clock interacting proteins to maintain and to stabilize circadian rhythm in mammals.
Collapse
|
46
|
Four novel genes associated with longevity found in Cane corso purebred dogs. BMC Vet Res 2022; 18:188. [PMID: 35590325 PMCID: PMC9118790 DOI: 10.1186/s12917-022-03290-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Background Longevity-related genes have been found in several animal species as well as in humans. The goal of this study was to perform genetic analysis of long-lived Cane corso dogs with the aim to find genes that are associated with longevity. Results SNPs with particular nucleotides were significantly overrepresented in long-lived dogs in four genes, TDRP, MC2R, FBXO25 and FBXL21. In FBXL21, the longevity-associated SNP localises to the exon. In the FBXL21 protein, tryptophan in long-lived dogs replaced arginine present in reference dogs. Conclusions Four SNPs associated with longevity in dogs were identified using GWAS and validated by DNA sequencing. We conclude that genes TDRP, MC2R, FBXO25 and FBXL21 are associated with longevity in Cane corso dogs. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03290-9.
Collapse
|
47
|
Cha S, Wang J, Lee SM, Tan Z, Zhao Q, Bai D. Clock-modified mesenchymal stromal cells therapy rescues molecular circadian oscillation and age-related bone loss via miR142-3p/Bmal1/YAP signaling axis. Cell Death Dis 2022; 8:111. [PMID: 35279674 PMCID: PMC8918353 DOI: 10.1038/s41420-022-00908-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 02/08/2023]
Abstract
Age-related bone loss and disease strongly affect the quality of life of the elderly population. Cellular circadian rhythms have been reported to regulate bone aging, and micro RNAs (miRNAs) play crucial posttranscriptional regulatory roles in the peripheral clock network. Proliferation capability, osteogenic lineage commitment, senescence-associated secreted phenotype (SASP) and circadian oscillation of clock genes under osteogenic condition were assessed in bone marrow mesenchymal stromal cells (BMSCs) from young adult and aged adult mice. miRNAs targeting the core clock gene brain and muscle arntl-like protein 1 (Bmal1) were screened and verified in young and old BMSCs with RT-qPCR and Western Blot analysis. ChIP-seq and RNA-seq datasets were mined to define the downstream mechanism and gain- and loss-of-function genetic experiments were performed to confirm the hypothesis. To compare the therapeutic effect of these clock-engineered BMSCs, SASP and osteogenic capability of Bmal1-overexpressing and miR-142-3p-inhibited BMSCs were investigated in vitro and transplanted into bone defects and femur cavities of aged mice. Aged BMSCs displayed an abolished circadian rhythm, impaired self-renewal capability and decreased osteoblast differentiation. miR-142-3p was elevated with aging, which downregulated Bmal1 and diminished the osteogenic potential of BMSCs. In addition, Bmal1 inhibited YAP expression to promote BMSCs osteogenesis, which was independent from the activation of Hippo signaling pathway. Overexpression of Bmal1 or inhibition of miR-142-3p rescued the molecular temporal rhythm and osteoblast differentiation ex vivo. Cell-based circadian therapy showed improved bone formation and higher turnover levels in vivo. This study demonstrates that transcriptional and post-transcriptional level clock-modified BMSCs rescued circadian oscillation and age-related bone loss via miR-142-3p/Bmal1/YAP signaling axis. These data provide promising clinical prospects of circadian-mediated stromal cell-based therapy and bone tissue regeneration.
Collapse
|
48
|
Identification of novel small molecules targeting core clock proteins to regulate circadian rhythm. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Miller S, Hirota T. Structural and Chemical Biology Approaches Reveal Isoform-Selective Mechanisms of Ligand Interactions in Mammalian Cryptochromes. Front Physiol 2022; 13:837280. [PMID: 35153842 PMCID: PMC8831909 DOI: 10.3389/fphys.2022.837280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
Cryptochromes (CRYs) are core components of the circadian feedback loop in mammals, which regulates circadian rhythmicity in a variety of physiological processes including sleep–wake cycles and metabolism. Dysfunction of CRY1 and CRY2 isoforms has been associated with a host of diseases, such as sleep phase disorder and metabolic diseases. Accumulating evidence for distinct roles of CRY1 and CRY2 has highlighted the need for CRY isoform-selective regulation; however, highly conserved sequences in CRY ligand-binding sites have hindered the design of isoform-selective compounds. Chemical biology approaches have been identifying small-molecule modulators of CRY proteins, which act in isoform-non-selective and also isoform-selective manners. In this review, we describe advances in our understanding of CRY isoform selectivity by comparing X-ray crystal structures of mammalian CRY isoforms in apo form and in complexes with compounds. We discuss how intrinsic conformational differences in identical residues of CRY1 and CRY2 contribute to unique interactions with different compound moieties for isoform selectivity.
Collapse
|
50
|
Tartour K, Padmanabhan K. The Clock Takes Shape-24 h Dynamics in Genome Topology. Front Cell Dev Biol 2022; 9:799971. [PMID: 35047508 PMCID: PMC8762244 DOI: 10.3389/fcell.2021.799971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
Circadian rhythms orchestrate organismal physiology and behavior in order to anticipate daily changes in the environment. Virtually all cells have an internal rhythm that is synchronized every day by Zeitgebers (environmental cues). The synchrony between clocks within the animal enables the fitness and the health of organisms. Conversely, disruption of rhythms is linked to a variety of disorders: aging, cancer, metabolic diseases, and psychological disorders among others. At the cellular level, mammalian circadian rhythms are built on several layers of complexity. The transcriptional-translational feedback loop (TTFL) was the first to be described in the 90s. Thereafter oscillations in epigenetic marks highlighted the role of chromatin state in organizing the TTFL. More recently, studies on the 3D organization of the genome suggest that genome topology could be yet another layer of control on cellular circadian rhythms. The dynamic nature of genome topology over a solar day implies that the 3D mammalian genome has to be considered in the fourth dimension-in time. Whether oscillations in genome topology are a consequence of 24 h gene-expression or a driver of transcriptional cycles remains an open question. All said and done, circadian clock-gated phenomena such as gene expression, DNA damage response, cell metabolism and animal behavior-go hand in hand with 24 h rhythms in genome topology.
Collapse
Affiliation(s)
- Kévin Tartour
- Institut de Genomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard, Lyon, France
| | - Kiran Padmanabhan
- Institut de Genomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard, Lyon, France
| |
Collapse
|