1
|
Xu W, Wang Z, Liu T, Ma X, Jiao M, Zhao W, Yu L, Hua Y, Cai Z, Li J, Zhang T. Eurycomanone inhibits osteosarcoma growth and metastasis by suppressing GRP78 expression. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118709. [PMID: 39163893 DOI: 10.1016/j.jep.2024.118709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osteosarcoma (OS) is characterized by rapid growth and frequent pulmonary metastasis. Eurycoma longifolia Jack, a flowering plant primarily found in Southeast Asian countries, is commonly used in traditional herbal medicine. Its root extract is mainly used for against cancer, malaria, parasites and other conditions. The active compound in its root extract, eurycomanone (EUR), has been proven to inhibit lung and liver cancer proliferation. AIM OF THE STUDY Our research aimed to investigate the inhibitory effect and underlying molecular mechanism of EUR on OS growth and metastasis. MATERIALS AND METHODS In vitro experiments: western blotting (WB) screened 41 compounds that inhibited GRP78 expression and evaluated the protein levels of GRP78, PARP, cleaved-PARP, MMP2, and MMP9. Cell proliferation was evaluated using CCK-8, EdU, colony formation assay, and cell apoptosis was assessed by flow cytometry. Transwell, wound healing, and tube formation assays were performed to determine the effect of EUR on tumor invasion, migration, and angiogenesis, respectively. Quantitative real-time polymerase chain (qRT-PCR) and dual-luciferase activity assays detected GRP78 mRNA stability and transcription levels post-EUR and thapsigargin treatment. RNA-Seq identified signaling pathways inhibited by EUR. In vivo experiments: effects of EUR in mice were evaluated by H&E staining to detect lung metastasis and potential toxic effects in tissues. Immunohistochemical (IHC) staining detected the expression of Ki-67, CD31, and cleaved caspase-3 in tumors. RESULTS GRP78 is highly expressed in OS and correlated with poor prognosis. In vitro, eurycomanone (EUR) significantly downregulated GRP78 expression, inhibited cell proliferation, migration, invasion, tube formation, and induced apoptosis. Moreover, it enhanced trichostatin A (TSA) sensitivity and exhibited inhibitory effects on other cancer types. Mechanistically, EUR decreased GRP78 mRNA stability and transcription. In vivo, EUR inhibited proliferation and invasion in tibial and PDX models. CONCLUSIONS Our study demonstrated that EUR inhibits the growth and metastasis of OS by reducing GRP78 mRNA stability and inhibiting its transcription, which offers a novel approach for clinical treatment of OS.
Collapse
Affiliation(s)
- Wenyuan Xu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhuoying Wang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Tongtong Liu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xinglong Ma
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ming Jiao
- Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Weisong Zhao
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lingfeng Yu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Jingjie Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Tao Zhang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
2
|
Luo X, Shi J, Wang S, Jin X. The role of circular RNA targeting IGF2BPs in cancer-a potential target for cancer therapy. J Mol Med (Berl) 2024; 102:1297-1314. [PMID: 39287635 DOI: 10.1007/s00109-024-02488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/01/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Circular RNAs (circRNAs) are an interesting class of conserved single-stranded RNA molecules derived from exon or intron sequences produced by the reverse splicing of precursor mRNA. CircRNAs play important roles as microRNA sponges, gene splicing and transcriptional regulators, RNA-binding protein sponges, and protein/peptide translation factors. Abnormal functions of circRNAs and RBPs in tumor progression have been widely reported. Insulin-like growth factor-2 mRNA-binding proteins (IGF2BPs) are a highly conserved family of RBPs identified in humans that function as post-transcriptional fine-tuners of target transcripts. Emerging evidence suggests that IGF2BPs regulate the processing and metabolism of RNA, including its stability, translation, and localization, and participate in a variety of cellular functions and pathophysiology. In this review, we have summarized the roles and molecular mechanisms of circRNAs and IGF2BPs in cancer development and progression. In addition, we briefly introduce the role of other RNAs and IGF2BPs in cancer, discuss the current clinical applications and challenges faced by circRNAs and IGF2BPs, and propose future directions for this promising research field.
Collapse
Affiliation(s)
- Xia Luo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jiaxin Shi
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Siyuan Wang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Song M, Wang J, Hou J, Fu T, Feng Y, Lv W, Ge F, Peng R, Han D, Tan W. Multiplexed In Situ Imaging of Site-Specific m6A Methylation with Proximity Hybridization Followed by Primer Exchange Amplification (m6A-PHPEA). ACS NANO 2024; 18:27537-27546. [PMID: 39331796 DOI: 10.1021/acsnano.4c08407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Post-transcriptional modification of N6-methyladenosine (m6A) is crucial for ribonucleic acid (RNA) metabolism and cellular function. The ability to visualize site-specific m6A methylation at the single-cell level would markedly enhance our understanding of its pivotal regulatory functions in the field of epitranscriptomics. Despite this, current in situ imaging techniques for site-specific m6A are constrained, posing a significant barrier to epitranscriptomic studies and pathological diagnostics. Capitalizing on the precise targeting capability of deoxyribonucleic acid (DNA) hybridization and the high specificity of the m6A antibody, we present a method, termed proximity hybridization followed by primer exchange amplification (m6A-PHPEA), for the site-specific imaging of m6A methylation within cells. This approach enables high-resolution, single-cell imaging of m6A methylation across various RNA molecules coupled with efficient signal amplification. We successfully imaged three distinct m6A methylation sites concurrently in multiple cell types, revealing cell-to-cell variability in expression levels. This method promises to illuminate the dynamics of m6A-modified RNAs, potentially revolutionizing epitranscriptomic research and the development of advanced pathological diagnosis for chemical modifications.
Collapse
Affiliation(s)
- Minghui Song
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, P. R. China
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Junyan Wang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Jianing Hou
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ting Fu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Yawei Feng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Wenyi Lv
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Feng Ge
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Ruizi Peng
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Da Han
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Weihong Tan
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
4
|
Gunage R, Zon LI. Role of RNA modifications in blood development and regeneration. Exp Hematol 2024; 138:104279. [PMID: 39009277 DOI: 10.1016/j.exphem.2024.104279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Blood development and regeneration require rapid turnover of cells, and ribonucleic acid (RNA) modifications play a key role in it via regulating stemness and cell fate regulation. RNA modifications affect gene activity via posttranscriptional and translation-mediated mechanisms. Diverse molecular players involved in RNA-modification processes are abundantly expressed by hematopoietic stem cells and lineages. Close to 150 RNA chemical modifications have been reported, but only N6-methyl adenosine (m6A), inosine (I), pseudouridine (Ψ), and m1A-a handful-have been studied in-cell fate regulation. The role of RNA modification in blood diseases and disorders is an emerging field and offers potential for therapeutic interventions. Knowledge of RNA-modification and enzymatic activities could be used to design therapies in the future. Here, we summarized the recent advances in RNA modification and the epitranscriptome field and discussed their regulation of blood development and regeneration.
Collapse
Affiliation(s)
- Rajesh Gunage
- Stem Cell Program and Division of Hematology/Oncology, Department of Medicine, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Department of Medicine, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA.
| |
Collapse
|
5
|
An D, Han J, Fang P, Bu Y, Ji G, Liu M, Deng J, Song X. Evidence for the potential role of m6A modification in regulating autophagy in models of amyotrophic lateral sclerosis. Cytojournal 2024; 21:33. [PMID: 39411168 PMCID: PMC11474754 DOI: 10.25259/cytojournal_101_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Objective Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. Research indicates that N6-methyladenosine (m6A) modification plays a crucial role in cellular autophagy during ALS development. This study investigates the role of autophagy in ALS, with a focus on the effect of messenger ribonucleic acid m6A methylation modification on disease progression. Material and Methods We compared m6A levels and regulatory molecule expressions in transgenic superoxide dismutase (SOD1)-G93A and non-transgenic mice, categorized into end-stage and control groups, using quantitative polymerase chain reaction and Western blotting. The NSC-34 cell line, which was modified to model ALS, enabled the investigation of apoptosis, autophagy, and autophagy disruption through terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling assays, Western blotting, and fluorescent staining. Results Our findings indicate significantly elevated m6A methylation levels in ALS mice (0.262 ± 0.005) compared with the controls (0.231 ± 0.003) and in the ALS model cells (0.242±0.005) relative to those belonging to the wild-type control group (0.183 ± 0.007). Furthermore, the proteins involved in m6A RNA modification differed between groups, which suggest impaired autophagy flux in the ALS models. Conclusion These results suggest that m6A methylation may accelerate ALS progression through the disruption of autophagic processes. Our study underscores the role of m6A methylation in the pathology of ALS and proposes the targeting of m6A methylation as a potential therapeutic strategy for disease treatment. Although this study primarily used transgenic SOD1-G93A mice and NSC-34 cell models to investigate ALS pathology, potential differences in disease mechanisms between animal models and humans must be considered. Although a correlation was detected between m6A methylation levels and autophagy disruption in ALS, the study primarily established an association rather than provided detailed mechanistic insights.
Collapse
Affiliation(s)
- Di An
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Jingzhe Han
- Department of Neurology, Hengshui People’s Hospital, Hengshui, Hebei, China
| | - Pingping Fang
- Department of Neurology, Handan Central Hospital, Handan, Hebei, China
| | - Yi Bu
- Department of Neurology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Guang Ji
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mingjuan Liu
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinliang Deng
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xueqin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Yuan X, Su Y, Johnson B, Kirchner M, Zhang X, Xu S, Jiang S, Wu J, Shi S, Russo JJ, Chen Q, Zhang S. Mass Spectrometry-Based Direct Sequencing of tRNAs De Novo and Quantitative Mapping of Multiple RNA Modifications. J Am Chem Soc 2024; 146:25600-25613. [PMID: 39231532 PMCID: PMC11421004 DOI: 10.1021/jacs.4c07280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Despite the extensive use of next-generation sequencing (NGS) of RNA, simultaneous direct sequencing and quantitative mapping of multiple RNA nucleotide modifications remains challenging. Mass spectrometry (MS)-based sequencing can directly sequence all RNA modifications without being limited to specific ones, but it requires a perfect MS ladder that few tRNAs can provide. Here, we describe an MS ladder complementation sequencing approach (MLC-Seq) that circumvents the perfect ladder requirement, allowing de novo MS sequencing of full-length heterogeneous cellular tRNAs with multiple nucleotide modifications at single-nucleotide precision. Unlike NGS-based methods, which lose RNA modification information, MLC-Seq preserves RNA sequence diversity and modification information, revealing new detailed stoichiometric tRNA modification profiles and their changes upon treatment with the dealkylating enzyme AlkB. It can also be combined with reference sequences to provide quantitative analysis of diverse tRNAs and modifications in total tRNA samples. MLC-Seq enables systematic, quantitative, and site-specific mapping of RNA modifications, revealing the truly complete informational content of tRNA.
Collapse
Affiliation(s)
- Xiaohong Yuan
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Yue Su
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Benjamin Johnson
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Michele Kirchner
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Xudong Zhang
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah 84132, United States
| | - Sihang Xu
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Sophia Jiang
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Jing Wu
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Shundi Shi
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - James J Russo
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah 84132, United States
| | - Shenglong Zhang
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
7
|
Huang T, Zhang C, Ren J, Shuai Q, Li X, Li X, Xie J, Xu J. FTO-mediated m 6A demethylation of ULK1 mRNA promotes autophagy and activation of hepatic stellate cells in liver fibrosis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1509-1520. [PMID: 39175431 PMCID: PMC11532214 DOI: 10.3724/abbs.2024098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/07/2024] [Indexed: 08/24/2024] Open
Abstract
The activation of hepatic stellate cells (HSCs) is central to the occurrence and development of liver fibrosis. Our previous studies showed that autophagy promotes HSC activation and ultimately accelerates liver fibrosis. Unc-51-like autophagy activating kinase 1 (ULK1) is an autophagic initiator in mammals, and N 6-methyladenosine (m 6A) modification is closely related to autophagy. In this study, we find that the m 6A demethylase fat mass and obesity-associated protein (FTO), which is the m 6A methylase with the most significant difference in expression, is upregulated during HSC activation and bile duct ligation (BDL)-induced hepatic fibrosis. Importantly, we identify that FTO overexpression aggravates HSC activation and hepatic fibrosis via autophagy. Mechanistically, compared with other autophagy-related genes, ULK1 is a target of FTO because FTO mainly mediates the m 6A demethylation of ULK1 and upregulates its expression, thereby enhancing autophagy and the activation of HSCs. Notably, the m 6A reader YTH domain-containing protein 2 (YTHDC2) decreases ULK1 mRNA level by recognizing the m 6A binding site and ultimately inhibiting autophagy and HSC activation. Taken together, our findings highlight m 6A-dependent ULK1 as an essential regulator of HSC autophagy and reveal that ULK1 is a novel potential therapeutic target for hepatic fibrosis treatment.
Collapse
Affiliation(s)
- Tingjuan Huang
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationDepartment of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
| | - Chunhong Zhang
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationDepartment of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
| | - Junjie Ren
- Department of Gastroenterology and Hepatologythe First Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Qizhi Shuai
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationDepartment of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
| | - Xiaonan Li
- Department of Cancer Radiotherapy DepartmentShanxi Provincial People’s HospitalTaiyuan030001China
| | - Xuewei Li
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationDepartment of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
| | - Jun Xie
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationDepartment of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
| | - Jun Xu
- Department of Hepatopancreatobiliary Surgerythe First Hospital of Shanxi Medical UniversityTaiyuan030001China
| |
Collapse
|
8
|
Fu K, Jing C, Shi J, Mao S, Lu R, Yang M, Chen Y, Qian B, Wang Y, Li L. WTAP and METTL14 regulate the m6A modification of DKK3 in renal tubular epithelial cells of diabetic nephropathy. Biochem Biophys Res Commun 2024; 738:150524. [PMID: 39151294 DOI: 10.1016/j.bbrc.2024.150524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Diabetic nephropathy (DN) is an important cause of death in diabetes patients, which is mainly due to its complex pathogenesis. Here, we explored the role of N6-methyladenosine (m6A) RNA methylation in DN development. Renal tubular epithelial cells from DN patients and experimental DN mice treated with streptozotocin (STZ) exhibited a considerable increase in METTL14 and WTAP expression as well as overall m6A methylation. Knocking down the expression of METTL14 and WTAP inhibited the migration and proliferation of tubular epithelial cells. MeRIP-seq analysis of the renal tissues of DN patients revealed that the genes with elevated m6A methylation were concentrated in the Wnt/β-Catenin signaling pathway. Dickkopf homolog 3 (DKK3) was screened out as the gene with the most significant increase in m6A methylation. In addition, the expression change pattern of DKK3 under DN circumstances is in line with those of METTL14 and WTAP. DKK3's m6A methylation sites were confirmed to be located in the 3'UTR region, which is how METTL14 and WTAP improved DKK3's mRNA stability. Finally, YTHDF1, a m6A reader, was demonstrated to recognize m6A-methylated DKK3 and promote DKK3 expression.
Collapse
Affiliation(s)
- Kang Fu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Chenyang Jing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Jinsong Shi
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Shuya Mao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Rui Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Miao Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yang Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Bin Qian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yu Wang
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China.
| | - Limin Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
9
|
Li Z, Feng Y, Han H, Jiang X, Chen W, Ma X, Mei Y, Yuan D, Zhang D, Shi J. A Stapled Peptide Inhibitor Targeting the Binding Interface of N6-Adenosine-Methyltransferase Subunits METTL3 and METTL14 for Cancer Therapy. Angew Chem Int Ed Engl 2024; 63:e202402611. [PMID: 38607929 DOI: 10.1002/anie.202402611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/14/2024]
Abstract
METTL3, a primary methyltransferase catalyzing the RNA N6-methyladenosine (m6A) modification, has been identified as an oncogene in several cancer types and thus nominated as a potentially effective target for therapeutic inhibition. However, current options using this strategy are limited. In this study, we targeted protein-protein interactions at the METTL3-METTL14 binding interface to inhibit complex formation and subsequent catalysis of the RNA m6A modification. Among candidate peptides, RM3 exhibited the highest anti-cancer potency, inhibiting METTL3 activity while also facilitating its proteasomal degradation. We then designed a stapled peptide inhibitor (RSM3) with enhanced peptide stability and formation of the α-helical secondary structure required for METTL3 interaction. Functional and transcriptomic analysis in vivo indicated that RSM3 induced upregulation of programmed cell death-related genes while inhibiting cancer-promoting signals. Furthermore, tumor growth was significantly suppressed while apoptosis was enhanced upon RSM3 treatment, accompanied by increased METTL3 degradation, and reduced global RNA methylation levels in two in vivo tumor models. This peptide inhibitor thus exploits a mechanism distinct from other small-molecule competitive inhibitors to inhibit oncogenic METTL3 activity. Our findings collectively highlight the potential of targeting METTL3 in cancer therapies through peptide-based inhibition of complex formation and proteolytic degradation.
Collapse
Affiliation(s)
- Zenghui Li
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, China
- Greater Bay Area Institute for Innovation Institution, Guangzhou, 511300, Guangdong Province, China
| | - Yuqing Feng
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, China
- Shenzhen Research Institute, Hunan University, Shenzhen, 518000, Guangdong Province, China
| | - Hong Han
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, China
- Greater Bay Area Institute for Innovation Institution, Guangzhou, 511300, Guangdong Province, China
| | - Xingyue Jiang
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, China
- Greater Bay Area Institute for Innovation Institution, Guangzhou, 511300, Guangdong Province, China
| | - Weiyu Chen
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, China
- Greater Bay Area Institute for Innovation Institution, Guangzhou, 511300, Guangdong Province, China
| | - Xuezhen Ma
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, China
| | - Yang Mei
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, China
| | - Dan Yuan
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, China
- Greater Bay Area Institute for Innovation Institution, Guangzhou, 511300, Guangdong Province, China
| | - Dingxiao Zhang
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, China
- Shenzhen Research Institute, Hunan University, Shenzhen, 518000, Guangdong Province, China
| | - Junfeng Shi
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, China
- Greater Bay Area Institute for Innovation Institution, Guangzhou, 511300, Guangdong Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen, 518000, Guangdong Province, China
| |
Collapse
|
10
|
Mansfield KD. RNA Binding by the m6A Methyltransferases METTL16 and METTL3. BIOLOGY 2024; 13:391. [PMID: 38927271 PMCID: PMC11200852 DOI: 10.3390/biology13060391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Methyltransferases are a wide-ranging, yet well-conserved, class of molecules that have been found to modify a wide variety of substrates. Interest in RNA methylation has surged in recent years with the identification of the major eukaryotic mRNA m6A methyltransferase METTL3. METTL16 has also been identified as an RNA m6A methyltransferase; however, much less is known about its targets and actions. Interestingly, in addition to their catalytic activities, both METTL3 and METTL16 also have "methylation-independent" functions, including translational regulation, which have been discovered. However, evidence suggests that METTL16's role as an RNA-binding protein may be more significant than is currently recognized. In this review, we will introduce RNA methylation, specifically m6A, and the enzymes responsible for its deposition. We will discuss the varying roles that these enzymes perform and delve deeper into their RNA targets and possible roles as methylation-independent RNA binding proteins. Finally, we will touch upon the many open questions still remaining.
Collapse
Affiliation(s)
- Kyle D Mansfield
- Biochemistry and Molecular Biology Department, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
11
|
Han G, Lin Q, Yi J, Lyu Q, Ma Q, Qiao L. MazF-rolling circle amplification combined MALDI-TOF MS for site-specific detection of N 6-methyladenosine RNA. Anal Chim Acta 2024; 1303:342532. [PMID: 38609270 DOI: 10.1016/j.aca.2024.342532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
N6-methyladenosine (m6A) is one of the most abundant chemical modifications in RNA and has vital significance in cellular processes and tumor development. However, the accurate analysis of site-specific m6A modification remains a challenge. In this work, a MazF endoribonuclease activated rolling circle amplification (MazF-RCA) combined MALDI-TOF MS assay is developed for the detection of site-specific m6A-RNA. MazF endoribonuclease can specifically cleave the ACA motif, leaving methylated (m6A)CA motif intact. The intact methylated RNA can then be amplified through rolling circle amplification, and the generated reporter oligonucleotides are detected by MALDI-TOF MS. The assay exhibits good quantification ability, presenting a wide linear range (100 fM to 10 nM) with the limit-of-detection lower than 100 fM. Additionally, the assay can accurately detect methylated RNA in the presence of large amount of non-methylated RNA with a relative abundance of methylated RNA down to 0.5%. The developed assay was further applied to detect m6A-RNA spiked in MCF-7 cell RNA extracts, with the recovery rates in the range of 90.64-106.93%. The present assay provides a novel platform for the analysis of site-specific m6A-RNA at high specificity and sensitivity, which can promote the study of RNA methylation in clinical and biomedical research.
Collapse
Affiliation(s)
- Guobin Han
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Qiuyuan Lin
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Jia Yi
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Qian Lyu
- Bioyong Technologics, Inc., Beijing, 100176, China
| | - Qingwei Ma
- Bioyong Technologics, Inc., Beijing, 100176, China
| | - Liang Qiao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
12
|
Bai Y, Zhu Y, He X, Huang R, Xu X, Yang L, Wang Z, Zhu R. Size-Optimized Layered Double Hydroxide Nanoparticles Promote Neural Progenitor Cells Differentiation of Embryonic Stem Cells Through the Regulation of M 6A Methylation. Int J Nanomedicine 2024; 19:4181-4197. [PMID: 38766656 PMCID: PMC11100968 DOI: 10.2147/ijn.s463141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose The committed differentiation fate regulation has been a difficult problem in the fields of stem cell research, evidence showed that nanomaterials could promote the differentiation of stem cells into specific cell types. Layered double hydroxide (LDH) nanoparticles possess the regulation function of stem cell fate, while the underlying mechanism needs to be investigated. In this study, the process of embryonic stem cells (ESCs) differentiate to neural progenitor cells (NPCs) by magnesium aluminum LDH (MgAl-LDH) was investigated. Methods MgAl-LDH with diameters of 30, 50, and 100 nm were synthesized and characterized, and their effects on the cytotoxicity and differentiation of NPCs were detected in vitro. Dot blot and MeRIP-qPCR were performed to detect the level of m6A RNA methylation in nanoparticles-treated cells. Results Our work displayed that LDH nanoparticles of three different sizes were biocompatible with NPCs, and the addition of MgAl-LDH could significantly promote the process of ESCs differentiate to NPCs. 100 nm LDH has a stronger effect on promoting NPCs differentiation compared to 30 nm and 50 nm LDH. In addition, dot blot results indicated that the enhanced NPCs differentiation by MgAl-LDH was closely related to m6A RNA methylation process, and the major modification enzyme in LDH controlled NPCs differentiation may be the m6A RNA methyltransferase METTL3. The upregulated METTL3 by LDH increased the m6A level of Sox1 mRNA, enhancing its stability. Conclusion This work reveals that MgAl-LDH nanoparticles can regulate the differentiation of ESCs into NPCs by increasing m6A RNA methylation modification of Sox1.
Collapse
Affiliation(s)
- Yuxin Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Xiaolie He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Ruiqi Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Xu Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Li Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, People’s Republic of China
| |
Collapse
|
13
|
Shao H, Huang J, Wang H, Wang G, Yang X, Cheng M, Sun C, Zou L, Yang Q, Zhang D, Liu Z, Jiang X, Shi L, Shi P, Han B, Jiao B. Fused in sarcoma (FUS) inhibits milk production efficiency in mammals. Nat Commun 2024; 15:3953. [PMID: 38729967 PMCID: PMC11087553 DOI: 10.1038/s41467-024-48428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Efficient milk production in mammals confers evolutionary advantages by facilitating the transmission of energy from mother to offspring. However, the regulatory mechanism responsible for the gradual establishment of milk production efficiency in mammals, from marsupials to eutherians, remains elusive. Here, we find that mammary gland of the marsupial sugar glider contained milk components during adolescence, and that mammary gland development is less dynamically cyclic compared to that in placental mammals. Furthermore, fused in sarcoma (FUS) is found to be partially responsible for this establishment of low efficiency. In mouse model, FUS inhibit mammary epithelial cell differentiation through the cyclin-dependent kinase inhibitor p57Kip2, leading to lactation failure and pup starvation. Clinically, FUS levels are negatively correlated with milk production in lactating women. Overall, our results shed light on FUS as a negative regulator of milk production, providing a potential mechanism for the establishment of milk production from marsupial to eutherian mammals.
Collapse
Affiliation(s)
- Haili Shao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Jipeng Huang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Hui Wang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Guolei Wang
- Department of Obstetrics, Weifang People's Hospital, Weifang, Shandong, 261042, China
| | - Xu Yang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Mei Cheng
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Changjie Sun
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Li Zou
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Qin Yang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Dandan Zhang
- Luoyang Maternal and Child Health Hospital, Luoyang, Henan, 471000, China
| | - Zhen Liu
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xuelong Jiang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Lei Shi
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Peng Shi
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China
| | - Baowei Han
- Luoyang Maternal and Child Health Hospital, Luoyang, Henan, 471000, China.
| | - Baowei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China.
| |
Collapse
|
14
|
Wang HQ, Ma YR, Zhang YX, Wei FH, Zheng Y, Ji ZH, Guo HX, Wang T, Zhang JB, Yuan B. GnRH-driven FTO-mediated RNA m 6A modification promotes gonadotropin synthesis and secretion. BMC Biol 2024; 22:104. [PMID: 38702712 PMCID: PMC11069278 DOI: 10.1186/s12915-024-01905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Gonadotropin precisely controls mammalian reproductive activities. Systematic analysis of the mechanisms by which epigenetic modifications regulate the synthesis and secretion of gonadotropin can be useful for more precise regulation of the animal reproductive process. Previous studies have identified many differential m6A modifications in the GnRH-treated adenohypophysis. However, the molecular mechanism by which m6A modification regulates gonadotropin synthesis and secretion remains unclear. RESULTS Herein, it was found that GnRH can promote gonadotropin synthesis and secretion by promoting the expression of FTO. Highly expressed FTO binds to Foxp2 mRNA in the nucleus, exerting a demethylation function and reducing m6A modification. After Foxp2 mRNA exits the nucleus, the lack of m6A modification prevents YTHDF3 from binding to it, resulting in increased stability and upregulation of Foxp2 mRNA expression, which activates the cAMP/PKA signaling pathway to promote gonadotropin synthesis and secretion. CONCLUSIONS Overall, the study reveals the molecular mechanism of GnRH regulating the gonadotropin synthesis and secretion through FTO-mediated m6A modification. The results of this study allow systematic interpretation of the regulatory mechanism of gonadotropin synthesis and secretion in the pituitary at the epigenetic level and provide a theoretical basis for the application of reproductive hormones in the regulation of animal artificial reproduction.
Collapse
Affiliation(s)
- Hao-Qi Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Yi-Ran Ma
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Yu-Xin Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Fan-Hao Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Hai-Xiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Tian Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China.
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China.
| |
Collapse
|
15
|
Cheng H, Wu J, Li L, Song X, Xue J, Shi Y, Zou Y, Ma J, Ge J. RBM15 Protects From Myocardial Infarction by Stabilizing NAE1. JACC Basic Transl Sci 2024; 9:631-648. [PMID: 38984049 PMCID: PMC11228393 DOI: 10.1016/j.jacbts.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 07/11/2024]
Abstract
RNA-binding proteins play multiple roles in several biological processes. However, the roles of RBM15-an important RNA-binding protein and a significant regulator of RNA methylation-in cardiovascular diseases remain elusive. This study aimed to investigate the biological function of RBM15 and its fundamental mechanisms in myocardial infarction (MI). Methylated RNA immunoprecipitation sequencing was used to explore the N6-methyladenosine (m6A) difference between MI and normal tissues. Our findings showed the elevated level of m6A in MI, and its transcription profile in both MI and normal tissues. RBM15 was the main regulator and its overexpression attenuated apoptosis in cardiomyocytes and improved cardiac function in mice after MI. Then, we used one target NEDD8 activating enzyme E1 subunit and its inhibitor (MLN4924) to investigate the impact of RBM15 targets on cardiomyocytes. Finally, the enhanced m6A methylation in the presence of RBM15 overexpression led to the increased expression and stability of NEDD8 activating enzyme E1 subunit. Our findings suggest that the enhanced m6A level is a protective mechanism in MI, and RBM15 is significantly upregulated in MI and promotes cardiac function. This study showed that RBM15 affected MI by stabilizing its target on the cell apoptosis function, which might provide a new insight into MI therapy.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Science, Shanghai, China
| | - Jian Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Science, Shanghai, China
| | - Linnan Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Science, Shanghai, China
| | - Xiaoyue Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Science, Shanghai, China
| | - Junqiang Xue
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Science, Shanghai, China
| | - Yuekai Shi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Science, Shanghai, China
| | - Yunzeng Zou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Science, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianying Ma
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Science, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Science, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Li SR, Kang NN, Wang RR, Li MD, Chen LH, Zhou P, Xu DX, Zhao H, Fu L. ALKBH5 SUMOylation-mediated FBXW7 m6A modification regulates alveolar cells senescence during 1-nitropyrene-induced pulmonary fibrosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133704. [PMID: 38364577 DOI: 10.1016/j.jhazmat.2024.133704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Our previous study revealed that 1-nitropyrene (1-NP) exposure evoked pulmonary fibrosis in mice. However, the exact mechanism remained elusive. We found that 1-NP induced telomere damage and cellular senescence in mice lungs, and two alveolar epithelial cells lines. 1-NP downregulated telomere repeat binding factor 2 (TRF2), and upregulated FBXW7. Mechanistically, 1-NP-caused TRF2 ubiquitination and proteasomal degradation depended on E3 ubiquitin ligase activity of FBXW7. Moreover, 1-NP upregulated FBXW7 m6A modification via an ALKBH5-YTHDF1-dependent manner. Further analysis suggested 1-NP promoted ALKBH5 SUMOylation and subsequent proteasomal degradation. Additionally, 1-NP evoked mitochondrial reactive oxygen species (mtROS) overproduction. Mito-TEMPO, a mitochondrial-targeted antioxidant, mitigated 1-NP-caused mtROS overproduction, ALKBH5 SUMOylation, FBXW7 m6A modification, TRF2 degradation, cellular senescence, and pulmonary fibrosis. Taken together, mtROS-initiated ALKBH5 SUMOylation and subsequent FBXW7 m6A modification is indispensable for TRF2 degradation and cellular senescence in alveolar epithelial cells during 1-NP-induced pulmonary fibrosis. Our study provides target intervention measures towards 1-NP-evoked pulmonary fibrosis.
Collapse
Affiliation(s)
- Se-Ruo Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Ning-Ning Kang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Rong-Rong Wang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Meng-Die Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Li-Hong Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Peng Zhou
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Department of Toxicology, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
17
|
Wang W, Zhou L, Li H, Sun T, Wen X, Li W, Esteban MA, Hoffman AR, Hu JF, Cui J. Profiling the role of m6A effectors in the regulation of pluripotent reprogramming. Hum Genomics 2024; 18:33. [PMID: 38566168 PMCID: PMC10986062 DOI: 10.1186/s40246-024-00597-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
The N6-methyladenosine (m6A) RNA modification plays essential roles in multiple biological processes, including stem cell fate determination. To explore the role of the m6A modification in pluripotent reprogramming, we used RNA-seq to map m6A effectors in human iPSCs, fibroblasts, and H9 ESCs, as well as in mouse ESCs and fibroblasts. By integrating the human and mouse RNA-seq data, we found that 19 m6A effectors were significantly upregulated in reprogramming. Notably, IGF2BPs, particularly IGF2BP1, were among the most upregulated genes in pluripotent cells, while YTHDF3 had high levels of expression in fibroblasts. Using quantitative PCR and Western blot, we validated the pluripotency-associated elevation of IGF2BPs. Knockdown of IGF2BP1 induced the downregulation of stemness genes and exit from pluripotency. Proteome analysis of cells collected at both the beginning and terminal states of the reprogramming process revealed that the IGF2BP1 protein was positively correlated with stemness markers SOX2 and OCT4. The eCLIP-seq target analysis showed that IGF2BP1 interacted with the coding sequence (CDS) and 3'UTR regions of the SOX2 transcripts, in agreement with the location of m6A modifications. This study identifies IGF2BP1 as a vital pluripotency-associated m6A effector, providing new insight into the interplay between m6A epigenetic modifications and pluripotent reprogramming.
Collapse
Affiliation(s)
- Wenjun Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
- VA Palo Alto Health Care System, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Lei Zhou
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Hui Li
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Tingge Sun
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xue Wen
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Miguel A Esteban
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, PR China
| | - Andrew R Hoffman
- VA Palo Alto Health Care System, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Ji-Fan Hu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
- VA Palo Alto Health Care System, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
18
|
Liu J, Chen L, Guo X, Zhao B, Jiang J. Emerging role of N6-methyladenosine RNA modification in regulation of SARS-CoV-2 infection and virus-host interactions. Biomed Pharmacother 2024; 173:116231. [PMID: 38484561 DOI: 10.1016/j.biopha.2024.116231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 03/27/2024] Open
Abstract
Since December 2019, the infection caused by Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) has posed an enormous threat to human health security worldwide. Constant mutation of viral genome and varying therapeutic responses of patients infected with this virus prompted efforts to uncover more novel regulators in the pathogenesis. The involvement of N6-methyladenosine, a modified form of RNA, plays a crucial role in viral replication, viral pathogenicity, and intricate signaling pathways connected with immune responses. This review discusses research advances revealing the regulation of the life cycle of SARS-CoV-2 and antiviral responses of host cells by RNA m6A modification, highlights the biological functions of N6-methyladenosine components in SARS-CoV-2 infection and virus-host interactions, and outlines current challenges and future directions for exploring the potential clinical value of m6A modification in COVID-19.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Lingli Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiongmin Guo
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Bingrong Zhao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha 410008, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha 410008, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China.
| | - Juan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha 410008, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha 410008, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China.
| |
Collapse
|
19
|
Zhang Y, Li Y. β-hydroxybutyrate inhibits malignant phenotypes of prostate cancer cells through β-hydroxybutyrylation of indoleacetamide-N-methyltransferase. Cancer Cell Int 2024; 24:121. [PMID: 38555451 PMCID: PMC10981303 DOI: 10.1186/s12935-024-03277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/19/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most prevalent cancers in men and is associated with high mortality and disability rates. β-hydroxybutyrate (BHB), a ketone body, has received increasing attention for its role in cancer. However, its role in PCa remains unclear. This study aimed to explore the mechanism and feasibility of BHB as a treatment alternative for PCa. METHODS Colony formation assay, flow cytometry, western blot assay, and transwell assays were performed to determine the effect of BHB on the proliferation and metastasis of PCa cells. Tumor sphere formation and aldehyde dehydrogenase assays were used to identify the impact of BHB or indoleacetamide-N-methyltransferase (INMT) on the stemness of PCa cells. N6-methyladenosine (m6A)-meRIP real-time reverse transcription polymerase chain reaction and dual luciferase assays were conducted to confirm INMT upregulation via the METTL3-m6A pathway. Co-IP assay was used to detect the epigenetic modification of INMT by BHB-mediated β-hydroxybutyrylation (kbhb) and screen enzymes that regulate INMT kbhb. Mouse xenograft experiments demonstrated the antitumor effects of BHB in vivo. RESULTS BHB can inhibit the proliferation, migration, and invasion of PCa cells by suppressing their stemness. Mechanistically, INMT, whose expression is upregulated by the METTL3-m6A pathway, was demonstrated to be an oncogenic gene that promotes the stem-like characteristics of PCa cells. BHB can suppress the malignant phenotypes of PCa by kbhb of INMT, which in turn inhibits INMT expression. CONCLUSIONS Our findings indicate a role of BHB in PCa metabolic therapy, thereby suggesting an epigenetic therapeutic strategy to target INMT in aggressive PCa. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, Henan, Henan, 450000, China.
| | - Yunlong Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, Henan, Henan, 450000, China
| |
Collapse
|
20
|
Zhang F, Yang N, Zhou F, Qiao R, Wan Y, Liu R, Yang S, Gu M, Xu H, Dong X, Wang G. Orthogonally Sequential Activation of Self-Powered DNAzymes Cascade for Reliable Monitoring of mRNA in Living Cells. Adv Healthc Mater 2024; 13:e2303074. [PMID: 38197479 DOI: 10.1002/adhm.202303074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Ratiometric imaging of tumor-related mRNA is significant, yet spatiotemporally resolved regulation on the ratiometric signals to avoid non-specific activation in the living cells remains challenging. Herein, orthogonally sequential activation of concatenated DNAzyme circuits is, first, developed for Spatio Temporally regulated Amplified and Ratiometric (STAR) imaging of TK1 mRNA inside living cells with enhanced reliability and accuracy. By virtue of the synthesized CuO/MnO2 nanosheets, orthogonally regulated self-powered DNAzyme circuits are operated precisely in living cells, sequentially activating two-layered DNAzyme cleavage reactions to achieve the two ratiometric signal readouts successively for reliable monitoring of low-abundance mRNA in living cells. It is found that the ratiometric signals can only be derived from mRNA over-expressed tumor cells, also irrespective of probes' delivery concentration. The presented approach could provide new insight into orthogonally regulated ratiometric systems for reliable imaging of specific biomarkers in living cells, benefiting disease precision diagnostics.
Collapse
Affiliation(s)
- Fuqiang Zhang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Nan Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Fu Zhou
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Ruonan Qiao
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Yifei Wan
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Rong Liu
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Suwan Yang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Mingzheng Gu
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Huae Xu
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Guangfeng Wang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
21
|
Su H, Meng L, Qu Z, Zhang W, Liu N, Cao P, Jin J. Genome-wide identification of the N 6-methyladenosine regulatory genes reveals NtFIP37B increases drought resistance of tobacco (Nicotiana tabacum L.). BMC PLANT BIOLOGY 2024; 24:134. [PMID: 38403644 PMCID: PMC10895791 DOI: 10.1186/s12870-024-04813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND N6-methyladenosine (m6A) is one of the common internal RNA modifications found in eukaryotes. The m6A modification can regulate various biological processes in organisms through the modulation of alternative splicing, alternative polyadenylation, folding, translation, localization, transport, and decay of multiple types of RNA, without altering the nucleotide sequence. The three components involved in m6A modification, namely writer, eraser, and reader, mediate the abundance of RNA m6A modification through complex collaborative actions. Currently, research on m6A regulatory genes in plants is still in its infancy. RESULTS In this study, we identified 52 candidate m6A regulatory genes in common tobacco (Nicotiana tabacum L.). Gene structure, conserved domains, and motif analysis showed structural and functional diversity among different subgroups of tobacco m6A regulatory genes. The amplification of m6A regulatory genes were mainly driven by polyploidization and dispersed duplication, and duplicated genes evolved through purified selection. Based on the potential regulatory network and expression pattern analysis of m6A regulatory genes, a significant number of m6A regulatory genes might play important roles in growth, development, and stress response processes. Furthermore, we have confirmed the critical role of NtFIP37B, an m6A writer gene in tobacco, in enhancing drought resistance. CONCLUSIONS This study provides useful information for better understanding the evolution of m6A regulatory genes and the role of m6A modification in tobacco stress response, and lays the foundation for further elucidating the function of m6A regulatory genes in tobacco.
Collapse
Affiliation(s)
- Huan Su
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Lijun Meng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Zechao Qu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Wei Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China
| | - Nan Liu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China
| | - Peijian Cao
- Beijing Life Science Academy, Beijing, 102200, China.
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| | - Jingjing Jin
- Beijing Life Science Academy, Beijing, 102200, China.
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
22
|
Li B, Xuan H, Yin Y, Wu S, Du L. The N 6-methyladenosine modification in pathologic angiogenesis. Life Sci 2024; 339:122417. [PMID: 38244915 DOI: 10.1016/j.lfs.2024.122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
The vascular system is a vital circulatory network in the human body that plays a critical role in almost all physiological processes. The production of blood vessels in the body is a significant area of interest for researchers seeking to improve their understanding of vascular function and maintain normal vascular operation. However, an excessive or insufficient vascular regeneration process may lead to the development of various ailments such as cancer, eye diseases, and ischemic diseases. Recent preclinical and clinical studies have revealed new molecular targets and principles that may enhance the therapeutic effect of anti-angiogenic strategies. A thorough comprehension of the mechanism responsible for the abnormal vascular growth in disease processes can enable researchers to better target and effectively suppress or treat the disease. N6-methyladenosine (m6A), a common RNA methylation modification method, has emerged as a crucial regulator of various diseases by modulating vascular development. In this review, we will cover how m6A regulates various vascular-related diseases, such as cancer, ocular diseases, neurological diseases, ischemic diseases, emphasizing the mechanism of m6A methylation regulators on angiogenesis during pathological process.
Collapse
Affiliation(s)
- Bin Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hanqin Xuan
- Department of Pathology, the First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China.
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
23
|
Yang HZ, Zhuo D, Huang Z, Luo G, Liang S, Fan Y, Zhao Y, Lv X, Qiu C, Zhang L, Liu Y, Sun T, Chen X, Li SS, Jin X. Deficiency of Acetyltransferase nat10 in Zebrafish Causes Developmental Defects in the Visual Function. Invest Ophthalmol Vis Sci 2024; 65:31. [PMID: 38381411 PMCID: PMC10893899 DOI: 10.1167/iovs.65.2.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Purpose N4-acetylcytidine (ac4C) is a post-transcriptional RNA modification catalyzed by N-acetyltransferase 10 (NAT10), a critical factor known to influence mRNA stability. However, the role of ac4C in visual development remains unexplored. Methods Analysis of public datasets and immunohistochemical staining were conducted to assess the expression pattern of nat10 in zebrafish. We used CRISPR/Cas9 and RNAi technologies to knockout (KO) and knockdown (KD) nat10, the zebrafish ortholog of human NAT10, and evaluated its effects on early development. To assess the impact of nat10 knockdown on visual function, we performed comprehensive histological evaluations and behavioral analyses. Transcriptome profiling and real-time (RT)-PCR were utilized to detect alterations in gene expression resulting from the nat10 knockdown. Dot-blot and RNA immunoprecipitation (RIP)-PCR analyses were conducted to verify changes in ac4C levels in both total RNA and opsin mRNA specifically. Additionally, we used the actinomycin D assay to examine the stability of opsin mRNA following the nat10 KD. Results Our study found that the zebrafish NAT10 protein shares similar structural properties with its human counterpart. We observed that the nat10 gene was prominently expressed in the visual system during early zebrafish development. A deficiency of nat10 in zebrafish embryos resulted in increased mortality and developmental abnormalities. Behavioral and histological assessments indicated significant vision impairment in nat10 KD zebrafish. Transcriptomic analysis and RT-PCR identified substantial downregulation of retinal transcripts related to phototransduction, light response, photoreceptors, and visual perception in the nat10 KD group. Dot-blot and RIP-PCR analyses confirmed a pronounced reduction in ac4C levels in both total RNA and specifically in opsin messenger RNA (mRNA). Additionally, by evaluating mRNA decay in zebrafish treated with actinomycin D, we observed a significant decrease in the stability of opsin mRNA in the nat10 KD group. Conclusions The ac4C-mediated mRNA modification plays an essential role in maintaining visual development and retinal function. The loss of NAT10-mediated ac4C modification results in significant disruptions to these processes, underlining the importance of this RNA modification in ocular development.
Collapse
Affiliation(s)
| | - Donghai Zhuo
- School of Medicine, Nankai University, Tianjin, China
| | | | - Gan Luo
- Tianjin Medical University, Tianjin, China
- Department of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shuang Liang
- Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China
| | - Yonggang Fan
- School of Medicine, Nankai University, Tianjin, China
| | - Ying Zhao
- School of Medicine, Nankai University, Tianjin, China
| | - Xinxin Lv
- School of Medicine, Nankai University, Tianjin, China
| | - Caizhen Qiu
- School of Medicine, Nankai University, Tianjin, China
| | - Lingzhu Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Yang Liu
- Department of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Tianwei Sun
- Tianjin Medical University, Tianjin, China
- Department of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xu Chen
- Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
| | - Shan-Shan Li
- School of Medicine, Nankai University, Tianjin, China
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
| |
Collapse
|
24
|
Zhu W, Zhu W, Wang S, Liu S, Zhang H. UCHL1 deficiency upon HCMV infection induces vascular endothelial inflammatory injury mediated by mitochondrial iron overload. Free Radic Biol Med 2024; 211:96-113. [PMID: 38081437 DOI: 10.1016/j.freeradbiomed.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Human cytomeglovirus (HCMV) infection predisposes blood vessels to atherosclerosis (AS) and post-transplantation restenosis, but the underlying molecular basis remains elusive. Here, we found that HCMV infection activates AIM2 inflammasome and pyroptosis in vascular endothelial cells by inducing mitochondrial iron overload. Mechanistically, under normal conditions, ubiquitin carboxyl terminal hydrolase-L1 (UCHL1) was identified as a DUB enzyme that interacts with, deubiquitylates, and stabilizes ferredoxin reductase (FDXR), an important mitochondrial protein that regulates mitochondral iron homeostasis. However, HCMV infection induces the aberrantly elevated m6A modification and R-loops, the three-stranded DNA-DNA:RNA hybrid structures. The expression of UCHL1 was remarkably reduced by m6A modification-mediated mRNA decay and R-loop-dependent transcriptional termination after HCMV infection. Deficiency of UCHL1 causes ubiquitination and degradation of FDXR. Loss of FDXR induces the mitochondrial iron overload, which consequently leads to AIM2 inflammasome activation and endothelial injury. Moreover, both downregulation expression of UCHL1 and related inflammatory injury in vascular endothelium was observed in MCMV-infected mice. Notably, STM2457, a METTL3 specific inhibitor, restores the expression of UCHL1 upon HCMV infection, thereby inhibiting the inflammatory injury of vascular endothelial cells. Our findings delineate a novel mechnism involved in HCMV-induced inflammatory injury to vascular endothelium and implicate the role of METTL3 inhibitor as a potential therapeutic approach.
Collapse
Affiliation(s)
- Wenbo Zhu
- The First Affiliated Hospital, Clinical Medical Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wentong Zhu
- Unchained Labs (Shanghai) Trading Co., Ltd, Shanghai 201203, China
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Science, Fuzhou 350013, China
| | - Shuangquan Liu
- The First Affiliated Hospital, Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hongbo Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, United States.
| |
Collapse
|
25
|
Wang H. The RNA m6A writer RBM15 contributes to the progression of esophageal squamous cell carcinoma by regulating miR-3605-5p/KRT4 pathway. Heliyon 2024; 10:e24459. [PMID: 38312624 PMCID: PMC10835169 DOI: 10.1016/j.heliyon.2024.e24459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Cancer progression can be modulated by N6-methyladenosine (m6A) modification. RNA binding motif protein 15 (RBM15) is an essential RNA m6A writer that influences carcinogenesis, however its significance in esophageal squamous cell carcinoma (ESCC) is uncertain. This research is intended to examine how RBM15 regulates the development of ESCC. We performed qRT-PCR analysis to evaluate the expression of RBM15, microRNA (miR-3605-5p) as well as keratin 4 (KRT4) in ESCC. Target relationship between miR-3605-5p and KRT4 was validated by dual luciferase reporter assay. Western blotting analyzed the protein levels of KRT4, p53, and p21. To demonstrate that RBM15 is responsible for the m6A alteration of miR-3605-5p, RIP and Me-RIP experiments were carried out concurrently. m6A content was measured by m6A quantification assay. Cell growth and migration were assessed using the CCK-8 and transwell assays. In addition, the role of RBM15 in vivo was examined using a mouse tumor xenograft model. RBM15 and miR-3605-5p were both substantially expressed in ESCC, however KRT4 was not expressed highly. Overexpressed RBM15 triggered cell proliferation and migration in ESCC. Besides, RBM15/m6A could mediate pri-3605-5p to form the mature miR-3605-5p, and miR-3605-5p further targeted KRT4. Further investigations showed that upregulation of KRT4 overturned the promoting impact of RBM15 overexpression on cell proliferation as well as on cell migration in ESCC by activating p53 signaling pathway. This work implied the carcinogenic activity of RBM15/m6A in ESCC via miR-3605-5p/KRT4 pathway, providing a novel m6A modification pattern in the tumorigenesis of ESCC.
Collapse
Affiliation(s)
- Huan Wang
- General practice section, Wuhan University of Science and Technology Hospital, Wuhan, 430070, Hubei, China
| |
Collapse
|
26
|
Kang P, Dong P. CircMETTL14(11)S upregulated METTL14 and induced CXCR4 to aggravate endothelial inflammation and atherosclerosis. Int Immunopharmacol 2024; 126:110979. [PMID: 37972448 DOI: 10.1016/j.intimp.2023.110979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023]
Abstract
Endothelial inflammatory response can induce a variety of cardiovascular diseases, including atherosclerosis (AS). As a member of the m6A methyltransferase family, methyltransferase like 14 (METTL14) was reported to propel endothelial inflammation and aggravate AS. In this study, qRT-PCR and western blot analyses were performed to detect the RNA and protein levels of genes. To analyze the cyclic structure and localization of circMETTL14(11)S, agarose gel electrophoresis, subcellular fractionation and FISH assays were conducted. The role of circMETTL14(11)S on endothelial inflammation was exposed by monocyte adhesion assay. Luciferase reporter, chromatin immunoprecipitation (ChIP), pull-down and RNA binding protein immunoprecipitation (RIP) assays were conducted to explore the mechanism of circMETTL14(11)S on endothelial inflammation and AS. We found that circMETTL14(11)S (hsa_circ_0125169) expressed highly in TNF-α-induced endothelial inflammation and positively regulated the expression of METTL14 in human umbilical vein endothelial cells (HUVECs). CircMETTL14(11)S facilitated endothelial inflammation of HUVECs by METTL14. Based on the nuclear location, circMETTL14(11)S was found to activate METTL14 transcription via cooperating with SRY-box transcription factor 2 (SOX2). METTL14 accelerated the m6A methylation and stabilization of C-X-C motif chemokine receptor 4 (CXCR4) mRNA. Further, the facilitation of circMETTL14(11)S/METTL14/CXCR4 on TNF-α-induced endothelial inflammation of HUVECs was verified. Collectively, circMETTL14(11)S/METTL14/CXCR4 axis aggravated endothelial inflammation and AS.
Collapse
Affiliation(s)
- Pinfang Kang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Peng Dong
- Department of Cardiovascular Medicine, Affiliated Hospital of Hangzhou Normal University, Clinical School of Medicine, Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Hangzhou 310015, China.
| |
Collapse
|
27
|
Chen S, Zhang L, Liu H. Biclustering for Epi-Transcriptomic Co-functional Analysis. Methods Mol Biol 2024; 2822:293-309. [PMID: 38907925 DOI: 10.1007/978-1-0716-3918-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Dynamic and reversible N6-methyladenosine (m6A) modifications are associated with many essential cellular functions as well as physiological and pathological phenomena. In-depth study of m6A co-functional patterns in epi-transcriptomic data may help to understand its complex regulatory mechanisms. In this chapter, we describe several biclustering mining algorithms for epi-transcriptomic data to discover potential co-functional patterns. The concepts and computational methods discussed in this chapter will be particularly useful for researchers working in related fields. We also aim to introduce new deep learning techniques into the field of co-functional analysis of epi-transcriptomic data.
Collapse
Affiliation(s)
- Shutao Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Lin Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China.
| | - Hui Liu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China.
| |
Collapse
|
28
|
Zhang C, Jian H, Shang S, Lu L, Lou Y, Kang Y, Bai H, Fu Z, Lv Y, Kong X, Li X, Feng S, Zhou H. Crosstalk between m6A mRNAs and m6A circRNAs and the time-specific biogenesis of m6A circRNAs after OGD/R in primary neurons. Epigenetics 2023; 18:2181575. [PMID: 36861189 PMCID: PMC9988353 DOI: 10.1080/15592294.2023.2181575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Cerebral ischaemiareperfusion injury is an important pathological process in nervous system diseases during which neurons undergo oxygenglucose deprivation and reoxygenation (OGD/R) injury. No study has used epitranscriptomics to explore the characteristics and mechanism of injury. N6methyladenosine (m6A) is the most abundant epitranscriptomic RNA modification. However, little is known about m6A modifications in neurons, especially during OGD/R. m6A RNA immunoprecipitation sequencing (MeRIPseq) and RNA-sequencing data for normal and OGD/R-treated neurons were analysed by bioinformatics. MeRIP quantitative real-time polymerase chain reaction was used to determine the m6A modification levels on specific RNAs. We report the m6A modification profiles of the mRNA and circRNA transcriptomes of normal and OGD/R-treated neurons. Expression analysis revealed that the m6A levels did not affect m6A mRNA or m6A circRNA expression. We found crosstalk between m6A mRNAs and m6A circRNAs and identified three patterns of m6A circRNA production in neurons; thus, distinct OGD/R treatments induced the same genes to generate different m6A circRNAs. Additionally, m6A circRNA biogenesis during distinct OGD/R processes was found to be time specific. These results expand our understanding of m6A modifications in normal and OGD/R-treated neurons, providing a reference to explore epigenetic mechanisms and potential treatments for OGD/R-related diseases.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huan Jian
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| | - Shenghui Shang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| | - Yongfu Lou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| | - Hong Bai
- Key Laboratory of Immuno-Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Zheng Fu
- Key Laboratory of Immuno-Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Yigang Lv
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| | - Xiaohong Kong
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xueying Li
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| | - Hengxing Zhou
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
29
|
Liu WJ, Wang LY, Sheng Z, Zhang B, Zou X, Zhang CY. RNA methylation-driven assembly of fluorescence-encoded nanostructures for sensitive detection of m 6A modification writer METTL3/14 complex in human breast tissues. Biosens Bioelectron 2023; 240:115645. [PMID: 37660462 DOI: 10.1016/j.bios.2023.115645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
N6-methyladenosine (m6A) is an ubiquitous post-transcriptional modification catalyzed by METTL3/14 complex in eukaryotic mRNAs. The abnormal METTL3/14 complex activity affects multiple steps of RNA metabolism and may induce various diseases. Herein, we demonstrate the RNA methylation-driven assembly of fluorescence-encoded nanostructures for sensitive detection of m6A modification writer METTL3/14 complex in human breast tissues. METTL3/14 complex can catalyze the methylation of RNA probe to prevent it from being cleaved by MazF. The intact RNA probe is recognized by the magnetic bead (MB)-capture probe conjugates to induce duplex-specific nuclease (DSN)-assisted cyclic digestion, exposing numerous shorter ssDNAs with 3'-OH end. The shorter ssDNAs on the MB surface can act as the primers to initiate terminal deoxynucleotidyl transferase (TdT)-enhanced tyramide signal amplification (TSA), forming the Cy5 fluorescence-encoded nanostructures. After magnetic separation, the Cy5 fluorescence-encoded nanostructures are digested by DNase I to release abundant Cy5 fluorophores that can be simply quantified by fluorescence measurement. This assay achieves good specificity and high sensitivity with a detection limit of 58.8 aM, and it can screen METTL3/14 complex inhibitors and quantify METTL3/14 complex activity at the single-cell level. Furthermore, this assay can differentiate the METTL3/14 complex level in breast cancer patient tissues and healthy volunteer tissues.
Collapse
Affiliation(s)
- Wen-Jing Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Lu-Yao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Zhimei Sheng
- Department of Pathology, Weifang Medical University, Weifang, 261053, China
| | - Baogang Zhang
- Department of Pathology, Weifang Medical University, Weifang, 261053, China.
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
30
|
Long S, Yan Y, Xu H, Wang L, Jiang J, Xu Z, Liu R, Zhou Q, Huang X, Chen J, Li Z, Wei W, Li X. Insights into the regulatory role of RNA methylation modifications in glioma. J Transl Med 2023; 21:810. [PMID: 37964279 PMCID: PMC10644640 DOI: 10.1186/s12967-023-04653-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
Epitranscriptomic abnormalities, which are highly prevalent in primary central nervous system malignancies, have been identified as crucial contributors to the development and progression of gliomas. RNA epitranscriptomic modifications, particularly the reversible modification methylation, have been observed throughout the RNA cycle. Epitranscriptomic modifications, which regulate RNA transcription and translation, have profound biological implications. These modifications are associated with the development of several cancer types. Notably, three main protein types-writers, erasers, and readers, in conjunction with other related proteins, mediate these epitranscriptomic changes. This review primarily focuses on the role of recently identified RNA methylation modifications in gliomas, such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), and N1-methyladenosine (m1A). We delved into their corresponding writers, erasers, readers, and related binding proteins to propose new approaches and prognostic indicators for patients with glioma.
Collapse
Affiliation(s)
- Shengrong Long
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yu Yan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hongyu Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lesheng Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiazhi Jiang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ziyue Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Runming Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qiangqiang Zhou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaopeng Huang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
31
|
Huang C, Chen W, Wang X. Studies on the fat mass and obesity-associated (FTO) gene and its impact on obesity-associated diseases. Genes Dis 2023; 10:2351-2365. [PMID: 37554175 PMCID: PMC10404889 DOI: 10.1016/j.gendis.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022] Open
Abstract
Obesity has become a major health crisis in the past ∼50 years. The fat mass and obesity-associated (FTO) gene, identified by genome-wide association studies (GWAS), was first reported to be positively associated with obesity in humans. Mice with more copies of the FTO gene were observed to be obese, while loss of the gene in mice was found to protect from obesity. Later, FTO was found to encode an m6A RNA demethylase and has a profound effect on many biological and metabolic processes. In this review, we first summarize recent studies that demonstrate the critical roles and regulatory mechanisms of FTO in obesity and metabolic disease. Second, we discuss the ongoing debates concerning the association between FTO polymorphisms and obesity. Third, since several small molecule drugs and micronutrients have been found to regulate metabolic homeostasis through controlling the expression or activity of FTO, we highlight the broad potential of targeting FTO for obesity treatment. Improving our understanding of FTO and the underlying mechanisms may provide new approaches for treating obesity and metabolic diseases.
Collapse
Affiliation(s)
- Chaoqun Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| | - Wei Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
32
|
Chen L, Sun K, Qin W, Huang B, Wu C, Chen J, Lai Q, Wang X, Zhou R, Li A, Liu S, Zhang Y. LIMK1 m 6A-RNA methylation recognized by YTHDC2 induces 5-FU chemoresistance in colorectal cancer via endoplasmic reticulum stress and stress granule formation. Cancer Lett 2023; 576:216420. [PMID: 37778684 DOI: 10.1016/j.canlet.2023.216420] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/06/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
LIM kinase 1 (LIMK1) is a member of the LIMK family that has been considered to be involved in chemoresistance in various tumors, and N6-methyladenosine (m6A) is the most abundant nucleotide modification on mRNA. However, whether elevated expression of LIMK1 leads to chemoresistance due to m6A modification remains to be further studied. The findings of our study indicate that high LIMK1 expression in colorectal cancer (CRC) cells promotes cell proliferation and increases resistance to 5-fluorouracil (5-FU). Moreover, downregulation of YTH domain-containing 2 (YTHDC2), an m6A "reader", in CRC cells resulted in decreased recognition and binding to the m6A site "GGACA" in LIMK1 mRNA, thereby increasing LIMK1 mRNA stability and expression. Furthermore, the overexpression of LIMK1 facilitated eIF2α phosphorylation, which induced endoplasmic reticulum (ER) stress and promoted stress granule (SG) formation, ultimately leading to 5-FU resistance. This study evaluated the specificity of the YTHDC2/LIMK1/eIF2α signalling axis and the efficacy of related drugs in modulating 5-FU sensitivity in CRC.
Collapse
Affiliation(s)
- Lu Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kangyue Sun
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjie Qin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bing Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changjie Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junsheng Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinke Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Gastroenterology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China.
| | - Yue Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
33
|
Wen X, Irshad A, Jin H. The Battle for Survival: The Role of RNA Non-Canonical Tails in the Virus-Host Interaction. Metabolites 2023; 13:1009. [PMID: 37755289 PMCID: PMC10537345 DOI: 10.3390/metabo13091009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Terminal nucleotidyltransferases (TENTs) could generate a 'mixed tail' or 'U-rich tail' consisting of different nucleotides at the 3' end of RNA by non-templated nucleotide addition to protect or degrade cellular messenger RNA. Recently, there has been increasing evidence that the decoration of virus RNA terminus with a mixed tail or U-rich tail is a critical way to affect viral RNA stability in virus-infected cells. This paper first briefly introduces the cellular function of the TENT family and non-canonical tails, then comprehensively reviews their roles in virus invasion and antiviral immunity, as well as the significance of the TENT family in antiviral therapy. This review will contribute to understanding the role and mechanism of non-canonical RNA tailing in survival competition between the virus and host.
Collapse
Affiliation(s)
| | | | - Hua Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China; (X.W.); (A.I.)
| |
Collapse
|
34
|
Chen X, Zhu S, Li HD, Wang JN, Sun LJ, Xu JJ, Hui YR, Li XF, Li LY, Zhao YX, Suo XG, Xu CH, Ji ML, Sun YY, Huang C, Meng XM, Zhang L, Lv XW, Ye DQ, Li J. N 6-methyladenosine-modified circIRF2, identified by YTHDF2, suppresses liver fibrosis via facilitating FOXO3 nuclear translocation. Int J Biol Macromol 2023; 248:125811. [PMID: 37467831 DOI: 10.1016/j.ijbiomac.2023.125811] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023]
Abstract
Circular RNA (circRNA) has been implicated in liver fibrosis and modulated by multiple elusive molecular mechanisms, while the effects of N6-methyladenosine (m6A) modification on circRNA are still elusive. Herein, we identify circIRF2 from our circRNA sequencing data, which decreased in liver fibrogenesis stage and restored in resolution stage, indicating that dysregulated circIRF2 may be closely associated with liver fibrosis. Gain/loss-of-function analysis was performed to evaluate the effects of circIRF2 on liver fibrosis at both the fibrogenesis and resolution in vivo. Ectopic expression of circIRF2 attenuated liver fibrogenesis and HSCs activation at the fibrogenesis stage, whereas downregulation of circIRF2 impaired mouse liver injury repair and inflammation resolution. Mechanistically, YTHDF2 recognized m6A-modified circIRF2 and diminished circIRF2 stability, partly accounting for the decreased circIRF2 in liver fibrosis. Microarray was applied to investigate miRNAs regulated by circIRF2, our data elucidate cytoplasmic circIRF2 may directly harbor miR-29b-1-5p and competitively relieve its inhibitory effect on FOXO3, inducing FOXO3 nuclear translocation and accumulation. Clinically, circIRF2 downregulation was prevalent in liver fibrosis patients compared with healthy individuals. In summary, our findings offer a novel insight into m6A modification-mediated regulation of circRNA and suggest that circIRF2 may be an exploitable prognostic marker and/or therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China; Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Li-Jiao Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Jin-Jin Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Ya-Ru Hui
- Department of Graduate Student Affairs, Anhui Medical University, Hefei 230032, China
| | - Xiao-Feng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Liang-Yun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Yu-Xin Zhao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xiao-Guo Suo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Chuan-Hui Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Ming-Lu Ji
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Ying-Yin Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Lei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiong-Wen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
35
|
Mekala JR, Adusumilli K, Chamarthy S, Angirekula HSR. Novel sights on therapeutic, prognostic, and diagnostics aspects of non-coding RNAs in glioblastoma multiforme. Metab Brain Dis 2023; 38:1801-1829. [PMID: 37249862 PMCID: PMC10227410 DOI: 10.1007/s11011-023-01234-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Glioblastoma Multiforme (GBM) is the primary brain tumor and accounts for 200,000 deaths each year worldwide. The standard therapy includes surgical resection followed by temozolomide (TMZ)-based chemotherapy and radiotherapy. The survival period of GBM patients is only 12-15 months. Therefore, novel treatment modalities for GBM treatment are urgently needed. Mounting evidence reveals that non-coding RNAs (ncRNAs) were involved in regulating gene expression, the pathophysiology of GBM, and enhancing therapeutic outcomes. The combinatory use of ncRNAs, chemotherapeutic drugs, and tumor suppressor gene expression induction might provide an innovative, alternative therapeutic approach for managing GBM. Studies have highlighted the role of Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in prognosis and diagnosis. Dysregulation of ncRNAs is observed in virtually all tumor types, including GBMs. Studies have also indicated the blood-brain barrier (BBB) as a crucial factor that hinders chemotherapy. Although several nanoparticle-mediated drug deliveries were degrading effectively against GBM in vitro conditions. However, the potential to cross the BBB and optimum delivery of oligonucleotide RNA into GBM cells in the brain is currently under intense clinical trials. Despite several advances in molecular pathogenesis, GBM remains resistant to chemo and radiotherapy. Targeted therapies have less clinical benefit due to high genetic heterogeneity and activation of alternative pathways. Thus, identifying GBM-specific prognostic pathways, essential genes, and genomic aberrations provide several potential benefits as subtypes of GBM. Also, these approaches will provide insights into new strategies to overcome the heterogenous nature of GBM, which will eventually lead to successful therapeutic interventions toward precision medicine and precision oncology.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India.
| | - Kowsalya Adusumilli
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| | - Sahiti Chamarthy
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| | - Hari Sai Ram Angirekula
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| |
Collapse
|
36
|
Wang Y, Zhou X. N 6-methyladenosine and Its Implications in Viruses. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:695-706. [PMID: 35835441 PMCID: PMC10787122 DOI: 10.1016/j.gpb.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/21/2022] [Accepted: 04/19/2022] [Indexed: 12/27/2022]
Abstract
N6-methyladenine (m6A) is the most abundant RNA modification in mammalian messenger RNAs (mRNAs), which participates in and regulates many important biological activities, such as tissue development and stem cell differentiation. Due to an improved understanding of m6A, researchers have discovered that the biological function of m6A can be linked to many stages of mRNA metabolism and that m6A can regulate a variety of complex biological processes. In addition to its location on mammalian mRNAs, m6A has been identified on viral transcripts. m6A also plays important roles in the life cycle of many viruses and in viral replication in host cells. In this review, we briefly introduce the detection methods of m6A, the m6A-related proteins, and the functions of m6A. We also summarize the effects of m6A-related proteins on viral replication and infection. We hope that this review provides researchers with some insights for elucidating the complex mechanisms of the epitranscriptome related to viruses, and provides information for further study of the mechanisms of other modified nucleobases acting on processes such as viral replication. We also anticipate that this review can stimulate collaborative research from different fields, such as chemistry, biology, and medicine, and promote the development of antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Yafen Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
37
|
Zhang Y, Gu W, Shao Y. The therapeutic targets of N6-methyladenosine (m6A) modifications on tumor radioresistance. Discov Oncol 2023; 14:141. [PMID: 37522921 PMCID: PMC10390431 DOI: 10.1007/s12672-023-00759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
Radiation therapy is an important tool for malignant tumors, and its tolerance needs to be addressed. In recent years, several studies have shown that regulators of aberrant m6A methylation play an important role in the formation, development and invasion and metastasis of tumors. A large number of studies have confirmed aberrant m6A methylation as a new target for tumour therapy, but research on whether it can play a role in tumor sensitivity to radiotherapy has not been extensive and thorough enough. Recent studies have shown that all three major enzymes of m6A methylation have significant roles in radioresistance, and that the enzymes that play a role differ in different tumor types and by different mechanisms, including regulating tumor cell stemness, affecting DNA damage and repair, and controlling the cell cycle. Therefore, elucidating the mechanisms of m6A methylation in the radiotherapy of malignant tumors is essential to counteract radioresistance, improve the efficacy of radiotherapy, and even propose targeted treatment plans for specific tumors. The latest research progress on m6A methylation and radioresistance is reviewed in this article.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
38
|
Wang Y, Wang J, Yan Z, Liu S, Xu W. Microenvironment modulation by key regulators of RNA N6-methyladenosine modification in respiratory allergic diseases. BMC Pulm Med 2023; 23:210. [PMID: 37328853 DOI: 10.1186/s12890-023-02499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/30/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND RNA N6-methyladenosine (m6A) regulators are considered post-transcriptional regulators that affect several biological functions, and their role in immunity, in particular, is emerging. However, the role of m6A regulators in respiratory allergic diseases remains unclear. Therefore, we aimed to investigate the role of key m6A regulators in mediating respiratory allergic diseases and immune microenvironment infiltration characteristics. METHODS We downloaded gene expression profiles of respiratory allergies from the Gene Expression Omnibus (GEO) database and we performed hierarchical clustering, difference analysis, and construction of predictive models to identify hub m6A regulators that affect respiratory allergies. Next, we investigate the underlying biological mechanisms of key m6A regulators by performing PPI network analysis, functional enrichment analysis, and immune microenvironment infiltration analysis. In addition, we performed a drug sensitivity analysis on the key m6A regulator, hoping to be able to provide some implications for clinical medication. RESULTS In this study, we identified four hub m6A regulators that affect the respiratory allergy and investigated the underlying biological mechanisms. In addition, studies on the characteristics of immune microenvironment infiltration revealed that the expression of METTL14, METTL16, and RBM15B correlated with the infiltration of the mast and Th2 cells in respiratory allergy, and METTL16 expression was found to be significantly negatively correlated with macrophages for the first time (R = -0.53, P < 0.01). Finally, a key m6A regulator, METTL14, was screened by combining multiple algorithms. In addition, by performing a drug sensitivity analysis on METTL14, we hypothesized that it may play an important role in the improvement of allergic symptoms in the upper and lower airways with topical nasal glucocorticoids. CONCLUSIONS Our findings suggest that m6A regulators, particularly METTL14, play a crucial role in the development of respiratory allergic diseases and the infiltration of immune cells. These results may provide insight into the mechanism of action of methylprednisolone in treating respiratory allergic diseases.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Otorhinolaryngology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxi Wang
- Department of Otorhinolaryngology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.
| | - Zhanfeng Yan
- Department of Otorhinolaryngology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Siming Liu
- Department of Otorhinolaryngology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Xu
- Department of Otorhinolaryngology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
39
|
Zhang L, Fritah S, Nazarov PV, Kaoma T, Van Dyck E. Impact of IDH Mutations, the 1p/19q Co-Deletion and the G-CIMP Status on Alternative Splicing in Diffuse Gliomas. Int J Mol Sci 2023; 24:9825. [PMID: 37372972 DOI: 10.3390/ijms24129825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
By generating protein diversity, alternative splicing provides an important oncogenic pathway. Isocitrate dehydrogenase (IDH) 1 and 2 mutations and 1p/19q co-deletion have become crucial for the novel molecular classification of diffuse gliomas, which also incorporates DNA methylation profiling. In this study, we have carried out a bioinformatics analysis to examine the impact of the IDH mutation, as well as the 1p/19q co-deletion and the glioma CpG island methylator phenotype (G-CIMP) status on alternative splicing in a cohort of 662 diffuse gliomas from The Cancer Genome Atlas (TCGA). We identify the biological processes and molecular functions affected by alternative splicing in the various glioma subgroups and provide evidence supporting the important contribution of alternative splicing in modulating epigenetic regulation in diffuse gliomas. Targeting the genes and pathways affected by alternative splicing might provide novel therapeutic opportunities against gliomas.
Collapse
Affiliation(s)
- Lu Zhang
- Bioinformatics Platform, Data Integration and Analysis Unit (DIA), Luxembourg Institute of Health (LIH), L-1445 Strassen, Luxembourg
| | - Sabrina Fritah
- NorLux Neuro-Oncology Laboratory, Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), L-1445 Strassen, Luxembourg
| | - Petr V Nazarov
- Bioinformatics Platform, Data Integration and Analysis Unit (DIA), Luxembourg Institute of Health (LIH), L-1445 Strassen, Luxembourg
- Multiomics Data Science Research Group, DoCR, Luxembourg Institute of Health (LIH), L-1445 Strassen, Luxembourg
| | - Tony Kaoma
- Bioinformatics Platform, Data Integration and Analysis Unit (DIA), Luxembourg Institute of Health (LIH), L-1445 Strassen, Luxembourg
| | - Eric Van Dyck
- DNA Repair and Chemoresistance Group, DoCR, Luxembourg Institute of Health (LIH), L-1445 Strassen, Luxembourg
| |
Collapse
|
40
|
Pan Q, Lou J, Yan P, Kang X, Li P, Huang Z. WTAP contributes to the tumorigenesis of osteosarcoma via modulating ALB in an m6A-dependent manner. ENVIRONMENTAL TOXICOLOGY 2023; 38:1455-1465. [PMID: 36988233 DOI: 10.1002/tox.23780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/22/2023] [Accepted: 03/05/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE Osteosarcoma (OS) is a prevalent bone malignancy mainly occurred in adolescents. WTAP/N6-methyladenosine (m6A) modification is confirmed to be involved in OS progression. This study is conducted to bring some novel insights to the action mechanism of WTAP/m6A under the hidden pathogenesis of OS. METHODS qRT-PCR was executed to evaluate the expression levels of WTAP and ALB. ALB protein level in OS cells was measured by western blotting. The content of m6A in total RNA was assessed by m6A quantification assay. Me-RIP, dual luciferase reporter, and mRNA stability assays confirmed the target relationship of WTAP with ALB. With the use of the wound healing, CCK-8, and transwell invasion assays, the functional relationship between WTAP and ALB in OS cells was confirmed. The influences of WTAP on tumor growth in vivo were performed in the xenograft model of mouse. RESULTS WTAP was increased but ALB was diminished in OS tissues and/or cell lines. WTAP modulated ALB expression in an m6A-dependent manner. Silencing of WTAP retarded the development of OS via inhibiting cell viability, migration, invasion, and tumor growth. Knockdown of ALB exerted the opposite effects on OS progression. Additionally, ALB deficiency partially eliminated the inhibiting effects of WTAP silencing on cellular processes in OS. CONCLUSIONS This is the first report to clarify the interaction of WTAP/m6A with ALB in OS progression. These experimental data to some extent broadened the horizons of WTAP/m6A in the development of OS.
Collapse
Affiliation(s)
- Qiyong Pan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jigang Lou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaobiao Kang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengfei Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
41
|
Liu X, Chen J, Chen W, Xu Y, Shen Y, Xu X. Targeting IGF2BP3 in Cancer. Int J Mol Sci 2023; 24:ijms24119423. [PMID: 37298373 DOI: 10.3390/ijms24119423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
RNA-binding proteins (RBPs) can regulate multiple pathways by binding to RNAs, playing a variety of functions, such as localization, stability, and immunity. In recent years, with the development of technology, researchers have discovered that RBPs play a key role in the N6-methyladenosine (m6A) modification process. M6A methylation is the most abundant form of RNA modification in eukaryotes, which is defined as methylation on the sixth N atom of adenine in RNA. Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is one of the components of m6A binding proteins, which plays an important role in decoding m6A marks and performing various biological functions. IGF2BP3 is abnormally expressed in many human cancers, often associated with poor prognosis. Here, we summarize the physiological role of IGF2BP3 in organisms and describe its role and mechanism in tumors. These data suggest that IGF2BP3 may be a valuable therapeutic target and prognostic marker in the future.
Collapse
Affiliation(s)
- Xin Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenliang Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yangtao Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Shen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
42
|
Liang Y, Wang H, Wu B, Peng N, Yu D, Wu X, Zhong X. The emerging role of N 6-methyladenine RNA methylation in metal ion metabolism and metal-induced carcinogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121897. [PMID: 37244530 DOI: 10.1016/j.envpol.2023.121897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
N6-methyladenine (m6A) is the most common and abundant internal modification in eukaryotic mRNAs, which can regulate gene expression and perform important biological tasks. Metal ions participate in nucleotide biosynthesis and repair, signal transduction, energy generation, immune defense, and other important metabolic processes. However, long-term environmental and occupational exposure to metals through food, air, soil, water, and industry can result in toxicity, serious health problems, and cancer. Recent evidence indicates dynamic and reversible m6A modification modulates various metal ion metabolism, such as iron absorption, calcium uptake and transport. In turn, environmental heavy metal can alter m6A modification by directly affecting catalytic activity and expression level of methyltransferases and demethylases, or through reactive oxygen species, eventually disrupting normal biological function and leading to diseases. Therefore, m6A RNA methylation may play a bridging role in heavy metal pollution-induced carcinogenesis. This review discusses interaction among heavy metal, m6A, and metal ions metabolism, and their regulatory mechanism, focuses on the role of m6A methylation and heavy metal pollution in cancer. Finally, the role of nutritional therapy that targeting m6A methylation to prevent metal ion metabolism disorder-induced cancer is summarized.
Collapse
Affiliation(s)
- Yaxu Liang
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Huan Wang
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Bencheng Wu
- Anyou Biotechnology Group Co., LTD., Taicang, 215437, China
| | - Ning Peng
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Dongming Yu
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiang Zhong
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
43
|
Chen YH, Jiang T, Yasen A, Fan BY, Zhu J, Wang MX, Qian P, Shen XJ. m 6A-dependent mevalonate kinase in juvenile hormone synthesis pathway regulates the diapause process of bivoltine silkworm (Bombyx mori). Mol Biol Rep 2023; 50:5295-5306. [PMID: 37148414 DOI: 10.1007/s11033-023-08489-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Research has shown that epigenetic modification are involved the regulation of diapause in bivoltine silkworms (Bombyx mori), but it remains unclear how epigenetic modification in response to environmental signals precisely to regulate the diapause processing of bivoltine B. mori. METHODS AND RESULTS In this study, the diapause terminated eggs of bivoltine B. mori, Qiufeng (QF) were divided into two groups: a QFHT group incubated at 25 °C with a natural day/night cycle to produce diapause eggs, and a QFLT group incubated at 16.5 °C in darkness to produce non-diapause eggs. On the 3rd day of the pupal stage, the total RNAs of the eggs were extracted and their N6-adenosine methylation (m6A) abundances were analyzed to explore the effects of m6A methylation on diapause in the silkworm. The results showed that 1984 m6A peaks are shared, 1563 in QFLT and 659 in QFHT. The m6A methylation level of the QFLT group was higher than that of the QFHT one in various signaling pathways. The m6A methylation rate of mevalonate kinase (MK) in the insect hormone synthesis pathway was significantly different between the two groups. The knockdown of MK by RNA interference in the pupae of QFLT resulted in females laying diapause eggs rather than non-diapause eggs after mating. CONCLUSIONS m6A methylation involves in the diapause regulation of bivoltine B. mori by changing the expression levels of MK. This result provides a clearer image of the environmental signals on the regulation of diapause in bivoltine silkworms.
Collapse
Affiliation(s)
- Yan-Hua Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Tao Jiang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Ayinuer Yasen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Bing-Yan Fan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Juan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Mei-Xian Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Ping Qian
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Xing-Jia Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China.
| |
Collapse
|
44
|
Zhu X, Zhou C, Zhao S, Zheng Z. Role of m6A methylation in retinal diseases. Exp Eye Res 2023; 231:109489. [PMID: 37084873 DOI: 10.1016/j.exer.2023.109489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/06/2023] [Accepted: 04/19/2023] [Indexed: 04/23/2023]
Abstract
Retinal diseases remain among the leading causes of visual impairment in developed countries, despite great efforts in prevention and early intervention. Due to the limited efficacy of current retinal therapies, novel therapeutic methods are urgently required. Over the past two decades, advances in next-generation sequencing technology have facilitated research on RNA modifications, which can elucidate the relevance of epigenetic mechanisms to disease. N6-methyladenosine (m6A), formed by methylation of adenosine at the N6-position, is the most widely studied RNA modification and plays an important role in RNA metabolism. It is dynamically regulated by writers (methyltransferases) and erasers (demethylases), and recognized by readers (m6A binding proteins). Although the discovery of m6A methylation can be traced back to the 1970s, its regulatory roles in retinal diseases are rarely appreciated. Here, we provide an overview of m6A methylation, and discuss its effects and possible mechanisms on retinal diseases, including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa, and proliferative vitreoretinopathy. Furthermore, we highlight potential agents targeting m6A methylation for retinal disease treatment and discuss the limitations and challenges of research in the field of m6A methylation.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Chuandi Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shuzhi Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
45
|
Zhou Y, Hu Z, Sun Q, Dong Y. 5-methyladenosine regulators play a crucial role in development of chronic hypersensitivity pneumonitis and idiopathic pulmonary fibrosis. Sci Rep 2023; 13:5941. [PMID: 37045913 PMCID: PMC10097674 DOI: 10.1038/s41598-023-32452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
5-methyladenosine (m5C) modification regulates gene expression and biological functions in oncologic areas. However, the effect of m5C modification in chronic hypersensitivity pneumonitis (CHP) and idiopathic pulmonary fibrosis (IPF) remains unknown. Expression data for 12 significant m5C regulators were obtained from the interstitial lung disease dataset. Five candidate m5C regulators, namely tet methylcytosine dioxygenase 2, NOP2/Sun RNA methyltransferase 5, Y-box binding protein 1, tRNA aspartic acid methyltransferase 1, and NOP2/Sun RNA methyltransferase 3 were screened using random forest and nomogram models to predict risks of pulmonary fibrosis. Next, we applied the consensus clustering method to stratify the samples with different m5C patterns into two groups (cluster A and B). Finally, we calculated immune cell infiltration scores via single-sample gene set enrichment analysis, then compared immune cell infiltration, related functions as well as the expression of programmed cell death 1 (PD-1, PDCD1) and programmed death protein ligand-1 (PD-L1, CD274) between the two clusters. Principal component analysis of m5C-related scores across the 288 samples revealed that cluster A had higher immune-related expression than B. Notably, T helper cell (Th) 2 type cytokines and Th1 signatures were more abundant in clusters A and B, respectively. Our results suggest that m5C is associated with and plays a crucial role in development of pulmonary fibrosis. These m5C patterns could be potential biomarkers for identification of CHP and IPF, and guide future development of immunotherapy or other new drugs strategies for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yiyi Zhou
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Shanghai, China
| | - Zhenli Hu
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Shanghai, China
| | - Qinying Sun
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Shanghai, China
| | - Yuchao Dong
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Shanghai, China.
| |
Collapse
|
46
|
Wang S, Gao S, Ye W, Li Y, Luan J, Lv X. The emerging importance role of m6A modification in liver disease. Biomed Pharmacother 2023; 162:114669. [PMID: 37037093 DOI: 10.1016/j.biopha.2023.114669] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
N6-methyladenosine (m6A) modification, as one of the most common types of inner RNA modification in eukaryotes, plays a multifunctional role in normal and abnormal biological processes. This type of modification is modulated by m6A writer, eraser and reader, which in turn impact various processes of RNA metabolism, such as RNA processing, translation, nuclear export, localization and decay. The current academic view holds that m6A modification exerts a crucial role in the post-transcriptional modulation of gene expression, and is involved in multiple cellular functions, developmental and disease processes. However, the potential molecular mechanism and specific role of m6A modification in the development of liver disease have not been fully elucidated. In our review, we summarized the latest research progress on m6A modification in liver disease, and explored how these novel findings reshape our knowledge of m6A modulation of RNA metabolism. In addition, we also illustrated the effect of m6A on liver development and regeneration to prompt further exploration of the mechanism and role of m6A modification in liver physiology and pathology, providing new insights and references for the search of potential therapeutic targets for liver disease.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
47
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
48
|
Zhang Y, Zhou Y, Kan D, Yang Y, Shen J, Han C, Liu X, Yang J. m6A-mediated nonhomologous end joining (NHEJ) pathway regulates senescence in Brachionus plicatilis (Rotifera). Arch Gerontol Geriatr 2023; 111:104994. [PMID: 36963346 DOI: 10.1016/j.archger.2023.104994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
Epigenetic modifications play an important role in the regulation of senescence. N6-methyladenosine (m6A) is the most abundant modification of mRNA. However, the impact of m6A on senescence remains largely unknown at the animal individual level. Standard model organisms Caenorhabditis elegans and Drosophila melanogaster lack many gene homologs of vertebrate m6A system that are present in other invertebrates. In this study, we employed a small aquatic invertebrate Brachionus plicatilis which has been used in aging studies for nearly 100 years to study how m6A affects aging. Phylogenetic analysis confirmed that rotifers' m6A pathway has a conserved methyltransferase complex but no demethylases and the m6A reading system was more akin to that of vertebrates than that of D. melanogaster. m6A methyltransferases are highly expressed during development but reduces dramatically during aging. Knockdown of METTL3 results in decreased fecundity and premature senescence of rotifers. Furthermore, RT-qPCR analysis indicates a role for m6A in the nonhomologous end joining (NHEJ) pathway of DNA double-strand breaks (DSBs) repair. Altogether, our work reveals a senescence regulatory model for the rotifer METTL3-m6A-NHEJ pathway.
Collapse
Affiliation(s)
- Yu Zhang
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing 210023, People's Republic of China
| | - Yang Zhou
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing 210023, People's Republic of China
| | - Dongqi Kan
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing 210023, People's Republic of China
| | - Yunhong Yang
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing 210023, People's Republic of China
| | - Jing Shen
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing 210023, People's Republic of China
| | - Cui Han
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing 210023, People's Republic of China
| | - Xiaojie Liu
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing 210023, People's Republic of China
| | - Jiaxin Yang
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing 210023, People's Republic of China.
| |
Collapse
|
49
|
Islam S, Mukherjee C. Molecular regulation of hypoxia through the lenses of noncoding RNAs and epitranscriptome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1750. [PMID: 35785444 DOI: 10.1002/wrna.1750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022]
Abstract
Cells maintain homeostasis in response to environmental stress through specific cell stress responses. Hypoxic stress, well known to be associated with diverse solid tumors, is one of the main reasons for cancer-related mortality. Although cells can balance themselves well during hypoxic stress, the underlying molecular mechanisms are not well understood. The enhanced appreciation of diverse roles played by noncoding transcriptome and epigenome in recent years has brought to light the involvement of noncoding RNAs and epigenetic modifiers in hypoxic regulation. The emergence of techniques like deep sequencing has facilitated the identification of large numbers of long noncoding RNAs (lncRNAs) that are differentially regulated in various cancers. Similarly, proteomic studies have identified diverse epigenetic modifiers such as HATs, HDACs, DNMTs, polycomb groups of proteins, and their possible roles in the regulation of hypoxia. The crosstalk between lncRNAs and epigenetic modifiers play a pivotal role in hypoxia-induced cancer initiation and progression. Besides the lncRNAs, several other noncoding RNAs like circular RNAs, miRNAs, and so forth are also expressed during hypoxic conditions. Hypoxia has a profound effect on the expression of noncoding RNAs and epigenetic modifiers. Conversely, noncoding RNAs/epigenetic modifies can regulate the hypoxia signaling axis by modulating the stability of the hypoxia-inducible factors (HIFs). The focus of this review is to illustrate the molecular orchestration underlying hypoxia biology, especially in cancers, which can help in identifying promising therapeutic targets in hypoxia-induced cancers. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Safirul Islam
- Institute of Health Sciences (erstwhile School of Biotechnology), Presidency University, Kolkata, India
| | - Chandrama Mukherjee
- Institute of Health Sciences (erstwhile School of Biotechnology), Presidency University, Kolkata, India
| |
Collapse
|
50
|
Zhang L, Wang X, Zhao W, Liu J. Overview of m 6A and circRNAs in human cancers. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04610-8. [PMID: 36807759 DOI: 10.1007/s00432-023-04610-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/27/2023] [Indexed: 02/21/2023]
Abstract
N6-methyladenosine (m6A), the richest post-transcriptional modification of RNA in eukaryotic cells, is dynamically installed/uninstalled by the RNA methylase complex ("writer") and demethylase ("eraser") and recognized by the m6A-binding protein ("reader"). M6A modification on RNA metabolism involves maturation, nuclear export, translation and splicing, thereby playing a critical role in cellular pathophysiology and disease processes. Circular RNAs (circRNAs) are a class of non-coding RNAs with a covalently closed loop structure. Due to its conserved and stable properties, circRNAs could participate in physiological and pathological processes through unique pathways. Despite the recent discovery of m6A and circRNAs remains in the initial stage, research has shown that m6A modifications are widespread in circRNAs and regulates circRNA metabolism, including biogenesis, cell localization, translation, and degradation. In this review, we describe the functional crosstalk between m6A and circRNAs, and illustrate their roles in cancer development. Moreover, we discuss the potential mechanisms and future research directions of m6A modification and circRNAs.
Collapse
Affiliation(s)
- Leyu Zhang
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Xi Wang
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China.
| | - Wei Zhao
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China.
| | - Jingwen Liu
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|