1
|
Hobbs EC, Porter JL, Lee JYH, Loukopoulos P, Whiteley P, Skerratt LF, Stinear TP, Gibney KB, Meredith AL. Buruli ulcer surveillance in south-eastern Australian possums: Infection status, lesion mapping and internal distribution of Mycobacterium ulcerans. PLoS Negl Trop Dis 2024; 18:e0012189. [PMID: 39499725 DOI: 10.1371/journal.pntd.0012189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/24/2024] [Indexed: 11/07/2024] Open
Abstract
Buruli ulcer (BU) is a neglected tropical disease of skin and subcutaneous tissues caused by Mycobacterium ulcerans. BU-endemic areas are highly focal, and M. ulcerans transmission dynamics vary by setting. In Victoria, Australia, BU is an endemic vector-borne zoonosis, with mosquitoes and native possums implicated in transmission, and humans incidental hosts. Despite the importance of possums as wildlife reservoirs of M. ulcerans, knowledge of BU in these animals is limited. Opportunistic necropsy-based and active trap-and-release surveillance studies were conducted across Melbourne and Geelong, Victoria, to investigate BU in possums. Demographic data and biological samples were collected, and cutaneous lesions suggestive of BU were mapped. Samples were tested for the presence of M. ulcerans DNA by IS2404 qPCR. The final dataset included 26 possums: 20 necropsied; 6 trapped and released. Most possums (77%) were common ringtails from inner Melbourne. Nine had ulcers, ranging from single and mild, to multiple and severe, exposing bones and tendons in three cases. M. ulcerans was confirmed in 73% (19/26) of examined possums: 8 with lesions and 11 without. Oral swabs were most frequently indicative of M. ulcerans infection status. Severely ulcerated possums had widespread systemic internal bacterial dissemination and were shedding M. ulcerans in faeces. The anatomical distribution of ulcers and PCR positivity of biological samples suggests possums may contract BU from bites of M. ulcerans-harbouring mosquitoes, traumatic skin wounds, ingestion of an unknown environmental source, and/or during early development in the pouch. Ringtail possums appear highly susceptible to infection with M. ulcerans and are important bacterial reservoirs in Victoria. Oral swabs should be considered for diagnosis or surveillance of infected possums. A One Health approach is needed to design and implement integrated interventions that reduce M. ulcerans transmission in Victoria, thereby protecting wildlife and humans from this emerging zoonotic disease.
Collapse
Affiliation(s)
- Emma C Hobbs
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Werribee, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Jessica L Porter
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Jean Y H Lee
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Panayiotis Loukopoulos
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Pam Whiteley
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Lee F Skerratt
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Katherine B Gibney
- Department of Infectious Diseases, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Anna L Meredith
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Werribee, Victoria, Australia
- Office of the Dean, Faculty of Natural Sciences, The University of Keele, England, United Kingdom
| |
Collapse
|
2
|
Wang X, Wang X, Kou Z, Sun K, Tan Y, Chen J, He Y, Ding W, Liu H, Liang Y, Li L, Lei X. Effects of aminolevulinic acid photodynamic therapy combined with antibiotics on Mycobacterium abscessus skin infections: An in vitro and in vivo study. Photodiagnosis Photodyn Ther 2024; 50:104371. [PMID: 39424252 DOI: 10.1016/j.pdpdt.2024.104371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Mycobacterium abscessus skin infections have emerged as a major medical issue. Traditional antibiotic treatments are challenging, prolonged, and often lead to recurrence, creating an urgent need for new therapies. This study investigates the effectiveness of aminolevulinic acid photodynamic therapy (ALA-PDT) combined with antibiotics in treatmenting M. abscessus, using both in vitro and in vivo methods. METHODS We treated eight patients with M. abscessus skin infections following cosmetic surgery, using ALA-PDT (ALA concentration: 20 %; red light: 80 J/cm2) combined with oral or intravenous antibiotics,including clarithromycin, moxifloxacin and amikacin, to treat 8 patients with M. abscessus skin infection after medical cosmetic surgery, and assessed the treatment outcomes. Additionally, four bacterial strains (MAB-A1, MAB-A2, MAB-B1, and MAB-B2) isolated from patients were tested in vitro for ALA-PDT efficacy to determine the optimal ALA-PDT dosage. Furthermore, the strains' single colony morphology, biofilm formation, and genome characteristics of were analyzed to explore the factors influencing ALA-PDT's bactericidal effects. Finally, a combined ALA-PDT and antibiotics sterilization experiment was conducted in vitro. RESULTS Clinically, ALA-PDT combined with antibiotics showed strong efficacy in treating M. abscessus skin infections, with no recurrence observed during follow-up. In vitro, ALA-PDT effectively killed M. abscessus, although MAB-B1 and MAB-B2 required a higher ALA-PDT dose compared with MAB-A1 and MAB-A2. Compared to MAB-A1 and MAB-A2, MAB-B1 and MAB-B2 exhibited stronger biofilm formation capabilities and bacterial virulence as well as genome mutations primarily affecting fatty acid synthesis and metabolism, potentially explaining their increased ALA-PDT dosage requirement. Notably, the combination of ALA-PDT and antibiotics exerted markedly higher bactericidal effects in vitro compared with antibiotics alone. CONCLUSIONS ALA-PDT combined with antibiotics emerged as an effective treatment for M. abscessus skin infections. However, optimal dosage and antibiotic combinations should be tailored to the characteristics of specific clinical strains.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Xiao Wang
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Zhenyu Kou
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Kedai Sun
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Yang Tan
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Jinyi Chen
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Yang He
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Wen Ding
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Hong Liu
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Yi Liang
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Lingfei Li
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China.
| | - Xia Lei
- Department of Dermatology, Daping Hospital, Army Medical University(Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing 400042, China; Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China.
| |
Collapse
|
3
|
Hobbs EC, Loukopoulos P, Stinear TP, Porter JL, Lee J, Whiteley P, Skerratt LF, Gibney KB, Meredith A. Severe cases of Buruli ulcer (infection with Mycobacterium ulcerans) in common ringtail possums in Victoria adversely affect animal welfare. Aust Vet J 2024; 102:517-523. [PMID: 39054806 DOI: 10.1111/avj.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Buruli ulcer is a chronic ulcerative disease of the skin and subcutaneous tissues caused by infection with Mycobacterium ulcerans. Although Australian possums are known to be susceptible to Buruli ulcer, many aspects of the disease in possums, including welfare impacts, remain largely unreported. Severe clinical Buruli ulcer was identified in four common ringtail possums (Pseudocheirus peregrinus) from Melbourne, Victoria. All four possums were euthanased due to the presence of deep ulcerative lesions on paws, with extensive tissue necrosis that exposed bones and tendons in three cases. Histologically, there was severe ulcerative necrotising pyogranulomatous dermatitis, panniculitis and myositis, with intralesional acid-fast bacteria. M. ulcerans was detected by real-time PCR in all swabs, tissues and faeces collected from all four cases. Buruli ulcer may be an important and under-recognised cause of poor possum welfare in endemic areas. The physical impacts of the severe cutaneous lesions, especially those extending to underlying bones and joints, would have directly impaired the mobility of these possums, affecting navigation of their natural environments and expression of natural behaviours including foraging and socialising. Systemic distribution of M. ulcerans throughout all major internal organs, as observed here, may further impact the health and fitness of infected possums. Faecal shedding of M. ulcerans in all four cases supports the role of possums as zoonotic reservoirs. Further research is needed to investigate the epidemiology, pathogenesis and welfare impacts of Buruli ulcer in possums and to inform the design of interventions that may protect their health and welfare.
Collapse
Affiliation(s)
- E C Hobbs
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, Victoria, Australia
- Department of Infectious Diseases, Doherty Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - P Loukopoulos
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, Victoria, Australia
| | - T P Stinear
- Department of Microbiology and Immunology, Doherty Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - J L Porter
- Department of Microbiology and Immunology, Doherty Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Jyh Lee
- Department of Microbiology and Immunology, Doherty Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - P Whiteley
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, Victoria, Australia
| | - L F Skerratt
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, Victoria, Australia
| | - K B Gibney
- Department of Infectious Diseases, Doherty Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - A Meredith
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, Victoria, Australia
- Faculty of Natural Sciences, The University of Keele, Keele, UK
| |
Collapse
|
4
|
He Y, Yi DY, Pan L, Ye WM, Xie L, Zheng XQ, Liu D, Yang TC, Lin Y. Treponema pallidum-induced prostaglandin E2 secretion in skin fibroblasts leads to neuronal hyperpolarization: A cause of painless ulcers. J Eur Acad Dermatol Venereol 2024; 38:1179-1190. [PMID: 38376245 DOI: 10.1111/jdv.19902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Primary syphilis is characterized by painless ulcerative lesions in the genitalia, the aetiology of painless remains elusive. OBJECTIVES To investigate the role of Treponema pallidum in painless ulcer of primary syphilis, and the mechanisms underlying painless ulcers caused by T. pallidum. METHODS An experimental rabbit model of primary syphilis was established to investigate its effects on peripheral nerve tissues. Human skin fibroblasts were used to examine the role of T. pallidum in modulating neurotransmitters associated with pain and to explore the signalling pathways related to neurotransmitter secretion by T. pallidum in vitro. RESULTS Treponema pallidum infection did not directly lead to neuronal damage or interfere with the neuronal resting potential. Instead, it facilitated the secretion of prostaglandin E2 (PGE2) through endoplasmic reticulum stress in both rabbit and human skin fibroblasts, and upregulation of PGE2 induced the hyperpolarization of neurones. Moreover, the IRE1α/COX-2 signalling pathway was identified as the underlying mechanism by which T. pallidum induced the production of PGE2 in human skin fibroblasts. CONCLUSION Treponema pallidum promotes PGE2 secretion in skin fibroblasts, leading to the excitation of neuronal hyperpolarization and potentially contributing to the pathogenesis of painless ulcers in syphilis.
Collapse
Affiliation(s)
- Y He
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Medical Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - D-Y Yi
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - L Pan
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - W-M Ye
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - L Xie
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - X-Q Zheng
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - D Liu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - T-C Yang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Y Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Volpedo G, Oljuskin T, Cox B, Mercado Y, Askwith C, Azodi N, Bernier M, Nakhasi HL, Gannavaram S, Satoskar AR. Leishmania mexicana promotes pain-reducing metabolomic reprogramming in cutaneous lesions. iScience 2023; 26:108502. [PMID: 38125023 PMCID: PMC10730346 DOI: 10.1016/j.isci.2023.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/30/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is characterized by extensive skin lesions, which are usually painless despite being associated with extensive inflammation. The molecular mechanisms responsible for this analgesia have not been identified. Through untargeted metabolomics, we found enriched anti-nociceptive metabolic pathways in L. mexicana-infected mice. Purines were elevated in infected macrophages and at the lesion site during chronic infection. These purines have anti-inflammatory and analgesic properties by acting through adenosine receptors, inhibiting TRPV1 channels, and promoting IL-10 production. We also found arachidonic acid (AA) metabolism enriched in the ear lesions compared to the non-infected controls. AA is a metabolite of anandamide (AEA) and 2-arachidonoylglycerol (2-AG). These endocannabinoids act on cannabinoid receptors 1 and 2 and TRPV1 channels to exert anti-inflammatory and analgesic effects. Our study provides evidence of metabolic pathways upregulated during L. mexicana infection that may mediate anti-nociceptive effects experienced by CL patients and identifies macrophages as a source of these metabolites.
Collapse
Affiliation(s)
- Greta Volpedo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Timur Oljuskin
- Animal Parasitic Disease Lab, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Blake Cox
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Yulian Mercado
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Candice Askwith
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Nazli Azodi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Matthew Bernier
- Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Abhay R. Satoskar
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Suzuki T, Boonyaleka K, Okano T, Iida T, Yoshida M, Fukano H, Hoshino Y, Iwakura Y, Ablordey AS, Ashida H. Inflammasome-triggered IL-18 controls skin inflammation in the progression of Buruli ulcer. PLoS Pathog 2023; 19:e1011747. [PMID: 37910490 PMCID: PMC10619818 DOI: 10.1371/journal.ppat.1011747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Buruli ulcer is an emerging chronic infectious skin disease caused by Mycobacterium ulcerans. Mycolactone, an exotoxin produced by the bacterium, is the only identified virulence factor so far, but the functions of this toxin and the mechanisms of disease progression remain unclear. By interfering Sec61 translocon, mycolactone inhibits the Sec61-dependent co-translational translocation of newly synthesized proteins, such as induced cytokines and immune cell receptors, into the endoplasmic reticulum. However, in regard to IL-1β, which is secreted by a Sec61-independent mechanism, mycolactone has been shown to induce IL-1β secretion via activation of inflammasomes. In this study, we clarified that cytokine induction, including that of IL-1β, in infected macrophages was suppressed by mycolactone produced by M. ulcerans subsp. shinshuense, despite the activation of caspase-1 through the inflammasome activation triggered in a manner independent of mycolactone. Intriguingly, mycolactone suppressed the expression of proIL-1β as well as TNF-α at the transcriptional level, suggesting that mycolactone of M. ulcerans subsp. shinshuense may exert additional inhibitory effect on proIL-1β expression. Remarkably, constitutively produced IL-18 was cleaved and mature IL-18 was actually released from macrophages infected with the causative mycobacterium. IL-18-deficient mice infected subcutaneously with M. ulcerans exhibited exacerbated skin inflammation during the course of disease progression. On the other hand, IL-1β controls bacterial multiplication in skin tissues. These results provide information regarding the mechanisms and functions of the induced cytokines in the pathology of Buruli ulcer.
Collapse
Affiliation(s)
- Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kotchakorn Boonyaleka
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tokuju Okano
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tamako Iida
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mitsunori Yoshida
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hanako Fukano
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Anthony S. Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Hiroshi Ashida
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
7
|
Peluso AA, Souza-Silva IM, Villela DC, Hansen PBL, Hallberg A, Bader M, Santos R, Sumners C, Steckelings UM. Functional assay for assessment of agonistic or antagonistic activity of angiotensin AT 2 receptor ligands reveals that EMA401 and PD123319 have agonistic properties. Biochem Pharmacol 2023; 216:115793. [PMID: 37689272 DOI: 10.1016/j.bcp.2023.115793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
With the discovery of the protective arm of the renin-angiotensin system (RAS), interest has grown in protective RAS-related receptors such as the angiotensin AT2-receptor [AT2R] as potential new drug targets. While it is known that AT2R couple to Gi, it is also apparent that they do not signal via inhibition of adenylyl cyclase/decrease in cAMP, as do many Gi-coupled receptors. Thus, standard commercially-available assays cannot be applied to test for agonistic or antagonistic properties of AT2R ligands. This lack of standard assays has hampered the development of new drugs targeting the AT2R. Therefore, we aimed at developing a reliable, technically easy assay for the determination of intrinsic activity of AT2R ligands, primarily for distinguishing between AT2R agonists and antagonists. We found that measurement of NO release by DAF-FM fluorescence in primary human aortic endothelial cells (HAEC) or in AT2R-transfected CHO cells is a reliable assay for the characterization of AT2R ligands. While testing the assay, we made several novel findings, including: a) C21 is a full agonist at the AT2R (with the same efficacy as angiotensin II); b) C21 has no intrinsic activity at the receptor Mas; c) AT2R-transfected HEK-293 cells are unresponsive to AT2R stimulation; d) EMA401 and PD123319, which are commonly regarded as AT2R antagonists, are partial agonists at the AT2R. Collectively, we have developed and tested an assay based on the measurement and quantification of NO release in HAEC or in AT2R-CHO cells that is suitable for the characterisation of novel and established AT2R ligands.
Collapse
Affiliation(s)
- A Augusto Peluso
- IMM - Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Igor M Souza-Silva
- IMM - Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Daniel C Villela
- Faculty of Medicine, University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, Brazil
| | - Pernille B L Hansen
- IMM - Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Anders Hallberg
- Department of Medicinal Chemistry, BMC, Uppsala University, Uppsala, Sweden
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Berlin, Germany; Charité-Universitätsmedizin Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany; Institute for Biology, University of Lübeck, Germany
| | - Robson Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Colin Sumners
- Department of Physiology and Aging, University of Florida, Gainesville, USA
| | - U Muscha Steckelings
- IMM - Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
8
|
Kim D, Crippen TL, Dhungel L, Delclos PJ, Tomberlin JK, Jordan HR. Behavioral interplay between mosquito and mycolactone produced by Mycobacterium ulcerans and bacterial gene expression induced by mosquito proximity. PLoS One 2023; 18:e0289768. [PMID: 37535670 PMCID: PMC10399876 DOI: 10.1371/journal.pone.0289768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
Mycolactone is a cytotoxic lipid metabolite produced by Mycobacterium ulcerans, the environmental pathogen responsible for Buruli ulcer, a neglected tropical disease. Mycobacterium ulcerans is prevalent in West Africa, particularly found in lentic environments, where mosquitoes also occur. Researchers hypothesize mosquitoes could serve as a transmission mechanism resulting in infection by M. ulcerans when mosquitoes pierce skin contaminated with M. ulcerans. The interplay between the pathogen, mycolactone, and mosquito is only just beginning to be explored. A triple-choice assay was conducted to determine the host-seeking preference of Aedes aegypti between M. ulcerans wildtype (MU, mycolactone active) and mutant (MUlac-, mycolactone inactive). Both qualitative and quantitative differences in volatile organic compounds' (VOCs) profiles of MU and MUlac- were determined by GC-MS. Additionally, we evaluated the interplay between Ae. aegypti proximity and M. ulcerans mRNA expression. The results showed that mosquito attraction was significantly greater (126.0%) to an artificial host treated with MU than MUlac-. We found that MU and MUlac produced differential profiles of VOCs associated with a wide range of biological importance from quorum sensing (QS) to human odor components. RT-qPCR assays showed that mycolactone upregulation was 24-fold greater for MU exposed to Ae. aegypti in direct proximity. Transcriptome data indicated significant induction of ten chromosomal genes of MU involved in stress responses and membrane protein, compared to MUlac- when directly having access to or in near mosquito proximity. Our study provides evidence of possible interkingdom interactions between unicellular and multicellular species that MU present on human skin is capable of interreacting with unrelated species (i.e., mosquitoes), altering its gene expression when mosquitoes are in direct contact or proximity, potentially impacting the production of its VOCs, and consequently leading to the stronger attraction of mosquitoes toward human hosts. This study elucidates interkingdom interactions between viable M. ulcerans bacteria and Ae. aegypti mosquitoes, which rarely have been explored in the past. Our finding opens new doors for future research in terms of disease ecology, prevalence, and pathogen dispersal outside of the M. ulcerans system.
Collapse
Affiliation(s)
- Dongmin Kim
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Tawni L Crippen
- Southern Plains Agricultural Research Center, Agricultural Research Service, USDA, College Station, Texas, United States of America
| | - Laxmi Dhungel
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, United States of America
| | - Pablo J Delclos
- Department of Natural Sciences, University of Houston-Downtown, Houston, Texas, United States of America
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Heather R Jordan
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, United States of America
| |
Collapse
|
9
|
Nguyen JDM, da Hora GCA, Swanson JMJ. Mycolactone A vs. B: Multiscale Simulations Reveal the Roles of Localization and Association in Isomer-Specific Toxicity. Toxins (Basel) 2023; 15:486. [PMID: 37624243 PMCID: PMC10467071 DOI: 10.3390/toxins15080486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Mycolactone is an exotoxin produced by Mycobacterium ulcerans that causes the neglected tropical skin disease Buruli ulcer. This toxin inhibits the Sec61 translocon in the endoplasmic reticulum (ER), preventing the host cell from producing several secretory and transmembrane proteins, resulting in cytotoxic and immunomodulatory effects. Interestingly, only one of the two dominant isoforms of mycolactone is cytotoxic. Here, we investigate the origin of this specificity by performing extensive molecular dynamics (MD) simulations with enhanced free energy sampling to query the association trends of the two isoforms with both the Sec61 translocon, using two distinct cryo-electron microscopy (cryo-EM) models as references, and the ER membrane, which serves as a toxin reservoir prior to association. Our results suggest that mycolactone B (the cytotoxic isoform) has a stronger association with the ER membrane than mycolactone A due to more favorable interactions with membrane lipids and water molecules. This could increase the reservoir of toxin proximal to the Sec61 translocon. In one model of Sec61 inhibited by mycolactone, we find that isomer B interacts more closely with residues thought to play a key role in signal peptide recognition and, thus, are essential for subsequent protein translocation. In the other model, we find that isomer B interacts more closely with the lumenal and lateral gates of the translocon, the dynamics of which are essential for protein translocation. These interactions induce a more closed conformation, which has been suggested to block signal peptide insertion and subsequent protein translocation. Collectively, these findings suggest that isomer B's unique cytotoxicity is a consequence of both increased localization to the ER membrane and channel-locking association with the Sec61 translocon, facets that could be targeted in the development of Buruli Ulcer diagnostics and Sec61-targeted therapeutics.
Collapse
Affiliation(s)
| | | | - Jessica M. J. Swanson
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA; (J.D.M.N.); (G.C.A.d.H.)
| |
Collapse
|
10
|
Akolgo GA, Partridge BM, D Craggs T, Amewu RK. Alternative boronic acids in the detection of Mycolactone A/B using the thin layer chromatography (f-TLC) method for diagnosis of Buruli ulcer. BMC Infect Dis 2023; 23:495. [PMID: 37501134 PMCID: PMC10373253 DOI: 10.1186/s12879-023-08426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Mycobacterium ulcerans is the causative agent of Buruli ulcer. The pathology of M. ulcerans disease has been attributed to the secretion of a potent macrolide cytotoxin known as mycolactone which plays an important role in the virulence of the disease. Mycolactone is a biomarker for the diagnosis of BU that can be detected using the fluorescent-thin layer chromatography (f-TLC) technique. The technique relies on the chemical derivatization of mycolactone A/B with 2-naphthylboronic acid (BA) which acts as a fluorogenic chemosensor. However, background interferences due to co-extracted human tissue lipids, especially with clinical samples coupled with the subjectivity of the method call for an investigation to find an alternative to BA. METHODS Twenty-six commercially available arylboronic acids were initially screened as alternatives to BA using the f-TLC experiment. UV-vis measurements were also conducted to determine the absorption maximum spectra of mycolactone A/B and myco-boronic acid adducts followed by an investigation of the fluorescence-enhancing ability of the boronate ester formation between mycolactone A/B and our three most promising boronic acids (BA15, BA18, and BA21). LC-MS technique was employed to confirm the adduct formation between mycolactone and boronic acids. Furthermore, a comparative study was conducted between BA18 and BA using 6 Polymerase Chain Reaction (PCR) confirmed BU patient samples. RESULTS Three of the boronic acids (BA15, BA18, and BA21) produced fluorescent band intensities superior to BA. Complexation studies conducted on thin layer chromatography (TLC) using 0.1 M solution of the three boronic acids and various volumes of 10 ng/µL of synthetic mycolactone ranging from 1 µL - 9 µL corresponding to 10 ng - 90 ng gave similar results with myco-BA18 adduct emerging with the most visibly intense fluorescence bands. UV-vis absorption maxima (λmax) for the free mycolactone A/B was observed at 362 nm, and the values for the adducts myco-BA15, myco-BA18, and myco-BA21 were at 272 nm, 270 nm, and 286 nm respectively. The comparable experimental λmax of 362 nm for mycolactone A/B to the calculated Woodward-Fieser value of 367 nm for the fatty acid side chain of mycolactone A/B demonstrate that even though 2 cyclic boronates were formed, only the boronate of the southern side chain with the chromophore was excited by irradiation at 365 nm. Fluorescence experiments have demonstrated that coupling BA18 to mycolactone A/B along the 1,3-diols remarkably enhanced the fluorescence intensity at 537 nm. High-Resolution Mass Spectrometer (HR-MS) was used to confirm the formation of the myco-BA15 adduct. Finally, f-TLC analysis of patient samples with BA18 gave improved BA18-adduct intensities compared to the original BA-adduct. CONCLUSION Twenty-six commercially available boronic acids were investigated as alternatives to BA, used in the f-TLC analysis for the diagnosis of BU. Three (3) of them BA15, BA18, and BA21 gave superior fluorescence band intensity profiles. They gave profiles that were easier to interpret after the myco-boronic acid adduct formation and in experiments with clinical samples from patients with BA18 the best. BA18, therefore, has been identified as a potential alternative to BA and could provide a solution to the challenge of background interference of co-extracted human tissue lipids from clinical samples currently associated with the use of BA.
Collapse
Grants
- (164187, University of Sheffield, RBV1, UG) Global Challenges Research Fund
- (164187, University of Sheffield, RBV1, UG) Global Challenges Research Fund
- (164187, University of Sheffield, RBV1, UG) Global Challenges Research Fund
- (164187, University of Sheffield, RBV1, UG) Global Challenges Research Fund
Collapse
Affiliation(s)
- Gideon A Akolgo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 56, Legon, Accra, Ghana
| | - Benjamin M Partridge
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield, S3 7HF, UK
| | - Timothy D Craggs
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield, S3 7HF, UK
| | - Richard K Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 56, Legon, Accra, Ghana.
| |
Collapse
|
11
|
Adjei JK, Aniagyei W, Adankwah E, Seyfarth J, Mayatepek E, Berko DA, Ackam N, Annani-Akollor ME, Sakyi SA, Amoako YA, Owusu D, Jacobsen M, Phillips RO. Memory B-cells are enriched in the blood of patients with acute Buruli ulcer disease: a prospective observational study. BMC Infect Dis 2023; 23:393. [PMID: 37308884 DOI: 10.1186/s12879-023-08370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Buruli ulcer disease (BUD) caused by Mycobacterium (M.) ulcerans is characterized by necrotic skin lesions. As for other mycobacterial infections, e.g., tuberculosis, the immune response is important for host protection. B-cells may play a role in antimycobacterial immunity but studies characterizing the B-cell repertoire and memory generation in BUD and during the course of treatment are scarce. METHODS We investigated the adaptive immune cell repertoire in children with BUD and healthy matched controls by flow cytometry. Analyses prior to treatment, also in a study group of patients with tuberculosis, as well as three time points during BUD treatment (i.e., week 8, 16, and 32) were performed. In addition, BUD disease severity as well as treatment response were analysed for association with B-cell repertoire differences. RESULTS Children with BUD had comparable total B- and T-cell proportions but differed largely in B-cell subsets. Memory B-cell (B mem) proportions were higher in children with BUD whereas regulatory B-cell (B reg) proportions were lower as compared to healthy controls and tuberculosis patients. Lower naïve (B naïve) and higher transitional B-cell (B trans) proportions characterized children with BUD in comparison with tuberculosis patients. Under treatment, B mem proportions decreased significantly whereas proportions of B reg and B naive increased concomitantly in children with BUD. Also, we found significant correlation between lesion size and B mem as well as B reg. However, we did not detect associations between treatment efficacy and B-cell proportions. CONCLUSIONS These results suggest a role of B-cell subsets in the immune response against M. ulcerans. Furthermore, changes in B-cell subset proportions may be used as markers for treatment monitoring in BUD.
Collapse
Affiliation(s)
- Jonathan Kofi Adjei
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Wilfred Aniagyei
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Ernest Adankwah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
- Department of Medical Diagnostics, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Julia Seyfarth
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Daniel Antwi Berko
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Nancy Ackam
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Max Efui Annani-Akollor
- Department of Molecular Medicine, School of Medicine and Dentistry, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Samuel Asamoah Sakyi
- Department of Molecular Medicine, School of Medicine and Dentistry, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Yaw Ampem Amoako
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
- Department of Medicine, School of Medicine and Dentistry, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Dorcas Owusu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Richard Odame Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana.
- Department of Medicine, School of Medicine and Dentistry, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana.
| |
Collapse
|
12
|
Nguyen JDM, da Hora GCA, Swanson JMJ. Mycolactone A vs. B: Does localization or association explain isomer-specific toxicity? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541532. [PMID: 37292660 PMCID: PMC10245786 DOI: 10.1101/2023.05.19.541532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mycolactone is an exotoxin produced by Mycobacterium ulcerans that causes the neglected tropical skin disease Buruli ulcer. This toxin inhibits the Sec61 translocon in the endoplasmic reticulum (ER), preventing the host cell from producing many secretory and transmembrane proteins, resulting in cytotoxic and immunomodulatory effects. Interestingly, only one of the two dominant isoforms of mycolactone is cytotoxic. Here, we investigate the origin of this specificity by performing extensive molecular dynamics (MD) simulations with enhanced free energy sampling to query the association trends of the two isoforms with both the Sec61 translocon and the ER membrane, which serves as a toxin reservoir prior to association. Our results suggest that mycolactone B (the cytotoxic isoform) has a stronger association with the ER membrane than mycolactone A due to more favorable interactions with membrane lipids and water molecules. This could increase the reservoir of toxin proximal to the Sec61 translocon. Isomer B also interacts more closely with the lumenal and lateral gates of the translocon, the dynamics of which are essential for protein translocation. These interactions induce a more closed conformation, which has been suggested to block signal peptide insertion and subsequent protein translocation. Collectively, these findings suggest that isomer B's unique cytotoxicity is a consequence of both increased localization to the ER membrane and channel-locking association with the Sec61 translocon, facets that could be targeted in the development of Buruli Ulcer diagnostics and Sec61-targeted therapeutics.
Collapse
Affiliation(s)
- John D M Nguyen
- Department of Chemistry, University of Utah, Salt Lake City, UT - 84112-0850, USA
| | - Gabriel C A da Hora
- Department of Chemistry, University of Utah, Salt Lake City, UT - 84112-0850, USA
| | - Jessica M J Swanson
- Department of Chemistry, University of Utah, Salt Lake City, UT - 84112-0850, USA
| |
Collapse
|
13
|
Gnimavo RS, Fajloun F, Al-Bayssari C, Sodjinou E, Habib A, Ganlonon L, Claco E, Agoundoté I, Houngbo OA, Anagonou EG, Biaou CAO, Ayélo AG, Houezo JG, Boccarossa A, Moussa EH, Gomez B, Gine A, Sopoh GE, Marion E, Johnson RC, Kempf M. Importance of consultations using mobile teams in the screening and treatment of neglected tropical skin diseases in Benin. PLoS Negl Trop Dis 2023; 17:e0011314. [PMID: 37172044 DOI: 10.1371/journal.pntd.0011314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/24/2023] [Accepted: 04/15/2023] [Indexed: 05/14/2023] Open
Abstract
CONTEXT Since 2013, the World Health Organization has recommended integrated control strategies for neglected tropical diseases (NTDs) with skin manifestations. We evaluated the implementation of an integrated approach to the early detection and rapid treatment of skin NTDs based on mobile clinics in the Ouémé and Plateau areas of Benin. METHODS This descriptive cross-sectional study was performed in Ouémé and Plateau in Benin from 2018 to 2020. Consultations using mobile teams were performed at various sites selected by reasoned choice based on the epidemiological data of the National Program for the Control of Leprosy and Buruli Ulcer. All individuals presenting with a dermatological lesion who voluntarily approached the multidisciplinary management team on the day of consultation were included. The information collected was kept strictly anonymous and was entered into an Excel 2013 spreadsheet and analyzed with Stata 11 software. RESULTS In total, 5,267 patients with various skin conditions consulted the medical team. The median age of these patients was 14 years (IQR: 7-34 years). We saw 646 (12.3%) patients presenting NTDs with skin manifestations, principally scabies, in 88.4% (571/646), followed by 37 cases of Buruli ulcer (5.8%), 22 cases of leprosy (3.4%), 15 cases of lymphatic filariasis (2.3%) and one case of mycetoma (0.2%). We detected no cases of yaws. CONCLUSION This sustainable approach could help to decrease the burden of skin NTDs in resource-limited countries.
Collapse
Affiliation(s)
- Ronald Sètondji Gnimavo
- Centre de Dépistage et de Traitement de la Lèpre et de l´Ulcère de Buruli de Pobè, Fondation Raoul Follereau, Pobè, Bénin
- Institut Régional de Santé Publique- Comlan Alfred Quenum, Université d'Abomey Calavi, Ouidah, Bénin
| | - Faraj Fajloun
- University of Angers, Nantes Université, CHU Angers, Inserm, INCIT, Angers, France
- Ecole Doctorale en Sciences et Technologie, Université Libanaise, Campus Rafic Hariri, Hadath, Liban
- Laboratoire d'Innovation Thérapeutique, Faculté de Sciences 2, Campus Pierre Gemayel, Fanar, Liban
| | - Charbel Al-Bayssari
- Departement of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Tripoli, Lebanon
| | - Espoir Sodjinou
- Centre de Dépistage et de Traitement de la Lèpre et de l´Ulcère de Buruli de Pobè, Fondation Raoul Follereau, Pobè, Bénin
| | - Akimath Habib
- Centre de Dépistage et de Traitement de la Lèpre et de l´Ulcère de Buruli de Pobè, Fondation Raoul Follereau, Pobè, Bénin
| | - Line Ganlonon
- Centre de Dépistage et de Traitement de la Lèpre et de l´Ulcère de Buruli de Pobè, Fondation Raoul Follereau, Pobè, Bénin
| | - Eric Claco
- Centre de Dépistage et de Traitement de la Lèpre et de l´Ulcère de Buruli de Pobè, Fondation Raoul Follereau, Pobè, Bénin
| | - Irvine Agoundoté
- Centre de Dépistage et de Traitement de la Lèpre et de l´Ulcère de Buruli de Pobè, Fondation Raoul Follereau, Pobè, Bénin
| | - Odile Adjouavi Houngbo
- Centre de Dépistage et de Traitement de la Lèpre et de l´Ulcère de Buruli de Pobè, Fondation Raoul Follereau, Pobè, Bénin
| | - Esaï Gimatal Anagonou
- Programme National de Lutte contre la Lèpre et l'Ulcère de Buruli, Ministère de la Santé, Cotonou, Bénin
| | | | - Adjimon Gilbert Ayélo
- Programme National de Lutte contre la Lèpre et l'Ulcère de Buruli, Ministère de la Santé, Cotonou, Bénin
| | - Jean Gabin Houezo
- Programme National de Lutte contre la Lèpre et l'Ulcère de Buruli, Ministère de la Santé, Cotonou, Bénin
| | - Alexandra Boccarossa
- University of Angers, Nantes Université, CHU Angers, Inserm, INCIT, Angers, France
| | - Elie Hajj Moussa
- Laboratoire d'Innovation Thérapeutique, Faculté de Sciences 2, Campus Pierre Gemayel, Fanar, Liban
| | | | - Anna Gine
- Fondation Anesvad, Henao, Bilbao, Spain
| | - Ghislain Emmanuel Sopoh
- Institut Régional de Santé Publique- Comlan Alfred Quenum, Université d'Abomey Calavi, Ouidah, Bénin
| | - Estelle Marion
- University of Angers, Nantes Université, CHU Angers, Inserm, INCIT, Angers, France
| | | | - Marie Kempf
- University of Angers, Nantes Université, CHU Angers, Inserm, INCIT, Angers, France
- Département de Biologie des Agents Infectieux, UF de Bactériologie, Centre Hospitalier Universitaire Angers, Angers, France
| |
Collapse
|
14
|
da Hora GCA, Nguyen JDM, Swanson JMJ. Can membrane composition traffic toxins? Mycolactone and preferential membrane interactions. Biophys J 2022; 121:4260-4270. [PMID: 36258678 PMCID: PMC9703097 DOI: 10.1016/j.bpj.2022.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/31/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022] Open
Abstract
Mycolactone is a cytotoxic and immunosuppressive macrolide produced by Mycobacterium ulcerans and the sole causative agent of the neglected tropical skin disease Buruli ulcer. The toxin acts by invading host cells and interacting with intracellular targets to disrupt multiple fundamental cellular processes. Mycolactone's amphiphilic nature enables strong interactions with lipophilic environments, including cellular membranes; however, the specificity of these interactions and the role of membranes in the toxin's pathogenicity remain unknown. It is likely that preferential interactions with lipophilic carriers play a key role in the toxin's distribution in the host, which, if understood, could provide insights to aid in the development of needed diagnostics for Buruli ulcer disease. In this work, molecular dynamics simulations were combined with enhanced free-energy sampling to characterize mycolactone's association with and permeation through models of the mammalian endoplasmic reticulum (ER) and plasma membranes (PMs). We find that increased order in the PMs not only leads to a different permeation mechanism compared with that in the ER membrane but also an energetic driving force for ER localization. Increased hydration, membrane deformation, and preferential interactions with unsaturated lipid tails stabilize the toxin in the ER membrane, while disruption of lipid packing is a destabilizing force in the PMs.
Collapse
Affiliation(s)
| | - John D M Nguyen
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | | |
Collapse
|
15
|
Ishwarlall TZ, Adeleke VT, Maharaj L, Okpeku M, Adeniyi AA, Adeleke MA. Identification of potential candidate vaccines against Mycobacterium ulcerans based on the major facilitator superfamily transporter protein. Front Immunol 2022; 13:1023558. [PMID: 36426350 PMCID: PMC9679648 DOI: 10.3389/fimmu.2022.1023558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2023] Open
Abstract
Buruli ulcer is a neglected tropical disease that is characterized by non-fatal lesion development. The causative agent is Mycobacterium ulcerans (M. ulcerans). There are no known vectors or transmission methods, preventing the development of control methods. There are effective diagnostic techniques and treatment routines; however, several socioeconomic factors may limit patients' abilities to receive these treatments. The Bacillus Calmette-Guérin vaccine developed against tuberculosis has shown limited efficacy, and no conventionally designed vaccines have passed clinical trials. This study aimed to generate a multi-epitope vaccine against M. ulcerans from the major facilitator superfamily transporter protein using an immunoinformatics approach. Twelve M. ulcerans genome assemblies were analyzed, resulting in the identification of 11 CD8+ and 7 CD4+ T-cell epitopes and 2 B-cell epitopes. These conserved epitopes were computationally predicted to be antigenic, immunogenic, non-allergenic, and non-toxic. The CD4+ T-cell epitopes were capable of inducing interferon-gamma and interleukin-4. They successfully bound to their respective human leukocyte antigens alleles in in silico docking studies. The expected global population coverage of the T-cell epitopes and their restricted human leukocyte antigens alleles was 99.90%. The population coverage of endemic regions ranged from 99.99% (Papua New Guinea) to 21.81% (Liberia). Two vaccine constructs were generated using the Toll-like receptors 2 and 4 agonists, LprG and RpfE, respectively. Both constructs were antigenic, non-allergenic, non-toxic, thermostable, basic, and hydrophilic. The DNA sequences of the vaccine constructs underwent optimization and were successfully in-silico cloned with the pET-28a(+) plasmid. The vaccine constructs were successfully docked to their respective toll-like receptors. Molecular dynamics simulations were carried out to analyze the binding interactions within the complex. The generated binding energies indicate the stability of both complexes. The constructs generated in this study display severable favorable properties, with construct one displaying a greater range of favorable properties. However, further analysis and laboratory validation are required.
Collapse
Affiliation(s)
- Tamara Z. Ishwarlall
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria T. Adeleke
- Department of Chemical Engineering, Mangosuthu University of Technology, Durban, South Africa
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Adebayo A. Adeniyi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Industrial Chemistry, Federal University Oye Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
16
|
Marion E, Marsollier L. Mycobacterium ulcerans. Trends Microbiol 2022; 30:1116-1117. [PMID: 36163220 DOI: 10.1016/j.tim.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Estelle Marion
- Université d'Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR, 1302, Angers, France.
| | - Laurent Marsollier
- Université d'Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR, 1302, Angers, France
| |
Collapse
|
17
|
Staurengo-Ferrari L, Deng L, Chiu IM. Interactions between nociceptor sensory neurons and microbial pathogens in pain. Pain 2022; 163:S57-S68. [PMID: 36252233 PMCID: PMC9586460 DOI: 10.1097/j.pain.0000000000002721] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Larissa Staurengo-Ferrari
- Harvard Medical School, Blavatnik Institute, Department of Immunology, Boston, Massachusetts, United States of America
| | - Liwen Deng
- Harvard Medical School, Blavatnik Institute, Department of Immunology, Boston, Massachusetts, United States of America
| | - Isaac M. Chiu
- Harvard Medical School, Blavatnik Institute, Department of Immunology, Boston, Massachusetts, United States of America
| |
Collapse
|
18
|
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, Unger T, Hallberg A, Carey RM, Sumners C. The Angiotensin AT 2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol Rev 2022; 74:1051-1135. [PMID: 36180112 PMCID: PMC9553111 DOI: 10.1124/pharmrev.120.000281] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.
Collapse
Affiliation(s)
- U Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert E Widdop
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Edward D Sturrock
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Lizelle Lubbe
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Tahir Hussain
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Elena Kaschina
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Thomas Unger
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Anders Hallberg
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert M Carey
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Colin Sumners
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| |
Collapse
|
19
|
Kawashima A, Kiriya M, En J, Tanigawa K, Nakamura Y, Fujiwara Y, Luo Y, Maruyama K, Watanabe S, Goto M, Suzuki K. Genome-wide screening identified SEC61A1 as an essential factor for mycolactone-dependent apoptosis in human premonocytic THP-1 cells. PLoS Negl Trop Dis 2022; 16:e0010672. [PMID: 35939511 PMCID: PMC9387930 DOI: 10.1371/journal.pntd.0010672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/18/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Buruli ulcer is a chronic skin disease caused by a toxic lipid mycolactone produced by Mycobacterium ulcerans, which induces local skin tissue destruction and analgesia. However, the cytotoxicity pathway induced by mycolactone remains largely unknown. Here we investigated the mycolactone-induced cell death pathway by screening host factors using a genome-scale lenti-CRISPR mutagenesis assay in human premonocytic THP-1 cells. As a result, 884 genes were identified as candidates causing mycolactone-induced cell death, among which SEC61A1, the α-subunit of the Sec61 translocon complex, was the highest scoring. CRISPR/Cas9 genome editing of SEC61A1 in THP-1 cells suppressed mycolactone-induced endoplasmic reticulum stress, especially eIF2α phosphorylation, and caspase-dependent apoptosis. Although previous studies have reported that mycolactone targets SEC61A1 based on mutation screening and structural analysis in several cell lines, we have reconfirmed that SEC61A1 is a mycolactone target by genome-wide screening in THP-1 cells. These results shed light on the cytotoxicity of mycolactone and suggest that the inhibition of mycolactone activity or SEC61A1 downstream cascades will be a novel therapeutic modality to eliminate the harmful effects of mycolactone in addition to the 8-week antibiotic regimen of rifampicin and clarithromycin. Buruli ulcer is a chronic skin disease caused by the bacterium Mycobacterium ulcerans. The disease mainly affects children in West Africa, and the skin ulcers are induced by mycolactone, a toxin produced by the bacteria. The mycolactone diffuses through the skin, killing cells, creating irreversible ulceration, and weakening host immune defenses. However, the cytotoxic pathway induced by mycolactone remains largely unknown. We evaluated the mycolactone-induced cell death pathway by screening host factors using a genome-scale knockout assay in human premonocytic THP-1 cells. We identified 884 genes that are potentially involved in mycolactone-induced cell death, of which SEC61A1, the α-subunit of the Sec61 translocon complex, was the highest ranking. Knockout of SEC61A1 in THP-1 cells resulted in suppression of endoplasmic reticulum stress and caspase-dependent apoptosis induced by mycolactone. These results suggest that SEC61A1 is an essential mediator of mycolactone-induced cell death.
Collapse
Affiliation(s)
- Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Junichiro En
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- Department of Occupational Therapy, School of Health Science, International University of Health and Welfare, Narita, Japan
| | - Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yasuhiro Nakamura
- Center for Promotion of Pharmaceutical Education & Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yoko Fujiwara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yuqian Luo
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Keiji Maruyama
- Center for Promotion of Pharmaceutical Education & Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Shigekazu Watanabe
- Center for Promotion of Pharmaceutical Education & Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Masamichi Goto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
20
|
Mendes AI, Rebelo R, Aroso I, Correlo VM, Fraga AG, Pedrosa J, Marques AP. Development of an antibiotics delivery system for topical treatment of the neglected tropical disease Buruli ulcer. Int J Pharm 2022; 623:121954. [PMID: 35760261 DOI: 10.1016/j.ijpharm.2022.121954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 01/10/2023]
Abstract
Skin infection by Mycobacterium ulcerans causes Buruli ulcer (BU) disease, a serious condition that significantly impact patient' health and quality of life and can be very difficult to treat. Treatment of BU is based on daily systemic administration of antibiotics for at least 8 weeks and presents drawbacks associated with the mode and duration of drug administration and potential side effects. Thus, new therapeutic strategies are needed to improve the efficacy and modality of BU therapeutics, resulting in a more convenient and safer antibiotic regimen. Hence, we developed a dual delivery system based on poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) microparticles and a gellan gum (GG) hydrogel for delivery of rifampicin (RIF) and streptomycin (STR), two antibiotics used for BU treatment. RIF was successfully loaded into PHBV microparticles, with an encapsulation efficiency of 43%, that also revealed a mean size of 10 µm, spherical form and rough topography. These microparticles were further embedded in a GG hydrogel containing STR. The resultant hydrogel showed a porous microstructure that conferred a high water retention capability (superior to 2000%) and a controlled release of both antibiotics. Also, biological studies revealed antibacterial activity against M. ulcerans, and a good cytocompatibility in a fibroblast cell line. Thus, the proposed drug delivery system can constitute a potential topical approach for treatment of skin ulcers caused by BU disease.
Collapse
Affiliation(s)
- Ana I Mendes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita Rebelo
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
| | - Ivo Aroso
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
| | - Vitor M Correlo
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
21
|
Gao W, Shen L, Long DD, Pan TT, Wang D, Chai XQ, Hu SS. Angiotensin II type 2 receptor pharmacological agonist, C21, reduces the inflammation and pain hypersensitivity in mice with joint inflammatory pain. Int Immunopharmacol 2022; 110:108921. [PMID: 35724606 DOI: 10.1016/j.intimp.2022.108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 11/15/2022]
Abstract
Primary and secondary hyperalgesia develop in response to chronic joint inflammation due to peripheral and central mechanisms. Synovial macrophage and spinal microglia are involved in pain sensitization in arthritis. The level of angiotensin II type 2 receptor (AT2R) is related to the severity of arthritis. This study aimed to determine the role of AT2R in primary and secondary hyperalgesia in joint inflammatory pain in mice. After intra-articular CFA injection, primary hyperalgesia in the ipsilateral knee joint was measured by pressure application meter and gait analysis, secondary hypersensitivity in ipsilateral hind-paw was measured by von-Frey and Hargreaves tests following a combination of global AT2R-deficient (Agtr2-/-) mice and AT2R pharmacological agonist C21. Synovial macrophage and spinal microglia were collected for flow cytometry. Morphological reconstruction of microglia was detected by immunostaining. AT2R expression was investigated by quantitative polymerase chain reaction and western blot. Neuronal hyperactivity was evaluated by c-Fos and CGRP immunostaining. We found that pain hypersensitivity and synovial inflammation in Agtr2-/- mice were significantly exacerbated compared with wild-type mice; conversely, systemically administrated C21 attenuated both of the symptoms. Additionally, spinal microglia were activated, and an abundant increase of spinal AT2R was expressed on activated microglia in response to peripheral joint inflammation. Intrathecally-administrated C21 reversed the secondary hypersensitivity, accompanied by alleviation of spinal microglial activation, spinal neuronal hyperactivity, and calcitonin gene-related peptide content. These findings revealed a beneficial role of AT2R activating stimulation against pain hypersensitivity in joint inflammatory pain via direct modulation of synovial macrophage and spinal microglial activity.
Collapse
Affiliation(s)
- Wei Gao
- Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Liang Shen
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Medical University, Hefei 230036, China
| | - Dan-Dan Long
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Medical University, Hefei 230036, China
| | - Ting-Ting Pan
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Medical University, Hefei 230036, China
| | - Di Wang
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Medical University, Hefei 230036, China
| | - Xiao-Qing Chai
- Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Shan-Shan Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
22
|
Ishwarlall TZ, Okpeku M, Adeniyi AA, Adeleke MA. The search for a Buruli Ulcer vaccine and the effectiveness of the Bacillus Calmette-Guérin vaccine. Acta Trop 2022; 228:106323. [PMID: 35065013 DOI: 10.1016/j.actatropica.2022.106323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/01/2022]
Abstract
Buruli Ulcer is a neglected tropical disease that is caused by Mycobacterium ulcerans. It is not fatal; however, it manifests a range of devastating symptoms on the hosts' bodies. Various drugs and treatments are available for the disease; however, they are often costly and have adverse effects. There is still much uncertainty regarding the mode of transmission, vectors, and reservoir. At present, there are no official vector control methods, prevention methods, or a vaccine licensed to prevent infection. The Bacillus Calmette-Guérin vaccine developed against tuberculosis has some effectiveness against M. ulcerans. However, it is unable to induce long-lasting protection. Various types of vaccines have been developed based specifically against M. ulcerans; however, to date, none has entered clinical trials or has been released for public use. Additional awareness and funding are needed for research in this field and the development of more treatments, diagnostic tools, and vaccines.
Collapse
|
23
|
Strong E, Hart B, Wang J, Orozco MG, Lee S. Induced Synthesis of Mycolactone Restores the Pathogenesis of Mycobacterium ulcerans In Vitro and In Vivo. Front Immunol 2022; 13:750643. [PMID: 35401531 PMCID: PMC8988146 DOI: 10.3389/fimmu.2022.750643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/22/2022] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU), the third most common mycobacterial infection. Virulent M. ulcerans secretes mycolactone, a polyketide toxin. Most observations of M. ulcerans infection are described as an extracellular milieu in the form of a necrotic ulcer. While some evidence exists of an intracellular life cycle for M. ulcerans during infection, the exact role that mycolactone plays in this process is poorly understood. Many previous studies have relied upon the addition of purified mycolactone to cell-culture systems to study its role in M. ulcerans pathogenesis and host-response modulation. However, this sterile system drastically simplifies the M. ulcerans infection model and assumes that mycolactone is the only relevant virulence factor expressed by M. ulcerans. Here we show that the addition of purified mycolactone to macrophages during M. ulcerans infection overcomes the bacterial activation of the mechanistic target of rapamycin (mTOR) signaling pathway that plays a substantial role in regulating different cellular processes, including autophagy and apoptosis. To further study the role of mycolactone during M. ulcerans infection, we have developed an inducible mycolactone expression system. Utilizing the mycolactone-deficient Mul::Tn118 strain that contains a transposon insertion in the putative beta-ketoacyl transferase (mup045), we have successfully restored mycolactone production by expressing mup045 in a tetracycline-inducible vector system, which overcomes in-vitro growth defects associated with constitutive complementation. The inducible mycolactone-expressing bacteria resulted in the establishment of infection in a murine footpad model of BU similar to that observed during the infection with wild-type M. ulcerans. This mycolactone inducible system will allow for further analysis of the roles and functions of mycolactone during M. ulcerans infection.
Collapse
Affiliation(s)
- Emily Strong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Bryan Hart
- Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Jia Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Maria Gonzalez Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Sunhee Lee
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Human Vaccine Institute, Duke University, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
24
|
Hall BS, Hsieh LTH, Sacre S, Simmonds RE. The One That Got Away: How Macrophage-Derived IL-1β Escapes the Mycolactone-Dependent Sec61 Blockade in Buruli Ulcer. Front Immunol 2022; 12:788146. [PMID: 35154073 PMCID: PMC8826060 DOI: 10.3389/fimmu.2021.788146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Buruli ulcer (BU), caused by Mycobacterium ulcerans, is a devastating necrotizing skin disease. Key to its pathogenesis is mycolactone, the exotoxin virulence factor that is both immunosuppressive and cytotoxic. The discovery that the essential Sec61 translocon is the major cellular target of mycolactone explains much of the disease pathology, including the immune blockade. Sec61 inhibition leads to a loss in production of nearly all cytokines from monocytes, macrophages, dendritic cells and T cells, as well as antigen presentation pathway proteins and costimulatory molecules. However, there has long been evidence that the immune system is not completely incapable of responding to M. ulcerans infection. In particular, IL-1β was recently shown to be present in BU lesions, and to be induced from M. ulcerans-exposed macrophages in a mycolactone-dependent manner. This has important implications for our understanding of BU, showing that mycolactone can act as the "second signal" for IL-1β production without inhibiting the pathways of unconventional secretion it uses for cellular release. In this Perspective article, we validate and discuss this recent advance, which is entirely in-line with our understanding of mycolactone's inhibition of the Sec61 translocon. However, we also show that the IL-1 receptor, which uses the conventional secretory pathway, is sensitive to mycolactone blockade at Sec61. Hence, a more complete understanding of the mechanisms regulating IL-1β function in skin tissue, including the transient intra-macrophage stage of M. ulcerans infection, is urgently needed to uncover the double-edged sword of IL-1β in BU pathogenesis, treatment and wound healing.
Collapse
Affiliation(s)
- Belinda S Hall
- Department of Microbial Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Louise Tzung-Harn Hsieh
- Department of Microbial Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Sandra Sacre
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Rachel E Simmonds
- Department of Microbial Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
25
|
Receveur JP, Bauer A, Pechal JL, Picq S, Dogbe M, Jordan HR, Rakestraw AW, Fast K, Sandel M, Chevillon C, Guégan JF, Wallace JR, Benbow ME. A need for null models in understanding disease transmission: the example of Mycobacterium ulcerans (Buruli ulcer disease). FEMS Microbiol Rev 2022; 46:fuab045. [PMID: 34468735 PMCID: PMC8767449 DOI: 10.1093/femsre/fuab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023] Open
Abstract
Understanding the interactions of ecosystems, humans and pathogens is important for disease risk estimation. This is particularly true for neglected and newly emerging diseases where modes and efficiencies of transmission leading to epidemics are not well understood. Using a model for other emerging diseases, the neglected tropical skin disease Buruli ulcer (BU), we systematically review the literature on transmission of the etiologic agent, Mycobacterium ulcerans (MU), within a One Health/EcoHealth framework and against Hill's nine criteria and Koch's postulates for making strong inference in disease systems. Using this strong inference approach, we advocate a null hypothesis for MU transmission and other understudied disease systems. The null should be tested against alternative vector or host roles in pathogen transmission to better inform disease management. We propose a re-evaluation of what is necessary to identify and confirm hosts, reservoirs and vectors associated with environmental pathogen replication, dispersal and transmission; critically review alternative environmental sources of MU that may be important for transmission, including invertebrate and vertebrate species, plants and biofilms on aquatic substrates; and conclude with placing BU within the context of other neglected and emerging infectious diseases with intricate ecological relationships that lead to disease in humans, wildlife and domestic animals.
Collapse
Affiliation(s)
- Joseph P Receveur
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Alexandra Bauer
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Jennifer L Pechal
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Sophie Picq
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Magdalene Dogbe
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Heather R Jordan
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Alex W Rakestraw
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Kayla Fast
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Michael Sandel
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Christine Chevillon
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement, Montpellier, France
| | - Jean-François Guégan
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement, Montpellier, France
- UMR Animal, santé, territoires, risques et écosystèmes, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de coopération internationale en recherche agronomique pour le développement (Cirad), Université de Montpellier (UM), Montpellier, France
| | - John R Wallace
- Department of Biology, Millersville University, Millersville, PA, USA
| | - M Eric Benbow
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
- AgBioResearch, Michigan State University, East Lansing, MI, USA
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
26
|
Regulation of Two-Pore-Domain Potassium TREK Channels and their Involvement in Pain Perception and Migraine. Neurosci Lett 2022; 773:136494. [DOI: 10.1016/j.neulet.2022.136494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
|
27
|
Aberrant stromal tissue factor localisation and mycolactone-driven vascular dysfunction, exacerbated by IL-1β, are linked to fibrin formation in Buruli ulcer lesions. PLoS Pathog 2022; 18:e1010280. [PMID: 35100311 PMCID: PMC8846541 DOI: 10.1371/journal.ppat.1010280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/15/2022] [Accepted: 01/13/2022] [Indexed: 12/23/2022] Open
Abstract
Buruli ulcer (BU) is a neglected tropical disease caused by subcutaneous infection with Mycobacterium ulcerans and its exotoxin mycolactone. BU displays coagulative necrosis and widespread fibrin deposition in affected skin tissues. Despite this, the role of the vasculature in BU pathogenesis remains almost completely unexplored. We hypothesise that fibrin-driven ischemia can be an ‘indirect’ route to mycolactone-dependent tissue necrosis by a mechanism involving vascular dysfunction. Here, we tracked >900 vessels within contiguous tissue sections from eight BU patient biopsies. Our aim was to evaluate their vascular and coagulation biomarker phenotype and explore potential links to fibrin deposition. We also integrated this with our understanding of mycolactone’s mechanism of action at Sec61 and its impact on proteins involved in maintaining normal vascular function. Our findings showed that endothelial cell dysfunction is common in skin tissue adjacent to necrotic regions. There was little evidence of primary haemostasis, perhaps due to mycolactone-dependent depletion of endothelial von Willebrand factor. Instead, fibrin staining appeared to be linked to the extrinsic pathway activator, tissue factor (TF). There was significantly greater than expected fibrin staining around vessels that had TF staining within the stroma, and this correlated with the distance it extended from the vessel basement membrane. TF-induced fibrin deposition in these locations would require plasma proteins outside of vessels, therefore we investigated whether mycolactone could increase vascular permeability in vitro. This was indeed the case, and leakage was further exacerbated by IL-1β. Mycolactone caused the loss of endothelial adherens and tight junctions by the depletion of VE-cadherin, TIE-1, TIE-2 and JAM-C; all Sec61-dependent proteins. Taken together, our findings suggest that both vascular and lymphatic vessels in BU lesions become “leaky” during infection, due to the unique action of mycolactone, allowing TF-containing structures and plasma proteins into skin tissue, ultimately leading to local coagulopathy and tissue ischemia. To date, the debilitating skin disease Buruli ulcer remains a public health concern and financial burden in low or middle-income countries, especially in tropical regions. Late diagnosis is frequent in remote areas, perhaps due to the painlessness of the disease. Hence patients often present with large, destructive opened ulcers leading to delayed wound closure or even lifelong disability. The infectious agent produces a toxin called mycolactone that drives the disease. We previously found evidence that the vascular system is disrupted by mycolactone in these lesions, and now we have further explored potential explanations for these findings by looking at the expression of vascular markers in BU. In a detailed analysis of patient skin punch biopsies, we identified distinct expression patterns of certain proteins and found that tissue factor, which initiates the so-called extrinsic pathway of blood clotting, is particularly important. Mycolactone is able to disrupt the barrier function of the endothelium, further aggravating the diseased phenotype, which may explain how clotting factors access the tissue. Altogether, such localised hypercoagulation in Buruli ulcer skin lesions may contribute to the development of the lesion.
Collapse
|
28
|
Harnessing bacterial toxins to treat pain. Nat Neurosci 2021; 25:132-134. [PMID: 34931071 DOI: 10.1038/s41593-021-00981-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Mycolactone enhances the Ca2+ leak from endoplasmic reticulum by trapping Sec61 translocons in a Ca2+ permeable state. Biochem J 2021; 478:4005-4024. [PMID: 34726690 PMCID: PMC8650850 DOI: 10.1042/bcj20210345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 01/17/2023]
Abstract
The Mycobacterium ulcerans exotoxin, mycolactone, is an inhibitor of co-translational translocation via the Sec61 complex. Mycolactone has previously been shown to bind to, and alter the structure of the major translocon subunit Sec61α, and change its interaction with ribosome nascent chain complexes. In addition to its function in protein translocation into the ER, Sec61 also plays a key role in cellular Ca2+ homeostasis, acting as a leak channel between the endoplasmic reticulum (ER) and cytosol. Here, we have analysed the effect of mycolactone on cytosolic and ER Ca2+ levels using compartment-specific sensors. We also used molecular docking analysis to explore potential interaction sites for mycolactone on translocons in various states. These results show that mycolactone enhances the leak of Ca2+ ions via the Sec61 translocon, resulting in a slow but substantial depletion of ER Ca2+. This leak was dependent on mycolactone binding to Sec61α because resistance mutations in this protein completely ablated the increase. Molecular docking supports the existence of a mycolactone-binding transient inhibited state preceding translocation and suggests mycolactone may also bind Sec61α in its idle state. We propose that delayed ribosomal release after translation termination and/or translocon ‘breathing' during rapid transitions between the idle and intermediate-inhibited states allow for transient Ca2+ leak, and mycolactone's stabilisation of the latter underpins the phenotype observed.
Collapse
|
30
|
Bhansali D, Teng SL, Lee CS, Schmidt BL, Bunnett NW, Leong KW. Nanotechnology for Pain Management: Current and Future Therapeutic Interventions. NANO TODAY 2021; 39:101223. [PMID: 34899962 PMCID: PMC8654201 DOI: 10.1016/j.nantod.2021.101223] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pain is one of the most common medical conditions and affects more Americans than diabetes, heart disease, and cancer combined. Current pain treatments mainly rely on opioid analgesics and remain unsatisfactory. The life-threatening side effects and addictive properties of opioids demand new therapeutic approaches. Nanomedicine may be able to address these challenges as it allows for sensitive and targeted treatments without some of the burdens associated with current clinical pain therapies. This review discusses the physiology of pain, the current landscape of pain treatment, novel targets for pain treatment, and recent and ongoing efforts to effectively treat pain using nanotechnology-based approaches. We highl ight advances in nanoparticle-based drug delivery to reduce side effects, gene therapy to tackle the source of pain, and nanomaterials-based scavenging to proactively mediate pain signaling.
Collapse
Affiliation(s)
- Divya Bhansali
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Shavonne L. Teng
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone School of Medicine, New York, NY 10010
| | - Caleb S. Lee
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Brian L. Schmidt
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY 10010
| | - Nigel W. Bunnett
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone School of Medicine, New York, NY 10010
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
- Department of Systems Biology, Columbia University, New York, NY 10027
| |
Collapse
|
31
|
Robbe-Saule M, Foulon M, Poncin I, Esnault L, Varet H, Legendre R, Besnard A, Grzegorzewicz AE, Jackson M, Canaan S, Marsollier L, Marion E. Transcriptional adaptation of Mycobacterium ulcerans in an original mouse model: New insights into the regulation of mycolactone. Virulence 2021; 12:1438-1451. [PMID: 34107844 PMCID: PMC8204960 DOI: 10.1080/21505594.2021.1929749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Mycobacterium ulcerans is the causal agent of Buruli ulcer, a chronic infectious disease and the third most common mycobacterial disease worldwide. Without early treatment, M. ulcerans provokes massive skin ulcers, caused by the mycolactone toxin, its main virulence factor. However, spontaneous healing may occur in Buruli ulcer patients several months or years after the disease onset. We have shown, in an original mouse model, that bacterial load remains high and viable in spontaneously healed tissues, with a switch of M. ulcerans to low levels of mycolactone production, adapting its strategy to survive in such a hostile environment. This original model offers the possibility to investigate the regulation of mycolactone production, by using an RNA-seq strategy to study bacterial adaptation during mouse infection. Pathway analysis and characterization of the tissue environment showed that the bacillus adapted to its new environment by modifying its metabolic activity and switching nutrient sources. Thus, M. ulcerans ensures its survival in healing tissues by reducing its secondary metabolism, leading to an inhibition of mycolactone synthesis. These findings shed new light on mycolactone regulation and pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Hugo Varet
- Plate-forme Transcriptome Et Epigenome, Biomics, Centre De Ressources Et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France.,Hub De Bioinformatique Et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Rachel Legendre
- Plate-forme Transcriptome Et Epigenome, Biomics, Centre De Ressources Et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France.,Hub De Bioinformatique Et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | | | - Anna E Grzegorzewicz
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States
| | | | | | | |
Collapse
|
32
|
Foulon M, Robbe-Saule M, Esnault L, Malloci M, Mery A, Saint-André JP, Kempf M, Homedan C, Marion E, Marsollier L. Ketogenic diet impairs Mycobacterium ulcerans growth and toxin production, enhancing hosts' response to the infection in an experimental mouse model. J Infect Dis 2021; 224:1973-1983. [PMID: 33944942 DOI: 10.1093/infdis/jiab236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Ketogenic diets have been used to treat diverse conditions, and there is growing evidence of their benefits for tissue repair and in inflammatory disease treatment. However, their role in infectious diseases has been little studied. Buruli ulcer (Mycobacterium ulcerans infection) is a chronic infectious disease characterized by large skin ulcerations caused by mycolactone, the major virulence factor of the bacillus. Here, we investigated the impact of ketogenic diet on this cutaneous disease in an experimental mouse model. This diet prevented ulceration, by modulating bacterial growth and host inflammatory response. β-hydroxybutyrate, the major ketone body produced during ketogenic diet and diffusing in tissues, impeded M. ulcerans growth and mycolactone production in vitro underlying its potential key role in infection. These results pave the way for the development of new patient management strategies involving shorter courses of treatment and improving wound healing, in line with the major objectives of the World Health Organization.
Collapse
Affiliation(s)
- Mélanie Foulon
- Equipe ATOMycA, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d'Angers, Angers, France
| | - Marie Robbe-Saule
- Equipe ATOMycA, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d'Angers, Angers, France
| | - Lucille Esnault
- Equipe ATOMycA, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d'Angers, Angers, France
| | - Marine Malloci
- MicroPICell Imaging Core Facility, SFR Santé F. Bonamy UMS016, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Anthony Mery
- Département de biochimie et génétique, CHU Angers, France
| | | | - Marie Kempf
- Equipe ATOMycA, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d'Angers, Angers, France.,Laboratoire de bactériologie, CHU, Angers, France
| | - Chadi Homedan
- Département de biochimie et génétique, CHU Angers, France
| | - Estelle Marion
- Equipe ATOMycA, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d'Angers, Angers, France
| | - Laurent Marsollier
- Equipe ATOMycA, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d'Angers, Angers, France
| |
Collapse
|
33
|
Beemelmanns C, Roman D, Sauer M. Applications of the Horner–Wadsworth–Emmons Olefination in Modern Natural Product Synthesis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1493-6331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AbstractThe Horner–Wadsworth–Emmons (HWE) reaction is one of the most reliable olefination reaction and can be broadly applied in organic chemistry and natural product synthesis with excellent selectivity. Within the last few years HWE reaction conditions have been optimized and new reagents developed to overcome challenges in the total syntheses of natural products. This review highlights the application of HWE olefinations in total syntheses of structurally different natural products covering 2015 to 2020. Applied HWE reagents and reactions conditions are highlighted to support future synthetic approaches and serve as guideline to find the best HWE conditions for the most complicated natural products.1 Introduction and Historical Background2 Applications of HWE2.1 Cyclization by HWE Reactions2.2.1 Formation of Medium- to Larger-Sized Rings2.2.2 Formation of Small- to Medium-Sized Rings2.3 Synthesis of α,β-Unsaturated Carbonyl Groups2.4 Synthesis of Substituted C=C Bonds2.5 Late-Stage Modifications by HWE Reactions2.6 HWE Reactions on Solid Supports2.7 Synthesis of Poly-Conjugated C=C Bonds2.8 HWE-Mediated Coupling of Larger Building Blocks2.9 Miscellaneous3 Summary and Outlook
Collapse
|
34
|
Affiliation(s)
- Liwen Deng
- Harvard Medical School, Blavatnik Institute, Department of Immunology, Boston, Massachusetts, United States of America
| | - Isaac M. Chiu
- Harvard Medical School, Blavatnik Institute, Department of Immunology, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
35
|
Abstract
Growing evidence implicates the renin-angiotensin system (RAS) in multiple facets of neuropathic pain (NP). This narrative review focuses primarily on the major bioactive RAS peptide, Angiotensin II (Ang II), and its receptors, namely type 1 (AT1R) and type 2 (AT2R). Both receptors are involved in the development of NP and represent potential therapeutic targets. We first discuss the potential role of Ang II receptors in modulation of NP in the central nervous system. Ang II receptor expression is widespread in circuits associated with the perception and modulation of pain, but more studies are required to fully characterize receptor distribution, downstream signaling, and therapeutic potential of targeting the central nervous system RAS in NP. We then describe the peripheral neuronal and nonneuronal distribution of the RAS, and its contribution to NP. Other RAS modulators (such as Ang (1-7)) are briefly reviewed as well. AT1R antagonists are analgesic across different pain models, including NP. Several studies show neuronal protection and outgrowth downstream of AT2R activation, which may lead to the use of AT2R agonists in NP. However, blockade of AT2R results in analgesia. Furthermore, expression of the RAS in the immune system and a growing appreciation of neuroimmune crosstalk in NP add another layer of complexity and therapeutic potential of targeting this pathway. A growing number of human studies also hint at the analgesic potential of targeting Ang II signaling. Altogether, Ang II receptor signaling represents a promising, far-reaching, and novel strategy to treat NP.
Collapse
|
36
|
Fevereiro J, Fraga AG, Pedrosa J. Genetics in the Host-Mycobacterium ulcerans interaction. Immunol Rev 2021; 301:222-241. [PMID: 33682158 DOI: 10.1111/imr.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Buruli ulcer is an emerging infectious disease associated with high morbidity and unpredictable outbreaks. It is caused by Mycobacterium ulcerans, a slow-growing pathogen evolutionarily shaped by the acquisition of a plasmid involved in the production of a potent macrolide-like cytotoxin and by genome rearrangements and downsizing. These events culminated in an uncommon infection pattern, whereby M. ulcerans is both able to induce the initiation of the inflammatory cascade and the cell death of its proponents, as well as to survive within the phagosome and in the extracellular milieu. In such extreme conditions, the host is sentenced to rely on a highly orchestrated genetic landscape to be able to control the infection. We here revisit the dynamics of M. ulcerans infection, drawing parallels from other mycobacterioses and integrating the most recent knowledge on its evolution and pathogenicity in its interaction with the host immune response.
Collapse
Affiliation(s)
- João Fevereiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
37
|
An SQ, Lopes BS, Connolly JPR, Sharp C, Nguyen TKL, Kirkpatrick CL. Going virtual: a report from the sixth Young Microbiologists Symposium on 'Microbe Signalling, Organisation and Pathogenesis'. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 33529149 DOI: 10.1099/mic.0.001024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The sixth Young Microbiologists Symposium on 'Microbe Signalling, Organisation and Pathogenesis' was scheduled to be held at the University of Southampton, UK, in late August 2020. However, due to the health and safety guidelines and travel restrictions as a response to the COVID-19 pandemic, the symposium was transitioned to a virtual format, a change embraced enthusiastically as the meeting attracted over 200 microbiologists from 40 countries. The event allowed junior scientists to present their work to a broad audience and was supported by the European Molecular Biology Organization, the Federation of European Microbiological Societies, the Society of Applied Microbiology, the Biochemical Society, the Microbiology Society and the National Biofilms Innovation Centre. Sessions covered recent advances in all areas of microbiology including: Secretion and transport across membranes, Gene regulation and signalling, Host-microbe interactions, and Microbial communities and biofilm formation. This report focuses on several of the highlights and exciting developments communicated during the talks and poster presentations.
Collapse
Affiliation(s)
- Shi-Qi An
- School of Biological Sciences, National Biofilms Innovation Centre, University of Southampton, Southampton, UK
| | | | | | - Connor Sharp
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Clare Louise Kirkpatrick
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
38
|
The Angiotensin II Type 2 Receptor, a Target for Protection and Regeneration of the Peripheral Nervous System? Pharmaceuticals (Basel) 2021; 14:ph14030175. [PMID: 33668331 PMCID: PMC7996246 DOI: 10.3390/ph14030175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Preclinical evidence, accumulated over the past decade, indicates that the angiotensin II type 2 receptor (AT2R) stimulation exerts significant neuroprotective effects in various animal models of neuronal injury, notably in the central nervous system. While the atypical G protein-coupled receptor superfamily nature of AT2R and its related signaling are still under investigation, pharmacological studies have shown that stimulation of AT2R leads to neuritogenesis in vitro and in vivo. In this review, we focus on the potential neuroprotective and neuroregenerative roles of AT2R specifically in the peripheral nervous system (PNS). The first section describes the evidence for AT2R expression in the PNS and highlights current controversies concerning the cellular distribution of the receptor. The second section focuses on AT2R signaling implicated in neuronal survival and in neurite outgrowth. The following sections review the relatively few preclinical studies highlighting the putative neuroprotective and neuroregenerative effects of AT2R stimulation in the context of peripheral neuropathy.
Collapse
|
39
|
Zanata GC, Pinto LG, da Silva NR, Lopes AHP, de Oliveira FFB, Schivo IRS, Cunha FQ, McNaughton P, Cunha TM, Silva RL. Blockade of bradykinin receptors or angiotensin II type 2 receptor prevents paclitaxel-associated acute pain syndrome in mice. Eur J Pain 2021; 25:189-198. [PMID: 32965065 DOI: 10.1002/ejp.1660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Paclitaxel (PCX) is the first-line choice for the treatment of several types of cancer, including breast, ovarian, and lung cancers. However, patients who receive even a single dose with PCX commonly develop mechanical and cold allodynia, a symptom known as PCX-associated acute pain syndrome (P-APS). Here, we assessed possible involvement of kinin-kallikrein and renin-angiotensin systems in P-APS in mice. METHODS Male mice C57Bl/6 wild type (WT) and knockouts for bradykinin receptors, B1 (B1-/- ) and B2 (B2-/- ), were used. Mechanical and cold allodynia were evaluated by using von Frey filaments and acetone test, respectively. P-APS was induced by administration of PCX 4 mg/kg, i.v.. ACE inhibitors (captopril and enalapril), antagonists for angiotensin II type 1 (losartan) and type 2 ([AT2R]; PD123319 and EMA 401) receptors were administrated prior the treatment with PCX. RT-PCR was used to analyse the expression of mRNA for B1, B2 and AT2R receptors. RESULTS Administration of PCX in B1-/- and B2-/- mice induced lower mechanical and cold allodynia compared to the WT. However, the pre-treatment with ACE inhibitors reduced the development of mechanical and cold allodynia in P-APS. Surprisingly, we found that mice pre-treatment with the PD123319 or EMA401, but not losartan, prevented the development of mechanical and cold allodynia induced by PCX. CONCLUSION Our results demonstrated the involvement of bradykinin receptors B1 and B2 as well as AT2R in the induction of P-APS in mice, and suggest the use of AT2R antagonists as a potential therapy for the prevention of P-APS in humans. SIGNIFICANCE Kinin-kallikrein and renin-angiotensin systems, through B1, B2 and AT2 receptors, potentiates paclitaxel-associated acute pain syndrome (P-APS) in mice. Antagonists for AT2R are potential alternatives to prevent P-APS.
Collapse
Affiliation(s)
- Graziele C Zanata
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
- Barão de Maua University Center, Ribeirão Preto, Brazil
| | - Larissa G Pinto
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Nicole R da Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Alexandre H P Lopes
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Francisco F B de Oliveira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Ieda R S Schivo
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Peter McNaughton
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Rangel L Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
40
|
Pulakat L, Sumners C. Angiotensin Type 2 Receptors: Painful, or Not? Front Pharmacol 2020; 11:571994. [PMID: 33424587 PMCID: PMC7785813 DOI: 10.3389/fphar.2020.571994] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
Pain in response to various types of acute injury can be a protective stimulus to prevent the organism from using the injured part and allow tissue repair and healing. On the other hand, neuropathic pain, defined as ‘pain caused by a lesion or disease of the somatosensory nervous system’, is a debilitating pathology. The TRPA1 neurons in the Dorsal Root Ganglion (DRG) respond to reactive oxygen species (ROS) and induce pain. In acute nerve injury and inflammation, macrophages infiltrating the site of injury undergo an oxidative burst, and generate ROS that promote tissue repair and induce pain via TRPA1. The latter discourages using the injured limb, with a lack of movement helping wound healing. In chronic inflammation caused by diabetes, cancer etc., ROS levels increase systemically and modulate TRPA1 neuronal functions and cause debilitating neuropathic pain. It is important to distinguish between drug targets that elicit protective vs. debilitating pain when developing effective drugs for neuropathic pain. In this context, the connection of the Angiotensin type 2 receptor (AT2R) to neuropathic pain presents an interesting dilemma. Several lines of evidence show that AT2R activation promotes anti-inflammatory and anti-nociceptive signaling, tissue repair, and suppresses ROS in chronic inflammatory models. Conversely, some studies suggest that AT2R antagonists are anti-nociceptive and therefore AT2R is a drug target for neuropathic pain. However, AT2R expression in nociceptive neurons is lacking, indicating that neuronal AT2R is not involved in neuropathic pain. It is also important to consider that Novartis terminated their phase II clinical trial (EMPHENE) to validate that AT2R antagonist EMA401 mitigates post-herpetic neuralgia. This trial, conducted in Australia, United Kingdom, and a number of European and Asian countries in 2019, was discontinued due to pre-clinical drug toxicity data. Moreover, early data from the trial did not show statistically significant positive outcomes. These facts suggest that may AT2R not be the proper drug target for neuropathic pain in humans and its inhibition can be harmful.
Collapse
Affiliation(s)
- Lakshmi Pulakat
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States.,Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| | - Colin Sumners
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
41
|
Foulon M, Robbe-Saule M, Manry J, Esnault L, Boucaud Y, Alcaïs A, Malloci M, Fanton d’Andon M, Beauvais T, Labarriere N, Jeannin P, Abel L, Saint-André JP, Croué A, Delneste Y, Boneca IG, Marsollier L, Marion E. Mycolactone toxin induces an inflammatory response by targeting the IL-1β pathway: Mechanistic insight into Buruli ulcer pathophysiology. PLoS Pathog 2020; 16:e1009107. [PMID: 33338061 PMCID: PMC7748131 DOI: 10.1371/journal.ppat.1009107] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Mycolactone, a lipid-like toxin, is the major virulence factor of Mycobacterium ulcerans, the etiological agent of Buruli ulcer. Its involvement in lesion development has been widely described in early stages of the disease, through its cytotoxic and immunosuppressive activities, but less is known about later stages. Here, we revisit the role of mycolactone in disease outcome and provide the first demonstration of the pro-inflammatory potential of this toxin. We found that the mycolactone-containing mycobacterial extracellular vesicles produced by M. ulcerans induced the production of IL-1β, a potent pro-inflammatory cytokine, in a TLR2-dependent manner, targeting NLRP3/1 inflammasomes. We show our data to be relevant in a physiological context. The in vivo injection of these mycolactone-containing vesicles induced a strong local inflammatory response and tissue damage, which were prevented by corticosteroids. Finally, several soluble pro-inflammatory factors, including IL-1β, were detected in infected tissues from mice and Buruli ulcer patients. Our results revisit Buruli ulcer pathophysiology by providing new insight, thus paving the way for the development of new therapeutic strategies taking the pro-inflammatory potential of mycolactone into account. Buruli ulcer is a neglected tropical disease occurring mainly in poor rural areas of West and Central Africa. This cutaneous disease is caused by Mycobacterium ulcerans, a bacterium belonging to the same family as M. tuberculosis and M. leprae. The skin lesions are caused by a cytotoxic toxin named mycolactone, also known to act as an immunosuppressor and an anti-inflammatory molecule. However, Buruli ulcer lesions are characterized by a chronic cutaneous inflammation with a recruitment of cellular immune cells trying to counteract M. ulcerans. Our work allows for a reconcilitation of previous observations. We found by in vitro experiment on macrophages that the mycolactone-containing mycobacterial extracellular vesicles produced by M. ulcerans induced the production of IL-1β, a potent pro-inflammatory molecule, while other pro-inflammatory soluble factors are inhibited. We also detected IL-1β protein in a mouse model of M. ulcerans infection as well as in biopsies of Buruli ulcer patients. The pro-inflammatory potential of mycolacone has to be taken into account to understand the full pathophysiology of Buruli ulcer.
Collapse
Affiliation(s)
- M. Foulon
- Université d’Angers, INSERM, CRCINA, Angers, France
| | | | - J. Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France
- Université de Paris, Imagine Institute, France
| | - L. Esnault
- Université d’Angers, INSERM, CRCINA, Angers, France
| | - Y. Boucaud
- Université d’Angers, INSERM, CRCINA, Angers, France
| | - A. Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France
- Université de Paris, Imagine Institute, France
| | - M. Malloci
- Plateforme MicroPiCell, SFR santé François Bonamy, Nantes, France
| | - M. Fanton d’Andon
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; CNRS, INSERM, Équipe Avenir, Paris, France
| | - T. Beauvais
- Université de Nantes, INSERM, CRCINA, Nantes
| | | | - P. Jeannin
- Université d’Angers, INSERM, CRCINA, Angers, France
- Laboratoire d’Immunologie et Allergologie, CHU Angers, Angers, France
| | - L. Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France
- Université de Paris, Imagine Institute, France
| | - J. P. Saint-André
- Département de Pathologie Cellulaire et Tissulaire, CHU Angers, Angers, France
| | - A. Croué
- Département de Pathologie Cellulaire et Tissulaire, CHU Angers, Angers, France
| | - Y. Delneste
- Université d’Angers, INSERM, CRCINA, Angers, France
- Laboratoire d’Immunologie et Allergologie, CHU Angers, Angers, France
| | - I. G. Boneca
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; CNRS, INSERM, Équipe Avenir, Paris, France
| | | | - E. Marion
- Université d’Angers, INSERM, CRCINA, Angers, France
- * E-mail:
| |
Collapse
|
42
|
Zheng H, Lim JY, Seong JY, Hwang SW. The Role of Corticotropin-Releasing Hormone at Peripheral Nociceptors: Implications for Pain Modulation. Biomedicines 2020; 8:biomedicines8120623. [PMID: 33348790 PMCID: PMC7766747 DOI: 10.3390/biomedicines8120623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral nociceptors and their synaptic partners utilize neuropeptides for signal transmission. Such communication tunes the excitatory and inhibitory function of nociceptor-based circuits, eventually contributing to pain modulation. Corticotropin-releasing hormone (CRH) is the initiator hormone for the conventional hypothalamic-pituitary-adrenal axis, preparing our body for stress insults. Although knowledge of the expression and functional profiles of CRH and its receptors and the outcomes of their interactions has been actively accumulating for many brain regions, those for nociceptors are still under gradual investigation. Currently, based on the evidence of their expressions in nociceptors and their neighboring components, several hypotheses for possible pain modulations are emerging. Here we overview the historical attention to CRH and its receptors on the peripheral nociception and the recent increases in information regarding their roles in tuning pain signals. We also briefly contemplate the possibility that the stress-response paradigm can be locally intrapolated into intercellular communication that is driven by nociceptor neurons. Such endeavors may contribute to a more precise view of local peptidergic mechanisms of peripheral pain modulation.
Collapse
Affiliation(s)
- Haiyan Zheng
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (H.Z.); (J.Y.L.); (J.Y.S.)
| | - Ji Yeon Lim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (H.Z.); (J.Y.L.); (J.Y.S.)
| | - Jae Young Seong
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (H.Z.); (J.Y.L.); (J.Y.S.)
| | - Sun Wook Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (H.Z.); (J.Y.L.); (J.Y.S.)
- Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-2-2286-1204; Fax: +82-2-925-5492
| |
Collapse
|
43
|
Lagomarsino VN, Kostic AD, Chiu IM. Mechanisms of microbial-neuronal interactions in pain and nociception. NEUROBIOLOGY OF PAIN 2020; 9:100056. [PMID: 33392418 PMCID: PMC7772816 DOI: 10.1016/j.ynpai.2020.100056] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
Molecular mechanisms of how microorganisms communicate with sensory afferent neurons. How pathogenic microorganisms directly communicate with nociceptor neurons to inflict pain on the host. Symbiotic bacterial communication with gut-extrinsic sensory afferent neurons. Plausible roles on how gut symbionts directly mediate pain and nociception.
Nociceptor sensory neurons innervate barrier tissues that are constantly exposed to microbial stimuli. During infection, pathogenic microorganisms can breach barrier surfaces and produce pain by directly activating nociceptors. Microorganisms that live in symbiotic relationships with their hosts, commensals and mutualists, have also been associated with pain, but the molecular mechanisms of how symbionts act on nociceptor neurons to modulate pain remain largely unknown. In this review, we will discuss the known molecular mechanisms of how microbes directly interact with sensory afferent neurons affecting nociception in the gut, skin and lungs. We will touch on how bacterial, viral and fungal pathogens signal to the host to inflict or suppress pain. We will also discuss recent studies examining how gut symbionts affect pain. Specifically, we will discuss how gut symbionts may interact with sensory afferent neurons either directly, through secretion of metabolites or neurotransmitters, or indirectly,through first signaling to epithelial cells or immune cells, to regulate visceral, neuropathic and inflammatory pain. While this area of research is still in its infancy, more mechanistic studies to examine microbial-sensory neuron crosstalk in nociception may allow us to develop new therapies for the treatment of acute and chronic pain.
Collapse
Affiliation(s)
- Valentina N Lagomarsino
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.,Joslin Diabetes Center, Boston, MA 02115, USA.,Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Aleksandar D Kostic
- Joslin Diabetes Center, Boston, MA 02115, USA.,Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
44
|
Donnelly CR, Chen O, Ji RR. How Do Sensory Neurons Sense Danger Signals? Trends Neurosci 2020; 43:822-838. [PMID: 32839001 DOI: 10.1016/j.tins.2020.07.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/11/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022]
Abstract
Sensory neurons are activated by physical and chemical stimuli, eliciting sensations such as temperature, touch, pain, and itch. From an evolutionary perspective, sensing danger is essential for organismal survival. Upon infection and injury, immune cells respond to pathogen/damage-associated molecular patterns (PAMPs/DAMPs) through pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs), and produce inflammatory mediators that activate sensory neurons through neuro-immune interactions. Sensory neurons also express TLRs and other PRRs that directly sense danger signals after injury or during infection, leading to pain, itch, or analgesia. In addition to slow-acting canonical TLR signaling, TLRs function uniquely in sensory neurons through non-canonical coupling to ion channels, enabling rapid modulation of neuronal activity. We discuss how sensory neurons utilize TLRs and other PRR pathways to detect danger signals in their environment.
Collapse
Affiliation(s)
- Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
45
|
Mickymaray S, Alfaiz FA, Paramasivam A. Efficacy and Mechanisms of Flavonoids against the Emerging Opportunistic Nontuberculous Mycobacteria. Antibiotics (Basel) 2020; 9:antibiotics9080450. [PMID: 32726972 PMCID: PMC7460331 DOI: 10.3390/antibiotics9080450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) are the causative agent of severe chronic pulmonary diseases and is accountable for post-traumatic wound infections, lymphadenitis, endometritis, cutaneous, eye infections and disseminated diseases. These infections are extremely challenging to treat due to multidrug resistance, which encompasses the classical and existing antituberculosis agents. Hence, current studies are aimed to appraise the antimycobacterial activity of flavonoids against NTM, their capacity to synergize with pharmacological agents and their ability to block virulence. Flavonoids have potential antimycobacterial effects at minor quantities by themselves or in synergistic combinations. A cocktail of flavonoids used with existing antimycobacterial agents is a strategy to lessen side effects. The present review focuses on recent studies on naturally occurring flavonoids and their antimycobacterial effects, underlying mechanisms and synergistic effects in a cocktail with traditional agents.
Collapse
Affiliation(s)
- Suresh Mickymaray
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia;
- Correspondence:
| | - Faiz Abdulaziz Alfaiz
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia;
| | - Anand Paramasivam
- Department of Basic Medical Sciences, College of Dentistry, Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia;
| |
Collapse
|
46
|
"Electrifying dysmorphology": Potassium channelopathies causing dysmorphic syndromes. ADVANCES IN GENETICS 2020; 105:137-174. [PMID: 32560786 DOI: 10.1016/bs.adgen.2020.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Potassium channels are a heterogeneous group of membrane-bound proteins, whose functions support a diverse range of biological processes. Genetic disorders arising from mutations in potassium channels are classically recognized by symptoms arising from acute channel dysfunction, such as periodic paralysis, ataxia, seizures, or cardiac conduction abnormalities, often in a patient with otherwise normal examination findings. In this chapter, we review a distinct subgroup of rare potassium channelopathies whose presentations are instead suggestive of a developmental disorder, with features including intellectual disability, craniofacial dysmorphism or other physical anomalies. Known conditions within this subgroup are: Andersen-Tawil syndrome, Birk-Barel syndrome, Cantú syndrome, Keppen-Lubinsky syndrome, Temple-Baraitser syndrome, Zimmerman-Laband syndrome and a very similar disorder called Bauer-Tartaglia or FHEIG syndrome. Ion channelopathies are unlikely to be routinely considered in the differential diagnosis of children presenting with developmental concerns, and so detailed description and photographs of the clinical phenotype are provided to aid recognition. For several of these disorders, functional characterization of the genetic mutations responsible has led to identification of candidate therapies, including drugs already commonly used for other indications, which adds further impetus to their prompt recognition. Together, these cases illustrate the potential for mechanistic insights gained from genetic diagnosis to drive translational work toward targeted, disease-modifying therapies for rare disorders.
Collapse
|
47
|
Röltgen K, Pluschke G. Buruli ulcer: The Efficacy of Innate Immune Defense May Be a Key Determinant for the Outcome of Infection With Mycobacterium ulcerans. Front Microbiol 2020; 11:1018. [PMID: 32523571 PMCID: PMC7261859 DOI: 10.3389/fmicb.2020.01018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022] Open
Abstract
Buruli ulcer (BU) is a neglected, tropical infectious disease of the skin and the subcutaneous tissue caused by Mycobacterium ulcerans. This pathogen has emerged as a new species from a common ancestor with Mycobacterium marinum by acquisition of the virulence plasmid pMUM. The plasmid encodes enzymes required for the synthesis of the macrolide toxin mycolactone, which has cytotoxic and immunosuppressive activities. In advanced BU lesions, extracellular clusters of M. ulcerans reside in necrotic subcutaneous tissue and are protected from infiltrating leukocytes by the cytotoxic activity of secreted mycolactone. Several lines of evidence indicate that elements of the innate immune system eliminate in many cases the initial inoculum before bacterial clusters can form and that therefore exposure to M. ulcerans leads only in a minority of individuals to the characteristic chronic necrotizing BU lesions. It is assumed that phagocytes play a key role in early host defense against M. ulcerans. Antibodies against bacterial surface structures seem to have less potential to enhance innate immunity than TH1 cell responses. Precise innate and adaptive immune effector mechanisms leading to protective immunity are however unclear, complicating the development of effective vaccines, the most desired solution to control BU. The tuberculosis vaccine Mycobacterium bovis Bacillus Calmette–Guérin (BCG) has limited short-term protective activity against BU. Whether this effect is due to the broad antigenic cross-reactivity between M. bovis and M. ulcerans or is at least partly mediated by a non-specific enhanced responsiveness of innate immune cells to secondary stimulation, recently described as “trained immunity” or “innate immune memory” is unknown but has major implications for vaccine design. Current vaccine research and development activities are focusing on recombinant BCG, subunit vaccines with selected M. ulcerans proteins, and the neutralization of mycolactone.
Collapse
Affiliation(s)
- Katharina Röltgen
- Department of Pathology, Stanford School of Medicine, Stanford University, Stanford, CA, United States
| | - Gerd Pluschke
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
48
|
Manry J, Vincent QB, Johnson C, Chrabieh M, Lorenzo L, Theodorou I, Ardant MF, Marion E, Chauty A, Marsollier L, Abel L, Alcaïs A. Genome-wide association study of Buruli ulcer in rural Benin highlights role of two LncRNAs and the autophagy pathway. Commun Biol 2020; 3:177. [PMID: 32313116 PMCID: PMC7171125 DOI: 10.1038/s42003-020-0920-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Buruli ulcer, caused by Mycobacterium ulcerans and characterized by devastating necrotizing skin lesions, is the third mycobacterial disease worldwide. The role of host genetics in susceptibility to Buruli ulcer has long been suggested. We conduct the first genome-wide association study of Buruli ulcer on a sample of 1524 well characterized patients and controls from rural Benin. Two-stage analyses identify two variants located within LncRNA genes: rs9814705 in ENSG00000240095.1 (P = 2.85 × 10−7; odds ratio = 1.80 [1.43–2.27]), and rs76647377 in LINC01622 (P = 9.85 × 10−8; hazard ratio = 0.41 [0.28–0.60]). Furthermore, we replicate the protective effect of allele G of a missense variant located in ATG16L1, previously shown to decrease bacterial autophagy (rs2241880, P = 0.003; odds ratio = 0.31 [0.14–0.68]). Our results suggest LncRNAs and the autophagy pathway as critical factors in the development of Buruli ulcer. Jeremy Manry, Quentin Vincent et al. report a genome-wide association study for susceptibility to Buruli ulcer in a rural population from the West African country of Benin. They identify two independently associated variants within LncRNA genes and confirm the protective effect of a missense variant in the bacterial autophagy gene ATG16L1.
Collapse
Affiliation(s)
- Jeremy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Paris, France. .,Université de Paris, Imagine Institute, Paris, France.
| | - Quentin B Vincent
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Paris, France.,Université de Paris, Imagine Institute, Paris, France
| | - Christian Johnson
- Fondation Raoul Follereau, Paris, France.,Centre Interfacultaire de Formation et de Recherche en Environnement pour le Développement Durable. Université d'Abomey, Calavi, Benin
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Paris, France.,Université de Paris, Imagine Institute, Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Paris, France.,Université de Paris, Imagine Institute, Paris, France
| | - Ioannis Theodorou
- Center for Immunology and Infectious Diseases, INSERM UMR S 1135, Pierre and Marie Curie University, and AP-HP Laboratoire d'Immunologie et Histocompatibilité Hôpital Saint-Louis, Paris, France
| | - Marie-Françoise Ardant
- Fondation Raoul Follereau, Paris, France.,Centre de Dépistage et de Traitement de la Lèpre et de l'Ulcère de Buruli (CDTLUB), Pobè, Benin
| | - Estelle Marion
- INSERM UMR-U892 and CNRS U6299, team 7, Angers University, Angers University Hospital, Angers, France
| | - Annick Chauty
- Fondation Raoul Follereau, Paris, France.,Centre de Dépistage et de Traitement de la Lèpre et de l'Ulcère de Buruli (CDTLUB), Pobè, Benin
| | - Laurent Marsollier
- INSERM UMR-U892 and CNRS U6299, team 7, Angers University, Angers University Hospital, Angers, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Paris, France.,Université de Paris, Imagine Institute, Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Paris, France. .,Université de Paris, Imagine Institute, Paris, France.
| |
Collapse
|
49
|
Abstract
Buruli ulcer, the third most common mycobacterial disease worldwide, is caused by Mycobacterium ulcerans and characterized by devastating necrotizing skin lesions. Susceptibility to Buruli ulcer is thought to depend on host genetics, but very few genetic studies have been performed. The identification of a microdeletion on chromosome 8 in a familial form of severe Buruli ulcer suggested a monogenic basis of susceptibility. The role of common host genetic variants in Buruli ulcer development has been investigated in only three candidate-gene studies targeting genes involved in mycobacterial diseases. A recent genome-wide association study suggested a probable role for long non-coding RNAs and strengthened the contribution of autophagy as a major defense mechanism against mycobacteria. In this review, we summarize the history, epidemiological and clinical aspects of Buruli ulcer, focusing particularly on genetic findings relating to susceptibility to this disease. Finally, we discuss exciting new genetic avenues arising, in particular, from studies of mouse models, and the need for different disciplines to work together, to benefit from the extensive work on other mycobacterial diseases, mostly tuberculosis and leprosy. We are convinced that such pooling of effort will lead to the development of efficient novel strategies for combatting Buruli ulcer.
Collapse
|
50
|
Inner Workings: How bacteria cause pain and what that reveals about the role of the nervous system. Proc Natl Acad Sci U S A 2020; 116:12584-12586. [PMID: 31239362 DOI: 10.1073/pnas.1905754116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|