1
|
Rimskaya B, Shebanov N, Entelis N, Mazunin I. Enzymatic tools for mitochondrial genome manipulation. Biochimie 2025; 229:114-128. [PMID: 39426703 DOI: 10.1016/j.biochi.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Mutations in mitochondrial DNA (mtDNA) can manifest phenotypically as a wide range of neuromuscular and neurodegenerative pathologies that are currently only managed symptomatically without addressing the root cause. A promising approach is the development of molecular tools aimed at mtDNA cutting or editing. Unlike nuclear DNA, a cell can have hundreds or even thousands of mitochondrial genomes, and mutations can be present either in all of them or only in a subset. Consequently, the developed tools are aimed at reducing the number of copies of mutant mtDNA or editing mutant nucleotides. Despite some progress in the field of mitochondrial genome editing in human cells, working with model animals is still limited due to the complexity of their creation. Furthermore, not all existing editing systems can be easily adapted to function within mitochondria. In this review, we evaluate the mtDNA editing tools available today, with a particular focus on specific mtDNA mutations linked to hereditary mitochondrial diseases, aiming to provide an in-depth understanding of both the opportunities and hurdles to the development of mitochondrial genome editing technologies.
Collapse
Affiliation(s)
- Beatrisa Rimskaya
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation
| | - Nikita Shebanov
- UMR7156 Molecular Genetics, Genomics, Microbiology, University of Strasbourg - CNRS, Strasbourg, 67000, France
| | - Nina Entelis
- UMR7156 Molecular Genetics, Genomics, Microbiology, University of Strasbourg - CNRS, Strasbourg, 67000, France.
| | - Ilya Mazunin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation.
| |
Collapse
|
2
|
Hong H, Huang H, Li SA, Lin J, Luo K, Cao X, Cui F, Zhou Z, Ma H. Revealing Molecular Connections between Dissolved Organic Matter in Surface Water Sources and Their Cytotoxicity Influenced by Chlorination Disinfection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 39871532 DOI: 10.1021/acs.est.4c09795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Dissolved organic matter (DOM) is the primary precursor of disinfection products (DBPs) during chlorination. However, the compositional characteristics of DOM transformation during the chlorination process in different source waters and its relationship to cytotoxicity remain understudied. Here, we used high-resolution mass spectrometry to evaluate chlorination-induced molecular-level changes in DOM derived from different surface water sources. We correlated DOM components with the cytotoxicity profiles of selected DBPs using new alternative methods with predictive toxicological assessments. Our findings indicate a selective chlorination of DOM in natural waters and a tendency for lignin and protein conversion during the manual chlorination process. The reactivity of bioactive compounds decreased in the order of lignin > protein > tannin or ConAC. The cytotoxicity of DOM from source waters is mainly attributed to lignin- and protein-like compounds within the CHO and CHNO groups. Additionally, mitochondrial damage is a highly sensitive indicator of DOM-induced cytotoxicity. The toxicity profiles of DBPs revealed 37 common toxicity-driving components characterized by low mass, medium H/C ratio, low O/C ratio, reduction state, and hydrophobicity. Our findings highlight the need to exploit the health effects of DOM and provide substantial experimental evidence for the necessity to remove potential toxicants.
Collapse
Affiliation(s)
- Huihui Hong
- Department of Environmental Medicine, School of Medicine, Chongqing University, Chongqing 400045, China
| | - Hai Huang
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Sheng-Ao Li
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jinxian Lin
- Department of Environmental Medicine, School of Medicine, Chongqing University, Chongqing 400045, China
| | - Kun Luo
- Department of Environmental Medicine, School of Medicine, Chongqing University, Chongqing 400045, China
| | - Xinghong Cao
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Fuyi Cui
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Zhou Zhou
- Department of Environmental Medicine, School of Medicine, Chongqing University, Chongqing 400045, China
| | - Hua Ma
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
3
|
Nadukkandy AS, Blaize B, Kumar CD, Mori G, Cordani M, Kumar LD. Non-coding RNAs as mediators of epithelial - Mesenchymal transition (EMT) in metastatic colorectal cancers. Cell Signal 2025; 127:111605. [PMID: 39842529 DOI: 10.1016/j.cellsig.2025.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, necessitating the development of innovative treatment strategies. Recent research has underscored the significant role of non-coding RNAs (ncRNAs) in CRC pathogenesis, offering new avenues for diagnosis and therapy. In this review, we delve into the intricate roles of various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in CRC progression, epithelial-mesenchymal transition (EMT), metastasis, and drug resistance. We highlight the interaction of these ncRNAs with and regulation of key signaling pathways, such as Wnt/β-catenin, Notch, JAK-STAT, EGFR, and TGF-β, and the functional relevance of these interactions in CRC progression. Additionally, the review highlights the emerging applications of nanotechnology in enhancing the delivery and efficacy of ncRNA-based therapeutics, which could address existing challenges related to specificity and side effects. Future research directions, including advanced diagnostic tools, targeted therapeutics, strategies to overcome drug resistance, and the integration of personalized medicine approaches are discussed. Integrating nanotechnology with a deeper understanding of CRC biology offers the potential for more effective, targeted, and personalized strategies, though further research is essential to validate these approaches.
Collapse
Affiliation(s)
- Aisha Shigna Nadukkandy
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Britny Blaize
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Chethana D Kumar
- Department of Surgical ICU, Christian Medical College, IDA Scudder Road, Vellore 632004, Tamil Nadu, India
| | - Giulia Mori
- Department Of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India.
| |
Collapse
|
4
|
Jame-Chenarboo F, Reyes JN, Twells NM, Ng HH, Macdonald D, Hernando E, Mahal LK. Screening the human miRNA interactome reveals coordinated up-regulation in melanoma, adding bidirectional regulation to miRNA networks. SCIENCE ADVANCES 2025; 11:eadr0277. [PMID: 39792681 PMCID: PMC11721578 DOI: 10.1126/sciadv.adr0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Cellular protein expression is coordinated posttranscriptionally by an intricate regulatory network. The current presumption is that microRNAs (miRNAs) work by repression of functionally related targets within a system. In recent work, up-regulation of protein expression via direct interactions of messenger RNA with miRNA has been found in dividing cells, providing an additional mechanism of regulation. Herein, we demonstrate coordinated up-regulation of functionally coupled proteins by miRNA. We focused on CD98hc, the heavy chain of the amino acid transporter LAT-1, and α-2,3-sialyltransferases ST3GAL1 and ST3GAL2, which are critical for CD98hc stability in melanoma. Profiling miRNA regulation using our high-throughput miRFluR assay, we identified miRNA that up-regulated the expression of both CD98hc and either ST3GAL1 or ST3GAL2. These co-up-regulating miRNAs were enriched in melanoma datasets associated with transformation and progression. Our findings add co-up-regulation by miRNA into miRNA regulatory networks and add a bidirectional twist to the impact miRNAs have on protein regulation and glycosylation.
Collapse
Affiliation(s)
| | - Joseph N. Reyes
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | - Hoi Hei Ng
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Dawn Macdonald
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
5
|
Silver J, Trewin AJ, Loke S, Croft L, Ziemann M, Soria M, Dillon H, Nielsen S, Lamon S, Wadley GD. Purification of mitochondria from skeletal muscle tissue for transcriptomic analyses reveals localization of nuclear-encoded noncoding RNAs. FASEB J 2024; 38:e70223. [PMID: 39625361 PMCID: PMC11613969 DOI: 10.1096/fj.202401618r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024]
Abstract
Mitochondria are central to cellular function, particularly in metabolically active tissues such as skeletal muscle. Nuclear-encoded RNAs typically localize within the nucleus and cytosol but a small population may also translocate to subcellular compartments such as mitochondria. We aimed to investigate the nuclear-encoded RNAs that localize within the mitochondria of skeletal muscle cells and tissue. Intact mitochondria were isolated via immunoprecipitation (IP) followed by enzymatic treatments (RNase-A and proteinase-K) optimized to remove transcripts located exterior to mitochondria, making it amenable for high-throughput transcriptomic sequencing. Small RNA sequencing libraries were successfully constructed from as little as 1.8 ng mitochondrial RNA input. Small RNA sequencing of mitochondria from rat myoblasts revealed the enrichment of over 200 miRNAs. Whole-transcriptome RNA sequencing of enzymatically purified mitochondria isolated by IP from skeletal muscle tissue showed a striking similarity in the degree of purity compared to mitoplast preparations which lack an outer mitochondrial membrane. In summary, we describe a novel, powerful sequencing approach applicable to animal and human tissues and cells that can facilitate the discovery of nuclear-encoded RNA transcripts localized within skeletal muscle mitochondria.
Collapse
MESH Headings
- Animals
- Rats
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/genetics
- Cell Nucleus/metabolism
- Cell Nucleus/genetics
- Transcriptome
- Gene Expression Profiling/methods
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Mitochondria/metabolism
- Mitochondria/genetics
- Male
- RNA, Nuclear/metabolism
- RNA, Nuclear/genetics
- RNA, Mitochondrial/metabolism
- RNA, Mitochondrial/genetics
- Myoblasts/metabolism
- Myoblasts/cytology
- Humans
Collapse
Affiliation(s)
- Jessica Silver
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Adam J. Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelongVictoriaAustralia
- Department of Anatomy and PhysiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Stella Loke
- Genomics Centre, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Larry Croft
- Genomics Centre, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Mark Ziemann
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
- Burnet InstituteMelbourneVictoriaAustralia
| | - Megan Soria
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Hayley Dillon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelongVictoriaAustralia
- Human Integrated Physiology and Sports Cardiology LaboratoryBaker Heart and Diabetes InstituteMelbourneVictoriaAustralia
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity ResearchRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Glenn D. Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
6
|
Feng X, Guang S. Functions and applications of RNA interference and small regulatory RNAs. Acta Biochim Biophys Sin (Shanghai) 2024; 57:119-130. [PMID: 39578714 DOI: 10.3724/abbs.2024196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Small regulatory RNAs play a variety of crucial roles in eukaryotes, influencing gene regulation, developmental timing, antiviral defense, and genome integrity via a process termed RNA interference (RNAi). This process involves Argonaute/small RNA (AGO/sRNA) complexes that target transcripts via sequence complementarity and modulate gene expression and epigenetic modifications. RNAi is a highly conserved gene regulatory phenomenon that recognizes self- and non-self nucleic acids, thereby defending against invasive sequences. Since its discovery, RNAi has been widely applied in functional genomic studies and a range of practical applications. In this review, we focus on the current understanding of the biological roles of the RNAi pathway in transposon silencing, fertility, developmental regulation, immunity, stress responses, and acquired transgenerational inheritance. Additionally, we provide an overview of the applications of RNAi technology in biomedical research, agriculture, and therapeutics.
Collapse
Affiliation(s)
- Xuezhu Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
7
|
Zhan J, Zhou Y, Chen Y, Jin K, Chen Z, Chen C, Li H, Wang DW. Subcellular mass spectrometric detection unveils hyperglycemic memory in the diabetic heart. J Diabetes 2024; 16:e70033. [PMID: 39539089 PMCID: PMC11561303 DOI: 10.1111/1753-0407.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/24/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Intensive glycemic control is insufficient to reduce the risk of heart failure in patients with diabetes mellitus. While the hyperglycemic memory in the diabetic cardiomyopathy has been well documented, its underlying mechanisms are not fully understood. The present study tried to investigate whether the dysregulated proteins/biological pathways, which persistently altered in diabetic hearts during normoglycemia, participate in the hyperglycemic memory. METHODS Hearts of streptozotocin-induced diabetic mice, with or without intensive glycemic control using slow-release insulin implants, were collected. Proteins from total heart samples and subcellular fractions were assessed by mass spectrometry, Western blotting, and KEGG pathway enrichment analysis. mRNA sequencing was used to determine whether the persistently altered proteins were regulated at the transcriptional or post-transcriptional level. RESULTS Western blot validation of several proteins with high pathophysiological importance, including MYH7, HMGCS2, PDK4, and BDH1, indicated that mass spectrometry was able to qualitatively, but not quantitatively, reflect the fold changes of certain proteins in diabetes. Pathway analysis revealed that the peroxisome, PPAR pathway, and fatty acid metabolism could be efficiently rescued by glycemic control. However, dysregulation of oxidative phosphorylation and reactive oxygen species persisted even after normalization of hyperglycemia. Notably, mRNA sequencing revealed that dysregulated proteins in the oxidative phosphorylation pathway were not accompanied by coordinated changes in mRNA levels, indicating post-transcriptional regulation. Moreover, literature review and bioinformatics analysis suggested that hyperglycemia-induced persistent alterations of miRNAs targeted genes from the persistently dysregulated oxidative phosphorylation pathway, whereas, oxidative phosphorylation dysfunction-induced ROS regulated miRNA expression, which thereby might sustained the dysregulation of miRNAs. CONCLUSIONS Glycemic control cannot rescue hyperglycemia-induced alterations of subcellular proteins in the diabetic heart, and persistently altered proteins are involved in multiple functional pathways, including oxidative phosphorylation. These findings might provide novel insights into hyperglycemic memory in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jiabing Zhan
- Division of Cardiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart DiseaseFujian Medical University Union HospitalFuzhouChina
| | - Yufei Zhou
- Division of Cardiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| | - Yifan Chen
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart DiseaseFujian Medical University Union HospitalFuzhouChina
| | - Kunying Jin
- Division of Cardiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| | - Zhaoyang Chen
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart DiseaseFujian Medical University Union HospitalFuzhouChina
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| |
Collapse
|
8
|
Eirin A, Siddiqi S, Hughes AG, Jiang Y, Zhu XY, Kazeminia S, Lu B, Xing L, Lu B, Tang H, Xue A, Lerman A, Textor SC, Lerman LO. Renovascular Disease and Mitochondrial Dysfunction in Human Mesenchymal Stem Cells. J Am Soc Nephrol 2024; 35:1507-1519. [PMID: 39012704 PMCID: PMC11543019 DOI: 10.1681/asn.0000000000000440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Key Points Renovascular disease impairs the capacity of human adipose tissue–derived mesenchymal stem/stromal cells to repair ischemic murine kidneys. miR-378h modulated the capacity of renovascular disease adipose tissue–derived mesenchymal stem/stromal cells to repair ischemic kidneys in vivo . Background Renovascular disease leads to renal ischemia, hypertension, and eventual kidney failure. Autologous transplantation of adipose tissue–derived mesenchymal stem/stromal cells (MSCs) improves perfusion and oxygenation in stenotic human kidneys, but associated atherosclerosis and hypertension might blunt their effectiveness. We hypothesized that renovascular disease alters the human MSC transcriptome and impairs their reparative potency. Methods MSCs were harvested from subcutaneous abdominal fat of patients with renovascular disease and healthy volunteers (n =3 each), characterized and subsequently injected (5×105/200 μ l) into mice 2 weeks after renal artery stenosis or sham surgery (n =6/group). Two weeks later, mice underwent imaging and tissue studies. MSCs from healthy volunteers and in those with renovascular disease were also characterized by mRNA/microRNA (miRNA) sequencing. Based on these, MSC proliferation and mitochondrial damage were assessed in vitro before and after miRNA modulation and in vivo in additional renal artery stenosis mice administered with MSCs from renovascular disease pretreated with miR-378h mimic (n =5) or inhibitor (n =4). Results MSCs engrafted in stenotic mouse kidneys. Healthy volunteer MSCs (but not renovascular disease MSCs) decreased BP, improved serum creatinine levels and stenotic-kidney cortical perfusion and oxygenation, and attenuated peritubular capillary loss, tubular injury, and fibrosis. Genes upregulated in renovascular disease MSCs versus healthy volunteer MSCs were mostly implicated in transcription and cell proliferation, whereas those downregulated encoded mainly mitochondrial proteins. Upregulated miRNAs, including miR-378h, primarily target nuclear-encoded mitochondrial genes, whereas downregulated miRNAs mainly target genes implicated in transcription and cell proliferation. MSC proliferation was similar, but their mitochondrial structure and reparative function both in vivo and in vitro improved after miR-378h inhibition. Conclusions Renovascular disease impaired the reparative capacity of human MSCs, possibly by dysregulating miR-378h that targets mitochondrial genes. Podcast This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2024_08_21_ASN0000000000000440.mp3
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Sarosh Siddiqi
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Autumn G. Hughes
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Yamei Jiang
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sara Kazeminia
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Bo Lu
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Li Xing
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Brandon Lu
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Hui Tang
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Ailing Xue
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Stephen C. Textor
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
9
|
Liu L, Shao M, Huang Y, Qian P, Huang H. Unraveling the roles and mechanisms of mitochondrial translation in normal and malignant hematopoiesis. J Hematol Oncol 2024; 17:95. [PMID: 39396039 PMCID: PMC11470598 DOI: 10.1186/s13045-024-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024] Open
Abstract
Due to spatial and genomic independence, mitochondria possess a translational mechanism distinct from that of cytoplasmic translation. Several regulators participate in the modulation of mitochondrial translation. Mitochondrial translation is coordinated with cytoplasmic translation through stress responses. Importantly, the inhibition of mitochondrial translation leads to the inhibition of cytoplasmic translation and metabolic disruption. Therefore, defects in mitochondrial translation are closely related to the functions of hematopoietic cells and various immune cells. Finally, the inhibition of mitochondrial translation is a potential therapeutic target for treating multiple hematologic malignancies. Collectively, more in-depth insights into mitochondrial translation not only facilitate our understanding of its functions in hematopoiesis, but also provide a basis for the discovery of new treatments for hematological malignancies and the modulation of immune cell function.
Collapse
Affiliation(s)
- Lianxuan Liu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Mi Shao
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Yue Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Pengxu Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Du H, Zhao Y, Wen J, Dai B, Hu G, Zhou Y, Yin Z, Ding N, Li H, Fan J, Nie X, Wang F, Liu Q, Wen Z, Xu G, Wang DW, Chen C. LncRNA DCRT Protects Against Dilated Cardiomyopathy by Preventing NDUFS2 Alternative Splicing by Binding to PTBP1. Circulation 2024; 150:1030-1049. [PMID: 38841852 DOI: 10.1161/circulationaha.123.067861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Dilated cardiomyopathy is characterized by left ventricular dilation and continuous systolic dysfunction. Mitochondrial impairment is critical in dilated cardiomyopathy; however, the underlying mechanisms remain unclear. Here, we explored the cardioprotective role of a heart-enriched long noncoding RNA, the dilated cardiomyopathy repressive transcript (DCRT), in maintaining mitochondrial function. METHODS The DCRT knockout (DCRT-/-) mice and DCRT knockout cells were developed using CRISPR-Cas9 technology. Cardiac-specific DCRT transgenic mice were generated using α-myosin heavy chain promoter. Chromatin coimmunoprecipitation, RNA immunoprecipitation, Western blot, and isoform sequencing were performed to investigate the underlying mechanisms. RESULTS We found that the long noncoding RNA DCRT was highly enriched in the normal heart tissues and that its expression was significantly downregulated in the myocardium of patients with dilated cardiomyopathy. DCRT-/- mice spontaneously developed cardiac dysfunction and enlargement with mitochondrial impairment. DCRT transgene or overexpression with the recombinant adeno-associated virus system in mice attenuated cardiac dysfunction induced by transverse aortic constriction treatment. Mechanistically, DCRT inhibited the third exon skipping of NDUFS2 (NADH dehydrogenase ubiquinone iron-sulfur protein 2) by directly binding to PTBP1 (polypyrimidine tract binding protein 1) in the nucleus of cardiomyocytes. Skipping of the third exon of NDUFS2 induced mitochondrial dysfunction by competitively inhibiting mitochondrial complex I activity and binding to PRDX5 (peroxiredoxin 5) and suppressing its antioxidant activity. Furthermore, coenzyme Q10 partially alleviated mitochondrial dysfunction in cardiomyocytes caused by DCRT reduction. CONCLUSIONS Our study revealed that the loss of DCRT contributed to PTBP1-mediated exon skipping of NDUFS2, thereby inducing cardiac mitochondrial dysfunction during dilated cardiomyopathy development, which could be partially treated with coenzyme Q10 supplementation.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Polypyrimidine Tract-Binding Protein/genetics
- Polypyrimidine Tract-Binding Protein/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Mice
- Alternative Splicing
- Humans
- Mice, Knockout
- Heterogeneous-Nuclear Ribonucleoproteins/genetics
- Heterogeneous-Nuclear Ribonucleoproteins/metabolism
- Electron Transport Complex I/metabolism
- Electron Transport Complex I/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Male
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/genetics
- Mice, Transgenic
Collapse
Affiliation(s)
- Hengzhi Du
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Yanru Zhao
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Jianpei Wen
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Beibei Dai
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Guo Hu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Yufei Zhou
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Zhongwei Yin
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Nan Ding
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Huaping Li
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Jiahui Fan
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Xiang Nie
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Feng Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Qian Liu
- Tongji Hospital, and Department of Forensic Medicine (Q.L.), Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Wen
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Gang Xu
- Divisions of Cardiology and Nephrology (G.X.), Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Chen Chen
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| |
Collapse
|
11
|
Jusic A, Erpapazoglou Z, Dalgaard LT, Lakkisto P, de Gonzalo-Calvo D, Benczik B, Ágg B, Ferdinandy P, Fiedorowicz K, Schroen B, Lazou A, Devaux Y. Guidelines for mitochondrial RNA analysis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102262. [PMID: 39091381 PMCID: PMC11292373 DOI: 10.1016/j.omtn.2024.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Mitochondria are the energy-producing organelles of mammalian cells with critical involvement in metabolism and signaling. Studying their regulation in pathological conditions may lead to the discovery of novel drugs to treat, for instance, cardiovascular or neurological diseases, which affect high-energy-consuming cells such as cardiomyocytes, hepatocytes, or neurons. Mitochondria possess both protein-coding and noncoding RNAs, such as microRNAs, long noncoding RNAs, circular RNAs, and piwi-interacting RNAs, encoded by the mitochondria or the nuclear genome. Mitochondrial RNAs are involved in anterograde-retrograde communication between the nucleus and mitochondria and play an important role in physiological and pathological conditions. Despite accumulating evidence on the presence and biogenesis of mitochondrial RNAs, their study continues to pose significant challenges. Currently, there are no standardized protocols and guidelines to conduct deep functional characterization and expression profiling of mitochondrial RNAs. To overcome major obstacles in this emerging field, the EU-CardioRNA and AtheroNET COST Action networks summarize currently available techniques and emphasize critical points that may constitute sources of variability and explain discrepancies between published results. Standardized methods and adherence to guidelines to quantify and study mitochondrial RNAs in normal and disease states will improve research outputs, their reproducibility, and translation potential to clinical application.
Collapse
Affiliation(s)
- Amela Jusic
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Zoi Erpapazoglou
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Päivi Lakkisto
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Bettina Benczik
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Bence Ágg
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | | | - Blanche Schroen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - on behalf of EU-CardioRNA COST Action CA17129
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, 61614 Poznan, Poland
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - AtheroNET COST Action CA21153
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, 61614 Poznan, Poland
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
12
|
Tsamou M, Kremers FAC, Samaritakis KA, Roggen EL. Identifying microRNAs Possibly Implicated in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Fibromyalgia: A Review. Int J Mol Sci 2024; 25:9551. [PMID: 39273498 PMCID: PMC11395538 DOI: 10.3390/ijms25179551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and fibromyalgia (FM) are chronic syndromes of unknown etiology, accompanied by numerous symptoms affecting neurological and physical conditions. Despite frequent revisions of the diagnostic criteria, clinical practice guidelines are often outdated, leading to underdiagnosis and ineffective treatment. Our aim was to identify microRNA (miRNA) biomarkers implicated in pathological mechanisms underlying these diseases. A comprehensive literature review using publicly accessible databases was conducted. Interesting miRNAs were extracted from relevant publications on ME/CFS and/or FM, and were then linked to pathophysiological processes possibly manifesting these chronic diseases. Dysregulated miRNAs in ME/CFS and FM may serve as promising biomarkers for these diseases. Key identified miRNAs, such as miR-29c, miR-99b, miR-128, miR-374b, and miR-766, were frequently mentioned for their roles in immune response, mitochondrial dysfunction, oxidative stress, and central sensitization, while miR-23a, miR-103, miR-152, and miR-320 were implicated in multiple crucial pathological processes for FM and/or ME/CFS. In summary, both ME/CFS and FM seem to share many dysregulated biological or molecular processes, which may contribute to their commonly shared symptoms. This miRNA-based approach offers new angles for discovering molecular markers urgently needed for early diagnosis or therapeutics to tackle the pathology of these medically unexplained chronic diseases.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), 6229 EV Maastricht, The Netherlands
| | | | | | - Erwin L Roggen
- ToxGenSolutions (TGS), 6229 EV Maastricht, The Netherlands
| |
Collapse
|
13
|
Quiroga D, Roman B, Salih M, Daccarett-Bojanini WN, Garbus H, Ebenebe OV, Dodd-O JM, O'Rourke B, Kohr M, Das S. Sex-dependent phosphorylation of Argonaute 2 reduces the mitochondrial translocation of miR-181c and induces cardioprotection in females. J Mol Cell Cardiol 2024; 194:59-69. [PMID: 38880194 PMCID: PMC11345856 DOI: 10.1016/j.yjmcc.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Obesity-induced cardiac dysfunction is growing at an alarming rate, showing a dramatic increase in global prevalence. Mitochondrial translocation of miR-181c in cardiomyocytes results in excessive reactive oxygen species (ROS) production during obesity. ROS causes Sp1, a transcription factor for MICU1, to be degraded via post-translational modification. The subsequent decrease in MICU1 expression causes mitochondrial Ca2+ accumulation, ultimately leading to a propensity for heart failure. Herein, we hypothesized that phosphorylation of Argonaute 2 (AGO2) at Ser 387 (in human) or Ser 388 (in mouse) inhibits the translocation of miR-181c into the mitochondria by increasing the cytoplasmic stability of the RNA-induced silencing complex (RISC). Initially, estrogen offers cardioprotection in pre-menopausal females against the consequences of mitochondrial miR-181c upregulation by driving the phosphorylation of AGO2. Neonatal mouse ventricular myocytes (NMVM) treated with insulin showed an increase in pAGO2 levels and a decrease in mitochondrial miR-181c expression by increasing the binding affinity of AGO2-GW182 in the RISC. Thus, insulin treatment prevented excessive ROS production and mitochondrial Ca2+ accumulation. In human cardiomyocytes, we overexpressed miR-181c to mimic pathological conditions, such as obesity/diabetes. Treatment with estradiol (E2) for 48 h significantly lowered miR-181c entry into the mitochondria through increased pAGO2 levels. E2 treatment also normalized Sp1 degradation and MICU1 transcription that normally occurs in response to miR-181c overexpression. We then investigated these findings using an in vivo model, with age-matched male, female and ovariectomized (OVX) female mice. Consistent with the E2 treatment, we show that female hearts express higher levels of pAGO2 and thus, exhibit higher association of AGO2-GW182 in cytoplasmic RISC. This results in lower expression of mitochondrial miR-181c in female hearts compared to male or OVX groups. Further, female hearts had fewer consequences of mitochondrial miR-181c expression, such as lower Sp1 degradation and significantly decreased MICU1 transcriptional regulation. Taken together, this study highlights a potential therapeutic target for conditions such as obesity and diabetes, where miR-181c is upregulated. NEW AND NOTEWORTHY: In this study, we show that the phosphorylation of Argonaute 2 (AGO2) stabilizes the RNA-induced silencing complex in the cytoplasm, preventing miR-181c entry into the mitochondria. Furthermore, we demonstrate that treatment with estradiol can inhibit the translocation of miR-181c into the mitochondria by phosphorylating AGO2. This ultimately eliminates the downstream consequences of miR-181c overexpression by mitigating excessive reactive oxygen species production and calcium entry into the mitochondria.
Collapse
Affiliation(s)
- Diego Quiroga
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Barbara Roman
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America
| | - Marwan Salih
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America
| | - William N Daccarett-Bojanini
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Haley Garbus
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Obialunanma V Ebenebe
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Jeffrey M Dodd-O
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Mark Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Samarjit Das
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America; Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America.
| |
Collapse
|
14
|
Ismaeel A, Peck BD, Montgomery MM, Burke BI, Goh J, Kang G, Franco AB, Xia Q, Goljanek-Whysall K, McDonagh B, McLendon JM, Koopmans PJ, Jacko D, Schaaf K, Bloch W, Gehlert S, Wen Y, Murach KA, Peterson CA, Boudreau RL, Fisher-Wellman KH, McCarthy JJ. microRNA-1 Regulates Metabolic Flexibility in Skeletal Muscle via Pyruvate Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607377. [PMID: 39149347 PMCID: PMC11326265 DOI: 10.1101/2024.08.09.607377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
MicroRNA-1 (miR-1) is the most abundant miRNA in adult skeletal muscle. To determine the function of miR-1 in adult skeletal muscle, we generated an inducible, skeletal muscle-specific miR-1 knockout (KO) mouse. Integration of RNA-sequencing (RNA-seq) data from miR-1 KO muscle with Argonaute 2 enhanced crosslinking and immunoprecipitation sequencing (AGO2 eCLIP-seq) from human skeletal muscle identified miR-1 target genes involved with glycolysis and pyruvate metabolism. The loss of miR-1 in skeletal muscle induced cancer-like metabolic reprogramming, as shown by higher pyruvate kinase muscle isozyme M2 (PKM2) protein levels, which promoted glycolysis. Comprehensive bioenergetic and metabolic phenotyping combined with skeletal muscle proteomics and metabolomics further demonstrated that miR-1 KO induced metabolic inflexibility as a result of pyruvate oxidation resistance. While the genetic loss of miR-1 reduced endurance exercise performance in mice and in C. elegans, the physiological down-regulation of miR-1 expression in response to a hypertrophic stimulus in both humans and mice causes a similar metabolic reprogramming that supports muscle cell growth. Taken together, these data identify a novel post-translational mechanism of adult skeletal muscle metabolism regulation mediated by miR-1.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Bailey D Peck
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - McLane M Montgomery
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | - Benjamin I Burke
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Jensen Goh
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Gyumin Kang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Abigail B Franco
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Mass Spectrometry and Proteomics Core, University of Kentucky, Lexington, KY, USA
| | - Qin Xia
- Discipline of Physiology, School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Discipline of Physiology, School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Jared M McLendon
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Pieter J Koopmans
- Department Health, Human Performance, & Recreation, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
| | - Daniel Jacko
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
- Olympic Base Center, North Rhine-Westphalia/Rhineland, Cologne, Germany
| | - Kirill Schaaf
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
- Olympic Base Center, North Rhine-Westphalia/Rhineland, Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
| | - Sebastian Gehlert
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
- Department for the Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Hildesheim, Germany
| | - Yuan Wen
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department Health, Human Performance, & Recreation, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
| | - Charlotte A Peterson
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Ryan L Boudreau
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kelsey H Fisher-Wellman
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
15
|
Chen G, Wang Y, Zhang L, Yang K, Wang X, Chen X. Research progress on miR-124-3p in the field of kidney disease. BMC Nephrol 2024; 25:252. [PMID: 39112935 PMCID: PMC11308398 DOI: 10.1186/s12882-024-03688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs (miRNAs) are 18-25 nucleotides long, single-stranded, non-coding RNA molecules that regulate gene expression. They play a crucial role in maintaining normal cellular functions and homeostasis in organisms. Studies have shown that miR-124-3p is highly expressed in brain tissue and plays a significant role in nervous system development. It is also described as a tumor suppressor, regulating biological processes like cancer cell proliferation, apoptosis, migration, and invasion by controlling multiple downstream target genes. miR-124-3p has been found to be involved in the progression of various kidney diseases, including diabetic kidney disease, calcium oxalate kidney stones, acute kidney injury, lupus nephritis, and renal interstitial fibrosis. It mediates these processes through mechanisms like oxidative stress, inflammation, autophagy, and ferroptosis. To lay the foundation for future therapeutic strategies, this research group reviewed recent studies on the functional roles of miR-124-3p in renal diseases and the regulation of its downstream target genes. Additionally, the feasibility, limitations, and potential application of miR-124-3p as a diagnostic biomarker and therapeutic target were thoroughly investigated.
Collapse
Affiliation(s)
- Guanting Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Linqi Zhang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Kang Yang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xixi Wang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xu Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| |
Collapse
|
16
|
Zhao C, Changhong Lin, Zhang B, Wang P, Zhang B, Yan L, Wang C, Qiu L. Study on the mechanism of miR-7562 regulating ATG5 and ATG12 genes in Penaeus monodon under Vibrio harveyi infection. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109670. [PMID: 38838838 DOI: 10.1016/j.fsi.2024.109670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
MicroRNAs (miRNAs) play a fundamental role in the post-transcriptional regulation of genes and are pivotal in modulating immune responses in marine species, particularly during pathogen assaults. This study focused on the function of miR-7562 and its regulatory effects on autophagy against Vibrio harveyi infection in the black tiger shrimp (Penaeus monodon), an economically important aquatic species. We successfully cloned and characterized two essential autophagy-related genes (ATGs) from P. monodon, PmATG5 and PmATG12, and then identified the miRNAs potentially involved in co-regulating these genes, which were notably miR-7562, miR-8485, and miR-278. Subsequent bacterial challenge experiments and dual-luciferase reporter assays identified miR-7562 as the principal regulator of both genes, particularly by targeting the 3'UTR of each gene. By manipulating the in vivo levels of miR-7562 using mimics and antagomirs, we found significant differences in the expression of PmATG5 and PmATG12, which corresponded to alterations in autophagic activity. Notably, miR-7562 overexpression resulted in the downregulation of PmATG5 and PmATG12, leading to a subdued autophagic response. Conversely, miR-7562 knockdown elevated the expression levels of these genes, thereby enhancing autophagic activity. Our findings further revealed that during V. harveyi infection, miR-7562 continued to influence the autophagic pathway by specifically targeting the ATG5-ATG12 complex. This research not only sheds light on the miRNA-dependent mechanisms governing autophagic immunity in shrimp but also proposes miR-7562 as a promising target for therapeutic strategies intended to strengthen disease resistance within the crustacean aquaculture industry.
Collapse
Affiliation(s)
- Chao Zhao
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, PR China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China
| | - Changhong Lin
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Bo Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China.
| | - Pengfei Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China
| | - Bo Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China.
| | - Lulu Yan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, PR China
| | - Lihua Qiu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China.
| |
Collapse
|
17
|
Robichaud K, Duffy B, Staples JF, Craig PM. Mitochondrial microRNA profiles are altered in thirteen-lined ground squirrels ( Ictidomys tridecemlineatus) during hibernation. Physiol Genomics 2024; 56:555-566. [PMID: 38881427 DOI: 10.1152/physiolgenomics.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/02/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024] Open
Abstract
Thirteen-lined ground squirrels (TLGSs) are obligate hibernators that cycle between torpor (low metabolic rate and body temperature) and interbout euthermia (IBE; typical euthermic body temperature and metabolism) from late autumn to spring. Many physiological changes occur throughout hibernation, including a reduction in liver mitochondrial metabolism during torpor, which is reversed during arousal to interbout euthermia. Nuclear-encoded microRNA (miRNA, small posttranscriptional regulator molecules) differ in abundance throughout TLGS hibernation and have been shown to regulate mitochondrial gene expression in mammalian cell culture (where they are referred to as mitomiRs). This study characterized differences in mitomiR profiles from TLGS liver mitochondria isolated during summer, torpor, and IBE, and predicted their mitochondrial targets. Using small RNA sequencing, differentially abundant mitomiRs were identified between hibernation states, and using quantitative PCR analysis, we quantified the expression of predicted mitochondrial mRNA targets. Most differences in mitomiR abundances were seasonal (i.e., between summer and winter) with only one mitomiR differentially abundant between IBE and torpor. Multiple factor analysis (MFA) revealed three clusters divided by hibernation states, where clustering was predominantly driven by mitomiR abundances. Nine of these differentially abundant mitomiRs had predicted mitochondrial RNA targets, including subunits of electron transfer system complexes I and IV, 12S rRNA, and two tRNAs. Overall, mitomiRs were predicted to suppress the expression of their mitochondrial targets and may have some involvement in regulating protein translation in mitochondria. This study found differences in mitomiR abundances between seasons and hibernation states of TLGS and suggests potential mechanisms for regulating the mitochondrial electron transfer system.NEW & NOTEWORTHY During the hibernation season, thirteen-lined ground squirrels periodically increase metabolism remarkably between torpor and interbout euthermia (IBE). This process involves rapid reactivation of mitochondrial respiration. We predicted that mitochondrial microRNA (mitomiRs) might be altered during this response. We found that the abundance of 38 liver mitomiRs differs based on hibernation state (summer, IBE, and torpor). Small RNA sequencing identified mitomiR profiles, including some mitomiRs that are predicted to bind to mitochondrial RNAs.
Collapse
Affiliation(s)
- Karyn Robichaud
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Brynne Duffy
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - James F Staples
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
18
|
Hua X, Liang G, Chao J, Wang D. Exposure to 6-PPD quinone causes damage on mitochondrial complex I/II associated with lifespan reduction in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134598. [PMID: 38743975 DOI: 10.1016/j.jhazmat.2024.134598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) is an emerging pollutant transformed from 6-PPD. However, the effect of 6-PPDQ exposure on mitochondrion and underlying mechanism remains largely unclear. Using Caenorhabditis elegans as animal model, exposed to 6-PPDQ at 0.1-10 μg/L was performed form L1 larvae to adult day-1. Exposure to 6-PPDQ (1 and 10 μg/L) could increase oxygen consumption rate and decease adenosine 5'-triphosphate (ATP) content, suggesting induction of mitochondrial dysfunction. Activities of NADH dehydrogenase (complex I) and succinate dehydrogenase (complex II) were inhibited, accompanied by a decrease in expressions of gas-1, nuo-1, and mev-1. RNAi of gas-1 and mev-1 enhanced mitochondrial dysfunction and reduced lifespan of 6-PPDQ exposed nematodes. GAS-1 and MEV-1 functioned in parallel to regulate 6-PPDQ toxicity to reduce the lifespan. Insulin peptides and the insulin signaling pathway acted downstream of GAS-1 and MEV-1 to control the 6-PPDQ toxicity on longevity. Moreover, RNAi of sod-2 and sod-3, targeted genes of daf-16, caused susceptibility to 6-PPDQ toxicity in reducing lifespan and in causing reactive oxygen species (ROS) production. Therefore, 6-PPDQ at environmentally relevant concentrations (ERCs) potentially caused mitochondrial dysfunction by affecting mitochondrial complexes I and II, which was associated with lifespan reduction by affecting insulin signaling in organisms.
Collapse
Affiliation(s)
- Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Geyu Liang
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Jie Chao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
19
|
Huang Y, Yin GN, Liu FY, Fridayana FR, Niloofar L, Vo MN, Ryu JK. Argonaute 2 restored erectile function and corpus cavernosum mitochondrial function by reducing apoptosis in a mouse model of cavernous nerve injury. Investig Clin Urol 2024; 65:400-410. [PMID: 38978220 PMCID: PMC11231665 DOI: 10.4111/icu.20240077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 07/10/2024] Open
Abstract
PURPOSE To determine whether the overexpression of the Argonaute RNA-induced silencing complex catalytic component 2 (Ago2) improves erectile function in mice after cavernous nerve injury (CNI). MATERIALS AND METHODS Lentiviruses containing Ago2 open reading frame (ORF) mouse clone (Ago2 O/E) were used to overexpress Ago2, and lentiviruses ORF negative control particles (NC) were used as a negative control. Three days before preparing the CNI model, we injected lentiviruses into the penises of 8-week-old male C57BL/6 mice. Animals were then divided into four groups: the sham operation control group and the CNI+phosphate-buffered saline, CNI+NC, and CNI+Ago2 O/E groups. One week later, erectile function was assessed by electrically stimulating cavernous nerves bilaterally and obtaining intracavernous pressure parameters. Penile tissue was also collected for molecular mechanism studies. RESULTS Ago2 overexpression improved erectile function in mice after CNI-induced erectile dysfunction (ED). Immunofluorescence staining and Western blot analysis showed that under Ago2 overexpressing conditions, the contents of endothelial cells, pericytes, and neuronal cells increased in the penile tissues of CNI mice, and this was attributed to reduced apoptosis and ROS production. In addition, we also found that Ago2 overexpression could restore penile mitochondrial function, thereby improving erectile function in CNI-induced ED mice. CONCLUSIONS Our findings demonstrate that Ago2 overexpression can reduce penile cell apoptosis, restore penile mitochondrial function, and improve erectile function in CNI-induced ED mice.
Collapse
Affiliation(s)
- Yan Huang
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Korea
| | - Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
| | - Fang-Yuan Liu
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
| | - Fitri Rahma Fridayana
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Korea
| | - Lashkari Niloofar
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Korea
| | - Minh Nhat Vo
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Korea.
| |
Collapse
|
20
|
Wang P, Zhang L, Chen S, Li R, Liu P, Li X, Luo H, Huo Y, Zhang Z, Cai Y, Liu X, Huang J, Zhou G, Sun Z, Ding S, Shi J, Zhou Z, Yuan R, Liu L, Wu S, Wang G. ANT2 functions as a translocon for mitochondrial cross-membrane translocation of RNAs. Cell Res 2024; 34:504-521. [PMID: 38811766 PMCID: PMC11217343 DOI: 10.1038/s41422-024-00978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
Bidirectional transcription of mammalian mitochondrial DNA generates overlapping transcripts that are capable of forming double-stranded RNA (dsRNA) structures. Release of mitochondrial dsRNA into the cytosol activates the dsRNA-sensing immune signaling, which is a defense mechanism against microbial and viral attack and possibly cancer, but could cause autoimmune diseases when unchecked. A better understanding of the process is vital in therapeutic application of this defense mechanism and treatment of cognate human diseases. In addition to exporting dsRNAs, mitochondria also export and import a variety of non-coding RNAs. However, little is known about how these RNAs are transported across mitochondrial membranes. Here we provide direct evidence showing that adenine nucleotide translocase-2 (ANT2) functions as a mammalian RNA translocon in the mitochondrial inner membrane, independent of its ADP/ATP translocase activity. We also show that mitochondrial dsRNA efflux through ANT2 triggers innate immunity. Inhibiting this process alleviates inflammation in vivo, providing a potential therapeutic approach for treating autoimmune diseases.
Collapse
Affiliation(s)
- Pengcheng Wang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Lixiao Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Siyi Chen
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Renjian Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Peipei Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiang Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Hongdi Luo
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Yujia Huo
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhirong Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Yiqi Cai
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Xu Liu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Jinliang Huang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Guangkeng Zhou
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhe Sun
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Shanwei Ding
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Jiahao Shi
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Zizhuo Zhou
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Ruoxi Yuan
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Liang Liu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Sipeng Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China.
| | - Geng Wang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China.
| |
Collapse
|
21
|
Robichaud K, Bragg LM, Servos MR, Craig PM. Venlafaxine exposure alters mitochondrial respiration and mitomiR abundance in zebrafish brains. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1569-1582. [PMID: 38695684 DOI: 10.1002/etc.5884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/14/2024] [Accepted: 04/04/2024] [Indexed: 06/27/2024]
Abstract
Wastewater treatment plant (WWTP) effluent often releases pharmaceuticals like venlafaxine (a serotonin-norephinephrine reuptake inhibitor antidepressant) to freshwater ecosystems at levels causing adverse metabolic effects on fish. Changes to fish metabolism can be regulated by epigenetic mechanisms like microRNA (small RNA molecules that regulate mRNA translation), including regulating mitochondrial mRNAs. Nuclear-encoded microRNAs regulate mitochondrial gene expression in mammals, and have predicted effects in fish. We aimed to identify whether venlafaxine exposure changed mitochondrial respiration and resulted in differentially abundant mitochondrial microRNA (mitomiRs) in zebrafish brains. In vitro exposure of brain homogenate to below environmentally relevant concentrations of venlafaxine (<1 µg/L) caused a decrease in mitochondrial respiration, although this was not driven by changes to mitochondrial Complex I or II function. To identify whether these effects occur in vivo, zebrafish were exposed to 1 µg/L venlafaxine for 0, 1, 6, 12, 24, and 96 h. In vivo, venlafaxine exposure had no significant effects on brain mitochondrial respiration; however, select mitomiRs (dre-miR-301a-5p, dre-miR-301b-3p, and dre-miR-301c-3p) were also measured, because they were bioinformatically predicted to regulate mitochondrial cytochrome c oxidase subunit I (COI) abundance. These mitomiRs were differentially regulated based on venlafaxine exposure (with miR-301c-3p abundance differing during the day and miR-301b-3p being lower in exposed fish at night), and with respect to sex and time sampled. Overall, the results demonstrated that in vitro venlafaxine exposure to zebrafish brain caused a decrease in mitochondrial respiration, but these effects were not seen after acute in vivo exposure. Results may have differed because in vivo exposure allows for fish to mitigate effects through mechanisms that could include mitomiR regulation, and because fish were only acutely exposed. Environ Toxicol Chem 2024;43:1569-1582. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Karyn Robichaud
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Leslie M Bragg
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
22
|
Canale P, Borghini A. Mitochondrial microRNAs: New Emerging Players in Vascular Senescence and Atherosclerotic Cardiovascular Disease. Int J Mol Sci 2024; 25:6620. [PMID: 38928325 PMCID: PMC11204228 DOI: 10.3390/ijms25126620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play an important role by controlling gene expression in the cytoplasm in almost all biological pathways. Recently, scientists discovered that miRNAs are also found within mitochondria, the energy-producing organelles of cells. These mitochondrial miRNAs, known as mitomiRs, can originate from the nuclear or mitochondrial genome, and they are pivotal in controlling mitochondrial function and metabolism. New insights indicate that mitomiRs may influence key aspects of the onset and progression of cardiovascular disease, especially concerning mitochondrial function and metabolic regulation. While the importance of mitochondria in cardiovascular health and disease is well-established, our understanding of mitomiRs' specific functions in crucial biological pathways, including energy metabolism, oxidative stress, inflammation, and cell death, is still in its early stages. Through this review, we aimed to delve into the mechanisms of mitomiR generation and their impacts on mitochondrial metabolic pathways within the context of vascular cell aging and atherosclerotic cardiovascular disease. The relatively unexplored field of mitomiR biology holds promise for future research investigations, with the potential to yield novel diagnostic tools and therapeutic interventions.
Collapse
Affiliation(s)
- Paola Canale
- Health Science Interdisciplinary Center, Sant’Anna School of Advanced Studies, 56124 Pisa, Italy;
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy
| | | |
Collapse
|
23
|
Yap XL, Chen JA. Elucidation of how the Mir-23-27-24 cluster regulates development and aging. Exp Mol Med 2024; 56:1263-1271. [PMID: 38871817 PMCID: PMC11263685 DOI: 10.1038/s12276-024-01266-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
MicroRNAs (miRNAs) are pivotal regulators of gene expression and are involved in biological processes spanning from early developmental stages to the intricate process of aging. Extensive research has underscored the fundamental role of miRNAs in orchestrating eukaryotic development, with disruptions in miRNA biogenesis resulting in early lethality. Moreover, perturbations in miRNA function have been implicated in the aging process, particularly in model organisms such as nematodes and flies. miRNAs tend to be clustered in vertebrate genomes, finely modulating an array of biological pathways through clustering within a single transcript. Although extensive research of their developmental roles has been conducted, the potential implications of miRNA clusters in regulating aging remain largely unclear. In this review, we use the Mir-23-27-24 cluster as a paradigm, shedding light on the nuanced physiological functions of miRNA clusters during embryonic development and exploring their potential involvement in the aging process. Moreover, we advocate further research into the intricate interplay among miRNA clusters, particularly the Mir-23-27-24 cluster, in shaping the regulatory landscape of aging.
Collapse
Affiliation(s)
- Xin Le Yap
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-An Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
24
|
Tang Y, Wu J, Sun X, Tan S, Li W, Yin S, Liu L, Chen Y, Liu Y, Tan Q, Jiang Y, Yang W, Huang W, Weng C, Wu Q, Lu Y, Yuan H, Xiao Q, Chen AF, Xu Q, Billiar TR, Cai J. Cardiolipin oxidized by ROS from complex II acts as a target of gasdermin D to drive mitochondrial pore and heart dysfunction in endotoxemia. Cell Rep 2024; 43:114237. [PMID: 38753484 DOI: 10.1016/j.celrep.2024.114237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Cardiac dysfunction, an early complication of endotoxemia, is the major cause of death in intensive care units. No specific therapy is available at present for this cardiac dysfunction. Here, we show that the N-terminal gasdermin D (GSDMD-N) initiates mitochondrial apoptotic pore and cardiac dysfunction by directly interacting with cardiolipin oxidized by complex II-generated reactive oxygen species (ROS) during endotoxemia. Caspase-4/11 initiates GSDMD-N pores that are subsequently amplified by the upregulation and activation of NLRP3 inflammation through further generation of ROS. GSDMD-N pores form prior to BAX and VDAC1 apoptotic pores and further incorporate into BAX and VDAC1 oligomers within mitochondria membranes to exacerbate the apoptotic process. Our findings identify oxidized cardiolipin as the definitive target of GSDMD-N in mitochondria of cardiomyocytes during endotoxin-induced myocardial dysfunction (EIMD), and modulation of cardiolipin oxidation could be a therapeutic target early in the disease process to prevent EIMD.
Collapse
Affiliation(s)
- Yan Tang
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China; Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Junru Wu
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xuejing Sun
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shasha Tan
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenbo Li
- Department of Plastic and Aesthetic (Burn) Surgery, the Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Siyu Yin
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Lun Liu
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yuanyuan Chen
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yuanyuan Liu
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qian Tan
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Youxiang Jiang
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenjing Yang
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wei Huang
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Chunyan Weng
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qing Wu
- Center for High-Performance Computing, Central South University, Changsha 410000, China
| | - Yao Lu
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Hong Yuan
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts, and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Alex F Chen
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China; Department of Cardiology, Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Jingjing Cai
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
25
|
Li D, Gao X, Ma X, Wang M, Cheng C, Xue T, Gao F, Shen Y, Zhang J, Liu Q. Aging-induced tRNA Glu-derived fragment impairs glutamate biosynthesis by targeting mitochondrial translation-dependent cristae organization. Cell Metab 2024; 36:1059-1075.e9. [PMID: 38458203 DOI: 10.1016/j.cmet.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/31/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Mitochondrial cristae, infoldings of the mitochondrial inner membrane, undergo aberrant changes in their architecture with age. However, the underlying molecular mechanisms and their contribution to brain aging are largely elusive. Here, we observe an age-dependent accumulation of Glu-5'tsRNA-CTC, a transfer-RNA-derived small RNA (tsRNA), derived from nuclear-encoded tRNAGlu in the mitochondria of glutaminergic neurons. Mitochondrial Glu-5'tsRNA-CTC disrupts the binding of mt-tRNALeu and leucyl-tRNA synthetase2 (LaRs2), impairing mt-tRNALeu aminoacylation and mitochondria-encoded protein translation. Mitochondrial translation defects disrupt cristae organization, leading to damaged glutaminase (GLS)-dependent glutamate formation and reduced synaptosomal glutamate levels. Moreover, reduction of Glu-5'tsRNA-CTC protects aged brains from age-related defects in mitochondrial cristae organization, glutamate metabolism, synaptic structures, and memory. Thus, beyond illustrating a physiological role for normal mitochondrial cristae ultrastructure in maintaining glutamate levels, our study defines a pathological role for tsRNAs in brain aging and age-related memory decline.
Collapse
Affiliation(s)
- Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xinyi Gao
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiaolin Ma
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ming Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chuandong Cheng
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tian Xue
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Feng Gao
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Yong Shen
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230026, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
26
|
Xie R, Yuan S, Hu G, Zhan J, Jin K, Tang Y, Fan J, Zhao Y, Wang F, Chen C, Wang DW, Li H. Nuclear AGO2 promotes myocardial remodeling by activating ANKRD1 transcription in failing hearts. Mol Ther 2024; 32:1578-1594. [PMID: 38475992 PMCID: PMC11081878 DOI: 10.1016/j.ymthe.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/01/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
Heart failure (HF) is manifested by transcriptional and posttranscriptional reprogramming of critical genes. Multiple studies have revealed that microRNAs could translocate into subcellular organelles such as the nucleus to modify gene expression. However, the functional property of subcellular Argonaute2 (AGO2), the core member of the microRNA machinery, has remained elusive in HF. AGO2 was found to be localized in both the cytoplasm and nucleus of cardiomyocytes, and robustly increased in the failing hearts of patients and animal models. We demonstrated that nuclear AGO2 rather than cytosolic AGO2 overexpression by recombinant adeno-associated virus (serotype 9) with cardiomyocyte-specific troponin T promoter exacerbated the cardiac dysfunction in transverse aortic constriction (TAC)-operated mice. Mechanistically, nuclear AGO2 activates the transcription of ANKRD1, encoding ankyrin repeat domain-containing protein 1 (ANKRD1), which also has a dual function in the cytoplasm as part of the I-band of the sarcomere and in the nucleus as a transcriptional cofactor. Overexpression of nuclear ANKRD1 recaptured some key features of cardiac remodeling by inducing pathological MYH7 activation, whereas cytosolic ANKRD1 seemed cardioprotective. For clinical practice, we found ivermectin, an antiparasite drug, and ANPep, an ANKRD1 nuclear location signal mimetic peptide, were able to prevent ANKRD1 nuclear import, resulting in the improvement of cardiac performance in TAC-induced HF.
Collapse
Affiliation(s)
- Rong Xie
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Shuai Yuan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Guo Hu
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiabing Zhan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Kunying Jin
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yuyan Tang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiahui Fan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yanru Zhao
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Feng Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
27
|
Lin X, Zhou Y, Xue L. Mitochondrial complex I subunit MT-ND1 mutations affect disease progression. Heliyon 2024; 10:e28808. [PMID: 38596130 PMCID: PMC11002282 DOI: 10.1016/j.heliyon.2024.e28808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Mitochondrial respiratory chain complex I is an important component of the oxidative respiratory chain, with the mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1 (MT-ND1) being one of the core subunits. MT-ND1 plays a role in the assembly of complex I and its enzymatic function. MT-ND1 gene mutation affects pathophysiological processes, such as interfering with the early assembly of complex I, affecting the ubiquinone binding domain and proton channel of complex I, and affecting oxidative phosphorylation, thus leading to the occurrence of diseases. The relationship between MT-ND1 gene mutation and disease has been has received increasing research attention. Therefore, this article reviews the impact of MT-ND1 mutations on disease progression, focusing on the impact of such mutations on diseases and their possible mechanisms, as well as the application of targeting MT-ND1 gene mutations in disease diagnosis and treatment. We aim to provide a new perspective leading to a more comprehensive understanding of the relationship between MT-ND1 gene mutations and diseases.
Collapse
Affiliation(s)
- Xi Lin
- Department of Pathology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Lei Xue
- Department of Pathology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| |
Collapse
|
28
|
Zhan J, Jin K, Xie R, Fan J, Tang Y, Chen C, Li H, Wang DW. AGO2 Protects Against Diabetic Cardiomyopathy by Activating Mitochondrial Gene Translation. Circulation 2024; 149:1102-1120. [PMID: 38126189 DOI: 10.1161/circulationaha.123.065546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Diabetes is associated with cardiovascular complications. microRNAs translocate into subcellular organelles to modify genes involved in diabetic cardiomyopathy. However, functional properties of subcellular AGO2 (Argonaute2), a core member of miRNA machinery, remain elusive. METHODS We elucidated the function and mechanism of subcellular localized AGO2 on mouse models for diabetes and diabetic cardiomyopathy. Recombinant adeno-associated virus type 9 was used to deliver AGO2 to mice through the tail vein. Cardiac structure and functions were assessed by echocardiography and catheter manometer system. RESULTS AGO2 was decreased in mitochondria of diabetic cardiomyocytes. Overexpression of mitochondrial AGO2 attenuated diabetes-induced cardiac dysfunction. AGO2 recruited TUFM, a mitochondria translation elongation factor, to activate translation of electron transport chain subunits and decrease reactive oxygen species. Malonylation, a posttranslational modification of AGO2, reduced the importing of AGO2 into mitochondria in diabetic cardiomyopathy. AGO2 malonylation was regulated by a cytoplasmic-localized short isoform of SIRT3 through a previously unknown demalonylase function. CONCLUSIONS Our findings reveal that the SIRT3-AGO2-CYTB axis links glucotoxicity to cardiac electron transport chain imbalance, providing new mechanistic insights and the basis to develop mitochondria targeting therapies for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jiabing Zhan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.Z.)
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University, China (J.Z.)
| | - Kunying Jin
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Rong Xie
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Jiahui Fan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Yuyan Tang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| |
Collapse
|
29
|
Anand A, Chauhan S, Chodon A, Vimala Kumar KV, Saravanakumar S, Pandi G. Evidence of microRNAs origination from chloroplast genome and their role in regulating Photosystem II protein N (psbN) mRNA. BIOTECHNOLOGIA 2024; 105:19-32. [PMID: 38633894 PMCID: PMC11020153 DOI: 10.5114/bta.2024.135639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 04/19/2024] Open
Abstract
The microRNAs are endogenous, regulating gene expression either at the DNA or RNA level. Despite the availability of extensive studies on microRNA generation in plants, reports on their abundance, biogenesis, and consequent gene regulation in plant organelles remain naVve. Building on previous studies involving pre-miRNA sequencing in Abelmoschus esculentus, we demonstrated that three putative microRNAs were raised from the chloroplast genome. In the current study, we have characterized the genesis of these three microRNAs through a combination of bioinformatics and experimental approaches. The gene sequence for a miRNA, designated as AecpmiRNA1 (A. esculentus chloroplast miRNA), is potentially located in both the genomic DNA, i.e., nuclear and chloroplast genome. In contrast, the gene sequences for the other two miRNAs (AecpmiRNA2 and AecpmiRNA3) are exclusively present in the chloroplast genome. Target prediction revealed many potential mRNAs as targets for AecpmiRNAs. Further analysis using 5' RACE-PCR determined the AecpmiRNA3 binding and cleavage site at the photosystem II protein N (psbN). These results indicate that AecpmiRNAs are generated from the chloroplast genome, possessing the potential to regulate mRNAs arising from chloroplast gene(s). On the other side, the possibility of nuclear genome-derived mRNA regulation by AecpmiRNAs cannot be ruled out.
Collapse
Affiliation(s)
- Asha Anand
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka, India
| | - Shailja Chauhan
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Aparna Chodon
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | | | - S. Saravanakumar
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Gopal Pandi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
30
|
Chen J, Chen Z, Li Y, Wang B, Lu Y, Jian J, Tang J, Cai J. Characterization and functional analysis of SOCS9 from orange-spotted grouper (Epinephelus coioides) during virus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109424. [PMID: 38311091 DOI: 10.1016/j.fsi.2024.109424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/07/2024] [Accepted: 02/02/2024] [Indexed: 02/06/2024]
Abstract
The suppressor of cytokine signaling (SOCS) proteins family have twelve members including eight known mammalian SOCS members (CISH, SOCS1-7) and four new discovery members (SOCS3b, SOCS5b, SOCS8 and SOCS9) that is regarded as a classic feedback inhibitor of cytokine signaling. Although the function of the mammalian SOCS proteins have been well studied, little is known about the roles of SOCS in fish during viral infection. In this study, the molecular characteristics of SOCS9 from orange-spotted grouper (Epinephelus coioides, EcSOCS9) is investigated. The EcSOCS9 protein encoded 543 amino acids with typical SH2 (389-475aa) and SOCS_box (491-527aa), sharing high identities with reported fish SOCS9. EcSOCS9 was expressed in all detected tissues and highly expressed in kidney. After red-spotted grouper nervous necrosis virus (RGNNV) infection, the expression of EcSOCS9 was significantly induced in vitro. Furthermore, EcSOCS9 overexpression enhanced RGNNV replication, promoted virus-induced mitophagy that evidenced by the increased level of LC3-Ⅱ, BCL2, PGAM5 and decreased level of BNIP3 and FUNDC1. Besides, EcSOCS9 overexpression suppressed the expression levels of ATP6, CYB, ND4, ATP level and induced ROS level. The expression levels of interferon (IFN) related factors (IRF1, IRF3, IRF7, P53), inflammatory factors (IL1-β, IL8, TLR2, TNF-α) and IFN-3, ISRE, NF-κB, AP1 activities were also reduced by overexpressing EcSOCS9. These date suggests that EcSOCS9 impacts RGNNV infection through modulating mitophagy, regulating the expression levels of IFN- related and inflammatory factors, which will expand our understanding of fish immune responses during viral infection.
Collapse
Affiliation(s)
- Junxi Chen
- College of Fisheries, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China
| | - Zhaofeng Chen
- College of Fisheries, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China
| | - Yi Li
- College of Fisheries, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China
| | - Bei Wang
- College of Fisheries, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China
| | - Yishan Lu
- College of Fisheries, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China
| | - Jichang Jian
- College of Fisheries, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China
| | - Jufen Tang
- College of Fisheries, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China
| | - Jia Cai
- College of Fisheries, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning, 530007, PR China.
| |
Collapse
|
31
|
Xu H, Li W, Wang D. The promising role of miRNAs in radioresistance and chemoresistance of nasopharyngeal carcinoma. Front Oncol 2024; 14:1299249. [PMID: 38482204 PMCID: PMC10933132 DOI: 10.3389/fonc.2024.1299249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/05/2024] [Indexed: 01/03/2025] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor that develops in the nasopharynx. It has a distinct ethnic and geographical distribution, and emerging evidence suggests that it is an ecological disease. Most patients respond well to radiation combined with chemotherapy as the primary treatment for NPC. However, some patients will eventually develop radio resistance and chemoresistance, resulting in recurrence and metastasis, which is a primary cause of poor prognosis. The processes underlying radio resistance and chemoresistance in NPC are complex and unknown. MicroRNAs (miRNAs) are endogenic non-coding RNA molecules. They play a role in a variety of cell functions as well as development of disease such as cancer. There has been considerable data demonstrating the existence of numerous aberrant miRNAs in cancer tissues, cells, and biofluids, which indicates the importance of studying the influence of miRNAs on NPC. Therefore, this review comprehensively analyzes the elaborate mechanisms of miRNAs affecting the radio resistance and chemoresistance of NPC. Multiple tumor-specific miRNAs can be employed as therapeutic and prognostic biological indicators.
Collapse
Affiliation(s)
| | | | - Dehui Wang
- Department of Otolaryngology - Head and Neck Surgery, Affiliated Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Lin YH, Su CH, Chen HM, Wu MS, Pan HA, Chang CN, Cheng YS, Chang WT, Chiu CC, Teng YN. MicroRNA-320a enhances LRWD1 expression through the AGO2/FXR1-dependent pathway to affect cell behaviors and the oxidative stress response in human testicular embryonic carcinoma cells. Aging (Albany NY) 2024; 16:3973-3988. [PMID: 38385979 PMCID: PMC10929808 DOI: 10.18632/aging.205571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/26/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND Testicular cancer is fairly rare but can affect fertility in adult males. Leucine-rich repeats- and WD repeat domain-containing protein 1 (LRWD1) is a sperm-specific marker that mainly affects sperm motility in reproduction. Our previous study demonstrated the impact of LRWD1 on testicular cancer development; however, the underlying mechanisms remain unclear. METHODS In this study, various plasmids associated with LRWD1 and miR-320a manipulation were used to explore the roles and regulatory effects of these molecules in NT2D1 cellular processes. A Dual-Glo luciferin-luciferase system was used to investigate LRWD1 transcriptional activity, and qRT-PCR and western blotting were used to determine gene and protein expression. RESULTS The results suggested that miR-320a positively regulated LRWD1 and positively correlated with NT2D1 cell proliferation but negatively correlated with cell migration and invasion ability. In addition, the miRNA-ribonucleoprotein complex AGO2/FXR1 was shown to be essential in the mechanism by which miR-320a regulates LRWD1 mRNA expression. As miR-320a was required to regulate LRWD1 expression through the AGO2 and FXR1 complex, eEF2 and eLF4E were also found to be involved in miR-320a increasing LRWD1 expression. Furthermore, miR-320a and LRWD1 were responsive to oxidative stress, and NRF2 was affected by the presence of miR-320a in response to ROS stimulation. CONCLUSIONS This is the first study showing the role of miR-320a in upregulating the testicular cancer-specific regulator LRWD1 and the importance of the AGO2/FXR1 complex in miR-320a-mediated upregulation of LRWD1 during testicular cancer progression.
Collapse
Affiliation(s)
- Yi-Hsiung Lin
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Hui Su
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan
| | - Hsin-Mei Chen
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan
| | - Ming-Syuan Wu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan
| | - Hsien-An Pan
- An-An Women and Children Clinic, Tainan 704, Taiwan
| | - Chia-Ning Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan
| | - Yu-Sheng Cheng
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Tsan Chang
- Department of Surgery, Division of General and Digestive Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan
| |
Collapse
|
33
|
Nikitchina N, Ulashchik E, Shmanai V, Heckel AM, Tarassov I, Mazunin I, Entelis N. Targeting of CRISPR-Cas12a crRNAs into human mitochondria. Biochimie 2024; 217:74-85. [PMID: 37690471 DOI: 10.1016/j.biochi.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Mitochondrial gene editing holds great promise as a therapeutic approach for mitochondrial diseases caused by mutations in the mitochondrial DNA (mtDNA). Current strategies focus on reducing mutant mtDNA heteroplasmy levels through targeted cleavage or base editing. However, the delivery of editing components into mitochondria remains a challenge. Here we investigate the import of CRISPR-Cas12a system guide RNAs (crRNAs) into human mitochondria and study the structural requirements for this process by northern blot analysis of RNA isolated from nucleases-treated mitoplasts. To investigate whether the fusion of crRNA with known RNA import determinants (MLS) improve its mitochondrial targeting, we added MLS hairpin structures at 3'-end of crRNA and demonstrated that this did not impact crRNA ability to program specific cleavage of DNA in lysate of human cells expressing AsCas12a nuclease. Surprisingly, mitochondrial localization of the fused crRNA molecules was not improved compared to non-modified version, indicating that structured scaffold domain of crRNA can probably function as MLS, assuring crRNA mitochondrial import. Then, we designed a series of crRNAs targeting different regions of mtDNA and demonstrated their ability to program specific cleavage of mtDNA fragments in cell lysate and their partial localization in mitochondrial matrix in human cells transfected with these RNA molecules. We hypothesize that mitochondrial import of crRNAs may depend on their secondary structure/sequence. We presume that imported crRNA allow reconstituting the active crRNA/Cas12a system in human mitochondria, which can contribute to the development of effective strategies for mitochondrial gene editing and potential future treatment of mitochondrial diseases.
Collapse
Affiliation(s)
- Natalia Nikitchina
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France
| | - Egor Ulashchik
- Institute of Physical Organic Chemistry, National Academy of Science of Belarus, Minsk, 220072, Belarus
| | - Vadim Shmanai
- Institute of Physical Organic Chemistry, National Academy of Science of Belarus, Minsk, 220072, Belarus
| | - Anne-Marie Heckel
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France
| | - Ivan Tarassov
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France
| | - Ilya Mazunin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| | - Nina Entelis
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France.
| |
Collapse
|
34
|
Jiang SD, Wang L, Wang L, Sun J, Wang JJ, Wei DD. Mitochondrial coding genes mediate insecticide tolerance in the oriental fruit fly, Bactrocera dorsalis (Hendel). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105763. [PMID: 38458663 DOI: 10.1016/j.pestbp.2023.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/06/2023] [Accepted: 12/26/2023] [Indexed: 03/10/2024]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), an invasive insect pest infesting fruits and vegetables, possesses a remarkable capacity for environmental adaptation. The investigation of behind mechanisms of the stress adaptability in B. dorsalis holds significantly practical relevance. Previous studies on the molecular mechanism underlying stress resistance in B. dorsalis have predominantly focused on nuclear-coding genes, with limited exploration on organelle-coding genes. In this study, we assessed alterations in the mitochondrial physiological parameters of B. dorsalis under exposure to malathion, avermectin, and beta-cypermethrin at LD50 dosages. The results showed that all three insecticides were capable of reducing mitochondrial complex IV activity and ATP content. Expression patterns of mitochondrial coding genes across different developmental stages, tissues and insecticide exposures were analyzed by RT-qPCR. The results revealed that these mitochondrial coding genes were expressed in various tissues and at different developmental stages. Particularly noteworthy, atp6, cox2, and cytb exhibited substantial up-regulation in response to malathion and avermectin treatment. Furthermore, RNAi-mediated knockdown of atp6 and cox2 resulted in the increased toxicity of malathion and avermectin against B. dorsalis, and cox2 silencing was also associated with the decreased complex IV activity. These findings suggest that atp6 and cox2 most likely play pivotal roles in mediating tolerance or resistance to malathion and avermectin in B. dorsalis. Our results provide novel insights into the role of mitochondrial coding genes in conferring tolerance to insecticides in B. dorsalis, with practical implications for controlling this pest in the field.
Collapse
Affiliation(s)
- Shi-Die Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Lei Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Jun Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
35
|
Luo L, An X, Xiao Y, Sun X, Li S, Wang Y, Sun W, Yu D. Mitochondrial-related microRNAs and their roles in cellular senescence. Front Physiol 2024; 14:1279548. [PMID: 38250662 PMCID: PMC10796628 DOI: 10.3389/fphys.2023.1279548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Aging is a natural aspect of mammalian life. Although cellular mortality is inevitable, various diseases can hasten the aging process, resulting in abnormal or premature senescence. As cells age, they experience distinctive morphological and biochemical shifts, compromising their functions. Research has illuminated that cellular senescence coincides with significant alterations in the microRNA (miRNA) expression profile. Notably, a subset of aging-associated miRNAs, originally encoded by nuclear DNA, relocate to mitochondria, manifesting a mitochondria-specific presence. Additionally, mitochondria themselves house miRNAs encoded by mitochondrial DNA (mtDNA). These mitochondria-residing miRNAs, collectively referred to as mitochondrial miRNAs (mitomiRs), have been shown to influence mtDNA transcription and protein synthesis, thereby impacting mitochondrial functionality and cellular behavior. Recent studies suggest that mitomiRs serve as critical sensors for cellular senescence, exerting control over mitochondrial homeostasis and influencing metabolic reprogramming, redox equilibrium, apoptosis, mitophagy, and calcium homeostasis-all processes intimately connected to senescence. This review synthesizes current findings on mitomiRs, their mitochondrial targets, and functions, while also exploring their involvement in cellular aging. Our goal is to shed light on the potential molecular mechanisms by which mitomiRs contribute to the aging process.
Collapse
Affiliation(s)
- Ling Luo
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yinghui Xiao
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiguang Sun
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yingzhao Wang
- Department of Neurology, Qianwei Hospital of Jilin Province, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
36
|
Yin R, Lu H, Cao Y, Zhang J, Liu G, Guo Q, Kai X, Zhao J, Wei Y. The Mechanisms of miRNAs on Target Regulation and their Recent Advances in Atherosclerosis. Curr Med Chem 2024; 31:5779-5804. [PMID: 37807413 DOI: 10.2174/0109298673253678230920054220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/25/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023]
Abstract
miRNAs are crucial regulators in a variety of physiological and pathological processes, while their regulation mechanisms were usually described as negatively regulating gene expression by targeting the 3'-untranslated region(3'-UTR) of target gene miRNAs through seed sequence in tremendous studies. However, recent evidence indicated the existence of non-canonical mechanisms mediated by binding other molecules besides mRNAs. Additionally, accumulating evidence showed that functions of intracellular and intercellular miRNAs exhibited spatiotemporal patterns. Considering that detailed knowledge of the miRNA regulating mechanism is essential for understanding the roles and further clinical applications associated with their dysfunction and dysregulation, which is complicated and not fully clarified. Based on that, we summarized the recently reported regulation mechanisms of miRNAs, including recognitions, patterns of actions, and chemical modifications. And we also highlight the novel findings of miRNAs in atherosclerosis progression researches to provide new insights for non-coding RNA-based therapy in intractable diseases.
Collapse
Affiliation(s)
- Runting Yin
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Hongyu Lu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yixin Cao
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jia Zhang
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Geng Liu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Qian Guo
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Xinyu Kai
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Jiemin Zhao
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| |
Collapse
|
37
|
Freitas RM, Felipe SMS, Ribeiro JKC, Araújo VR, Martin CPS, Oliveira MAF, Martins SD, Pontes JPA, Alves JO, Soares PM, Ceccatto VM. Evaluation of miRNAs regulation of BDNF and IGF1 genes in T2DM insulin resistance in experimental models: bioinformatics based approach. BRAZ J BIOL 2024; 84:e256691. [DOI: 10.1590/1519-6984.256691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract microRNAs (miRNAs) are recognized as diabetes mellitus type 2 (T2DM) biomarkers useful for disease metabolism comprehension and have great potential as therapeutics targets. BDNF and IGF1 increased expression are highly involved in the benefits of insulin and glucose paths, however, they are down-regulated in insulin resistance conditions, while their expression increase is correlated to the improvement of glucose and insulin metabolism. Studies suggest the microRNA regulation of these genes in several different contexts, providing a novel investigation approach for comprehending T2DM metabolism and revealing potential therapeutic targets. In the present study, we investigate in different animal models (human, rat, and mouse) miRNAs that target BDNF and IGF1 in skeletal muscle tissue with T2DM physiological conditions. Bioinformatics tools and databases were used to miRNA prediction, molecular homology, experimental validation of interactions, expression in the studied physiological condition, and network interaction. The findings showed three miRNAs candidates for IGF1(miR-29a, miR-29b, and miR-29c) and one for BDNF (miR-206). The experimental evaluations and the search for the expression in skeletal muscle from T2DM subjects confirmed the predicted interaction between miRNA-mRNA for miR-29b and miR-206 through human, rat, and mouse models. This interaction was reaffirmed in multiple network analyses. In conclusion, our results show the regulation relationship between miR-29b and miR-206 with the investigated genes, in several tissues, suggesting an inhibition pattern. Nevertheless, these data show a large number of possible interaction physiological processes, for future biotechnological prospects.
Collapse
|
38
|
Koopmans PJ, Ismaeel A, Goljanek-Whysall K, Murach KA. The roles of miRNAs in adult skeletal muscle satellite cells. Free Radic Biol Med 2023; 209:228-238. [PMID: 37879420 PMCID: PMC10911817 DOI: 10.1016/j.freeradbiomed.2023.10.403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Satellite cells are bona fide muscle stem cells that are indispensable for successful post-natal muscle growth and regeneration after severe injury. These cells also participate in adult muscle adaptation in several capacities. MicroRNAs (miRNAs) are post-transcriptional regulators of mRNA that are implicated in several aspects of stem cell function. There is evidence to suggest that miRNAs affect satellite cell behavior in vivo during development and myogenic progenitor behavior in vitro, but the role of miRNAs in adult skeletal muscle satellite cells is less studied. In this review, we provide evidence for how miRNAs control satellite cell function with emphasis on satellite cells of adult skeletal muscle in vivo. We first outline how miRNAs are indispensable for satellite cell viability and control the phases of myogenesis. Next, we discuss the interplay between miRNAs and myogenic cell redox status, senescence, and communication to other muscle-resident cells during muscle adaptation. Results from recent satellite cell miRNA profiling studies are also summarized. In vitro experiments in primary myogenic cells and cell lines have been invaluable for exploring the influence of miRNAs, but we identify a need for novel genetic tools to further interrogate how miRNAs control satellite cell behavior in adult skeletal muscle in vivo.
Collapse
Affiliation(s)
- Pieter Jan Koopmans
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40506, USA
| | - Katarzyna Goljanek-Whysall
- School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Kevin A Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
39
|
Bauer AN, Majumdar N, Williams F, Rajput S, Pokhrel LR, Cook PP, Akula SM. MicroRNAs: Small but Key Players in Viral Infections and Immune Responses to Viral Pathogens. BIOLOGY 2023; 12:1334. [PMID: 37887044 PMCID: PMC10604607 DOI: 10.3390/biology12101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Since the discovery of microRNAs (miRNAs) in C. elegans in 1993, the field of miRNA research has grown steeply. These single-stranded non-coding RNA molecules canonically work at the post-transcriptional phase to regulate protein expression. miRNAs are known to regulate viral infection and the ensuing host immune response. Evolving research suggests miRNAs are assets in the discovery and investigation of therapeutics and diagnostics. In this review, we succinctly summarize the latest findings in (i) mechanisms underpinning miRNA regulation of viral infection, (ii) miRNA regulation of host immune response to viral pathogens, (iii) miRNA-based diagnostics and therapeutics targeting viral pathogens and challenges, and (iv) miRNA patents and the market landscape. Our findings show the differential expression of miRNA may serve as a prognostic biomarker for viral infections in regard to predicting the severity or adverse health effects associated with viral diseases. While there is huge market potential for miRNA technology, the novel approach of using miRNA mimics to enhance antiviral activity or antagonists to inhibit pro-viral miRNAs has been an ongoing research endeavor. Significant hurdles remain in terms of miRNA delivery, stability, efficacy, safety/tolerability, and specificity. Addressing these challenges may pave a path for harnessing the full potential of miRNAs in modern medicine.
Collapse
Affiliation(s)
- Anais N. Bauer
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
| | - Niska Majumdar
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
| | - Frank Williams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
| | - Smit Rajput
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Lok R. Pokhrel
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Paul P. Cook
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Shaw M. Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| |
Collapse
|
40
|
Wang W, Zhang M, Ren X, Song Y, Xu Y, Zhuang K, Xiao T, Guo X, Wang S, Hong Q, Feng Z, Chen X, Cai G. Single-cell dissection of cellular and molecular features underlying mesenchymal stem cell therapy in ischemic acute kidney injury. Mol Ther 2023; 31:3067-3083. [PMID: 37533253 PMCID: PMC10556187 DOI: 10.1016/j.ymthe.2023.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) exert beneficial therapeutic effects in acute kidney injury (AKI), while the detailed repair mechanism remains unclear. Herein, we probed the underlying mechanisms of MSC therapy in AKI by performing unbiased single-cell RNA sequencing in IRI model with/without MSC treatment. Our analyses uncovered the tubular epithelial cells (TECs) and immune cells transcriptomic diversity and highlighted a repair trajectory involving renal stem/progenitor cell differentiation. Our findings also suggested that profibrotic TECs expressing pro-fibrotic factors such as Zeb2 and Pdgfb promoted the recruitment of inflammatory monocytes and Th17 cells to injured kidney tissue, inducing TGF-β1 secretion and renal fibrosis. Finally, in addition to activating the repair properties of renal progenitor/stem cells, we uncovered a role for MSC-derived miR-26a-5p in mediating the therapeutic effects of MSCs by inhibiting Zeb2 expression and suppressing pro-fibrotic TECs and its subsequent recruitment of immune cell subpopulations. These findings may help to optimize future AKI treatment strategies.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Min Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xuejing Ren
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Key Laboratory of Kidney Disease and Immunology, Academy of Medical Sciences, Zhengzhou, Henan 450001, China
| | - Yanqi Song
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Yue Xu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Kaiting Zhuang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Tuo Xiao
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xinru Guo
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Siyang Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Zhe Feng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| | - Guangyan Cai
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| |
Collapse
|
41
|
Zhang L, Miao M, Xu X, Bai M, Wu M, Zhang A. From Physiology to Pathology: The Role of Mitochondria in Acute Kidney Injuries and Chronic Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:342-357. [PMID: 37901706 PMCID: PMC10601966 DOI: 10.1159/000530485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/18/2023] [Indexed: 10/31/2023]
Abstract
Background Renal diseases remain an increasing public health issue affecting millions of people. The kidney is a highly energetic organ that is rich in mitochondria. Numerous studies have demonstrated the important role of mitochondria in maintaining normal kidney function and in the pathogenesis of various renal diseases, including acute kidney injuries (AKIs) and chronic kidney diseases (CKDs). Summary Under physiological conditions, fine-tuning mitochondrial energy balance, mitochondrial dynamics (fission and fusion processes), mitophagy, and biogenesis maintain mitochondrial fitness. While under AKI and CKD conditions, disruption of mitochondrial energy metabolism leads to increased oxidative stress. In addition, mitochondrial dynamics shift to excessive mitochondrial fission, mitochondrial autophagy is impaired, and mitochondrial biogenesis is also compromised. These mitochondrial injuries regulate renal cellular functions either directly or indirectly. Mitochondria-targeted approaches, containing genetic (microRNAs) and pharmaceutical methods (mitochondria-targeting antioxidants, mitochondrial permeability pore inhibitors, mitochondrial fission inhibitors, and biogenesis activators), are emerging as important therapeutic strategies for AKIs and CKDs. Key Messages Mitochondria play a critical role in the pathogenesis of AKIs and CKDs. This review provides an updated overview of mitochondrial homeostasis under physiological conditions and the involvement of mitochondrial dysfunction in renal diseases. Finally, we summarize the current status of mitochondria-targeted strategies in attenuating renal diseases.
Collapse
Affiliation(s)
- Lingge Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengqiu Miao
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyue Xu
- School of Medicine, Southeast University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengqiu Wu
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Dahiya N, Kaur M, Singh V. Potential roles of circulatory microRNAs in the onset and progression of renal and cardiac diseases: a focussed review for clinicians. Acta Cardiol 2023; 78:863-877. [PMID: 37318070 DOI: 10.1080/00015385.2023.2221150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 05/14/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
The signalling mechanisms involving the kidney and heart are a niche of networks causing pathological conditions inducing inflammation, reactive oxidative species, cell apoptosis, and organ dysfunction during the onset of clinical complications. The clinical manifestation of the kidney and heart depends on various biochemical processes that influence organ dysfunction coexistence through circulatory networks, which hold utmost importance. The cells of both organs also influence remote communication, and evidence states that it may be explicitly by circulatory small noncoding RNAs, i.e. microRNAs (miRNAs). Recent developments target miRNAs as marker panels for disease diagnosis and prognosis. Circulatory miRNAs expressed in renal and cardiac disease can reveal relevant information about the niche of networks and gene transcription and regulated networks. In this review, we discuss the pertinent roles of identified circulatory miRNAs regulating signal transduction pathways critical in the onset of renal and cardiac disease, which can hold promising future targets for clinical diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Neha Dahiya
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Manpreet Kaur
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| |
Collapse
|
43
|
Potel KN, Cornelius VA, Yacoub A, Chokr A, Donaghy CL, Kelaini S, Eleftheriadou M, Margariti A. Effects of non-coding RNAs and RNA-binding proteins on mitochondrial dysfunction in diabetic cardiomyopathy. Front Cardiovasc Med 2023; 10:1165302. [PMID: 37719978 PMCID: PMC10502732 DOI: 10.3389/fcvm.2023.1165302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Vascular complications are the main cause of diabetes mellitus-associated morbidity and mortality. Oxidative stress and metabolic dysfunction underly injury to the vascular endothelium and myocardium, resulting in diabetic angiopathy and cardiomyopathy. Mitochondrial dysfunction has been shown to play an important role in cardiomyopathic disruptions of key cellular functions, including energy metabolism and oxidative balance. Both non-coding RNAs and RNA-binding proteins are implicated in diabetic cardiomyopathy, however, their impact on mitochondrial dysfunction in the context of this disease is largely unknown. Elucidating the effects of non-coding RNAs and RNA-binding proteins on mitochondrial pathways in diabetic cardiomyopathy would allow further insights into the pathophysiological mechanisms underlying diabetic vascular complications and could facilitate the development of new therapeutic strategies. Stem cell-based models can facilitate the study of non-coding RNAs and RNA-binding proteins and their unique characteristics make them a promising tool to improve our understanding of mitochondrial dysfunction and vascular complications in diabetes.
Collapse
Affiliation(s)
- Koray N. Potel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Victoria A. Cornelius
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Andrew Yacoub
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Ali Chokr
- Faculty of Medicine, University of Picardie Jules Verne, Amiens, France
| | - Clare L. Donaghy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Sophia Kelaini
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Magdalini Eleftheriadou
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
44
|
Sun Q, Shi L, Li S, Li J, Zhang R, Huang X, Shao Y, Feng Z, Peng Y, Yang Z, Liu J, Liu H, Long J. PET117 assembly factor stabilizes translation activator TACO1 thereby upregulates mitochondria-encoded cytochrome C oxidase 1 synthesis. Free Radic Biol Med 2023; 205:13-24. [PMID: 37247699 DOI: 10.1016/j.freeradbiomed.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023]
Abstract
Cytochrome c oxidase, also known as complex IV, facilitates the transfer of electrons from cytochrome c to molecular oxygen, resulting in the production of ATP. The assembly of complex IV is a tightly regulated and intricate process that entails the coordinated synthesis and integration of subunits encoded by the mitochondria and nucleus into a functional complex. Accurate regulation of translation is crucial for maintaining proper mitochondrial function, and defects in this process can lead to a wide range of mitochondrial disorders and diseases. However, the mechanisms governing mRNA translation by mitoribosomes in mammals remain largely unknown. In this study, we elucidate the critical role of PET117, a chaperone protein involved in complex IV assembly, in the regulation of mitochondria-encoded cytochrome c oxidase 1 (COX1) protein synthesis in human cells. Depletion of PET117 reduced mitochondrial oxygen consumption rate and impaired mitochondrial function. PET117 was found to interact with and stabilize translational activator of COX1 (TACO1) and prevent its ubiquitination. TACO1 overexpression rescued the inhibitory effects on mitochondria caused by PET117 deficiency. These findings provide evidence for a novel PET117-TACO1 axis in the regulation of mitochondrial protein expression, and revealed a previously unknown role of PET117 in human cells.
Collapse
Affiliation(s)
- Qiong Sun
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Le Shi
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Shuaijun Li
- School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jialu Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Ruifen Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xinghuai Huang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yongping Shao
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhihui Feng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jiankang Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China
| | - Huadong Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| |
Collapse
|
45
|
Liu M, Ji W, Zhao X, Liu X, Hu JF, Cui J. Therapeutic potential of engineering the mitochondrial genome. Biochim Biophys Acta Mol Basis Dis 2023:166804. [PMID: 37429560 DOI: 10.1016/j.bbadis.2023.166804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Mitochondrial diseases are a group of clinical disorders caused by mutations in the genes encoded by either the nuclear or the mitochondrial genome involved in mitochondrial oxidative phosphorylation. Disorders become evident when mitochondrial dysfunction reaches a cell-specific threshold. Similarly, the severity of disorders is related to the degree of gene mutation. Clinical treatments for mitochondrial diseases mainly rely on symptomatic management. Theoretically, replacing or repairing dysfunctional mitochondria to acquire and preserve normal physiological functions should be effective. Significant advances have been made in gene therapies, including mitochondrial replacement therapy, mitochondrial genome manipulation, nuclease programming, mitochondrial DNA editing, and mitochondrial RNA interference. In this paper, we review the recent progress in these technologies by focusing on advancements that overcome limitations.
Collapse
Affiliation(s)
- Mengmeng Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Wei Ji
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Xin Zhao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Xiaoliang Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China.
| |
Collapse
|
46
|
Giosa D, Lombardo D, Musolino C, Chines V, Raffa G, Casuscelli di Tocco F, D'Aliberti D, Caminiti G, Saitta C, Alibrandi A, Aiese Cigliano R, Romeo O, Navarra G, Raimondo G, Pollicino T. Mitochondrial DNA is a target of HBV integration. Commun Biol 2023; 6:684. [PMID: 37400627 DOI: 10.1038/s42003-023-05017-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/05/2023] [Indexed: 07/05/2023] Open
Abstract
Hepatitis B virus (HBV) may integrate into the genome of infected cells and contribute to hepatocarcinogenesis. However, the role of HBV integration in hepatocellular carcinoma (HCC) development remains unclear. In this study, we apply a high-throughput HBV integration sequencing approach that allows sensitive identification of HBV integration sites and enumeration of integration clones. We identify 3339 HBV integration sites in paired tumour and non-tumour tissue samples from 7 patients with HCC. We detect 2107 clonally expanded integrations (1817 in tumour and 290 in non-tumour tissues), and a significant enrichment of clonal HBV integrations in mitochondrial DNA (mtDNA) preferentially occurring in the oxidative phosphorylation genes (OXPHOS) and D-loop region. We also find that HBV RNA sequences are imported into the mitochondria of hepatoma cells with the involvement of polynucleotide phosphorylase (PNPASE), and that HBV RNA might have a role in the process of HBV integration into mtDNA. Our results suggest a potential mechanism by which HBV integration may contribute to HCC development.
Collapse
Affiliation(s)
- Domenico Giosa
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Daniele Lombardo
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Cristina Musolino
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| | - Valeria Chines
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Giuseppina Raffa
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Francesca Casuscelli di Tocco
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Deborah D'Aliberti
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Giuseppe Caminiti
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Carlo Saitta
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | | | | | - Orazio Romeo
- Department of ChiBioFarAm, University of Messina, Messina, Italy
| | - Giuseppe Navarra
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| | - Giovanni Raimondo
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Teresa Pollicino
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy.
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy.
| |
Collapse
|
47
|
Li M, Gao Z, Wang S, Zhao Y, Xie H. miR‑27a‑3p upregulation by p65 facilitates cervical tumorigenesis by increasing TAB3 expression and is involved in the positive feedback loop of NF‑κB signaling. Oncol Rep 2023; 50:132. [PMID: 37203408 PMCID: PMC10236263 DOI: 10.3892/or.2023.8569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/04/2023] [Indexed: 05/20/2023] Open
Abstract
An altered microRNA (miRNA/miR)‑27a‑3p expression has been identified in cervical cancer, while the exact regulatory mechanisms responsible for the dysregulation of miR‑27a‑3p remain to be fully elucidated. In the present study, a NF‑κB/p65 binding site was identified upstream of the miR‑23a/27a/24‑2 cluster and p65 binding enhanced the transcription of pri‑miR‑23a/27a/24‑2, as well as the expression levels of mature miRNAs, including miR‑27a‑3p in HeLa cells. Mechanistically, using bioinformatics analyses and experimental validation, TGF‑β activated kinase 1 binding protein 3 (TAB3) was identified as a direct target of miR‑27a‑3p. By binding to the 3'UTR of TAB3, miR‑27a‑3p significantly enhanced TAB3 expression. Functionally, it was found that the overexpression of miR‑27a‑3p and TAB3 promoted the malignant potential of cervical cancer cells, as evaluated using cell growth, migration and invasion assays, and specific cell marker determinations in the epithelial mesenchymal transition progression, and vice versa. Further rescue experiments revealed that the enhanced malignant effects induced by miR‑27a‑3p were mediated via its upregulation of TAB3 expression. Moreover, miR‑27a‑3p and TAB3 also activated the NF‑κB signaling pathway and formed a positive feedback regulatory loop composing of p65/miR‑27a‑3p/TAB3/NF‑κB. On the whole, the findings presented herein may provide novel insight into the underlying cervical tumorigenesis and novel biomarker identification for clinical applications.
Collapse
Affiliation(s)
- Min Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Zixuan Gao
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Shuo Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sports, Tianjin 301617, P.R. China
| | - Yungang Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sports, Tianjin 301617, P.R. China
| | - Hong Xie
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P.R. China
| |
Collapse
|
48
|
Kong L, Zhou Y, Yuan J, Lv T, Yang J, Shi Y, Yang J. Mitochondrial miR-23b-5p is a new biomarker of warm ischaemic injury in donor livers and a candidate for graft evaluation: experimental studies. Int J Surg 2023; 109:1880-1892. [PMID: 37184476 PMCID: PMC10389456 DOI: 10.1097/js9.0000000000000263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/31/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Warm ischaemic injury (WII) stems from incorrect energy metabolism and is the main cause of graft dysfunction. Mitochondria, as the centre of cellular metabolic activities, may be the key in identifying accurate indicators for evaluating the quality of grafts. Our research focuses on the screening, clinical application, and mechanism of the optimal WII mitochondrion biomarker. APPROACH AND RESULTS Using a 100% hepatic warm ischaemia mouse model, without reperfusion, transmission electron microscopy demonstrated evident morphological changes of hepatic mitochondria at 15 min of ischaemia. However, all 13 mt-mRNAs could not display continuously upregulated consistency at 0-15-30-60 min during WII. High-throughput analysis of miRNA expression in both purified mitochondria and liver tissues suggested miR-23b-5p was a potential mitochondrial microRNA (mitomiR) biomarker with high sensitivity and 0-15-30-60 min change consistency. Fluorescence in-situ hybridization and reverse transcription quantitative polymerase chain reaction (RT-qPCR) further confirmed the results. Through overexpression and inhibition, the functionality of this mitomiR during WII was identified as a protective regulator in vitro and then verified in Dicer1 fl/fl Alb Cre mice by downregulation of other miRNAs and supplementation of mature mitomiR-23b-5p. Dual-luciferase reporter assay and the Seahorse XF analyzer determined that mitomiR-23b-5p reduced mitochondrial respiratory function by silencing mt-RNR2 (16S). Clinically, mitomiR-23b-5p was positively correlated with serum alanine aminotransferase levels 3 days after the operation ( P =0.032), and the C-statistic for 90-day graft survival rate was 0.698. CONCLUSIONS MitomiR-23b-5p plays a protective regulatory role and implements a special mitochondrial regulation mechanism not yet reported in WII. These clinical results further support the experimental result that the expression of MitomiR-23b-5p is closely related to the prognosis of clinical liver transplantation patients. This is a promising new biomarker for WII evaluation of donor livers.
Collapse
Affiliation(s)
- Lingxiang Kong
- Department of Liver transplantation Laboratory
- Department of Liver transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | | | - Jingsheng Yuan
- Department of Liver transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Tao Lv
- Department of Liver transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Jian Yang
- Department of Liver transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yujun Shi
- Department of Liver transplantation Laboratory
| | - Jiayin Yang
- Department of Liver transplantation Laboratory
- Department of Liver transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
49
|
Farina FM, Weber C, Santovito D. The emerging landscape of non-conventional RNA functions in atherosclerosis. Atherosclerosis 2023; 374:74-86. [PMID: 36725418 DOI: 10.1016/j.atherosclerosis.2023.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Most of the human genome is transcribed into non-coding RNAs (ncRNAs), which encompass a heterogeneous family of transcripts including microRNAs (miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and others. Although the detailed modes of action of some classes are not fully elucidated, the common notion is that ncRNAs contribute to sculpting gene expression of eukaryotic cells at multiple levels. These range from the regulation of chromatin remodeling and transcriptional activity to post-transcriptional regulation of messenger RNA splicing, stability, and decay. Many of these functions ultimately govern the expression of coding and non-coding genes to affect diverse physiological and pathological mechanisms in vascular biology and beyond. As such, different classes of ncRNAs emerged as crucial regulators of vascular integrity as well as active players in the pathophysiology of atherosclerosis from the early stages of endothelial dysfunction to the clinically relevant complications. However, research in recent years revealed unexpected findings such as small ncRNAs being able to biophysically regulate protein function, the glycosylation of ncRNAs to be exposed on the cell surface, the release of ncRNAs in the extracellular space to act as ligands of receptors, and even the ability of non-coding portion of messenger RNAs to mediate structural functions. This evidence expanded the functional repertoire of ncRNAs far beyond gene regulation and highlighted an additional layer of biological control of cell function. In this Review, we will discuss these emerging aspects of ncRNA biology, highlight the implications for the mechanisms of vascular biology and atherosclerosis, and discuss possible translational implications.
Collapse
Affiliation(s)
- Floriana Maria Farina
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| |
Collapse
|
50
|
Kobayashi A, Takeiwa T, Ikeda K, Inoue S. Roles of Noncoding RNAs in Regulation of Mitochondrial Electron Transport Chain and Oxidative Phosphorylation. Int J Mol Sci 2023; 24:9414. [PMID: 37298366 PMCID: PMC10253563 DOI: 10.3390/ijms24119414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The mitochondrial electron transport chain (ETC) plays an essential role in energy production by inducing oxidative phosphorylation (OXPHOS) to drive numerous biochemical processes in eukaryotic cells. Disorders of ETC and OXPHOS systems are associated with mitochondria- and metabolism-related diseases, including cancers; thus, a comprehensive understanding of the regulatory mechanisms of ETC and OXPHOS systems is required. Recent studies have indicated that noncoding RNAs (ncRNAs) play key roles in mitochondrial functions; in particular, some ncRNAs have been shown to modulate ETC and OXPHOS systems. In this review, we introduce the emerging roles of ncRNAs, including microRNAs (miRNAs), transfer-RNA-derived fragments (tRFs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in the mitochondrial ETC and OXPHOS regulation.
Collapse
Affiliation(s)
- Ami Kobayashi
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA;
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka 350-1241, Japan;
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan;
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka 350-1241, Japan;
| |
Collapse
|