1
|
van der Weyden L, Del Castillo Velasco-Herrera M, Cheema S, Wong K, Boccacino JM, Offord V, Droop A, Jones DRA, Vermes I, Anderson E, Hardy C, de Saint Aubain N, Ferguson PM, Clarke EL, Merchant W, Mogler C, Frew D, Harms PW, Monteagudo C, Billings SD, Arends MJ, Ferreira I, Brenn T, Adams DJ. Comprehensive mutational profiling identifies new driver events in cutaneous leiomyosarcoma. Br J Dermatol 2025; 192:335-343. [PMID: 39392932 PMCID: PMC11758588 DOI: 10.1093/bjd/ljae386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Cutaneous leiomyosarcoma (cLMS) is a rare soft-tissue neoplasm, showing smooth muscle differentiation, that arises from the mesenchymal cells of the dermis. To date, genetic investigation of these tumours has involved studies with small sample sizes and limited analyses that identified recurrent somatic mutations in RB1 and TP53, copy number gain of MYOCD and IGF1R, and copy number loss of PTEN. OBJECTIVES To better understand the molecular pathogenesis of cLMS, we comprehensively explored the mutational landscape of these rare tumours to identify candidate driver events. METHODS In this retrospective, multi-institutional study, we performed whole-exome sequencing and RNA sequencing in 38 cases of cLMS. RESULTS TP53 and RB1 were identified as significantly mutated and thus represent validated driver genes of cLMS. COSMIC mutational signatures SBS7a/b and DBS1 were recurrent; thus, ultraviolet light exposure may be an aetiological factor driving cLMS. Analysis of significantly recurrent somatic copy number alterations, which represent candidate driver events, found focal (< 10 Mb) deletions encompassing TP53 and KDM6B, and amplifications encompassing ZMYM2, MYOCD, MAP2K4 and NCOR1. A larger (24 Mb) recurrent deletion encompassing CYLD was also identified as significant. Significantly recurrent broad copy number alterations, involving at least half of a chromosome arm, included deletions of 6p/q, 10p/q, 11q, 12q, 13q and 16p/q, and amplification of 15q. Notably PTEN is located on 10q, RB1 on 13q and IGFR1 on 15q. Fusion gene analysis identified recurrent CRTC1/CRTC3::MAML2 fusions, as well as many novel fusions in individual samples. CONCLUSIONS Our analysis of the largest number of cases of cLMS to date highlights the importance of large cohort sizes and exploration beyond small targeted gene panels when performing molecular analyses, as it allowed a comprehensive exploration of the mutational landscape of these tumours and identification of novel candidate driver events. It also uniquely afforded the opportunity to compare the molecular phenotype of cLMS with LMS of other tissue types, such as uterine and soft-tissue LMS. Given that molecular profiling has resulted in the development of novel targeted treatment approaches for uterine and soft-tissue LMS, our study now allows the same opportunities to become available for patients with cLMS.
Collapse
Affiliation(s)
| | | | - Saamin Cheema
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Kim Wong
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Victoria Offord
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Alastair Droop
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - David R A Jones
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ian Vermes
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Claire Hardy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nicolas de Saint Aubain
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Peter M Ferguson
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Emily L Clarke
- Department of Histopathology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Division of Pathology and Data Analytics, University of Leeds, Leeds, UK
| | - William Merchant
- Department of Histopathology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Carolin Mogler
- Institute of Pathology, School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Derek Frew
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Paul W Harms
- Departments of Pathology and Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Carlos Monteagudo
- Department of Pathology, University Clinic Hospital, Valencia – INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Pathology, University of Valencia, Valencia, Spain
| | - Steven D Billings
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mark J Arends
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, CRUK Edinburgh Centre, Institute of Genetics and Cancer, Western General Hospital, Edinburgh, UK
| | - Ingrid Ferreira
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Thomas Brenn
- Departments of Pathology and Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| |
Collapse
|
2
|
Chang HY, Saoud C, Torrence D, Tap W, Chi P, Antonescu CR. Alternative driver pathways in peripheral nerve sheath tumors - including DICER1 and/or KRAS alterations. J Pathol 2025. [PMID: 39846292 DOI: 10.1002/path.6391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/26/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025]
Abstract
DICER1-associated sarcoma is an emerging entity, defined by either somatic or germline dicer 1, ribonuclease III (DICER1) mutations and sharing characteristic morphologic features irrespective of the site of origin. In addition to the DICER1 driver mutation, concurrent genomic alterations, including tumor protein 53 (TP53) inactivation and RAS pathway activation, are frequently detected. Tumors that morphologically resemble malignant peripheral nerve sheath tumor (MPNST) have rarely been reported among DICER1 sarcomas and often pose diagnostic challenges. This study was prompted by a case involving morphologic features of MPNST, which harbored co-existing DICER1 and hotspot KRAS mutations. Hence, we investigated the incidence of these alterations in PNST from our molecular database compared to the genomic and morphologic spectrum of DICER1-mutant sarcomas. In total, we identified three cases diagnosed as MPNST with co-existing DICER1, ATRX chromatin remodeler (ATRX), and KRAS G12V/A alterations occurring in brain, cerebellopontine angle, and intra-abdominal sites. Two additional cases each of MPNSTs and neurofibromas were identified with hotspot KRAS mutations. All five MPNSTs lacked canonical neurofibromin 1 (NF1)/neurofibromin 2 (NF2) alterations, displaying a classic morphologic appearance with fascicular monomorphic spindle cells and followed a diverse clinical behavior. Among the 38 DICER1-associated sarcomas in our database, eight (21%) had secondary KRAS hotspot mutations, all composed of monomorphic spindle and/or round cells, including three with an MPNST-like histology. In contrast, all 10 (26%) DICER1-mutant sarcomas with TP53 mutations showed a pleomorphic phenotype. The DNA-based methylation profile of our index case clustered within the group of sarcomas with DICER1 alterations. Our results highlight a small subset of MPNST associated with DICER1 and/or KRAS mutations. However, their relationship with conventional MPNST remains to be determined in larger studies. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hsin-Yi Chang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carla Saoud
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dianne Torrence
- Department of Pathology, Northwell Health, New York, NY, USA
| | - William Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ping Chi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Cristina R Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Waldschmidt JM, Haug L, Riedhammer C, Deinzer CKW, Zimmermann M, Heidemeier A, Raab P, Rudert M, Hendricks A, Lock JF, Buck V, Rosenwald A, Einsele H, Reichardt P, Kunzmann V, Wiegering A, Pink D, Kortüm KM. Long-term disease control in dedifferentiated liposarcoma: a case report on trabectedin priming followed by PD-1 inhibition. Front Oncol 2025; 14:1518775. [PMID: 39886672 PMCID: PMC11779609 DOI: 10.3389/fonc.2024.1518775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/16/2024] [Indexed: 02/01/2025] Open
Abstract
Background Dedifferentiated liposarcoma (DDLPS) is a rare mesenchymal cancer originating from the adipose tissue, with poor survival rates for most patients, highlighting the critical need for novel treatment options. Case description This report examines the efficacy and safety of sequential pre-treatment with the marine-derived alkaloid trabectedin followed by checkpoint inhibition using the anti-PD-1 antibody nivolumab in a 63-year-old male patient with unresectable retroperitoneal DDLPS. Treatment was initiated at the time of the seventh relapse as part of the NitraSarc phase 2 multicenter trial for inoperable soft tissue sarcoma conducted by the German Interdisciplinary Sarcoma Group (GISG-15, NCT03590210). The patient demonstrated an immediate tumor response, and in combination with minor surgery, achieved R0 resection status, which was subsequently maintained without the need for further therapy for the past 52 months. Correlative molecular analyses revealed a sustained DNA damage repair machinery and downregulation of PD-1 protein expression in post-treatment tumor samples. Conclusion This report provides exemplary insight on the feasibility and efficacy of sequential pre-treatment with trabectedin as a priming strategy for PD-1 inhibition in advanced DDLPS. Full trial results from NitraSarc are pending for publication.
Collapse
Affiliation(s)
- Johannes M. Waldschmidt
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Bavarian Cancer Research Centre (BZKF), Würzburg, Germany
| | - Lukas Haug
- Bavarian Cancer Research Centre (BZKF), Würzburg, Germany
- Department of Pathology, University Hospital Würzburg, Würzburg, Germany
| | - Christine Riedhammer
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Bavarian Cancer Research Centre (BZKF), Würzburg, Germany
| | | | - Marcus Zimmermann
- Bavarian Cancer Research Centre (BZKF), Würzburg, Germany
- Department of Radiation Therapy, University Hospital Würzburg, Würzburg, Germany
| | - Anke Heidemeier
- Bavarian Cancer Research Centre (BZKF), Würzburg, Germany
- Department of Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Peter Raab
- Bavarian Cancer Research Centre (BZKF), Würzburg, Germany
- Department of Orthopaedic Surgery, König Ludwig Haus, University of Würzburg, Würzburg, Germany
| | - Maximilian Rudert
- Bavarian Cancer Research Centre (BZKF), Würzburg, Germany
- Department of Orthopaedic Surgery, König Ludwig Haus, University of Würzburg, Würzburg, Germany
| | - Anne Hendricks
- Bavarian Cancer Research Centre (BZKF), Würzburg, Germany
- Department of Visceral Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Johan F. Lock
- Bavarian Cancer Research Centre (BZKF), Würzburg, Germany
- Department of Visceral Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Viktoria Buck
- Bavarian Cancer Research Centre (BZKF), Würzburg, Germany
- Department of Pathology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Rosenwald
- Bavarian Cancer Research Centre (BZKF), Würzburg, Germany
- Department of Pathology, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Bavarian Cancer Research Centre (BZKF), Würzburg, Germany
| | - Peter Reichardt
- Department of Oncology, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Volker Kunzmann
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Bavarian Cancer Research Centre (BZKF), Würzburg, Germany
| | - Armin Wiegering
- Bavarian Cancer Research Centre (BZKF), Würzburg, Germany
- Department of Visceral Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Daniel Pink
- Department of Oncology and Palliative Care, Helios Klinikum Bad Saarow, Bad Saarow, Germany
- Klinik und Poliklinik für Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
| | - K. Martin Kortüm
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Bavarian Cancer Research Centre (BZKF), Würzburg, Germany
| |
Collapse
|
4
|
Pasquali S, Moura DS, Danks MR, Manasterski PJ, Zaffaroni N, Stacchiotti S, Mondaza-Hernandez JL, Kerrison WGJ, Martin-Broto J, Huang PH, Brunton VG. Preclinical models of soft tissue sarcomas - generation and applications to enhance translational research. Crit Rev Oncol Hematol 2025; 207:104621. [PMID: 39824369 DOI: 10.1016/j.critrevonc.2025.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
Soft tissue sarcomas (STS) represent a large group of rare and ultra-rare tumors distinguished by unique morphological, molecular and clinical features. Patients with such rare cancers are generally underrepresented in clinical trials which has limited the introduction of new treatment options and subsequent improvement of patient outcomes. Preclinical models of STS that recapitulate the human disease can aid progress in identifying new effective treatments. However, due to the rarity of these tumors there are limited STS models available. Here we review the existing preclinical models of STS, including patient-derived cell lines and organoids, patient-derived xenografts and genetically engineered mouse models. We discuss the advantages and disadvantages of the different models and describe to what extent they have aided clinical translation. Finally, we consider what can be done in the future to enhance their predictivity in the preclinical setting.
Collapse
Affiliation(s)
- Sandro Pasquali
- Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Instituto Nazionale dei Tumori di Milano, via G. Amadeo 42, Milano 20133, Italy
| | - David S Moura
- Research Health Institute of Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain; Department of Medical Oncology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain; University Hospital General of Villalba, Madrid, Spain
| | - Molly R Danks
- Edinburgh Cancer Research, CRUK Scotland Centre, University of Edinburgh, Crewe Road South, Edinburgh EH4 2RX, UK
| | - Piotr J Manasterski
- Edinburgh Cancer Research, CRUK Scotland Centre, University of Edinburgh, Crewe Road South, Edinburgh EH4 2RX, UK
| | - Nadia Zaffaroni
- Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Instituto Nazionale dei Tumori di Milano, via G. Amadeo 42, Milano 20133, Italy
| | - Silvia Stacchiotti
- Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Instituto Nazionale dei Tumori di Milano, via G. Amadeo 42, Milano 20133, Italy
| | - Jose L Mondaza-Hernandez
- Research Health Institute of Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain; Department of Medical Oncology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain; University Hospital General of Villalba, Madrid, Spain
| | - William G J Kerrison
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road Sutton, London, SM2 5NG, UK
| | - Javier Martin-Broto
- Research Health Institute of Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain; Department of Medical Oncology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain; University Hospital General of Villalba, Madrid, Spain
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road Sutton, London, SM2 5NG, UK
| | - Valerie G Brunton
- Edinburgh Cancer Research, CRUK Scotland Centre, University of Edinburgh, Crewe Road South, Edinburgh EH4 2RX, UK.
| |
Collapse
|
5
|
Szczepanski JM, Chapel DB, Huang T, Pham T, Mannan R, Mehra R, Sciallis AP, Tomlins S, Skala SL, Udager AM. The Morphologic and Molecular Heterogeneity of Fumarate Hydratase-deficient Leiomyomas: Integrative Molecular Profiling of Uterine Smooth Muscle Tumors With Histologic Feature Correlation. Int J Gynecol Pathol 2025:00004347-990000000-00224. [PMID: 39869100 DOI: 10.1097/pgp.0000000000001101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The morphologic features of uterine smooth muscle tumors (USMTs) are subject to interobserver variability and are complicated by consideration of features of fumarate hydratase deficiency (FHd) and other morphologic subtypes, with difficult cases occasionally diagnosed as smooth muscle tumor of uncertain malignant potential (STUMP). We compare immunohistochemical findings and detailed morphologic analysis of 45 USMTs by 4 fellowship-trained gynecologic pathologists with comprehensive molecular analysis, focusing on FHd leiomyomas (n=15), compared to a variety of other USMTs with overlapping morphologic features, including 9 STUMPs, 8 usual-type leiomyomas (ULM), 11 apoplectic leiomyomas, and 2 leiomyomas with bizarre nuclei (LMBN). FHd leiomyomas, defined by immunohistochemical (IHC) loss of FH and/or 2SC accumulation, showed FH mutations and/or FH copy loss in all cases, with concurrent TP53 mutations in 2 tumors. Severe and/or symplastic-type cytologic atypia was seen more often in FHd leiomyomas with only FH copy loss (6/8, and 2/2 with concurrent TP53 mutations) compared to those with FH mutations (2/7) and typically showed increased genomic instability. This subset of FHd tumors often showed morphologic overlap with STUMPs and LMBN, but all cases of FHd tumors showed 2SC accumulation and/or FH loss by IHC. In conclusion, we highlight the importance of investigating USMTs with severe and/or symplastic-type cytologic atypia with FH and 2SC IHC, as many of these tumors are FH-deficient via focal deep deletion (2-copy loss) of the FH locus. In addition, we report the presence of concurrent TP53 mutations in FHd tumors with more severe cytologic atypia; further data about clinical outcomes for these tumors are needed.
Collapse
Affiliation(s)
| | | | | | | | - Rahul Mannan
- Departments of Pathology
- Michigan Center for Translational Pathology
| | - Rohit Mehra
- Departments of Pathology
- Michigan Center for Translational Pathology
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | | | | | - Stephanie L Skala
- Departments of Pathology
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Aaron M Udager
- Departments of Pathology
- Michigan Center for Translational Pathology
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
6
|
Patel Y, Zhu C, Yamaguchi TN, Wang NK, Wiltsie N, Gonzalez AE, Winata HK, Zeltser N, Pan Y, Mootor MFE, Sanders T, Kandoth C, Fitz-Gibbon ST, Livingstone J, Liu LY, Carlin B, Holmes A, Oh J, Sahrmann J, Tao S, Eng S, Hugh-White R, Pashminehazar K, Park A, Beshlikyan A, Jordan M, Wu S, Tian M, Arbet J, Neilsen B, Bugh YZ, Kim G, Salmingo J, Zhang W, Haas R, Anand A, Hwang E, Neiman-Golden A, Steinberg P, Zhao W, Anand P, Tsai BL, Boutros PC. Metapipeline-DNA: A Comprehensive Germline & Somatic Genomics Nextflow Pipeline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.04.611267. [PMID: 39282325 PMCID: PMC11398472 DOI: 10.1101/2024.09.04.611267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Summary DNA sequencing continues to get cheaper and faster. In parallel, algorithmic innovations have allowed inference of a wide range of nuclear, mitochondrial, somatic and evolutionary from DNA sequencing data. To make automated, high-quality DNA sequencing more readily available, we created an extensible Nextflow meta-pipeline called metapipeline-DNA. Metapipeline-DNA supports processing raw sequencing reads through alignment, variant detection, quality control and subclonal reconstruction. Each step supports quality-control, data-visualization and multiple algorithms. Metapipeline-DNA is cloud-compatible and highly configurable, with options to subsect, optimize and optimize analyses, including with automated failure-recovery. Metapipeline-DNA enables high-scale, fault-tolerant, comprehensive analysis of genome sequencing. Availability Metapipeline-DNA is an open-source Nextflow pipeline under the GPLv2 license and is available at https://github.com/uclahs-cds/metapipeline-DNA.
Collapse
Affiliation(s)
- Yash Patel
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- Institute for Precision Health, University of California, Los Angeles, USA
| | - Chenghao Zhu
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Takafumi N. Yamaguchi
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- Institute for Precision Health, University of California, Los Angeles, USA
| | - Nicholas K. Wang
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Nicholas Wiltsie
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- Institute for Precision Health, University of California, Los Angeles, USA
| | - Alfredo E. Gonzalez
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Helena K. Winata
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Nicole Zeltser
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- Department of Urology, University of California, Los Angeles, USA
| | - Yu Pan
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- Institute for Precision Health, University of California, Los Angeles, USA
| | - Mohammed Faizal Eeman Mootor
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- Institute for Precision Health, University of California, Los Angeles, USA
| | - Timothy Sanders
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- Institute for Precision Health, University of California, Los Angeles, USA
| | - Cyriac Kandoth
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Sorel T. Fitz-Gibbon
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- Institute for Precision Health, University of California, Los Angeles, USA
| | - Julie Livingstone
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- Department of Urology, University of California, Los Angeles, USA
| | - Lydia Y. Liu
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- Department of Urology, University of California, Los Angeles, USA
| | - Benjamin Carlin
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- Institute for Precision Health, University of California, Los Angeles, USA
| | - Aaron Holmes
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Jieun Oh
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - John Sahrmann
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Shu Tao
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- Institute for Precision Health, University of California, Los Angeles, USA
| | - Stefan Eng
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Rupert Hugh-White
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Kiarod Pashminehazar
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Andrew Park
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Arpi Beshlikyan
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Madison Jordan
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Selina Wu
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Mao Tian
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Jaron Arbet
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Beth Neilsen
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Yuan Zhe Bugh
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Gina Kim
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Joseph Salmingo
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Wenshu Zhang
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Roni Haas
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Aakarsh Anand
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Edward Hwang
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Anna Neiman-Golden
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Philippa Steinberg
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Wenyan Zhao
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Prateek Anand
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Brandon L. Tsai
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- Institute for Precision Health, University of California, Los Angeles, USA
- Department of Urology, University of California, Los Angeles, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, USA
| |
Collapse
|
7
|
Shenasa E, Thornton S, Gao D, Kommoss F, Nielsen TO. Immune Biomarkers on Tissue Microarray Cores Support the Presence of Adjacent Tertiary Lymphoid Structures in Soft Tissue Sarcoma. J Transl Med 2025:104091. [PMID: 39800049 DOI: 10.1016/j.labinv.2025.104091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/29/2024] [Accepted: 12/15/2024] [Indexed: 01/15/2025] Open
Abstract
Immunotherapy has emerged as a new treatment modality in some soft tissue sarcomas, particularly for tumors associated with tertiary lymphoid structures (TLS). These structures are functional lymphoid aggregates, and their presence is indicative of an active anticancer immune response in the tumor microenvironment. The assessment of TLS as a predictive biomarker at scale on patient specimens remains challenging. While tissue microarrays could facilitate this assessment, it is unclear whether small microarray cores can represent and identify associated TLS responses. We sought to use multiplex immunohistochemistry to identify key components of TLS: T cells, B cells, and dendritic cells. The multiplex panels (CD3, CD20, CD208 and PNAd) were applied onto 80 cases both on tissue microarrays and on their cognate available full-faced sections from epithelioid sarcoma and dedifferentiated/well-differentiated liposarcoma case series. Tissue microarrays were digitally scored for the number of immune cells using the HALO image analysis platform, and cognate full-faced sections were visually evaluated for the presence of TLS. An independent validation set of soft tissue sarcomas (N=49) was stained with the CD3, CD20, and CD208, and scored by QuPath. A Combined Immune Marker (defined as the presence of more than more than 24% CD3+T cell, or 0.51% CD20+B cell, or more than 0.14% CD208+mature dendritic cell on tissue microarray core) is highly specific (100%) and moderately sensitive (61%) to predict the existence of TLS on full-faced sections. The Combined Immune Marker showed a sensitivity of 25% and specificity of 91% on the validation set. The Combined Immune Marker assessed on tissue microarrays is highly specific to infer the presence of TLS present on cognate full-faced sections. Therefore, despite the small area sampled, tissue microarrays may be utilized to assess the clinical value of TLS on datasets where specificity is critical and large sample size can mitigate low to moderate sensitivity.
Collapse
Affiliation(s)
- Elahe Shenasa
- Interdisciplinary Oncology, University of British Columbia, Vancouver, Canada
| | - Shelby Thornton
- Molecular and Advanced Pathology Core, University of British Columbia, Vancouver, Canada
| | - Dongxia Gao
- Molecular and Advanced Pathology Core, University of British Columbia, Vancouver, Canada
| | - Felix Kommoss
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Torsten O Nielsen
- Interdisciplinary Oncology, University of British Columbia, Vancouver, Canada; Molecular and Advanced Pathology Core, University of British Columbia, Vancouver, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
8
|
O'Donnell E, Muñoz M, Davis R, Bergonio J, Randall RL, Tepper C, Carr-Ascher J. Genetic and epigenetic characterization of sarcoma stem cells across subtypes identifies EZH2 as a therapeutic target. NPJ Precis Oncol 2025; 9:7. [PMID: 39789291 PMCID: PMC11717953 DOI: 10.1038/s41698-024-00776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025] Open
Abstract
High-grade soft tissue sarcomas (STS) are a heterogeneous and aggressive set of cancers. Failure to respond anthracycline chemotherapy, standard first-line treatment, is associated with poor outcomes. We investigated the contribution of STS cancer stem cells (STS-CSCs) to doxorubicin resistance. We identified a positive correlation between CSC abundance and doxorubicin IC50. Utilizing patient-derived samples from five sarcoma subtypes we investigated if a common genetic signature across STS-CSCs could be targeted. We identified Enhancer of Zeste homolog 2 (EZH2), a member of the polycomb repressive complex 2 (PRC2) responsible for H3K27 methylation as being enriched in CSCs. EZH2 activity and a shared epigenetic profile was observed across subtypes and targeting of EZH2 ablated the STS-CSC population. Treatment of doxorubicin-resistant cell lines with tazemetostat resulted in a decrease in the STS-CSC population. These data confirm the presence of shared genetic programs across distinct subtypes of CSC-STS that can be therapeutically targeted.
Collapse
Affiliation(s)
- Edmond O'Donnell
- Department of Orthopedic Surgery, University of California Davis, Sacramento, CA, 95817, USA
| | - Maria Muñoz
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, CA, 95817, USA
| | - Ryan Davis
- Department of Pathology and Laboratory, University of California Davis, Sacramento, CA, 95817, USA
| | - Jessica Bergonio
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, CA, 95817, USA
| | - R Lor Randall
- Department of Orthopedic Surgery, University of California Davis, Sacramento, CA, 95817, USA
| | - Clifford Tepper
- Department of Pathology and Laboratory, University of California Davis, Sacramento, CA, 95817, USA
| | - Janai Carr-Ascher
- Department of Orthopedic Surgery, University of California Davis, Sacramento, CA, 95817, USA.
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
9
|
Odhiambo DA, Fan S, Hirbe AC. UBR5 in Tumor Biology: Exploring Mechanisms of Immune Regulation and Possible Therapeutic Implications in MPNST. Cancers (Basel) 2025; 17:161. [PMID: 39857943 PMCID: PMC11764400 DOI: 10.3390/cancers17020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/09/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a rare but aggressive soft-tissue sarcoma characterized by poor response to therapy. The primary treatment remains surgical resection with negative margins. Nonetheless, in the setting of neurofibromatosis type 1 (NF1), the five-year survival rate is at 20-50%, with recurrence occurring in up to 50% of individuals. For patients with metastatic and unresectable disease, current treatment options include cytotoxic chemotherapy, which offers minimal benefit, and most patients die within five years of diagnosis. Despite advances in targeted therapy focusing on inhibiting Ras signaling and its downstream effectors, clinical trials report minimal clinical benefit, highlighting the need to explore alternative pathways in MPNST pathogenesis. Here, we discuss the role of the E3 ubiquitin ligase, UBR5, in cancer progression and immune modulation across various malignancies, including breast, lung, and ovarian cancer. We focus on mechanisms by which UBR5 contributes to tumorigenesis, focusing on its influence on tumor microenvironment and immune modulation. Additionally, we explore UBR5's roles in normal tissue function, DNA damage response, metastasis, and therapeutic resistance, illustrating its multifaceted contribution to cancer biology. We discuss evidence implicating UBR5 in immune evasion and highlight its potential as a therapeutic target to enhance the efficacy of immune checkpoint blockade (ICB) therapy in MPNST, a tumor typically characterized by an immune cold microenvironment. We outline current immune-based strategies and challenges in MPNST management, ongoing efforts to shift the immune landscape in MPNST, and ultimately, we suggest that targeting UBR5 could be a novel strategy to potentiate ICB therapy-mediated anti-tumor immune response and clinical outcomes, particularly in MPNST patients with inoperable or metastatic disease.
Collapse
Affiliation(s)
| | | | - Angela C. Hirbe
- Division of Oncology, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; (D.A.O.); (S.F.)
| |
Collapse
|
10
|
Lippai Z, Papp G, Szuhai K, Sápi J, Dezső K, Sápi Z. NTRK amplification occurs frequently in pan-TRK immunopositive dedifferentiated liposarcomas. Pathol Oncol Res 2025; 30:1611993. [PMID: 39839837 PMCID: PMC11745873 DOI: 10.3389/pore.2024.1611993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
The neurotrophic tyrosine kinase receptor (NTRK) gene family is of rising importance as their fusions are oncogenic, and specific target drugs are available to inhibit the chimera proteins. Pan-TRK antibody, which shows the overexpression of the NTRK1-2-3 genes, is a useful tool to detect tumors with or without NTRK gene alterations, due to high negative predictive value. Though it is well known that pan-TRK immunopositivity is usually not connected to NTRK fusion, the role of other possible genetic alterations is under-researched. In our previous work, we found 3 NTRK1 amplified cases out of 6 cases with recurrent NTRK1 tyrosine kinase domain mutation pair, so we extended our investigation to a larger series to estimate amplification frequency. Pan-TRK immunopositivity was seen in 76 of the 132 dedifferentiated liposarcomas cases, followed by NTRK1-2-3 break-apart FISH tests in 76 pan-TRK positive cases to detect oncogenic fusions or other copy number alterations of these genes. None of the pan-TRK immunopositive dedifferentiated liposarcomas showed absolutely certain sign of fusion, however, 18 (28%) cases showed amplification of one of the genes, 13 had polysomy, 34 were normal, 11 were not evaluable. The extent of pan-TRK immunoreaction showed a positive correlation (p = 0.002) with the NTRK status found by FISH. Analyzing publicly available data from large series of 265 liposarcoma samples consisting of both well-differentiated and dedifferentiated liposarcoma case, 23 (8.6%) cases showed a mutual exclusive amplification of the NTRK genomic loci in a non-preselected, independent patient population indicating that our findings are presented in other cohorts. Our results underline the so far not revealed frequent occurrence of NTRK amplifications which might be important in the TRK inhibition therapy.
Collapse
Affiliation(s)
- Zoltán Lippai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gergő Papp
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Károly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Johanna Sápi
- John von Neumann Faculty of Informatics, Physiological Controls Research Center, Obuda University, Budapest, Hungary
| | - Katalin Dezső
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zoltán Sápi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Jin K, Ding Y, Xu J, Liu Z, Zeng H, Su X, Zhang L, Sun J, Wu Y, Liu H, Chang Y, Zhu Y, Wang Z, Xu L, Zhang W, Xu J. Lethal clinical outcome and chemotherapy and immunotherapy resistance in patients with urothelial carcinoma with MDM2 amplification or overexpression. J Immunother Cancer 2025; 13:e010964. [PMID: 39762080 PMCID: PMC11749520 DOI: 10.1136/jitc-2024-010964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND The E3 ubiquitin ligase murine double minute 2 (MDM2) binds the p53 transcriptional activation domain and acts as a potent inhibitor of TP53 pathway, one of the three most crucial oncogenic pathways in urothelial carcinoma (UC). However, the clinical significance and impact on tumor immune contexture of MDM2 amplification in UC remain unclear. METHODS This study analyzed 240 patients with UC with matched clinical annotations from two local cohorts (ZSHS cohort and FUSCC cohort). We assessed the correlation between MDM2 status and clinical outcomes, therapeutic efficacy, and immunological characteristics by immunohistochemical analysis and targeted sequencing. Additionally, 2264 UC samples from five independent external cohorts, with genomic, transcriptomic, and clinical data, were used for validation. RESULTS MDM2 amplification (MDM2 Amp) or protein overexpression (MDM2OE) was associated with inferior overall survival (ZSHS cohort, Log-rank p<0.001; FUSCC cohort, Log-rank p=0.030) and reduced response to platinum-based chemotherapy (ZSHS cohort, Log-rank p<0.001) as well as anti-PD-1/PD-L1 immunotherapy (FUSCC cohort, Log-rank p=0.016) in patients with UC, irrespective of TP53/p53 status. MDM2 amplification or overexpression was further linked to high-grade UC tumors with dedifferentiated morphology. In addition, UC with MDM2 amplification or overexpression was associated with an immuno-evasive contexture characterized by lower proportion of tertiary lymphoid structure infiltration, lower abundance of CD8+ T cells, IFN-γ+ cells, GZMB+ cells, and decreased expression of immune checkpoint molecules including programmed death-ligand 1 (PD-L1), programmed death-1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). CONCLUSIONS MDM2 amplification or overexpression defines a lethal subset of patients with UC with inferior prognosis and resistance to both platinum-based chemotherapy and immunotherapy irrespective of TP53/p53 status. These tumors are characterized by dedifferentiated morphology and an immunosuppressive microenvironment. Accurate assessment of MDM2 status can improve risk stratification and enable personalized genomics-guided treatment for patients with UC.
Collapse
Affiliation(s)
- Kaifeng Jin
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yawei Ding
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingtong Xu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaopei Liu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Han Zeng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaohe Su
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lingkai Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiaxing Sun
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuzhen Wu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hailong Liu
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Sekita T, Asano N, Kubo T, Totsuka H, Mitani S, Hattori N, Yoshida A, Kobayashi E, Komiyama M, Ushijima T, Nakayama R, Nakamura M, Kawai A, Ichikawa H. Early separation and parallel clonal selection of dedifferentiated and well-differentiated components in dedifferentiated liposarcoma. Neoplasia 2025; 59:101074. [PMID: 39591761 PMCID: PMC11626829 DOI: 10.1016/j.neo.2024.101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024]
Abstract
Dedifferentiated liposarcoma (DDLPS) comprises a high-grade dedifferentiated (DD) component and a juxtaposed well-differentiated (WD) component. The DD component is believed to originate from the WD component by acquiring additional genomic alterations. In this study, we performed multiregion genome, epigenome, and transcriptome analyses of three patients with DDLPS. In two patients, there were few common genomic alterations across all samples, but many common alterations within DD or WD component samples. Phylogenetic trees predicted from the genomic alterations were consistent with those predicted from DNA methylation patterns. The expression patterns of adipogenesis-related genes differed between DD and WD components and also among patients in connection with their CpG island methylation status. These results indicate that in some patients, WD and DD components are evolutionarily separated at very early stages of tumorigenesis, and are formed through relatively long clonal selection with acquisition of different driver genomic alterations and DNA methylation changes.
Collapse
Affiliation(s)
- Tetsuya Sekita
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan; Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan; Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Naofumi Asano
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan; Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan.
| | - Takashi Kubo
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan; Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo, Japan
| | | | - Sachiyo Mitani
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Naoko Hattori
- Division of Epigenome, National Cancer Center Research Institute, Tokyo, Japan; Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Motokiyo Komiyama
- Department of Urology, National Cancer Center Hospital, Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenome, National Cancer Center Research Institute, Tokyo, Japan; Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Robert Nakayama
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hitoshi Ichikawa
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
13
|
Guo Y, Li T, Gong B, Hu Y, Wang S, Yang L, Zheng C. From Images to Genes: Radiogenomics Based on Artificial Intelligence to Achieve Non-Invasive Precision Medicine in Cancer Patients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408069. [PMID: 39535476 PMCID: PMC11727298 DOI: 10.1002/advs.202408069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/19/2024] [Indexed: 11/16/2024]
Abstract
With the increasing demand for precision medicine in cancer patients, radiogenomics emerges as a promising frontier. Radiogenomics is originally defined as a methodology for associating gene expression information from high-throughput technologies with imaging phenotypes. However, with advancements in medical imaging, high-throughput omics technologies, and artificial intelligence, both the concept and application of radiogenomics have significantly broadened. In this review, the history of radiogenomics is enumerated, related omics technologies, the five basic workflows and their applications across tumors, the role of AI in radiogenomics, the opportunities and challenges from tumor heterogeneity, and the applications of radiogenomics in tumor immune microenvironment. The application of radiogenomics in positron emission tomography and the role of radiogenomics in multi-omics studies is also discussed. Finally, the challenges faced by clinical transformation, along with future trends in this field is discussed.
Collapse
Affiliation(s)
- Yusheng Guo
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Tianxiang Li
- Department of UltrasoundState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical. SciencesPeking Union Medical CollegeBeijing100730China
| | - Bingxin Gong
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Yan Hu
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Sichen Wang
- School of Life Science and TechnologyComputational Biology Research CenterHarbin Institute of TechnologyHarbin150001China
| | - Lian Yang
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Chuansheng Zheng
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| |
Collapse
|
14
|
Momeni-Boroujeni A, Nucci MR, Chapel DB. Risk Stratification of Uterine Smooth Muscle Tumors: The Role of Morphology, Immunohistochemistry, and Molecular Testing. Adv Anat Pathol 2025; 32:44-56. [PMID: 39711162 DOI: 10.1097/pap.0000000000000478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Uterine smooth muscle neoplasms are a biologically and clinically heterogeneous group of tumors. Morphology is the cornerstone of pathologic diagnosis of these tumors, and most are readily classified as benign or malignant on the basis of routine histologic examination. However, rare subsets-including intravenous leiomyomatosis, benign metastasizing leiomyoma, and disseminated peritoneal leiomyomatosis-have a capacity for extrauterine spread despite benign cytomorphology. A further subset of uterine smooth muscle neoplasms, termed "smooth muscle tumor of uncertain malignant potential (STUMP)," are not readily classified as benign or malignant and carry an intermediate prognosis. STUMP is a protean category, whose precise definition is subject to disagreement among experts. The risk profiles of different STUMP morphotypes remain largely unresolved. Finally, multiple morphology-based systems for risk stratification of uterine leiomyosarcoma have been proposed, though none is widely adopted. Immunohistochemical and molecular prognostic markers for both STUMP and leiomyosarcoma remain in the early phases of adoption in routine diagnostic practice.
Collapse
Affiliation(s)
| | - Marisa R Nucci
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA
| | - David B Chapel
- Department of Pathology, University of Michigan-Michigan Medicine, Ann Arbor, MI
| |
Collapse
|
15
|
Sigalotti L, Frezza AM, Sbaraglia M, Del Savio E, Baldazzi D, Valenti B, Bellan E, De Benedictis I, Doni M, Gambarotti M, Vincenzi B, Brunello A, Baldi GG, Palmerini E, Pasquali S, Ciuffetti ME, Varano V, Cappello F, Appolloni V, Pastrello C, Jurisica I, Gronchi A, Stacchiotti S, Casali PG, Dei Tos AP, Maestro R. Proximal and Classic Epithelioid Sarcomas are Distinct Molecular Entities Defined by MYC/GATA3 and SOX17/Endothelial Markers, Respectively. Mod Pathol 2025; 38:100647. [PMID: 39491746 DOI: 10.1016/j.modpat.2024.100647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/25/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Epithelioid sarcoma (ES) is a rare tumor hallmarked by the loss of INI1/SMARCB1 expression. Apart from this alteration, little is known about the biology of ES. Despite recent advances in treatment, the prognosis of ES remains unsatisfactory. To elucidate the molecular underpinnings of ES, and to identify diagnostic biomarkers and potential therapeutic vulnerabilities, we performed an integrated omics profiling (RNA sequencing and methylation array) of 24 primary, untreated ESs. Transcriptome and methylome analysis identified 2 distinct molecular clusters that essentially corresponded to the morphologic variants of ES, classic ES (C-ES) and the more aggressive proximal ES (P-ES). The P-ES group was characterized by hyperactivation of GATA3 and MYC pathways, with extensive epigenetic rewiring associated with EZH2 overexpression. Both DNA methylation and gene expression analysis indicated a striking similarity with the "MYC subgroup" of atypical teratoid/rhabdoid tumor, another SMARCB1-deficient tumor, implying a shared molecular background and potential therapeutic vulnerabilities. Conversely, the C-ES group exhibited an endothelial-like molecular profile, with expression of vascular genes and elevated proangiogenic SOX17 signaling. Immunohistochemistry validated the overexpression of the chromatin regulators GATA3 (9/12 vs 0/16) and EZH2 (7/7 vs 2/6) in P-ESs, and of the vascular factors SOX17 (8/8 vs 1/10) and N-cadherin (5/9 vs 0/10) in C-ESs. Therefore, these molecules emerge as potential diagnostic tools to fill the gap represented by the lack of ES subtype-specific biomarkers. In summary, our study shows that P-ES and C-ES represent distinct molecular entities defined by MYC/GATA3 and SOX17/endothelial molecular traits, respectively. Besides providing insights into the biology of ES, our study pinpoints subtype-specific biomarkers and potential therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Luca Sigalotti
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Anna Maria Frezza
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marta Sbaraglia
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Elisa Del Savio
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Davide Baldazzi
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Beatrice Valenti
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Elena Bellan
- Department of Pathology, Azienda Ospedale Università Padova, Padua, Italy
| | - Ilaria De Benedictis
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Michele Doni
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Marco Gambarotti
- Department of Pathology, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, Università Campus Biomedico di Roma, Rome, Italy
| | - Antonella Brunello
- Department of Oncology, Medical Oncology 1 Unit, Istituto Oncologico Veneto IOV, IRCCS, Padua, Italy
| | - Giacomo Giulio Baldi
- Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Emanuela Palmerini
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sandro Pasquali
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Elena Ciuffetti
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Veronica Varano
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Filippo Cappello
- Department of Pathology, Azienda Ospedale Università Padova, Padua, Italy
| | - Viviana Appolloni
- Italian Sarcoma Group, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Pastrello
- Division of Orthopaedic Surgery, Schroeder Arthritis Institute, Toronto, Canada
| | - Igor Jurisica
- Division of Orthopaedic Surgery, Schroeder Arthritis Institute, Toronto, Canada; Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Canada; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alessandro Gronchi
- Department of Sarcoma Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Stacchiotti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Giovanni Casali
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
16
|
Al-Shajrawi OM, Tarawneh IA, Tengku Din TADAADAA, Afolabi HA. The role of microalgal extracts and their combination with tamoxifen in the modulation of breast cancer immunotherapy (Review). Mol Clin Oncol 2025; 22:6. [PMID: 39559458 PMCID: PMC11570877 DOI: 10.3892/mco.2024.2801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/01/2024] [Indexed: 11/20/2024] Open
Abstract
Cancer is one of the deadliest health menaces humans have ever witnessed. It is a leading cause of human mortality. Today, it remains a main leading cause of death globally primarily due to lifestyle changes and population ageing. A total of ~12.7 million cancer cases and 7.6 million cancer deaths were reported in 2008. In developing countries, cancer accounted for 56% of cases and 64% of deaths. Tamoxifen is the most reputable and recommended specific oestrogen receptor modulator drug used for the treatment of breast cancer. In the past decade, algae have demonstrated remarkable potency for advanced life applications. They can remain a focus of interest in the coming decades because they are one of the most diverse organisms in the entire ecosystem with immense bio nutritional benefits. Algae and their extracts play a pivotal role in the pharmaceutical industry as bioactive compounds and new drugs and nutraceutical industry as probiotics and antioxidants. However, a broad range of the health benefits of these organisms remains to be explored. The present review highlights the applications and co-application of microalgal crude extracts with tamoxifen for breast cancer immunotherapy. Given that recent studies have suggested that tamoxifen is an essential and primary treatment for breast cancer, the present review focused on the identification of a new treatment approach involving the co-application of tamoxifen and microalgal extracts to provide promising anticancer activity with few side effects on normal cells. The present review includes a general background and blueprint for the use of microalgal extracts as potential and affordable treatments or adjuncts for breast cancer management.
Collapse
Affiliation(s)
- Omar Mahmoud Al-Shajrawi
- Department of Chemical Pathology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
| | - Ibraheam A.M. Tarawneh
- School of Graduate Studies, Management and Science University, Shah Alam, Selangor 40100, Malaysia
| | | | - Hafeez Abiola Afolabi
- Department of Pathology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
| |
Collapse
|
17
|
Anderson CJ, Yang H, Parsons J, Ahrens WA, Jagosky MH, Hsu JH, Patt JC, Kneisl JS, Steuerwald NM. Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation. Clin Orthop Relat Res 2025; 483:39-48. [PMID: 38905450 PMCID: PMC11658723 DOI: 10.1097/corr.0000000000003161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND A liquid biopsy is a test that evaluates the status of a disease by analyzing a sample of bodily fluid, most commonly blood. In recent years, there has been progress in the development and clinical application of liquid biopsy methods to identify blood-based, tumor-specific biomarkers for many cancer types. However, the implementation of these technologies to aid in the treatment of patients who have a sarcoma remains behind other fields of cancer medicine. For this study, we chose to evaluate a sarcoma liquid biopsy based on circulating tumor DNA (ctDNA). All human beings have normal cell-free DNA (cfDNA) circulating in the blood. In contrast with cfDNA, ctDNA is genetic material present in the blood stream that is derived from a tumor. ctDNA carries the unique genomic fingerprint of the tumor with changes that are not present in normal circulating cfDNA. A successful ctDNA liquid biopsy must be able to target these tumor-specific genetic alterations. For instance, epidermal growth factor receptor (EGFR) mutations are common in lung cancers, and ctDNA liquid biopsies are currently in clinical use to evaluate the status of disease in patients who have a lung cancer by detecting EGFR mutations in the blood. As opposed to many carcinomas, sarcomas do not have common recurrent mutations that could serve as the foundation to a ctDNA liquid biopsy. However, many sarcomas have structural changes to their chromosomes, including gains and losses of portions or entire chromosomes, known as copy number alterations (CNAs), that could serve as a target for a ctDNA liquid biopsy. Murine double minute 2 (MDM2) amplification in select lipomatous tumors or parosteal osteosarcoma is an example of a CNA due to the presence of extra copies of a segment of the long arm of chromosome 12. Since a majority of sarcomas demonstrate a complex karyotype with numerous CNAs, a blood-based liquid biopsy strategy that searches for these CNAs may be able to detect the presence of sarcoma ctDNA. Whole-genome sequencing (WGS) is a next-generation sequencing technique that evaluates the entire genome. The depth of coverage of WGS refers to how detailed the sequencing is, like higher versus lower power on a microscope. WGS can be performed with high-depth sequencing (that is, > 60×), which can detect individual point mutations, or low-depth sequencing (that is, 0.1× to 5×), referred to as low-passage whole-genome sequencing (LP-WGS), which may not detect individual mutations but can detect structural chromosomal changes including gains and losses (that is, CNAs). While similar strategies have shown favorable early results for specific sarcoma subtypes, LP-WGS has not been evaluated for applicability to the broader population of patients who have a sarcoma. QUESTIONS/PURPOSES Does an LP-WGS liquid biopsy evaluating for CNAs detect ctDNA in plasma samples from patients who have sarcomas representing a variety of histologic subtypes? METHODS This was a retrospective study conducted at a community-based, tertiary referral center. Nine paired (plasma and formalin-fixed paraffin-embedded [FFPE] tissue) and four unpaired (plasma) specimens from patients who had a sarcoma were obtained from a commercial biospecimen bank. Three control specimens from individuals who did not have cancer were also obtained. The paired and unpaired specimens from patients who had a sarcoma represented a variety of sarcoma histologic subtypes. cfDNA was extracted, amplified, and quantified. Libraries were prepared, and LP-WGS was performed using a NextSeq 500 next-generation sequencing machine at a low depth of sequencing coverage (∼1×). The ichorCNA bioinformatics algorithm, which was designed to detect CNAs from low-depth genomic sequencing data, was used to analyze the data. In contrast with the gold standard for diagnosis in the form of histopathologic analysis of a tissue sample, this test does not discriminate between sarcoma subtypes but detects the presence of tumor-derived CNAs within the ctDNA in the blood that should not be present in a patient who does not have cancer. The liquid biopsy was positive for the detection of cancer if the ichorCNA algorithm detected the presence of ctDNA. The algorithm was also used to quantitatively estimate the percent ctDNA within the cfDNA. The concentration of ctDNA was then calculated from the percent ctDNA relative to the total concentration of cfDNA. The CNAs of the paired FFPE tissue and plasma samples were graphically visualized using aCNViewer software. RESULTS This LP-WGS liquid biopsy detected ctDNA in 9 of 13 of the plasma specimens from patients with a sarcoma. The other four samples from patients with a sarcoma and all serum specimens from patients without cancer had no detectable ctDNA. Of those 9 patients with positive liquid biopsy results, the percent ctDNA ranged from 6% to 11%, and calculated ctDNA quantities were 0.04 to 5.6 ng/mL, which are levels to be expected when ctDNA is detectable. CONCLUSION In this small pilot study, we were able to detect sarcoma ctDNA with an LP-WGS liquid biopsy searching for CNAs in the plasma of most patients who had a sarcoma representing a variety of histologic subtypes. CLINICAL RELEVANCE These results suggest that an LP-WGS liquid biopsy evaluating for CNAs to identify ctDNA may be more broadly applicable to the population of patients who have a sarcoma than previously reported in studies focusing on specific subtypes. Large prospective clinical trials that gather samples at multiple time points during the process of diagnosis, treatment, and surveillance will be needed to further assess whether this technique can be clinically useful. At our institution, we are in the process of developing a large prospective clinical trial for this purpose.
Collapse
Affiliation(s)
- Colin J. Anderson
- Musculoskeletal Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
- Levine Cancer Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
| | - HsihTe Yang
- Levine Cancer Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
| | - Judy Parsons
- Levine Cancer Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
| | - Will A. Ahrens
- Carolina Pathology Group, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
| | - Megan H. Jagosky
- Levine Cancer Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
| | - Johann H. Hsu
- Levine Cancer Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
| | - Joshua C. Patt
- Musculoskeletal Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
- Levine Cancer Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
| | - Jeffrey S. Kneisl
- Musculoskeletal Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
- Levine Cancer Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
| | - Nury M. Steuerwald
- Levine Cancer Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
| |
Collapse
|
18
|
Huang Y, Gong M, Lin J, Tang Q, Chen H, Hu J, Deng C, Huang A, Feng H, Song G, Xu H, Lu J, Zhu X, Wang J. Development and validation of a novel immune-related prognostic model and the potential metastatic mechanism in synovial sarcoma. Front Immunol 2024; 15:1448464. [PMID: 39735532 PMCID: PMC11671775 DOI: 10.3389/fimmu.2024.1448464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/22/2024] [Indexed: 12/31/2024] Open
Abstract
Background Several clinical trials have shown that immunotherapy plays a pivotal role in the treatment of patients with metastatic synovial sarcoma. Immune-related genes (IRGs) have been demonstrated to predict the immunotherapy response in certain malignant tumours. However, the clinical significance of IRGs in patients with synovial sarcoma (SS) is still unclear. Methods We first combined the immune-related ImmPort gene set to search for SS related to metastatic and differentially expressed immune-related genes (DEIRGs) in the GSE40021 dataset from the GEO database. The soft tissue sarcoma database in TCGA was used for univariate Cox regression analyses to identify DEIRGs that were related to overall survival and to build an immune-related prognostic assessment model. Results The study screened a total of six DEIRGs that were closely related to prognosis in metastatic SS. Further analysis showed that there was no significant difference in the expression of several immune checkpoints between the two groups in the GSE40021 data. Moreover, the GREM2 and CTSS genes were significantly expressed in metastatic patients. Further verification of clinical SS tissues from our centre by RT-qPCR analysis demonstrated reduced infiltration of activated NK cells and macrophages but increased M2-type macrophages in metastatic patients. Together, our study successfully constructed an immune-related prognostic assessment model and probably explains the poor efficacy of PD-1 inhibitors for SS patients. Conclusion The research deepens our understanding of the tumor immune microenvironment and proposes a new immune mechanism for metastatic SS. Early intervention and reversal of immunosuppressive microenvironmental changes are expected to delay metastasis and improve survival.
Collapse
Affiliation(s)
- Yufeng Huang
- Department of Cervical Spondylosis and Spine Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ming Gong
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Pediatric Orthopaedics, GuangZhou Women and Children’s Medical Center, GuangZhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Jiaming Lin
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qinglian Tang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongmin Chen
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinxin Hu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chuangzhong Deng
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Anfei Huang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Pediatric Orthopaedics, GuangZhou Women and Children’s Medical Center, GuangZhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Huixiong Feng
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guohui Song
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huaiyuan Xu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinchang Lu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojun Zhu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jin Wang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
19
|
Torrence D, Dermawan JK, Zhang Y, Vanderbilt C, Hwang S, Mullaney K, Jungbluth A, Rao M, Gao K, Sukhadia P, Linos K, Agaram N, Hameed M. Detection of GRM1 gene rearrangements in chondromyxoid fibroma: a comparison of fluorescence in-situ hybridisation, RNA sequencing and immunohistochemical analysis. Histopathology 2024; 85:889-898. [PMID: 38890779 DOI: 10.1111/his.15248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
AIMS Chondromyxoid fibroma (CMF) is a rare, benign bone tumour which arises primarily in young adults and is occasionally diagnostically challenging. Glutamate metabotropic receptor 1 (GRM1) gene encodes a metabotropic glutamate receptor and was recently shown to be up-regulated in chondromyxoid fibroma through gene fusion and promoter swapping. The aim of this study was to interrogate cases of CMF for the presence of GRM1 gene rearrangements, gene fusions and GRM1 protein overexpression. METHODS AND RESULTS Selected cases were subjected to testing by fluorescent in-situ hybridisation (FISH) with a GRM1 break-apart probe, a targeted RNA sequencing method and immunohistochemical study with an antibody to GRM1 protein. Two cases were subjected to whole transcriptomic sequencing. In 13 of 13 cases, GRM1 protein overexpression was detected by immunohistochemistry using the GRM1 antibody. Of the 12 cases successfully tested by FISH, nine of 12 showed GRM1 rearrangements by break-apart probe assay. Targeted RNA sequencing analysis did not detect gene fusions in any of the eight cases tested, but there was an increase in GRM1 mRNA expression in all eight cases. Two cases subjected to whole transcriptomic sequencing (WTS) showed elevated GRM1 expression and no gene fusions. CONCLUSION GRM1 gene rearrangements can be detected using FISH break-apart probes in approximately 75% of cases, and immunohistochemical detection of GRM1 protein over-expression is a sensitive diagnostic method. The gene fusion was not detected by targeted RNA sequencing, due most probably to the complexity of fusion mechanism, and is not yet a reliable method for confirming a diagnosis of CMF in the clinical setting.
Collapse
Affiliation(s)
- Dianne Torrence
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, USA
| | - Josephine K Dermawan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Yanming Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chad Vanderbilt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sinchun Hwang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kerry Mullaney
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Achim Jungbluth
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mamta Rao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kate Gao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Purvil Sukhadia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Konstantinos Linos
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Narasimhan Agaram
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meera Hameed
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
20
|
Cai C, Shi Q, Li J, Jiao Y, Xu A, Zhou Y, Wang X, Peng C, Zhang X, Cui X, Chen J, Xu J, Sun Q. Pathologist-level diagnosis of ulcerative colitis inflammatory activity level using an automated histological grading method. Int J Med Inform 2024; 192:105648. [PMID: 39396418 DOI: 10.1016/j.ijmedinf.2024.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND AND AIMS Inflammatory bowel disease (IBD) is a global disease that is evolving with increasing incidence. However, there are few works on computationally assisted diagnosis of IBD based on pathological images. Therefore, based on the UK and Chinese IBD diagnostic guidelines, our study established an artificial intelligence-assisted diagnostic system for histologic grading of inflammatory activity in ulcerative colitis (UC). METHODS We proposed an efficient deep-learning (DL) method for grading inflammatory activity in whole-slide images (WSIs) of UC pathology. Our model was constructed using 603 UC WSIs from Nanjing Drum Tower Hospital for model train set and internal test set. We collected 212 UC WSIs from Zhujiang Hospital as an external test set. Initially, the pre-trained ResNet50 model on the ImageNet dataset was employed to extract image patch features from UC patients. Subsequently, a multi-instance learning (MIL) approach with embedded self-attention was utilized to aggregate tissue image patch features, representing the entire WSI. Finally, the model was trained based on the aggregated features and WSI annotations provided by senior gastrointestinal pathologists to predict the level of inflammatory activity in UC WSIs. RESULTS In the task of distinguishing the presence or absence of inflammatory activity, the Area Under Curve (AUC) value in the internal test set is 0.863 (95% confidence interval [CI] 0.829, 0.898), with a sensitivity of 0.913 (95% [CI] 0.866, 0.961), and specificity of 0.816 (95% [CI] 0.771, 0.861). The AUC in the external test set is 0.947 (95% confidence interval [CI] 0.939, 0.955), with a sensitivity of 0.889 (905% [CI] 0.837, 0.940), and specificity of 0.858 (95% [CI] 0.777, 0.939). For distinguishing different levels of inflammatory activity in UC, the average Macro-AUC in the internal test set and the external test set are 0.827 (95% [CI] 0.803, 0.850) and 0.908 (95% [CI] 0.882, 0.935). the average Micro-AUC in the internal test set and the external test set are 0.816 (95% [CI] 0.792, 0.840) and 0.898 (95% [CI] 0.869, 0.926). CONCLUSIONS Comparative analysis with diagnoses made by pathologists at different expertise levels revealed that the algorithm reached a proficiency comparable to the pathologist with 5 years of experience. Furthermore, our algorithm performed superior to other MIL algorithms.
Collapse
Affiliation(s)
- Chengfei Cai
- School of Automation, Nanjing University of Information Science and Technology, Nanjing 21004, Jiangsu Province, China; Jiangsu Key Laboratory of Intelligent Medical Image Computing, School of Future Technology, Nanjing University of Information Science and Technology, Nanjing 21004, Jiangsu Province, China; College of Information Engineering, Taizhou University, Taizhou 225300, Jiangsu Province, China
| | - Qianyun Shi
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Jun Li
- Jiangsu Key Laboratory of Intelligent Medical Image Computing, School of Future Technology, Nanjing University of Information Science and Technology, Nanjing 21004, Jiangsu Province, China
| | - Yiping Jiao
- Jiangsu Key Laboratory of Intelligent Medical Image Computing, School of Future Technology, Nanjing University of Information Science and Technology, Nanjing 21004, Jiangsu Province, China
| | - Andi Xu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Yangshu Zhou
- Department of Pathology, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Xiangxue Wang
- Jiangsu Key Laboratory of Intelligent Medical Image Computing, School of Future Technology, Nanjing University of Information Science and Technology, Nanjing 21004, Jiangsu Province, China
| | - Chunyan Peng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Xiaoqi Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Xiaobin Cui
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Jun Chen
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Jun Xu
- Jiangsu Key Laboratory of Intelligent Medical Image Computing, School of Future Technology, Nanjing University of Information Science and Technology, Nanjing 21004, Jiangsu Province, China.
| | - Qi Sun
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Center for Digestive Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
21
|
Lee TY, von Mehren M. Novel pharmacotherapies for the treatment of liposarcoma: a comprehensive update. Expert Opin Pharmacother 2024; 25:2293-2306. [PMID: 39535168 DOI: 10.1080/14656566.2024.2427333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Liposarcomas are malignancies of adipocytic lineage and represent one of the most common types of soft tissue sarcomas. They encompass multiple histologies, each with unique molecular profiles. Treatment for localized disease includes resection, potentially with perioperative radiation or systemic therapy. Treatment for unresectable or metastatic disease revolves around palliative systemic therapy, for which improved therapies are urgently needed. AREAS COVERED We reviewed the literature on novel therapies in clinical development for liposarcomas within the past 5 years and discuss their potential impact on future treatment strategies. EXPERT OPINION Understanding of the molecular characteristics of liposarcoma subtypes has led to testing of several targeted therapies, including inhibitors of amplified gene products (CDK4 and MDM2) and upregulated proteins (XPO1). Immuno-oncology has played an increasing role in the treatment of liposarcomas, with checkpoint inhibition showing promise in dedifferentiated liposarcomas, and immune therapies targeting cancer testis antigens NY-ESO-1 and MAGE family proteins poised to become an option for myxoid/round cell liposarcomas. The search for novel agents from existing classes (tyrosine kinase inhibitors) with efficacy in liposarcoma also continues. Combination therapies as well as biomarker identification for patient selection of therapies warrant ongoing exploration.
Collapse
Affiliation(s)
- Teresa Y Lee
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Margaret von Mehren
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
22
|
Backman S, Botling J, Nord H, Ghosal S, Stålberg P, Juhlin CC, Almlöf J, Sundin A, Zhang L, Moens L, Eriksson B, Welin S, Hellman P, Skogseid B, Pacak K, Mollazadegan K, Åkerström T, Crona J. The evolutionary history of metastatic pancreatic neuroendocrine tumours reveals a therapy driven route to high-grade transformation. J Pathol 2024; 264:357-370. [PMID: 39360347 DOI: 10.1002/path.6348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024]
Abstract
Tumour evolution with acquisition of more aggressive disease characteristics is a hallmark of disseminated cancer. Metastatic pancreatic neuroendocrine tumours (PanNETs) in particular may progress from a low/intermediate to a high-grade disease. The aim of this work was to understand the molecular mechanisms underlying metastatic progression as well as PanNET transformation from a low/intermediate to a high-grade disease. We performed multi-omics analysis (genome/exome sequencing, total RNA-sequencing and methylation array) of 32 longitudinal samples from six patients with metastatic low/intermediate grade PanNET. The clonal composition of tumour lesions and underlying phylogeny of each patient were determined with bioinformatics analyses. Findings were validated in post-alkylating chemotherapy samples from 24 patients with PanNET using targeted next generation sequencing. We validate the current PanNET evolutionary model with MEN1 inactivation that occurs very early in tumourigenesis. This was followed by pronounced genetic diversity on both spatial and temporal levels, with parallel and convergent tumour evolution involving the ATRX/DAXX and mechanistic target of the rapamycin (mTOR) pathways. Following alkylating chemotherapy treatment, some PanNETs developed mismatch repair deficiency and acquired a hypermutational phenotype. This was validated among 16 patients with PanNET who had high-grade progression after alkylating chemotherapy, of whom eight had a tumour mutational burden >50 (50%). In comparison, among the eight patients who did not show high-grade progression, 0 had a tumour mutational burden >50 (0%; odds ratio 'infinite', 95% confidence interval 1.8 to 'infinite', p = 0.02). Our findings contribute to broaden the understanding of metastatic/high-grade PanNETs and suggests that therapy driven disease evolution is an important hallmark of this disease. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Samuel Backman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Helena Nord
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Suman Ghosal
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Peter Stålberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - C Christofer Juhlin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Almlöf
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Sundin
- Section of Radiology, Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Liang Zhang
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lotte Moens
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Barbro Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Staffan Welin
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Per Hellman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Britt Skogseid
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | | | - Tobias Åkerström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Joakim Crona
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Principe MAV, Gokgoz N, Prochazka P, Coward VS, Saini S, MacParland S, Gladdy R, Ferguson P, Wunder JS, Andrulis IL, Chung P, Griffin AM, White LM, Dickson BC, Tsoi KM. Identification of Malignancy in Peritumoral Edema in Soft Tissue Sarcoma: A Novel Targeted Molecular Approach. Ann Surg Oncol 2024:10.1245/s10434-024-16521-0. [PMID: 39556178 DOI: 10.1245/s10434-024-16521-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Peritumoral edema on staging magnetic resonance imaging (MRI) is associated with higher local recurrence in soft tissue sarcoma (STS). This may relate to the presence of satellite malignant cells that are difficult to distinguish from benign atypia, leading to over- or undertreatment. This study evaluated a novel targeted molecular approach to identify malignancy in STS peritumoral planes as a means to improve personalized care. METHODS In the targeted molecular approach, whole-exome sequencing was employed to identify tumor-specific variants (TSVs), and peritumoral planes were assayed for malignancy, defined as two or more TSVs/plane, using droplet digital polymerase chain reaction (PCR). Feasibility was evaluated using a retrospective cohort (n = 8) in which planes with cellular atypia were tested. A prospective cohort (n = 8) then assayed all peritumoral planes with radiologic edema. RESULTS The targeted molecular approach identified malignancy in three of eight cases with cellular atypia of unknown significance (37.5%) and five of eight cases with peritumoral edema on staging MRI (62.5%). Peritumoral regions were heterogeneous; in none of the malignant cases did all sampled planes have evidence of tumor. Malignancy was also identified in regions without cellular atypia. Both cases with a local recurrence had molecular evidence of malignancy outside the main mass despite R0 margins. CONCLUSION This study describes a novel personalized approach to detect malignancy in peritumoral regions in STS and is the first to identify molecular evidence of tumor outside the main mass. While development of a clinical tool is underway, these findings support the current approach of treating all peritumoral edema as malignant.
Collapse
Affiliation(s)
- Miguel Alfonso V Principe
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Nalan Gokgoz
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Patrick Prochazka
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Victoria S Coward
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sidharth Saini
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Toronto Joint Department of Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, Toronto, ON, Canada
| | - Sonya MacParland
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Rebecca Gladdy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Peter Ferguson
- Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Jay S Wunder
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Peter Chung
- Department of Radiation Oncology, Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Anthony M Griffin
- Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Lawrence M White
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Toronto Joint Department of Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, Toronto, ON, Canada
| | - Brendan C Dickson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Kim M Tsoi
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada.
| |
Collapse
|
24
|
Mushtaq M, Liaño-Pons J, Wang J, Alzrigat M, Yuan Y, Ruiz-Pérez MV, Chen Y, Kashuba E, Haglund de Flon F, Brodin B, Arsenian-Henriksson M. EZH2 inhibition sensitizes retinoic acid-driven senescence in synovial sarcoma. Cell Death Dis 2024; 15:836. [PMID: 39550391 PMCID: PMC11569238 DOI: 10.1038/s41419-024-07176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
Synovial sarcoma (SS) is driven by a unique t(18;X) chromosomal translocation resulting in expression of the SS18-SSX fusion oncoprotein, a transcriptional regulator with both activating and repressing functions. However, the manner in which SS18-SSX contributes to the development of SS is not entirely known. Here, we show that SS18-SSX drives the expression of Preferentially Expressed Antigen in Melanoma (PRAME), which is highly expressed in SS but whose function remains poorly understood. The fusion protein directly binds and activates the PRAME promoter and we found that expression of SS18-SSX and PRAME are positively correlated. We provide evidence that PRAME modulates retinoic acid (RA) signaling, forming a ternary complex with the RA receptor α (RARα) and the Enhancer of Zeste Homolog 2 (EZH2). Knockdown of PRAME suppressed the response to all-trans retinoic acid (ATRA) supporting PRAME's role in modulating RA-signaling. Notably, we demonstrate that combined pharmacological inhibition of EZH2 and treatment with ATRA reconstituted RA signaling followed by reduced proliferation and induction of cellular senescence. In conclusion, our data provides new insights on the role of the SS18-SSX fusion protein in regulation of PRAME expression and RA signaling, highlighting the therapeutic potential of disrupting the RARα-PRAME-EZH2 complex in SS. Schematic presentation of the proposed model. A The RARα-PRAME-EZH2 ternary complex in SS. The fusion SS18-SSX oncoprotein binds to the PRAME promoter and activates its expression. PRAME in turn interacts with RARα-RXR heterodimers as well as with EZH2, and the complex binds to retinoic acid response elements (RAREs) in the DNA. This results in transcriptional repression of retinoic acid (RA) responsive genes and thus inhibition of RA-signaling, allowing tumor cell proliferation. B Therapeutic strategy. Treatment with an EZH2 inhibitor, such as GSK343, or activation of RAR receptors via all-trans retinoic acid (ATRA), disrupts the RARα-PRAME-EZH2 ternary complex and restores RA-signaling. Exposure to GSK343 or ATRA results in inhibition of cell proliferation and induction of cellular senescence, where GSK343 shows a dominant effect. The Figure was created with Biorender.com.
Collapse
Affiliation(s)
- Muhammad Mushtaq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
- Department of Biotechnology, Faculty of Life Sciences and Informatics. Balochistan University of Information Technology, Engineering, and Management Sciences (BUITEMS), 87300, Quetta, Pakistan.
| | - Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| | - Jiansheng Wang
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Mohammad Alzrigat
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Ye Yuan
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - María Victoria Ruiz-Pérez
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 76, Stockholm, Sweden
- Division of Hematology and Oncology, Department of Medicine, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, USA
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden
- RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of NAS of Ukraine, 03022, Kyiv, Ukraine
| | - Felix Haglund de Flon
- Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 76, Stockholm, Sweden
| | - Bertha Brodin
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| |
Collapse
|
25
|
Klein JC, Wang L, Strand D, Lastufka C, Hosler GA, Hon GC. Single-cell and spatial transcriptomics identify COL6A3 as a prognostic biomarker in undifferentiated pleomorphic sarcoma. Mol Cancer 2024; 23:257. [PMID: 39548577 PMCID: PMC11566467 DOI: 10.1186/s12943-024-02168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Undifferentiated pleomorphic sarcoma (UPS) and related tumors are the most common type of soft tissue sarcoma. However, this spectrum of tumors has different etiologies with varying rates of metastasis and survival. Two dermal-based neoplasms in this class of pleomorphic sarcomas, atypical fibroxanthoma (AFX) and pleomorphic dermal sarcoma (PDS), are challenging to differentiate at initial biopsy but vary significantly in prognosis. We performed single-cell transcriptomics on five AFX and PDS biopsy specimens as well as both single-cell and spatial transcriptomics on one PDS excision specimen to better characterize these tumors. The top differential genes between AFX and PDS were predictive of overall survival in 17 other cancers included in the Human Protein Atlas. Of these genes, COL6A3 and BGN predicted overall survival and metastasis-free survival in independent cohorts of 46 and 38 UPS tumors, respectively. COL6A3 was most predictive of overall survival in UPS patients and outperformed an established sarcoma prognostic gene panel at predicting metastasis in UPS.
Collapse
Affiliation(s)
- Jason C Klein
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10021, USA.
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX75390, USA.
| | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Douglas Strand
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Gregory A Hosler
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX75390, USA
- ProPath/Sonic Healthcare, Dallas, TX, 75390, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
26
|
McAfee JL, Alban TJ, Makarov V, Rupani A, Parthasarathy PB, Tu Z, Ronen S, Billings SD, Diaz CM, Chan TA, Ko JS. Genomic Landscape of Superficial Malignant Peripheral Nerve Sheath Tumor. J Transl Med 2024; 105:102183. [PMID: 39532239 DOI: 10.1016/j.labinv.2024.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Superficial malignant peripheral nerve sheath tumors (SF-MPNSTs) are rare cancers and can be difficult to distinguish from spindle cell (SCM) or desmoplastic (DM) melanomas. Their biology is poorly understood. We performed whole-exome sequencing and RNA sequencing (RNA-seq) on SF-MPNST (n = 8) and compared them with cases of SCM (n = 7), DM (n = 8), and deep MPNST (D-MPNST, n = 8). Immunohistochemical staining for H3K27me3 and PRAME was also performed. SF-MPNST demonstrated intermediate features between D-MPNST and melanoma. Patients were younger than those with melanoma and older than those with D-MPNST; the outcome was worse and better, respectively. SF-MPNST tumor mutational burden (TMB) was higher than D-MPNST and lower than melanoma; differences were significant only between SF-MPNST and SCM (P = .0454) and between D-MPNST and SCM (P = .001, Dunn's Kruskal-Wallis post hoc test). Despite having an overlapping mutational profile in some common cancer-associated genes, the COSMIC mutational signatures clustered DM and SCM together with UV light exposure signatures (SBS7a, 7b), and SF- and D-MPNST together with defective DNA base excision repair (SBS30, 36). RNA-seq revealed differentially expressed genes between SF-MPNST and SCM (1670 genes), DM (831 genes), and D-MPNST (614 genes), some of which hold promise for development as immunohistochemical markers (SOX8 and PLCH1) or aids (MLPH, CALB2, SOX11, and TBX4). H3K27me3 immunoreactivity was diffusely lost in most D-MPNSTs (7/8, 88%) but showed variable and patchy loss in SF-MPNSTs (2/8, 25%). PRAME was entirely negative in the majority (0+ in 20/31, 65%), including 11/15 melanomas, and showed no significant difference between groups (P = .105, Kruskal-Wallis test). Expression of immune cell transcripts was upregulated in melanomas relative to MPNSTs. Next-generation sequencing revealed multiple differential features between SF- MPNST, D-MPNST, SCM, and DM, including tumor mutation burden, mutational signatures, and differentially expressed genes. These findings help advance our understanding of disease pathogenesis and improve diagnostic modalities.
Collapse
Affiliation(s)
- John L McAfee
- Department of Pathology, Cleveland Clinic Pathology and Laboratory Medicine Institute, Cleveland, Ohio
| | - Tyler J Alban
- Center for Immunotherapy and Precision Immuno-Oncology and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Vladimir Makarov
- Center for Immunotherapy and Precision Immuno-Oncology and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Amit Rupani
- Center for Immunotherapy and Precision Immuno-Oncology and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Prerana B Parthasarathy
- Center for Immunotherapy and Precision Immuno-Oncology and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Zheng Tu
- Department of Pathology, Cleveland Clinic Pathology and Laboratory Medicine Institute, Cleveland, Ohio
| | - Shira Ronen
- Department of Pathology, Cleveland Clinic Pathology and Laboratory Medicine Institute, Cleveland, Ohio
| | - Steven D Billings
- Department of Pathology, Cleveland Clinic Pathology and Laboratory Medicine Institute, Cleveland, Ohio
| | - C Marcela Diaz
- Center for Immunotherapy and Precision Immuno-Oncology and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; National Center for Regenerative Medicine, Cleveland, Ohio
| | - Jennifer S Ko
- Department of Pathology, Cleveland Clinic Pathology and Laboratory Medicine Institute, Cleveland, Ohio; Center for Immunotherapy and Precision Immuno-Oncology and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
27
|
Wang NK, Wiltsie N, Winata HK, Fitz-Gibbon S, Gonzalez AE, Zeltser N, Agrawal R, Oh J, Arbet J, Patel Y, Yamaguchi TN, Boutros PC. StableLift: Optimized Germline and Somatic Variant Detection Across Genome Builds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621401. [PMID: 39554127 PMCID: PMC11565985 DOI: 10.1101/2024.10.31.621401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Reference genomes are foundational to modern genomics. Our growing understanding of genome structure leads to continual improvements in reference genomes and new genome "builds" with incompatible coordinate systems. We quantified the impact of genome build on germline and somatic variant calling by analyzing tumour-normal whole-genome pairs against the two most widely used human genome builds. The average individual had a build-discordance of 3.8% for germline SNPs, 8.6% for germline SVs, 25.9% for somatic SNVs and 49.6% for somatic SVs. Build-discordant variants are not simply false-positives: 47% were verified by targeted resequencing. Build-discordant variants were associated with specific genomic and technical features in variant- and algorithm-specific patterns. We leveraged these patterns to create StableLift, an algorithm that predicts cross-build stability with AUROCs of 0.934 ± 0.029. These results call for significant caution in cross-build analyses and for use of StableLift as a computationally efficient solution to mitigate inter-build artifacts.
Collapse
Affiliation(s)
- Nicholas K. Wang
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Nicholas Wiltsie
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Helena K. Winata
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Sorel Fitz-Gibbon
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Alfredo E. Gonzalez
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Nicole Zeltser
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Raag Agrawal
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Jieun Oh
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Jaron Arbet
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
- Department of Urology, University of California, Los Angeles
| | - Yash Patel
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Takafumi N. Yamaguchi
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
- Department of Urology, University of California, Los Angeles
| |
Collapse
|
28
|
Xie F, Luo S, Liu D, Lu X, Wang M, Liu X, Jia F, Pang Y, Shen Y, Zeng C, Ma X, Tang D, Tu L, Yang L, Cheng Y, Luo Y, Xie F, Hou H, Huang T, Ni B, Zhuang C, Zhao W, Li K, Zheng X, Bi W, Jia X, He Y, Wang S, Cao H, Wu K, Wang Y. Genomic and transcriptomic landscape of human gastrointestinal stromal tumors. Nat Commun 2024; 15:9495. [PMID: 39489749 PMCID: PMC11532483 DOI: 10.1038/s41467-024-53821-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Gastrointestinal stromal tumor (GISTs) are clinically heterogenous exhibiting varying degrees of disease aggressiveness in individual patients. We comprehensively describe the genomic and transcriptomic landscape of a cohort of 117 GISTs including 31 low-risk, 18 intermediate-risk, 29 high-risk, 34 metastatic and 5 neoadjuvant GISTs from 105 patients. GISTs have notably low tumor mutation burden but widespread copy number variations. Aggressive GISTs harbor remarkably more genomic aberrations than low-/intermediate-risk GISTs. Complex genomic alterations, chromothripsis and kataegis, occur selectively in aggressive GISTs. Despite the paucity of mutations, recurrent inactivating YLPM1 mutations are identified (10.3%, 7 of 68 patients), enriched in high-risk/metastatic GIST and functional study further demonstrates YLPM1 inactivation promotes GIST proliferation, growth and oxidative phosphorylation. Spatially and temporally separated GISTs from individual patients demonstrate complex tumor heterogeneity in metastatic GISTs. Finally, four prominent subtypes are proposed with different genomic features, expression profiles, immune characteristics, clinical characteristics and subtype-specific treatment strategies. This large-scale analysis depicts the landscape and provides further insights into GIST pathogenesis and precise treatment.
Collapse
Affiliation(s)
- Feifei Xie
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Shuzhen Luo
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, 518083, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, 518083, Shenzhen, China
| | - Dongbing Liu
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, 518083, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, 518083, Shenzhen, China
| | - Xiaojing Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Disease, 200030, Shanghai, China
| | - Ming Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Xiaoxiao Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Fujian Jia
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, 518083, Shenzhen, China
| | - Yuzhi Pang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yanying Shen
- Department of Pathology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Chunling Zeng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xinli Ma
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Daoqiang Tang
- Department of Pathology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Lin Tu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Linxi Yang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Yumei Cheng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yuxiang Luo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Fanfan Xie
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, 518083, Shenzhen, China
| | - Hao Hou
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, 518083, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tao Huang
- Bioinformatics Core, Shanghai Institute of Nutrition and Health, 200031, Shanghai, China
| | - Bo Ni
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Chun Zhuang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Wenyi Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Ke Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xufen Zheng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Wenbo Bi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xiaona Jia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yi He
- Department of Urology, No.1 Hospital of Jiaxing, 314000, Jiaxing, China
| | - Simin Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.
| | - Hui Cao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Kui Wu
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, 518083, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, 518083, Shenzhen, China.
| | - Yuexiang Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
29
|
Morel VJ, Rössler J, Bernasconi M. Targeted immunotherapy and nanomedicine for rhabdomyosarcoma: The way of the future. Med Res Rev 2024; 44:2730-2773. [PMID: 38885148 DOI: 10.1002/med.22059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. Histology separates two main subtypes: embryonal RMS (eRMS; 60%-70%) and alveolar RMS (aRMS; 20%-30%). The aggressive aRMS carry one of two characteristic chromosomal translocations that result in the expression of a PAX3::FOXO1 or PAX7::FOXO1 fusion transcription factor; therefore, aRMS are now classified as fusion-positive (FP) RMS. Embryonal RMS have a better prognosis and are clinically indistinguishable from fusion-negative (FN) RMS. Next to histology and molecular characteristics, RMS risk groupings are now available defining low risk tumors with excellent outcomes and advanced stage disease with poor prognosis, with an overall survival of about only 20% despite intensified multimodal treatment. Therefore, development of novel effective targeted strategies to increase survival and to decrease long-term side effects is urgently needed. Recently, immunotherapies and nanomedicine have been emerging for potent and effective tumor treatments with minimal side effects, raising hopes for effective and safe cures for RMS patients. This review aims to describe the most relevant preclinical and clinical studies in immunotherapy and targeted nanomedicine performed so far in RMS and to provide an insight in future developments.
Collapse
Affiliation(s)
- Victoria Judith Morel
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Cyrta J, Dermawan JK, Tauziède-Espariat A, Liu T, Rosenblum M, Shroff S, Katabi N, Cardoen L, Guillemot D, Masliah-Planchon J, Hoare O, Delattre O, Bale T, Bourdeaut F, Antonescu CR. Expanding the clinicopathologic spectrum and genomic landscape of tumors with SMARCA2/4::CREM fusions. J Pathol 2024; 264:305-317. [PMID: 39344423 DOI: 10.1002/path.6350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/13/2024] [Accepted: 08/14/2024] [Indexed: 10/01/2024]
Abstract
CREB gene family (ATF1, CREB1, CREM) fusions with either EWSR1 or FUS gene partners drive the pathogenesis of a wide range of neoplasms, including various soft tissue tumors, intracranial myxoid mesenchymal tumors (IMMTs), hyalinizing clear cell carcinoma (HCCC), and rare mesotheliomas. Recently, a SMARCA2::CREM fusion was reported in one case each of IMMT and HCCC. In this study, we expand the clinicopathologic and molecular spectrum of these neoplasms by describing three additional cases with SMARCA2::CREM and one with a novel SMARCA4::CREM fusion, highlighting the recurrent potential of additional CREB gene fusion partners beyond FET family members. To evaluate if these fusions define a new pathologic entity, we performed a comprehensive genomic and methylation analysis and compared the results to other related tumors. Tumors occurred in children and young adults (median age 20 years) and spanned a broad anatomic distribution, including soft tissue, intracranial, head and neck, and prostatic urethra. Microscopically, the tumors shared an undifferentiated round to epithelioid cell phenotype and a hyalinized fibrous stroma. Immunohistochemically, a polyphenotypic profile was observed, with variable expression of SOX10, desmin, and/or epithelial markers. No targetable genomic alterations were found using panel-based DNA sequencing. By DNA methylation and transcriptomic analyses, tumors grouped closely to FET::CREB entities, but not with SMARCA4/SMARCB1-deficient tumors. High expression of CREM by immunohistochemistry was also documented in these tumors. Patients experienced local recurrence (n = 2), locoregional lymph node metastases (n = 2), and an isolated visceral metastasis (n = 1). Overall, our study suggests that SMARCA2/4::CREM fusions define a distinct group of neoplasms with round cell to epithelioid histology, a variable immunoprofile, and a definite risk of malignancy. Larger studies are needed to further explore the pathogenetic relationship with the FET::CREB family of tumors. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Joanna Cyrta
- Department of Pathology, Institut Curie, PSL Research University, Paris, France
| | - Josephine K Dermawan
- Department of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Arnault Tauziède-Espariat
- Department of Neuropathology, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Ting Liu
- Department of Pathology, University of Utah/ARUP Laboratories, Salt Lake City, UT, USA
| | - Marc Rosenblum
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Seema Shroff
- Department of Pathology, Advent Health, Orlando, FL, USA
| | - Nora Katabi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Delphine Guillemot
- Genetics Unit, Department of Tumor Biology, Institut Curie, PSL Research University, Paris, France
| | - Julien Masliah-Planchon
- Genetics Unit, Department of Tumor Biology, Institut Curie, PSL Research University, Paris, France
| | - Owen Hoare
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Paris Cité University, Paris, France
| | - Olivier Delattre
- Genetics Unit, Department of Tumor Biology, Institut Curie, PSL Research University, Paris, France
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Paris Cité University, Paris, France
| | - Tejus Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Franck Bourdeaut
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Paris Cité University, Paris, France
| | - Cristina R Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
31
|
Mitra S, Farswan A, Piccinelli P, Sydow S, Hesla A, Tsagkozis P, Vult von Steyern F, Almqvist M, Eriksson M, Magnusson L, Nilsson J, Pillay N, Mertens F. Transcriptomic profiles of myxofibrosarcoma and undifferentiated pleomorphic sarcoma correlate with clinical and genomic features. J Pathol 2024; 264:293-304. [PMID: 39258383 DOI: 10.1002/path.6347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 09/12/2024]
Abstract
Myxofibrosarcoma (MFS) and undifferentiated pleomorphic sarcoma (UPS) are two common and aggressive subtypes of soft tissue sarcoma. The aim of this study was to assess potential transcriptomic differences between MFS and UPS tumours and to evaluate the extent to which differences in gene expression profiles were associated with genomic and clinical features. The study included 162 patients with tumours diagnosed as MFS (N = 62) or UPS (N = 100). The patients had been diagnosed and treated at two Swedish sarcoma centres during a 30-year period. For gene expression profiling and gene fusion detection all tumours were analysed using RNA-sequencing and could be compared with data on clinical outcome (N = 155), global copy number profiles (N = 145), and gene mutations (N = 128). Gene expression profiling revealed three transcriptomic clusters (TCs) without any clear separation of MFS and UPS. One TC was associated with longer metastasis-free survival. These tumours had lower tumour mutation burden (TMB), were enriched for a copy number signature representative of focal LOH and chromosomal instability on a diploid background, and were relatively immune-depleted. MFS and UPS showed extensive genomic overlap, with whole genome doubling occurring more frequently among the latter. The results support the idea that MFS and UPS tumours have largely overlapping genomic and transcriptomic features, with UPS tumours showing more aggressive behaviour and more complex genomes. Independently of the tumour type, clinically relevant subgroups were revealed by gene expression analysis, and the finding of multiple genomic subgroups strongly suggest the existence of subgroups of relevance to treatment stratification. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Shamik Mitra
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Paul Piccinelli
- Department of Clinical Genetics and Pathology, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Saskia Sydow
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Asle Hesla
- Department of Orthopedics, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Martin Almqvist
- Department of Surgery, Skåne University Hospital, Lund, Sweden
| | - Mikael Eriksson
- Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Linda Magnusson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jenny Nilsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Nischalan Pillay
- University College London Cancer Institute, London, UK
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - Fredrik Mertens
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics and Pathology, Office for Medical Services, Region Skåne, Lund, Sweden
| |
Collapse
|
32
|
Osaki J, Noguchi R, Ono T, Adachi Y, Iwata S, Toda Y, Funada T, Iwata S, Kojima N, Yoshida A, Kawai A, Kondo T. Establishment and characterization of NCC-SS6-C1: a novel patient-derived cell line of synovial sarcoma. Hum Cell 2024; 37:1734-1741. [PMID: 39174825 DOI: 10.1007/s13577-024-01122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Synovial sarcoma (SS) is identified as a sarcoma with monomorphic blue spindle cells that display variable epithelial differentiation and is characterized by the SS18::SSX fusion gene. SS accounts for approximately 5-10% of all soft tissue sarcomas, making it a relatively common type within this group of tumors. Since SS is generally sensitive to chemotherapy, the standard treatment for SS includes extensive surgical resection, complemented by neoadjuvant chemotherapy with several approved anticancer drugs. However, in advanced and metastatic cases, the efficacy of these drugs is limited, resulting in poor prognoses. This underscores the need for innovative therapeutic strategies. Patient-derived cancer cell lines are essential tools for basic and preclinical research, yet only four SS cell lines are publicly available. To facilitate the studies of SS, we have developed a novel SS cell line, named NCC-SS6-C1, derived from surgically excised tumor tissue of an SS patient. NCC-SS6-C1 cells preserve the SS18::SSX1 fusion gene, consistent with the genetic characteristics of the original tumor. The cells exhibit continuous proliferation, invasiveness, and the ability to form spheroids. Additionally, we confirmed that this cell line was useful for evaluating the efficacy of anticancer drugs. Our results suggest that NCC-SS6-C1 is a useful tool for basic and pre-clinical studies of SS.
Collapse
Affiliation(s)
- Julia Osaki
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuki Adachi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shuhei Iwata
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yu Toda
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takaya Funada
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shintaro Iwata
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Naoki Kojima
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
33
|
Freeland J, Muñoz M, O’Donnell E, Langerman J, Darrow M, Bergonio J, Suarez-Navarro J, Thorpe S, Canter R, Randall RL, Plath K, Carraway KL, Witte ON, Graeber TG, Carr-Ascher JR. Genetic Screen in a Preclinical Model of Sarcoma Development Defines Drivers and Therapeutic Vulnerabilities. Clin Cancer Res 2024; 30:4957-4973. [PMID: 39177582 PMCID: PMC11530313 DOI: 10.1158/1078-0432.ccr-24-1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE High-grade complex karyotype sarcomas are a heterogeneous group of tumors with a uniformly poor prognosis. Within complex karyotype sarcomas, there are innumerable genetic changes but identifying those that are clinically relevant has been challenging. EXPERIMENTAL DESIGN To address this, we utilized a pooled genetic screening approach, informed by The Cancer Genome Atlas (TCGA) data, to identify key drivers and modifiers of sarcoma development that were validated in vivo. RESULTS YAP1 and wild-type KRAS were validated as drivers and transformed human mesenchymal stem cells into two distinct sarcoma subtypes, undifferentiated pleomorphic sarcoma and myxofibrosarcoma, respectively. A subset of tumors driven by CDK4 and PIK3CA reflected leiomyosarcoma and osteosarcoma demonstrating the plasticity of this approach and the potential to investigate sarcoma subtype heterogeneity. All generated tumors histologically reflected human sarcomas and had increased aneuploidy as compared to simple karyotype sarcomas. Comparing differential gene expression of TCGA samples to model data identified increased oxidative phosphorylation signaling in YAP1 tumors. Treatment of a panel of soft tissue sarcomas with a combination of YAP1 and oxidative phosphorylation inhibitors led to significantly decreased viability. CONCLUSIONS Transcriptional co-analysis of TCGA patient samples to YAP1 and KRAS model tumors supports that these sarcoma subtypes lie along a spectrum of disease and adds guidance for further transcriptome-based refinement of sarcoma subtyping. This approach can be used to begin to understand pathways and mechanisms driving human sarcoma development, the relationship between sarcoma subtypes, and to identify and validate new therapeutic vulnerabilities for this aggressive and heterogeneous disease.
Collapse
Affiliation(s)
- Jack Freeland
- These authors contributed equally and are listed alphabetically
- Department of Molecular and Medical Pharmacology, Molecular Biology Interdepartmental Program, University of California, Los Angeles; Los Angeles, CA, 90095
| | - Maria Muñoz
- These authors contributed equally and are listed alphabetically
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Davis; Sacramento, CA, 95817
| | - Edmond O’Donnell
- Department of Orthopaedic Surgery, University of California, Davis; Sacramento, CA, 95817
| | - Justin Langerman
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA, 90095
| | - Morgan Darrow
- Department of Pathology and Laboratory Medicine, University of California, Davis; Sacramento, CA, 95817
| | - Jessica Bergonio
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Davis; Sacramento, CA, 95817
| | - Julissa Suarez-Navarro
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Davis; Sacramento, CA, 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Group, University of California, Davis; Davis, CA, 95616
| | - Steven Thorpe
- Department of Orthopaedic Surgery, University of California, Davis; Sacramento, CA, 95817
| | - Robert Canter
- Department of Surgery, Division of Surgical Oncology, University of California, Davis; Sacramento, CA, 95817
| | - R. Lor Randall
- Department of Orthopaedic Surgery, University of California, Davis; Sacramento, CA, 95817
| | - Kathrin Plath
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA, 90095
| | - Kermit L. Carraway
- Department of Biochemistry and Molecular Medicine, University of California, Davis; Sacramento, CA, 95817
| | - Owen N. Witte
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA, 90095
| | - Thomas G. Graeber
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles; Los Angeles, CA, 90095
| | - Janai R. Carr-Ascher
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Davis; Sacramento, CA, 95817
- Department of Orthopaedic Surgery, University of California, Davis; Sacramento, CA, 95817
| |
Collapse
|
34
|
Chen Y, Su Y, Cao X, Siavelis I, Leo IR, Zeng J, Tsagkozis P, Hesla AC, Papakonstantinou A, Liu X, Huang WK, Zhao B, Haglund C, Ehnman M, Johansson H, Lin Y, Lehtiö J, Zhang Y, Larsson O, Li X, de Flon FH. Molecular Profiling Defines Three Subtypes of Synovial Sarcoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404510. [PMID: 39257029 DOI: 10.1002/advs.202404510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/11/2024] [Indexed: 09/12/2024]
Abstract
Synovial Sarcomas (SS) are characterized by the presence of the SS18::SSX fusion gene, which protein product induce chromatin changes through remodeling of the BAF complex. To elucidate the genomic events that drive phenotypic diversity in SS, we performed RNA and targeted DNA sequencing on 91 tumors from 55 patients. Our results were verified by proteomic analysis, public gene expression cohorts and single-cell RNA sequencing. Transcriptome profiling identified three distinct SS subtypes resembling the known histological subtypes: SS subtype I and was characterized by hyperproliferation, evasion of immune detection and a poor prognosis. SS subtype II and was dominated by a vascular-stromal component and had a significantly better outcome. SS Subtype III was characterized by biphasic differentiation, increased genomic complexity and immune suppression mediated by checkpoint inhibition, and poor prognosis despite good responses to neoadjuvant therapy. Chromosomal abnormalities were an independent significant risk factor for metastasis. KRT8 was identified as a key component for epithelial differentiation in biphasic tumors, potentially controlled by OVOL1 regulation. Our findings explain the histological grounds for SS classification and indicate that a significantly larger proportion of patients have high risk tumors (corresponding to SS subtype I) than previously believed.
Collapse
Affiliation(s)
- Yi Chen
- Division of Hematology and Oncology, Department of Medicine, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, 10032, USA
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, 10032, USA
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17165, Sweden
| | - Yanhong Su
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Xiaofang Cao
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17165, Sweden
| | - Ioannis Siavelis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17165, Sweden
| | - Isabelle Rose Leo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17165, Sweden
| | - Jianming Zeng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Panagiotis Tsagkozis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, 17176, Sweden
- Department of Clinical Orthopedics, Karolinska University Hospital, Stockholm, 17176, Sweden
| | - Asle C Hesla
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, 17176, Sweden
- Department of Clinical Orthopedics, Karolinska University Hospital, Stockholm, 17176, Sweden
| | - Andri Papakonstantinou
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Breast Cancer, Endocrine Tumors and Sarcomas, Karolinska University Hospital, Stockholm, 17176, Sweden
| | - Xiao Liu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wen-Kuan Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, 33305, Taiwan
| | - Binbin Zhao
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Cecilia Haglund
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Solna, 17176, Sweden
| | - Monika Ehnman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Henrik Johansson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17165, Sweden
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Janne Lehtiö
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17165, Sweden
| | - Yifan Zhang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Solna, 17176, Sweden
| | - Olle Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Solna, 17176, Sweden
| | - Xuexin Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, 110122, China
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Stockholm, 17165, Sweden
| | - Felix Haglund de Flon
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Solna, 17176, Sweden
| |
Collapse
|
35
|
Wang W, Hu Y, Fu F, Ren W, Wang T, Wang S, Li Y. Advancement in Multi-omics approaches for Uterine Sarcoma. Biomark Res 2024; 12:129. [PMID: 39472980 PMCID: PMC11523907 DOI: 10.1186/s40364-024-00673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Uterine sarcoma (US) is a rare malignant tumor that has various pathological types and high heterogeneity in the female reproductive system. Its subtle early symptoms, frequent recurrence, and resistance to radiation and chemotherapy make the prognosis for US patients very poor. Therefore, understanding the molecular mechanisms underlying tumorigenesis and progression is essential for an accurate diagnosis and targeted therapy to improve patient outcomes. Recent advancements in high-throughput molecular sequencing have allowed for a deeper understanding of diseases through multi-omics technologies. In this review, the latest progress and future potential of multi-omics technologies in US research is examined, and their roles in biomarker discovery and their application in the precise diagnosis and treatment of US are highlighted.
Collapse
Affiliation(s)
- Wuyang Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China
| | - Yu Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China
| | - Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China
| | - Wu Ren
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China
| | - Tian Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China.
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China.
| |
Collapse
|
36
|
Simon J, Reita D, Guerin E, Lhermitte B, Weingertner N, Lefebvre F, Karanian M, Masliah-Planchon J, Lindner V, Onea A, Jannier S, Salmon A, Bergthold G, Vincent F, Deschuyter M, Barbaza MO, Entz-Werlé N. Clinical impact of large genomic explorations at diagnosis in 198 pediatric solid tumors: a monocentric study aiming practical feasibility of precision oncology. BMC Cancer 2024; 24:1296. [PMID: 39433989 PMCID: PMC11492794 DOI: 10.1186/s12885-024-13034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
INTRODUCTION Faced to the growing development of collecting systematic molecular analyses in relapsed pediatric cancers to transform their targeted matched therapies, this study aimed to assess the clinical and therapeutic indications of systematic diagnostic genomic explorations performed in pediatric solid cancers to determine which type of screening and if it afford at relapse time an accurate targeted strategy. METHODS A total of 280 patients less than 22 years, referred at the University Hospitals of Strasbourg for a newly diagnosed solid tumor from January 2015 to December 2021, were prospectively genomically investigated since diagnosis. Using 7 different molecular tests going from single-gene methods (IHC, FISH, RT-PCR, Sanger sequencing, droplet digital PCR) to largescale analyses (Next-Generation sequencing, RNAsequencing and FoundationOne®CDx), we explored retrospectively the molecular findings in those pediatric solid tumors (except hematolymphoid cancers) to improve diagnosis, prognosis assessment and relapse therapeutics. RESULTS One hundred and ninety-eight patients (71%) underwent molecular biology (MB) at diagnosis. Thirty-eight different histologies were grouped into cerebral tumors (30%), sarcomas (26%, bone and soft tissues), various blastomas (27%), and other entities (17%). Over a median 40-month follow-up, the overall survival rate of patients was 85% and the relapse rate 28%. Of the 326 analyses carried out, 245 abnormalities (single nucleotide variations: 50%, fusions: 25%, copy number alteration: 20%) concerning 70 oncogenes were highlighted. The overall clinical impact rate was 84%. Broad-spectrum analyses had a higher therapeutic impact (57%) than the targeted analyses (28%). 75% of broad-spectrum tests found an actionable variant conducting 23% of patients to receive rapidly a matched targeted therapy since first relapse. CONCLUSION Our experience highlighted the clinical utility of molecular profiling of solid tumors as soon as at diagnosis in children to expect improving access to innovative agents at relapse.
Collapse
Affiliation(s)
- Juliette Simon
- Pediatric Onco-Hematology Department, University Hospitals of Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Damien Reita
- Department of Cancer Molecular Genetics, Laboratory of Biochemistry and Molecular Biology, University Hospitals of Strasbourg, Strasbourg, France
- Laboratory of Bioimaging and Pathologies - Team OnKO-3T - Translational, Transversal and Therapeutic Oncology - UMR CNRS 7021, University of Strasbourg, Strasbourg, France
| | - Eric Guerin
- Department of Cancer Molecular Genetics, Laboratory of Biochemistry and Molecular Biology, University Hospitals of Strasbourg, Strasbourg, France
- Laboratory of Bioimaging and Pathologies - Team OnKO-3T - Translational, Transversal and Therapeutic Oncology - UMR CNRS 7021, University of Strasbourg, Strasbourg, France
| | - Benoit Lhermitte
- Laboratory of Bioimaging and Pathologies - Team OnKO-3T - Translational, Transversal and Therapeutic Oncology - UMR CNRS 7021, University of Strasbourg, Strasbourg, France
- Department of Pathology, University Hospitals of Strasbourg, Strasbourg, France
- Centre de Ressources Biologiques (CRB), University Hospitals of Strasbourg, Strasbourg, France
| | - Noelle Weingertner
- Department of Pathology, University Hospitals of Strasbourg, Strasbourg, France
| | - François Lefebvre
- Public Health Unit, University Hospitals of Strasbourg, Strasbourg, France
| | - Marie Karanian
- Department of Biopathology, Léon Berard Center, Lyon, France
| | | | - Veronique Lindner
- Department of Pathology, University Hospitals of Strasbourg, Strasbourg, France
| | - Alina Onea
- Department of Pathology, University Hospitals of Strasbourg, Strasbourg, France
| | - Sarah Jannier
- Pediatric Onco-Hematology Department, University Hospitals of Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Alexandra Salmon
- Pediatric Onco-Hematology Department, University Hospitals of Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Guillaume Bergthold
- Pediatric Onco-Hematology Department, University Hospitals of Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Florence Vincent
- Pediatric Onco-Hematology Department, University Hospitals of Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Marlène Deschuyter
- Laboratory of Bioimaging and Pathologies - Team OnKO-3T - Translational, Transversal and Therapeutic Oncology - UMR CNRS 7021, University of Strasbourg, Strasbourg, France
| | | | - Natacha Entz-Werlé
- Pediatric Onco-Hematology Department, University Hospitals of Strasbourg, 1 Avenue Molière, Strasbourg, France.
- Laboratory of Bioimaging and Pathologies - Team OnKO-3T - Translational, Transversal and Therapeutic Oncology - UMR CNRS 7021, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
37
|
Dermawan JK, Abramson DH, Chiang S, Hensley ML, Tap WD, Movva S, Maki RG, Mandelker D, Antonescu CR. The Impact of Li-Fraumeni and Germline Retinoblastoma Mutations on Leiomyosarcoma Initiation, Outcomes, and Genetic Testing Recommendations. Clin Cancer Res 2024; 30:4780-4790. [PMID: 39150540 PMCID: PMC11479842 DOI: 10.1158/1078-0432.ccr-24-1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 08/14/2024] [Indexed: 08/17/2024]
Abstract
PURPOSE Leiomyosarcomas (LMS) are clinically and molecularly heterogeneous, occurring mostly in sporadic but also syndromic settings. The role of pathogenic germline variants (PGV) as LMS drivers and their impact on outcomes remains uncertain. EXPERIMENTAL DESIGN We performed a comprehensive clinicopathologic and molecular analysis using a tumor-normal DNA next-generation sequencing assay (Memorial Sloan Kettering-Integrated Mutational Profiling of Actionable Cancer Targets) of germline-associated LMS compared with sporadic LMS. RESULTS Among 285 LMS [120 soft-tissue LMS (STLMS) and 165 uterine LMS (ULMS)] with germline testing, 78 (27%, 43 STLMS and 35 ULMS) cases harbored PGV, with 35/78 (45%) of PGV carriers showing biallelic inactivation of the corresponding gene in the tumor (26 STLMS and nine ULMS). The most frequent germline predispositions were TP53 (Li-Fraumeni syndrome; 17 patients, 16 in STLMS) and RB1 (retinoblastoma; 13 patients, 11 in STLMS). Germline TP53 and somatic RB1 alterations often co-occurred in the tumor andvice versa. Other biallelically inactivated PGV were enriched in DNA damage repair-related genes: CHEK2, MSH2, MSH6, RAD51D, BRCA2, and FANCA. Monoallelic PGV were mostly in ULMS and associated with co-occurring TP53 and RB1 somatic alterations. Patients with STLMS with biallelic but not monoallelic PGV were significantly younger than patients with sporadic STLMS (median ages 38 vs. 52 vs. 58 years). No differences in disease-specific or progression-free survival were observed in germline-associated versus sporadic LMS regardless of biallelic status. CONCLUSIONS Although patients with ULMS had a relatively low proportion of PGV, a high percentage of patients with STLMS with PGV had tumor biallelic status, indicating that PGV drive tumorigenesis in these individuals. These findings have significant implications for genetic testing recommendations.
Collapse
Affiliation(s)
- Josephine K Dermawan
- Department of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio
| | - David H Abramson
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarah Chiang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martee L Hensley
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Sujana Movva
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Robert G Maki
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cristina R Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
38
|
Zheng J, Lin Z, Xi Z, Gao Y, Cheng Y, Li Y, Wu T, Li W. Exploring the common targets of well-differentiated and dedifferentiated retroperitoneal liposarcoma via gene co-expression analysis. Heliyon 2024; 10:e38825. [PMID: 39430534 PMCID: PMC11490771 DOI: 10.1016/j.heliyon.2024.e38825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/01/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
Objective This study aimed to identify common therapeutic targets for well-differentiated and dedifferentiated retroperitoneal liposarcoma. Methods Patient clinical data were obtained from the Surveillance, Epidemiology, and End Results (SEER) database, and survival differences were analyzed using the log-rank test. Gene expression data were sourced from the Gene Expression Omnibus (GEO) dataset GSE159659, with differential gene expression analysis conducted through GEO2R. Protein-protein interaction networks were developed using STRING and Cytoscape to identify key hub genes. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed using R, and transcription factors associated with the hub genes were predicted with TRRUST. Results Significant survival differences were found between patients with well-differentiated and dedifferentiated retroperitoneal liposarcoma. Ninety-six differentially expressed genes with similar expression patterns were identified in both types. A protein-protein interaction network highlighted 12 hub genes and 24 transcription factors. Enrichment analysis pointed to the importance of lipid localization, storage, cytokine signaling, and metal ion absorption in both liposarcoma subtypes. Four potential therapeutic drugs were successfully predicted. Conclusion This study identifies common molecular targets in well-differentiated and dedifferentiated retroperitoneal liposarcoma, providing new avenues for mechanistic studies and potential therapeutic development.
Collapse
Affiliation(s)
- Jialiang Zheng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhenhang Lin
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Zhe Xi
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yilai Gao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yingxue Cheng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yihao Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Ting Wu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Wengang Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
39
|
Ray-Coquard I, Casali PG, Croce S, Fennessy FM, Fischerova D, Jones R, Sanfilippo R, Zapardiel I, Amant F, Blay JY, Martἰn-Broto J, Casado A, Chiang S, Dei Tos AP, Haas R, Hensley ML, Hohenberger P, Kim JW, Kim SI, Meydanli MM, Pautier P, Abdul Razak AR, Sehouli J, van Houdt W, Planchamp F, Friedlander M. ESGO/EURACAN/GCIG guidelines for the management of patients with uterine sarcomas. Int J Gynecol Cancer 2024; 34:1499-1521. [PMID: 39322612 DOI: 10.1136/ijgc-2024-005823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Affiliation(s)
- Isabelle Ray-Coquard
- Department of Medical Oncology, Centre Leon Berard, Lyon, France
- Hesper Laboratory, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Paolo Giovanni Casali
- Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Sabrina Croce
- Department of Biopathology, Institut Bergonié, Bordeaux, France
| | - Fiona M Fennessy
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Daniela Fischerova
- Department of Gynecology, Obstetrics and Neonatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 2, Czech Republic
| | - Robin Jones
- Royal Marsden Hospital NHS Trust, London, UK
| | - Roberta Sanfilippo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ignacio Zapardiel
- Gynecologic Oncology Unit, La Paz University Hospital, Madrid, Spain
| | - Frédéric Amant
- Department of Oncology, KU Leuven, Leuven, Flanders, Belgium
- Department of Gynecology, Antoni van Leeuwenhoek Nederlands Kanker Instituut afdeling Gynaecologie, Amsterdam, Netherlands
| | - Jean-Yves Blay
- Department of Medical Oncology, Centre Leon Berard, Lyon, France
| | - Javier Martἰn-Broto
- Department of Medical Oncology, Fundación Jimenez Diaz University Hospital, Madrid, Spain
- University Hospital General de Villalba, Madrid, Spain
| | - Antonio Casado
- Department of Medical Oncology, University Hospital San Carlos, Madrid, Spain
| | - Sarah Chiang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Angelo Paolo Dei Tos
- Department of Integrated Diagnostics, Azienda Ospedale-Università Padova, Padua, Italy
- Department of Medicine, University of Padua, Padua, Italy
| | - Rick Haas
- Department of Radiotherapy, Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Radiotherapy, Leiden University Medical Center, Leiden, Netherlands
| | - Martee L Hensley
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Peter Hohenberger
- Division of Surgical Oncology and Thoracic Surgery, Mannheim University Medical Centre, University of Heidelberg, Mannheim, Germany
| | - Jae-Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | | | - Patricia Pautier
- Department of Medical Oncology, Institut Gustave-Roussy, Villejuif, Île-de-France, France
| | - Albiruni R Abdul Razak
- Division of Medical Oncology and Hematology, Princess Margaret Hospital Cancer Centre Gynecologic Site Group, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jalid Sehouli
- Department of Gynecology with Center for Oncological Surgery, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Winan van Houdt
- Department of Surgery, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Michael Friedlander
- Department of Medical Oncology, School of Clinical Medicine, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Department of Medical Oncology, Prince of Wales and Royal Hospital for Women, Randwick, New South Wales, Australia
| |
Collapse
|
40
|
Ku E, Harada G, Lee G, Munjal A, Peterson N, Park J, Chow W, Stitzlein R, Limoli C, Harris J. A study of pre- and post-treatment hematologic markers of immune response in patients undergoing radiotherapy for soft tissue sarcoma. Front Oncol 2024; 14:1392705. [PMID: 39421451 PMCID: PMC11484061 DOI: 10.3389/fonc.2024.1392705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction This study investigates the impact of pre- and post-treatment hematologic markers, specifically neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR), on treatment outcomes in soft tissue sarcoma (STS) patients undergoing radiation therapy (RT). Methods Data from 64 patients who underwent RT for curative management of STS were reviewed. Pre-RT and post-RT hematologic measures were evaluated for associations with survival outcomes. A normal tissue complication probability (NTCP) curve for predicting ΔPLR ≥ 75 was modeled using a probit function. Results Elevated baseline NLR was associated with worse overall survival (OS) and disease-free survival (DFS), while elevated PLR was associated with worse DFS. Post-RT, elevated PLR was linked to worse OS and DFS. Increasing PLR change post-RT was associated with worse OS and DFS. Receiver operating characteristics analysis determined ΔPLR ≥ 75 to be a robust cutoff associated with worse DFS. Bone V10Gy ≥362 cc corresponded to a 50% risk of developing ΔPLR ≥ 75. Discussion These results suggest that hematologic markers could serve as prognostic biomarkers in both pre- and post-treatment settings for STS patients undergoing RT. Future studies can consider using bone V10Gy < 362 cc as a potential cutoff to reduce the risk of increased PLR after RT.
Collapse
Affiliation(s)
- Eric Ku
- Department of Radiation Oncology, University of California Irvine, Orange, CA, United States
| | - Garrett Harada
- Department of Radiation Oncology, University of California Irvine, Orange, CA, United States
| | - Grace Lee
- School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Akul Munjal
- Department of Radiation Oncology, University of California Irvine, Orange, CA, United States
| | - Nicholas Peterson
- Department of Radiation Oncology, University of California Irvine, Orange, CA, United States
| | - Jino Park
- Department of Radiation Oncology, University of California Irvine, Orange, CA, United States
| | - Warren Chow
- Department of Hematology/Oncology, University of California Irvine, Orange, CA, United States
| | - Russell Stitzlein
- Department of Orthopedic Surgery, University of California Irvine, Orange, CA, United States
| | - Charles Limoli
- Department of Radiation Oncology, University of California Irvine, Orange, CA, United States
| | - Jeremy Harris
- Department of Radiation Oncology, University of California Irvine, Orange, CA, United States
| |
Collapse
|
41
|
Seligson ND, Asmann YW, Almerey T, Zayas YC, Edgar MA, Attia S, Knutson KL, Bagaria SP. Molecular markers of proliferation, DNA repair, and immune infiltration defines high-risk subset of resectable retroperitoneal sarcomas. Surg Oncol 2024; 56:102125. [PMID: 39213836 DOI: 10.1016/j.suronc.2024.102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/09/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION For retroperitoneal sarcomas (RPS), aggressive surgical resection offers the only chance for a cure; however, 5-year survival remains below 65%. Therefore, there is a critical need to identify drivers of poor clinical outcomes. MATERIALS AND METHODS To identify biomarkers of tumors likely to recur following curative intent resection, we performed genomic and transcriptomic sequencing for 47 and 34 patients, respectively, with non-metastatic RPS at a single, high-volume sarcoma center. RESULTS At the DNA level, alterations in TERT were associated with poor disease-free survival (DFS) and overall survival (OS). Increased RNA expression of gene sets related to growth signaling and DNA repair were associated with poor DFS and OS. Infiltration of CD8+ T-Cells and activated dendritic cells were associated with poor DFS and OS. CONCLUSION These findings may help to better identify and treat non-metastatic, high-risk RPS.
Collapse
Affiliation(s)
- Nathan D Seligson
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL, USA
| | - Yan W Asmann
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Tariq Almerey
- Department of Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Yaquelin Coll Zayas
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL, USA
| | - Mark A Edgar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Steven Attia
- Division of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
42
|
Iwai Y, Baldwin XL, Feeney T, Agala CB, Yanagihara TK, Stein JN, Kim HJ, Spanheimer PM. Trends in the use of immunotherapy to treat soft tissue sarcoma. Am J Surg 2024; 236:115794. [PMID: 38879356 PMCID: PMC11392640 DOI: 10.1016/j.amjsurg.2024.115794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/29/2024] [Accepted: 06/04/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND The role of immune-oncology (IO) therapy in soft tissue sarcoma (STS) is underexplored. This study characterized IO use in STS. METHODS This is a retrospective analysis of patients with a soft tissue mass in the National Cancer Database, 2011-2021. Patients were categorized by IO receipt status. Groupwise testing and proportional trend tests were performed with Chi-squared tests. Multivariate logistic regression was performed to assess factors associated with IO receipt. RESULTS Of the 103,092 patients with STS, 1935 (1.9 %) received or were recommended IO therapy. IO use increased 10-fold (0.24 %-2.5 % from 2011 to 2021; p < 0.0001). Patients had higher odds of receiving IO when having higher grade tumors and metastatic disease, and when treated at an academic research center (all p < 0.001). CONCLUSIONS IO use in STS is low but increasing and primarily used in the metastatic setting. Future studies should identify biomarkers of IO response and facilitators for treatment receipt.
Collapse
Affiliation(s)
- Yoshiko Iwai
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xavier L Baldwin
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy Feeney
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chris B Agala
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ted K Yanagihara
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacob N Stein
- Department of Medical Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hong Jin Kim
- Division of Surgical Oncology, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Philip M Spanheimer
- Division of Surgical Oncology, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
43
|
Beird HC, Cloutier JM, Gokgoz N, Eeles C, Griffin AM, Ingram DR, Wani KM, Segura RL, Cohen L, Ho C, Wunder JS, Andrulis IL, Futreal PA, Haibe-Kains B, Lazar AJ, Wang WL, Przybyl J, Demicco EG. Epigenomic and Transcriptomic Profiling of Solitary Fibrous Tumors Identifies Site-Specific Patterns and Candidate Genes Regulated by DNA Methylation. J Transl Med 2024; 104:102146. [PMID: 39357799 DOI: 10.1016/j.labinv.2024.102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
A solitary fibrous tumor (SFT) is a rare mesenchymal neoplasm that can arise at any anatomical site and is characterized by recurrent NAB2::STAT6 fusions and metastatic progression in 10% to 30%. The cell of origin has not been identified. Despite some progress in understanding the contribution of heterogeneous fusion types and secondary mutations to SFT biology, epigenetic alterations in extrameningeal SFT remain largely unexplored, and most sarcoma research to date has focused on the use of methylation profiling for tumor classification. We interrogated genome-wide DNA methylation in 79 SFTs to identify informative epigenetic changes. RNA-seq data from targeted panels and data from the Cancer Genome Atlas (TCGA) were used for orthogonal validation of selected findings. In unsupervised clustering analysis, the top 500 most variable cytosine-guanine sites segregated SFTs by primary anatomical site. Differentially methylated genes associated with the primary SFT site included EGFR; TBX15; multiple HOX genes; and their cofactors EBF1, EBF3, and PBX1; as well as RUNX1 and MEIS1. Of the 20 DMGs interrogated on the RNA-seq panel, 12 were significantly differentially expressed according to site. However, except TBX15, most of these also showed differential expression according to NAB2::STAT6 fusion type, suggesting that the fusion oncogene contributes to the transcriptional regulation of these genes. Transcriptomic data confirmed an inverse correlation between gene methylation and the expression of TBX15 in both SFT and TCGA sarcomas. TBX15 also showed differential mRNA expression and 5' UTR methylation between tumors in different anatomical sites in TCGA data. In all analyses, TBX15 methylation and mRNA expression retained the strongest association with tissue of origin in SFT and other sarcomas, suggesting a possible marker to distinguish metastatic tumors from new primaries without genomic profiling. Epigenetic signatures may further help to identify SFT progenitor cells at different anatomical sites.
Collapse
Affiliation(s)
- Hannah C Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey M Cloutier
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nalan Gokgoz
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital Toronto, ON, Canada
| | - Christopher Eeles
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Anthony M Griffin
- University of Toronto Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, Mount Sinai Hospital, Toronto, ON, Canada
| | - Davis R Ingram
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khalida M Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rossana Lazcano Segura
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luca Cohen
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carl Ho
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jay S Wunder
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital Toronto, ON, Canada; University of Toronto Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, Mount Sinai Hospital, Toronto, ON, Canada
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital Toronto, ON, Canada; Department of Molecular Genetics Canada, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joanna Przybyl
- Department of Surgery, McGill University & Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Elizabeth G Demicco
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
44
|
Luo G, Chen T, Letterio JJ. LOCC: a novel visualization and scoring of cutoffs for continuous variables with hepatocellular carcinoma prognosis as an example. BMC Bioinformatics 2024; 25:314. [PMID: 39333873 PMCID: PMC11438210 DOI: 10.1186/s12859-024-05932-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The interpretation of large datasets, such as The Cancer Genome Atlas (TCGA), for scientific and research purposes, remains challenging despite their public availability. In this study, we focused on identifying gene expression profiles most relevant to patient prognosis and aimed to develop a method and database to address this issue. To achieve this, we introduced Luo's Optimization Categorization Curve (LOCC), an innovative tool for visualizing and scoring continuous variables against dichotomous outcomes. To demonstrate the efficacy of LOCC using real-world data, we analyzed gene expression profiles and patient data from TCGA hepatocellular carcinoma samples. RESULTS To showcase LOCC, we demonstrate an optimal cutoff for E2F1 expression in hepatocellular carcinoma, which was subsequently validated in an independent cohort. Compared to ROC curves and their AUC, LOCC offered a superior description of the predictive value of E2F1 expression across various cancer types. The LOCC score, comprised of factors representing significance, range, and impact of the biomarker, facilitated the ranking of all gene expression profiles in hepatocellular carcinoma, aiding in the evaluation and understanding of previously published prognostic gene signatures. We also demonstrate that LOCC does not have the same assumptions required of Cox proportional hazards modeling for accurate analysis. Repeated sampling demonstrated that LOCC scores outperformed ROC's AUC in discriminating predictors from non-predictors. Additionally, gene set enrichment analysis revealed significant associations between certain genes and prognosis, such as E2F target genes and G2M checkpoint with poor prognosis, and bile acid metabolism and oxidative phosphorylation with good prognosis. CONCLUSION In summary, we present LOCC as a novel visualization tool for the analysis of gene expression in cancer, particularly for understanding and selecting cutoffs. Our findings suggest that LOCC scores, which effectively rank genes based on their prognostic potential, represent a more suitable approach than ROC curves and Cox proportional hazard for prognostic modeling and understanding in cancer gene expression analysis. LOCC holds promise as an invaluable tool for advancing precision medicine and furthering biomarker research. Further research regarding multivariable integration and validation will help LOCC reach its full potential and establish its utility across diverse cancer types and clinical settings.
Collapse
Affiliation(s)
- George Luo
- Department of Pathology, Case Western Reserve University School of Medicine, 2103 Cornell Rd., Wolstein Research Bldg. Rm 3501, Cleveland, OH, 44106, USA.
| | - Toby Chen
- School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John J Letterio
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA
- The Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
45
|
McNicoll CF, Belmonte J, Nir I, Ferguson BD. Novel MEN1-associated retroperitoneal pleomorphic liposarcoma. Rare Tumors 2024; 16:20363613241286934. [PMID: 39314235 PMCID: PMC11418346 DOI: 10.1177/20363613241286934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Soft tissue sarcomas are rarely associated with mutations of the MEN1 gene. We report a patient with a large retroperitoneal pleomorphic liposarcoma harboring a rare mutation of the MEN1 gene not previously reported to be associated with soft tissue sarcomas. This report expands the known spectrum of MEN1-associated cancers.
Collapse
Affiliation(s)
- Christopher F McNicoll
- Division of Hepatopancreatobiliary Surgery, Department of Surgery, University of New Mexico, Albuquerque, NM, USA
| | - Jessica Belmonte
- Division of Hematology and Oncology, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Itzhak Nir
- Division of Hepatopancreatobiliary Surgery, Department of Surgery, University of New Mexico, Albuquerque, NM, USA
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Benjamin D Ferguson
- Division of Hepatopancreatobiliary Surgery, Department of Surgery, University of New Mexico, Albuquerque, NM, USA
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
46
|
Gruel N, Quignot C, Lesage L, El Zein S, Bonvalot S, Tzanis D, Ait Rais K, Quinquis F, Manciot B, Vibert J, El Tannir N, Dahmani A, Derrien H, Decaudin D, Bièche I, Courtois L, Mariani O, Linares LK, Gayte L, Baulande S, Waterfall JJ, Delattre O, Pierron G, Watson S. Cellular origin and clonal evolution of human dedifferentiated liposarcoma. Nat Commun 2024; 15:7941. [PMID: 39266532 PMCID: PMC11393420 DOI: 10.1038/s41467-024-52067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/23/2024] [Indexed: 09/14/2024] Open
Abstract
Dedifferentiated liposarcoma (DDLPS) is the most frequent high-grade soft tissue sarcoma subtype. It is characterized by a component of undifferentiated tumor cells coexisting with a component of well-differentiated adipocytic tumor cells. Both dedifferentiated (DD) and well-differentiated (WD) components exhibit MDM2 amplification, however their cellular origin remains elusive. Using single-cell RNA sequencing, DNA sequencing, in situ multiplex immunofluorescence and functional assays in paired WD and DD components from primary DDLPS tumors, we characterize the cellular heterogeneity of DDLPS tumor and micro-environment. We identify a population of tumor adipocyte stem cells (ASC) showing striking similarities with adipocyte stromal progenitors found in white adipose tissue. We show that tumor ASC harbor the ancestral genomic alterations of WD and DD components, suggesting that both derive from these progenitors following clonal evolution. Last, we show that DD tumor cells keep important biological properties of ASC including pluripotency and that their adipogenic properties are inhibited by a TGF-β-high immunosuppressive tumor micro-environment.
Collapse
Affiliation(s)
- Nadège Gruel
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
- Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Chloé Quignot
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Laëtitia Lesage
- Department of Pathology, Institut Curie Hospital, Paris, France
| | - Sophie El Zein
- Department of Pathology, Institut Curie Hospital, Paris, France
| | - Sylvie Bonvalot
- Department of Surgical Oncology, Institut Curie Hospital, Paris, France
| | - Dimitri Tzanis
- Department of Surgical Oncology, Institut Curie Hospital, Paris, France
| | | | - Fabien Quinquis
- Department of Genetics, Institut Curie Hospital, Paris, France
| | - Bastien Manciot
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Julien Vibert
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
- Drug Development Department, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Nadine El Tannir
- Medico Scientific Program for Adult sarcomas, Institut Curie Research Center, Paris, France
| | - Ahmed Dahmani
- Laboratory of Preclinical Investigation, Department of translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Héloïse Derrien
- Laboratory of Preclinical Investigation, Department of translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Department of translational Research, PSL Research University, Institut Curie Research Center, Paris, France
- Department of Medical Oncology, Institut Curie Hospital, Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie Hospital, Paris, France
| | - Laura Courtois
- Department of Genetics, Institut Curie Hospital, Paris, France
| | - Odette Mariani
- Department of Pathology, Institut Curie Hospital, Paris, France
| | - Laëtitia K Linares
- INSERM U1194, Metabolism and Sarcoma, Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, Montpellier, France
| | - Laurie Gayte
- INSERM U1194, Metabolism and Sarcoma, Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, Montpellier, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, PSL Research University, Institut Curie, Paris, France
| | - Joshua J Waterfall
- Department of Translational Research, Institut Curie Research Center, Paris, France
- INSERM U830, Integrative Functional Genomics of Cancer Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Olivier Delattre
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
- Department of Genetics, Institut Curie Hospital, Paris, France
- SIREDO Pediatric Oncology Center, Institut Curie Hospital, Paris, France
| | - Gaëlle Pierron
- Department of Genetics, Institut Curie Hospital, Paris, France
| | - Sarah Watson
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France.
- Department of Medical Oncology, Institut Curie Hospital, Paris, France.
| |
Collapse
|
47
|
Renne SL, Sama' L, Kumar S, Mintemur O, Ruspi L, Santori I, Sicoli F, Bertuzzi A, Laffi A, Bonometti A, Colombo P, D'amato V, Bressan A, Scorsetti M, Terracciano L, Navarria P, D'incalci M, Quagliuolo V, Pasqualini F, Grizzi F, Cananzi FCM. Disruptions in antigen processing and presentation machinery on sarcoma. Cancer Immunol Immunother 2024; 73:228. [PMID: 39249578 PMCID: PMC11383888 DOI: 10.1007/s00262-024-03822-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND The antigen processing machinery (APM) plays a critical role in generating tumor-specific antigens that can be recognized and targeted by the immune system. Proper functioning of APM components is essential for presenting these antigens on the surface of tumor cells, enabling immune detection and destruction. In many cancers, defects in APM can lead to immune evasion, contributing to tumor progression and poor clinical outcomes. However, the status of the APM in sarcomas is not well characterized, limiting the development of effective immunotherapeutic strategies for these patients. METHODS We investigated 126 patients with 8 types of bone and soft tissue sarcoma operated between 2001-2021. Tissue microarrays mapped 11 specific areas in each case. The presence/absence of APM protein was determined through immunohistochemistry. Bayesian networks were used. RESULTS All investigated sarcomas had some defects in APM. The least damaged component was HLA Class I subunit β2-microglobulin and HLA Class II. The proteasome LMP10 subunit was defective in leiomyosarcoma (LMS), myxoid liposarcoma (MLPS), and dedifferentiated liposarcoma (DDLPS), while MHC I transporting unit TAP2 was altered in undifferentiated pleomorphic sarcoma (UPS), gastrointestinal stromal tumor (GIST), and chordoma (CH). Among different neoplastic areas, high-grade areas showed different patterns of expression compared to high lymphocytic infiltrate areas. Heterogeneity at the patient level was also observed. Loss of any APM component was prognostic of distant metastasis (DM) for LMS and DDLPS and of overall survival (OS) for LMS. CONCLUSION Sarcomas exhibit a high degree of defects in APM components, with differences among histotypes and tumoral areas. The most commonly altered APM components were HLA Class I subunit β2-microglobulin, HLA Class I subunit α (HC10), and MHC I transporting unit TAP2. The loss of APM components was prognostic of DM and OS and clinically relevant for LMS and DDLPS. This study explores sarcoma molecular mechanisms, enriching personalized therapeutic approaches.
Collapse
Affiliation(s)
- Salvatore Lorenzo Renne
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy.
- Pathology Department, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy.
| | - Laura Sama'
- Sarcoma, Melanoma and Rare Tumors Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Sonia Kumar
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- Sarcoma, Melanoma and Rare Tumors Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Omer Mintemur
- Pathology Department, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Laura Ruspi
- Sarcoma, Melanoma and Rare Tumors Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Ilaria Santori
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Federico Sicoli
- Sarcoma, Melanoma and Rare Tumors Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Alexia Bertuzzi
- Oncology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Alice Laffi
- Oncology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Arturo Bonometti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- Pathology Department, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Piergiuseppe Colombo
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- Pathology Department, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Vittoria D'amato
- Sarcoma, Melanoma and Rare Tumors Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Alessandra Bressan
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- Pathology Department, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Luigi Terracciano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- Pathology Department, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Pierina Navarria
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Maurizio D'incalci
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- Cancer Pharmacology Laboratory, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Vittorio Quagliuolo
- Sarcoma, Melanoma and Rare Tumors Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Fabio Pasqualini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Fabio Grizzi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Ferdinando Carlo Maria Cananzi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- Sarcoma, Melanoma and Rare Tumors Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| |
Collapse
|
48
|
Lee HH, Chow KL, Wong HS, Chong TY, Wong AS, Cheng GH, Ko JM, Siu HC, Yeung MC, Huen MS, Tse KY, Bray MR, Mak TW, Leung SY, Ip PP. Inhibition of Aberrantly Overexpressed Polo-like Kinase 4 Is a Potential Effective Treatment for DNA Damage Repair-Deficient Uterine Leiomyosarcoma. Clin Cancer Res 2024; 30:3904-3918. [PMID: 38848043 PMCID: PMC11369621 DOI: 10.1158/1078-0432.ccr-23-3720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Uterine leiomyosarcoma (LMS) is an aggressive sarcoma and a subset of which exhibits DNA repair defects. Polo-like kinase 4 (PLK4) precisely modulates mitosis, and its inhibition causes chromosome missegregation and increased DNA damage. We hypothesize that PLK4 inhibition is an effective LMS treatment. EXPERIMENTAL DESIGN Genomic profiling of clinical uterine LMS samples was performed, and homologous recombination (HR) deficiency scores were calculated. A PLK4 inhibitor (CFI-400945) with and without an ataxia telangiectasia mutated (ATM) inhibitor (AZD0156) was tested in vitro on gynecologic sarcoma cell lines SK-UT-1, SKN, and SK-LMS-1. Findings were validated in vivo using the SK-UT-1 xenograft model in the Balb/c nude mouse model. The effects of CFI-400945 were also evaluated in a BRCA2-knockout SK-UT-1 cell line. The mechanisms of DNA repair were analyzed using a DNA damage reporter assay. RESULTS Uterine LMS had a high HR deficiency score, overexpressed PLK4 mRNA, and displayed mutations in genes responsible for DNA repair. CFI-400945 demonstrated effective antitumor activity in vitro and in vivo. The addition of AZD0156 resulted in drug synergism, largely due to a preference for nonhomologous end-joining DNA repair. Compared with wild-type cells, BRCA2 knockouts were more sensitive to PLK4 inhibition when both HR and nonhomologous end-joining repairs were impaired. CONCLUSIONS Uterine LMS with DNA repair defects is sensitive to PLK4 inhibition because of the effects of chromosome missegregation and increased DNA damage. Loss-of-function BRCA2 alterations or pharmacologic inhibition of ATM enhanced the efficacy of the PLK4 inhibitor. Genomic profiling of an advanced-stage or recurrent uterine LMS may guide therapy.
Collapse
Affiliation(s)
- Horace H.Y. Lee
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Kin Long Chow
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Ho Shing Wong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Tsz Yan Chong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Alice S.T. Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Grace H.W. Cheng
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Jasmine M.K. Ko
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Hoi Cheong Siu
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Maximus C.F. Yeung
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Michael S.Y. Huen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Ka Yu Tse
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | | | - Tak Wah Mak
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
| | - Suet Yi Leung
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- The Jockey Club Centre for Clinical Innovation and Discovery, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Centre for PanorOmic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Philip P.C. Ip
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
49
|
Radaelli S, Merlini A, Khan M, Gronchi A. Progress in histology specific treatments in soft tissue sarcoma. Expert Rev Anticancer Ther 2024; 24:845-868. [PMID: 39099398 DOI: 10.1080/14737140.2024.2384584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Soft tissue sarcomas (STS) represent a heterogenous group of rare tumors, primarily treated with surgery. Preoperative radiotherapy is often recommended for extremity high-risk STS. Neoadjuvant chemotherapy, typically based on doxorubicin with ifosfamide, has shown efficacy in limbs and trunk wall STS. Second-line chemotherapy, commonly utilized in the metastatic setting, is mostly histology-driven. Molecular targeted agents are used across various histologies, and although the use of immunotherapy in STS is still in its early stages, there is increasing interest in exploring its potential. AREAS COVERED This article involved an extensive recent search on PubMed. It explored the current treatment landscape for localized and metastatic STS, focusing on the combined use of radiotherapy and chemotherapy for both extremity and retroperitoneal tumors, and with a particular emphasis on the most innovative histopathology driven therapeutic approaches. Additionally, ongoing clinical trials identified via clinicaltrials.gov are included. EXPERT OPINION Recently there have been advancements in the treatment of STS, largely driven by the outcomes of clinical trials. However further research is imperative to comprehend the effect of chemotherapy, targeted therapy and immunotherapy in various STS, as well as to identify biomarkers able to predict which patients are most likely to benefit from these treatments.
Collapse
Affiliation(s)
- Stefano Radaelli
- Sarcoma Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, Orbassano, Italy
- Department of Oncology, San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Misbah Khan
- Surgery, East Sussex NHS Healthcare, East Sussex, UK
| | - Alessandro Gronchi
- Sarcoma Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
50
|
Warmke LM, Strike SA, Fayad LM, Ahlawat S, Liu YJ, Mata DA, Rooper L, Baraban E, Zou YS, Gross JM. Undifferentiated Round Cell Sarcoma With CRTC1::SS18 Fusion: Expanding Clinicopathologic Features of a Rare Translocation Sarcoma With Prominent Desmoplastic Stroma. Mod Pathol 2024; 37:100555. [PMID: 38972355 DOI: 10.1016/j.modpat.2024.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
Undifferentiated round cell sarcomas (URCS) represent a diverse group of tumors, including conventional Ewing sarcoma, round cell sarcoma with EWSR1/FUS-non-ETS fusions, CIC-rearranged sarcoma, and sarcoma with BCOR alterations. Since 2018, 3 cases of URCS with a novel CRTC1::SS18 gene fusion have been reported in the literature. Herein, we report 3 additional cases of CRTC1::SS18 sarcoma, thereby doubling the number of described cases and expanding the clinicopathologic features of this rare translocation sarcoma. Together with the previously reported cases, we show that the male-to-female ratio is 1:2 with a median age of 34 years (range, 12-42 years). Tumors occurred primarily in intramuscular locations involving the lower extremity. Histologically, all tumors contained uniform round-to-epithelioid cells with a moderate amount of eosinophilic cytoplasm growing in sheets and nests with prominent desmoplastic stroma reminiscent of desmoplastic small round cell tumor. Immunohistochemical results were nonspecific, demonstrating variable expression of CD99 (patchy), ALK, GATA3, and cyclin D1. RNA sequencing revealed CRTC1::SS18 gene fusions in all cases, involving exons 1 to 2 of CRTC1 (the 5' partner gene) on chromosome 19 and either exon 2 or exon 4 of SS18 (the 3' partner gene) on chromosome 18. The clinical course was variable. Although 1 previously reported case demonstrated aggressive behavior with a fatal outcome, 2 others had a relatively indolent course with gradual growth for 6 to 7 years prior to resection. Two cases developed metastatic disease, including 1 case with bilateral lung metastasis and 1 with locoregional spread to a lymph node. By analyzing the clinicopathologic features, we aimed to improve recognition of this rare translocation sarcoma to better understand its biologic potential, optimize patient management, and expand the current classification of URCS.
Collapse
Affiliation(s)
- Laura M Warmke
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Sophia A Strike
- Department of Orthopaedic Surgery, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Laura M Fayad
- Department of Radiology and Radiological Science, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Shivani Ahlawat
- Department of Radiology and Radiological Science, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Yajuan J Liu
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington
| | | | - Lisa Rooper
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Ezra Baraban
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Ying S Zou
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland
| | - John M Gross
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|