1
|
Chen L, Wu Y, Lv T, Tuo R, Xiao Y. Mesenchymal stem cells enchanced by salidroside to inhibit ferroptosis and improve premature ovarian insufficiency via Keap1/Nrf2/GPX4 signaling. Redox Rep 2025; 30:2455914. [PMID: 39874130 PMCID: PMC11776066 DOI: 10.1080/13510002.2025.2455914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Regenerative medicine researches have shown that mesenchymal stem cells (MSCs) may be an effective treatment method for premature ovarian insufficiency (POI). However, the efficacy of MSCs is still limited. PURPOSE This study aims to explain whether salidroside and MSCs combination is a therapeutic strategy to POI and to explore salidroside-enhanced MSCs inhibiting ferroptosis via Keap1/Nrf2/GPX4 signaling. METHODS The effect of salidroside and MSCs on ovarian granular cells (GCs) was analyzed. After treatment, hormone levels and -fertility of rats were measured. Lipid peroxidation levels, iron deposition and mitochondrial morphology were detected. The genes and proteins of Keap1/Nrf2/GPX4 signaling were examined. RESULTS Salidroside and MSCs were found to inhibit cell death of GCs by reducing peroxidation and intracellular ferrous. Salidroside promotes the proliferation of MSCs and supports cell survival in ovary. Salidroside combined with MSCs therapy restored ovarian function, which was better than MSCs monotherapy. Salidroside-enhanced MSCs to inhibit ferroptosis. The results showed activation of the Keap1/Nrf2/GPX4 signaling and an increase in anti-ferroptosis molecule. CONCLUSIONS Salidroside-enhanced MSCs as a ferroptosis inhibitor and provide new therapeutic strategies for POI. The possible mechanisms of MSCs were related to maintaining redox homeostasis via a Keap1/Nrf2/GPX4 signaling.
Collapse
Affiliation(s)
- Lixuan Chen
- Department of Hematology, Shenzhen Qianhai Shekou Pilot Free Trade Zone Hospital, Shenzhen, People’s Republic of China
| | - Yingnan Wu
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Tiying Lv
- Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Rui Tuo
- Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yang Xiao
- Department of Hematology, Shenzhen Qianhai Shekou Pilot Free Trade Zone Hospital, Shenzhen, People’s Republic of China
- Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Zheng Q, Wang D, Lin R, Xu W. Pyroptosis, ferroptosis, and autophagy in spinal cord injury: regulatory mechanisms and therapeutic targets. Neural Regen Res 2025; 20:2787-2806. [PMID: 39101602 PMCID: PMC11826477 DOI: 10.4103/nrr.nrr-d-24-00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Regulated cell death is a form of cell death that is actively controlled by biomolecules. Several studies have shown that regulated cell death plays a key role after spinal cord injury. Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords. Autophagy, a complex form of cell death that is interconnected with various regulated cell death mechanisms, has garnered significant attention in the study of spinal cord injury. This injury triggers not only cell death but also cellular survival responses. Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis, ferroptosis, and autophagy. Therefore, this review aims to comprehensively examine the mechanisms underlying regulated cell deaths, the signaling pathways that modulate these mechanisms, and the potential therapeutic targets for spinal cord injury. Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury. Moreover, a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Weihong Xu
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
3
|
Yang H, Xia Y, Ma Y, Gao M, Hou S, Xu S, Wang Y. Inhibition of the cGAS-STING pathway: contributing to the treatment of cerebral ischemia-reperfusion injury. Neural Regen Res 2025; 20:1900-1918. [PMID: 38993125 PMCID: PMC11691458 DOI: 10.4103/nrr.nrr-d-24-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 07/13/2024] Open
Abstract
The cGAS-STING pathway plays an important role in ischemia-reperfusion injury in the heart, liver, brain, and kidney, but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed. Here, we outline the components of the cGAS-STING pathway and then analyze its role in autophagy, ferroptosis, cellular pyroptosis, disequilibrium of calcium homeostasis, inflammatory responses, disruption of the blood-brain barrier, microglia transformation, and complement system activation following cerebral ischemia-reperfusion injury. We further analyze the value of cGAS-STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms. Inhibition of the cGAS-STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hang Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yulei Xia
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yue Ma
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Mingtong Gao
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Shuai Hou
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Shanshan Xu
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Yanqiang Wang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
4
|
Zheng J, Conrad M. Ferroptosis: when metabolism meets cell death. Physiol Rev 2025; 105:651-706. [PMID: 39661331 DOI: 10.1152/physrev.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
We present here a comprehensive update on recent advancements in the field of ferroptosis, with a particular emphasis on its metabolic underpinnings and physiological impacts. After briefly introducing landmark studies that have helped to shape the concept of ferroptosis as a distinct form of cell death, we critically evaluate the key metabolic determinants involved in its regulation. These include the metabolism of essential trace elements such as selenium and iron; amino acids such as cyst(e)ine, methionine, glutamine/glutamate, and tryptophan; and carbohydrates, covering glycolysis, the citric acid cycle, the electron transport chain, and the pentose phosphate pathway. We also delve into the mevalonate pathway and subsequent cholesterol biosynthesis, including intermediate metabolites like dimethylallyl pyrophosphate, squalene, coenzyme Q (CoQ), vitamin K, and 7-dehydrocholesterol, as well as fatty acid and phospholipid metabolism, including the biosynthesis and remodeling of ester and ether phospholipids and lipid peroxidation. Next, we highlight major ferroptosis surveillance systems, specifically the cyst(e)ine/glutathione/glutathione peroxidase 4 axis, the NAD(P)H/ferroptosis suppressor protein 1/CoQ/vitamin K system, and the guanosine triphosphate cyclohydrolase 1/tetrahydrobiopterin/dihydrofolate reductase axis. We also discuss other potential anti- and proferroptotic systems, including glutathione S-transferase P1, peroxiredoxin 6, dihydroorotate dehydrogenase, glycerol-3-phosphate dehydrogenase 2, vitamin K epoxide reductase complex subunit 1 like 1, nitric oxide, and acyl-CoA synthetase long-chain family member 4. Finally, we explore ferroptosis's physiological roles in aging, tumor suppression, and infection control, its pathological implications in tissue ischemia-reperfusion injury and neurodegeneration, and its potential therapeutic applications in cancer treatment. Existing drugs and compounds that may regulate ferroptosis in vivo are enumerated.
Collapse
Affiliation(s)
- Jiashuo Zheng
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
- Translational Redox Biology, Technical University of Munich (TUM), TUM Natural School of Sciences, Garching, Germany
| |
Collapse
|
5
|
Varlamova EG. Selenium-containing compounds, selenium nanoparticles and selenoproteins in the prevention and treatment of lung cancer. J Trace Elem Med Biol 2025; 88:127620. [PMID: 39970692 DOI: 10.1016/j.jtemb.2025.127620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/25/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
THE OBJECTIVE Is to review the latest data on the role of key organic and inorganic compounds of the essential trace element selenium, selenium-containing nanocomposites and nanoparticles, and selenoproteins in lung cancer therapy. OBJECT OF RESEARCH Sodium selenite, methylselenic acid, selenomethionine, selenium nanoparticles, mammalian selenoproteins KEY OBJECTIVES:: To describe the molecular mechanisms of the cytotoxic effect of sodium selenite, methylselenic acid and selenomethionine on lung cancer cells, to discuss the latest advances in lung cancer nanomedicine using selenium-based nanoparticles and nanocomposites and to assess the prospects for creating antitumor drugs based on them, to assess the role of selenoproteins in the progression or inhibition of lung cancer and to study the molecular mechanisms of such regulation CONCLUSIONS:: This review provides a complete picture of the role of selenium and selenium-containing agents of various natures in the regulation of carcinogenesis and therapy of lung cancer, which significantly complements the fundamental data on the functions of these compounds, on the molecular mechanisms of regulation of processes associated with lung cancer. This knowledge provides insight into the latest developments and future prospects in the treatment and prevention of lung cancer with the active participation of the trace element selenium.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", st. Institutskaya 3, Pushchino, 142290, Russia.
| |
Collapse
|
6
|
Sasuclark AR, Watanabe M, Roshto K, Kilonzo VW, Zhang Y, Pitts MW. Selenium deficiency impedes maturation of parvalbumin interneurons, perineuronal nets, and neural network activity. Redox Biol 2025; 81:103548. [PMID: 39983343 PMCID: PMC11893315 DOI: 10.1016/j.redox.2025.103548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
Selenoproteins are fundamental players in redox signaling that are essential for proper brain development and function. They are indispensable for the vitality of GABAergic parvalbumin-expressing interneurons (PVIs), a cell type characterized by fast-spiking activity and heightened rates of metabolism. During development, PVIs are preferentially encapsulated by specialized extracellular matrix structures, termed perineuronal nets (PNNs), which serve to stabilize synaptic structure and act as protective barriers against redox insults. Consequently, alterations in PVIs and PNNs are well chronicled in neuropsychiatric disease, and evidence from animal models indicates that redox imbalance during adolescence impedes their maturation. Herein, we examined the influence of selenium on maturation of neural network structure and activity in primary cortical cultures. Cultures grown in selenium-deficient media exhibited reduced antioxidant activity, impaired PNN formation, and decreased synaptic input onto PVIs at 28 days in vitro, which coincided with increased oxidative stress. Parallel studies to monitor longitudinal maturation of in vitro electrophysiological activity were conducted using microelectrode arrays (MEA). Selenium content affected the electrophysiological profile of developing cultures, as selenium-deficient cultures exhibited impairments in long-term potentiation in conjunction with reduced spike counts for both network bursts and in response to stimulation. Finally, similar PNN deficits were observed in the cortex of mice raised on a selenium-deficient diet, providing corroborative evidence for the importance of selenium in PNN development. In sum, these findings show the vital role of selenium for the development of GABAergic inhibitory circuits.
Collapse
Affiliation(s)
- Alexandru R Sasuclark
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Marissa Watanabe
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Kai Roshto
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Victor W Kilonzo
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Yiqiang Zhang
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA; Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Matthew W Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA.
| |
Collapse
|
7
|
Liu X, Wang W, Nie Q, Liu X, Sun L, Ma Q, Zhang J, Wei Y. The Role and Mechanisms of Ubiquitin-Proteasome System-Mediated Ferroptosis in Neurological Disorders. Neurosci Bull 2025; 41:691-706. [PMID: 39775589 DOI: 10.1007/s12264-024-01343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/29/2024] [Indexed: 01/11/2025] Open
Abstract
Ferroptosis is a form of cell death elicited by an imbalance in intracellular iron concentrations, leading to enhanced lipid peroxidation. In neurological disorders, both oxidative stress and mitochondrial damage can contribute to ferroptosis, resulting in nerve cell dysfunction and death. The ubiquitin-proteasome system (UPS) refers to a cellular pathway in which specific proteins are tagged with ubiquitin for recognition and degradation by the proteasome. In neurological conditions, the UPS plays a significant role in regulating ferroptosis. In this review, we outline how the UPS regulates iron metabolism, ferroptosis, and their interplay in neurological diseases. In addition, we discuss the future application of small-molecule inhibitors and identify potential drug targets. Further investigation into the mechanisms of UPS-mediated ferroptosis will provide novel insights and strategies for therapeutic interventions and clinical applications in neurological diseases.
Collapse
Affiliation(s)
- Xin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Wei Wang
- Cancer Biology Institute, Baotou Medical College, Baotou, 014010, China
| | - Qiucheng Nie
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xinjing Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Lili Sun
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Qiang Ma
- Cancer Biology Institute, Baotou Medical College, Baotou, 014010, China
| | - Jie Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Yiju Wei
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
8
|
Wu M, Zhang S, Wu X, Zhou Y, Zhou M, Du A, Zhang Y, Wei T, Wang B, Wang S, Jiang C, Hu S, Xiao J, Wu Y. Acute hyperglycemia impedes spinal cord injury recovery via triggering excessive ferroptosis of endothelial cells. Int J Biol Macromol 2025; 301:140453. [PMID: 39884601 DOI: 10.1016/j.ijbiomac.2025.140453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Spinal cord injury (SCI) is a serious central nervous system injury that often causes sensory and motor dysfunction in patients. Diabetes seriously destroys the blood spinal cord barrier (BSCB) and aggravates SCI. Ferroptosis is a new type of programmed cell death. The role of ferroptosis in diabetes-medicated BSCB destruction has not been clearly elucidated. Here, we built a type 1 diabetes (T1D) combined with SCI rat model and confirmed that hyperglycemia exacerbates SCI-mediated BSCB destruction. Pathological mechanism demonstrated that except for apoptosis, the excessive ferroptosis is another caused factor for endothelial cells (ECs) loss under hyperglycemic condition. More importantly, ferrostatin-1(a ferroptosis inhibitor) treatment significantly inhibited the ferroptosis of ECs, and promoted the BSCB repair in T1D combined with SCI rat. The mechanism study further revealed that hyperglycemia not only induces the elevated reactive oxygen species (ROS) via activating RAGE, but also suppresses the xCT expression in system Xc- in ECs, which decreases GPX4 expression and induces ferroptosis. Additionally, hyperglycemia also accelerated the transfer of iron ions from serum to spinal cord after SCI. In summary, our results suggest that the excessive ferroptosis of ECs is essential for the severe BSCB destruction in T1D combined with spinal cord injury rat.
Collapse
Affiliation(s)
- Man Wu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Susu Zhang
- The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China
| | - Xuejuan Wu
- The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China
| | - Yongxiu Zhou
- The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China
| | - Mei Zhou
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China
| | - Anyu Du
- The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China
| | - Yanren Zhang
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China
| | - Tao Wei
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China
| | - Beini Wang
- The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China
| | - Shuangshuang Wang
- The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China
| | - Chang Jiang
- The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China
| | - Siwang Hu
- The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China.
| | - Jian Xiao
- The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China.
| | - Yanqing Wu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China.
| |
Collapse
|
9
|
Chadha S. A transcriptomic analysis of the interplay of ferroptosis and immune filtration in endometriosis and identification of novel therapeutic targets. Comput Biol Chem 2025; 115:108343. [PMID: 39798208 DOI: 10.1016/j.compbiolchem.2025.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Endometriosis is an inflammatory disease, involving immune cell infiltration and production of inflammatory mediators. Ferroptosis has recently been recognized as a mode of controlled cell death and the iron overload and peroxidative environment prevailing in the ectopic endometrium facilitates the occurrence of ferroptosis. In the current investigation, gene expression data was obtained from the dataset GSE7305.The variation in infiltration of immune cells amongst the samples with endometriosis and normal tissue was analysed using the CIBERSORTx tool which revealed higher infiltration of T cells gamma delta, macrophages M2, B cells naïve, T cells CD4 memory resting cells, plasma cells, T cells CD8 and mast cells activated in the tissue samples with endometriosis. An overlap of the differentially expressed genes (DEGs) and ferroptosis related genes revealed 32 ferroptosis related DEGs (FR-DEGs). GO and KEGG pathway analysis showed the FR-DEGs to be enriched in ferroptosis. The PPI network of the FR-DEGs was constructed and TP53, HMOX1, CAV1, CDKN1A, CD44, EPAS1, SLC2A1, MAP3K5, GCLC and FANCD2 were identified as the hub genes. Pearson correlation revealed significant correlation between the hub genes and infiltrating immune cells in endometriosis, thereby suggesting existence of a regulatory crosstalk between immune responses and ferroptosis in endometriosis. Hub gene- miRNA network analysis revealed that 7 of the 10 hub genes were targets of 3 miRNAs -hsa-miR-20a-5p, hsa-miR-16-5p and hsa-miR-17-5p, thereby providing further insight into the regulatory mechanisms underlying disease progression. Predictive analysis and cross validation studies revealed TP53 and CDKN1A as common targets of hsa-miR-16-5p, hsa-miR-17-5p, and hsa-miR-20a-5p, thereby revealing their regulatory roles in ferroptosis and immune modulatory pathways relevant to endometriosis. The present study indicates an important role of both immune dysregulation and ferroptosis in the pathogenesis of endometriosis and identifies ferroptosis related hub genes and their miRNA regulators as favourable novel targets for further studies and therapeutic interventions.
Collapse
Affiliation(s)
- Sonia Chadha
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
10
|
Shi Y, Zhao Y, Sun SJ, Lan XT, Wu WB, Zhang Z, Chen YX, Yan YY, Xu YP, Li DJ, Fu H, Shen FM. Targeting GPX4 alleviates ferroptosis and retards abdominal aortic aneurysm formation. Biochem Pharmacol 2025; 234:116800. [PMID: 39952331 DOI: 10.1016/j.bcp.2025.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/16/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Abdominal aortic aneurysm (AAA) is a potentially fatal cardiovascular disease, closely related to inflammation and loss of vascular smooth muscle cells (VSMCs). Ferroptosis is an iron-dependent cell death associated with peroxidation of lipids. However, the direct role of glutathione peroxidase 4 (GPX4) itself determined ferroptosis in the course of AAA pathogenesis remains unknown. Here, we reported that ferroptosis was triggered in human AAA, elastase- and angiotensin II (Ang II)-induced mouse AAA, and Ang II-incubated VSMCs. Inhibition of ferroptosis via global genetic overexpression of GPX4, a critical anti-ferroptosis molecule, markedly prevented both vascular remodeling and inflammatory response. Mechanistically, GPX4 changed the migration and activation of macrophages/monocytes in AAA tissues in mice. Experiments in vitro demonstrated that overexpression of GPX4 prevented the JAK1/STAT3 signaling activation in VSMCs induced by IL-6, production of pro-inflammatory macrophages. Finally, the role of ferroptosis was confirmed on an Ang II-induced mice AAA model. These results emphasized the significance of ferroptosis in AAA, and provided novel insights that therapy focusing on GPX4 might be a promising strategy for treatment of AAA in the clinic.
Collapse
MESH Headings
- Ferroptosis/drug effects
- Ferroptosis/physiology
- Animals
- Aortic Aneurysm, Abdominal/prevention & control
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/pathology
- Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
- Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
- Phospholipid Hydroperoxide Glutathione Peroxidase/antagonists & inhibitors
- Mice
- Humans
- Male
- Mice, Inbred C57BL
- Angiotensin II/toxicity
- Cells, Cultured
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
Collapse
Affiliation(s)
- Yu Shi
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Zhao
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Si-Jia Sun
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiu-Ting Lan
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Bin Wu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Zhen Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Xin Chen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Ying Yan
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yu-Ping Xu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Hui Fu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Pessenda G, Ferreira TR, Paun A, Kabat J, Amaral EP, Kamenyeva O, Gazzinelli-Guimaraes PH, Perera SR, Ganesan S, Lee SH, Sacks DL. Kupffer cell and recruited macrophage heterogeneity orchestrate granuloma maturation and hepatic immunity in visceral leishmaniasis. Nat Commun 2025; 16:3125. [PMID: 40169598 PMCID: PMC11961706 DOI: 10.1038/s41467-025-58360-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/19/2025] [Indexed: 04/03/2025] Open
Abstract
In murine models of visceral leishmaniasis (VL), the parasitization of resident Kupffer cells (resKCs) drives early Leishmania infantum growth in the liver, leading to granuloma formation and subsequent parasite control. Using the chronic VL model, we demonstrate that polyclonal resKCs redistributed to form granulomas outside the sinusoids, creating an open sinusoidal niche that was gradually repopulated by monocyte-derived KCs (moKCs) acquiring a tissue specific, homeostatic profile. Early-stage granulomas predominantly consisted of CLEC4F+KCs. In contrast, late-stage granulomas led to remodeling of the sinusoidal network and contained monocyte-derived macrophages (momacs) along with KCs that downregulated CLEC4F, with both populations expressing iNOS and pro-inflammatory chemokines. During late-stage infection, parasites were largely confined to CLEC4F-KCs. Reduced monocyte recruitment and increased resKCs proliferation in infected Ccr2-/- mice impaired parasite control. These findings show that the ontogenic heterogeneity of granuloma macrophages is closely linked to granuloma maturation and the development of hepatic immunity in VL.
Collapse
MESH Headings
- Animals
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/parasitology
- Leishmaniasis, Visceral/pathology
- Kupffer Cells/immunology
- Liver/parasitology
- Liver/immunology
- Liver/pathology
- Granuloma/immunology
- Granuloma/parasitology
- Granuloma/pathology
- Macrophages/immunology
- Macrophages/parasitology
- Mice
- Leishmania infantum/immunology
- Mice, Inbred C57BL
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- Disease Models, Animal
- Female
- Mice, Knockout
- Receptors, CCR2/metabolism
- Receptors, CCR2/genetics
- Monocytes/immunology
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Gabriela Pessenda
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tiago R Ferreira
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Paun
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eduardo P Amaral
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pedro Henrique Gazzinelli-Guimaraes
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Microbiology, Immunology & Tropical Medicine School of Medicine & Health Sciences. The George Washington University, Washington DC, USA
| | - Shehan R Perera
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Zhang Y, Li F, Cheng Y, Zhu J, Li Y, Zhao H, Song J, Yin J, Yang B, Kuang H. A novel way of regression of pregnant corpus luteum during parturition in mice: The ferroptosis associated with NCOA4-mediated ferritinophagy. Biochem Pharmacol 2025; 236:116910. [PMID: 40174644 DOI: 10.1016/j.bcp.2025.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Numerous studies have shown that inappropriate regression of corpus luteum would lead to adverse pregnancy outcomes during gestation. However, the detailed mechanisms and types of programmed cell death involved in the regression of pregnant corpus luteum are largely unknown. Here, we investigated whether ferroptosis and ferritinophagy were involved in luteal regression during parturition in mice and related mechanisms. The results showed that ferroptosis and ferritinophagy were both involved in luteal regression during mice peri-parturition in vivo. Erastin (ferroptosis agonist) treatment significantly accelerated luteal regression and induced premature labor in pregnant mice. PGF2α treatment induced the ferroptosis and ferritinophagy of luteal cells in vitro. Nevertheless, inhibition or promotion of ferroptosis significantly altered the states of PGF2α-induced luteal cell viability and ferroptosis. Furthermore, inhibition of autophagy (3-methyladenine co-treatment) alleviated PGF2α-induced ferritinophagy and ferroptosis of luteal cells, and knockdown of NCOA4 reduced the degradation of FTH1 and the level of ferroptosis of luteal cells induced by PGF2α. In summary, our current data demonstrated that the ferroptosis associated with NCOA4-mediated ferritinophagy was a novel way of luteal regression during peri-parturition in mice. Targeting ferroptosis in the corpus luteum may be a therapeutic strategy for preventing luteal insufficiency in the future.
Collapse
Affiliation(s)
- Yulu Zhang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China.
| | - Fei Li
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Yanmin Cheng
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Jun Zhu
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Yue Li
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Hongru Zhao
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Jiahao Song
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Jiting Yin
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Bei Yang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China.
| | - Haibin Kuang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China.
| |
Collapse
|
13
|
Zhou R, Zhang Y, Wang J, Huang H, Liao T, Lai W, Ju Y, Ouyang M. Establishing the relationships between obesity and genetically predicted serum micronutrient levels: a multivariable Mendelian randomization analysis. Eat Weight Disord 2025; 30:33. [PMID: 40158042 PMCID: PMC11954692 DOI: 10.1007/s40519-025-01730-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/10/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Previous observational studies have indicated that circulating micronutrients may influence obesity risk. This study aimed to explore the causal relationship between micronutrient levels and obesity through multivariable Mendelian randomization (MR) analysis. METHODS Single nucleotide polymorphisms (SNPs) significantly associated with 15 micronutrients (selenium, zinc, copper, calcium, beta-carotene, folate, iron, magnesium, potassium, and vitamins A, B6, B12, C, D, and E) from published genome-wide association studies (GWAS) were used as instrumental variables (IVs). Three obesity-related datasets were obtained from the GWAS. Inverse variance weighted (IVW) is the main method used for MR analysis. Leave-one-out analysis, MR-Pleiotropy Residual Sum and Outlier method (MR-PRESSO), weighted median, and MR-Egger method were used to assess pleiotropy and heterogeneity. RESULTS Genetically predicted levels of circulating selenium and calcium are causally related to the risk of obesity (calcium odds ratio [OR]: 1.478, 95% confidence interval [CI] 1.128-1.935, p = 0.005; selenium OR: 1.478, 95% CI 1.128-1.935, p = 0.005). Multivariate MR analysis suggested a causal relationship between circulating selenium and calcium levels and obesity risk (calcium OR: 1.625, 95% CI 1.260-2.097; selenium OR: 1.080, 95% CI 1.003-1.163, p = 0.041). The p-value obtained in the Cochrane Q test, MR-Egger intercept test, and MR-PRESSO were > 0.05, suggesting no significant evidence of pleiotropy or heterogeneity. CONCLUSION Our study revealed, for the first time, a positive correlation between elevated circulating calcium and selenium levels and an increased obesity risk. These findings provide valuable insights into obesity's underlying mechanisms. Nevertheless, further large-scale clinical studies are required to confirm our results. LEVEL OF EVIDENCE Level III, Mendelian randomization.
Collapse
Affiliation(s)
- Rui Zhou
- Surgical Department of Gastrointestinal Surgery, Shunde Hospital of Southern Medical University, No. 1 Jiazi Road, Shunde District, Foshan, 528399, Guangdong, China
| | - Yanxiang Zhang
- Surgical Department of Gastrointestinal Surgery, Shunde Hospital of Southern Medical University, No. 1 Jiazi Road, Shunde District, Foshan, 528399, Guangdong, China
| | - Jiazhi Wang
- Surgical Department of Gastrointestinal Surgery, Shunde Hospital of Southern Medical University, No. 1 Jiazi Road, Shunde District, Foshan, 528399, Guangdong, China
| | - Huacong Huang
- Surgical Department of Gastrointestinal Surgery, Shunde Hospital of Southern Medical University, No. 1 Jiazi Road, Shunde District, Foshan, 528399, Guangdong, China
| | - Tianyou Liao
- Surgical Department of Gastrointestinal Surgery, Shunde Hospital of Southern Medical University, No. 1 Jiazi Road, Shunde District, Foshan, 528399, Guangdong, China
| | - Weisheng Lai
- Surgical Department of Gastrointestinal Surgery, Shunde Hospital of Southern Medical University, No. 1 Jiazi Road, Shunde District, Foshan, 528399, Guangdong, China
| | - Yongle Ju
- Surgical Department of Gastrointestinal Surgery, Shunde Hospital of Southern Medical University, No. 1 Jiazi Road, Shunde District, Foshan, 528399, Guangdong, China.
| | - Manzhao Ouyang
- Surgical Department of Gastrointestinal Surgery, Shunde Hospital of Southern Medical University, No. 1 Jiazi Road, Shunde District, Foshan, 528399, Guangdong, China.
| |
Collapse
|
14
|
Cai Z, Zhang Y, He L, Cui M, Zhang W, E L, Yang H, Ling Q, Hoffmann PR, He J, Gou S, Liu F, Huang Z. Methylseleninic Acid Elevating the Nrf2-GPX4 Axis Relieves Endothelial Dysfunction and Ferroptosis Induced by Arsenic Exposure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7445-7455. [PMID: 40071728 DOI: 10.1021/acs.jafc.4c12515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Chronic exposure to arsenic (As), a ubiquitous contaminant, poses deleterious health risks to humans, including cardiovascular disease. Recent studies have implicated ferroptosis, in which the essential micronutrient selenium (Se) plays a crucial role, in several As-induced pathological processes. However, whether Se can counteract As-induced endothelial dysfunction through ferroptosis remains unclear. Herein, methylseleninic acid (MSA), a methylselenium metabolite, was used as a Se supplement to investigate the underlying effect and mechanism of Se in As-induced endothelial dysfunction involving ferroptosis in vivo and in vitro. As exposure induced endothelial dysfunction in mice, as indicated by increased aortic permeability, increased number of circulating endothelial cells, and endothelial mitochondria exhibiting ferroptosis-related alterations. Additionally, As induced ferroptosis-related cell death in mouse aortic endothelial cells, accompanied by impaired redox homeostasis, relatively low Se status, and decreased expressions of selenoproteome, including GPX4. Notably, these were attenuated by MSA via activation of Nrf2 and upregulation of three GPX4 isoforms, which were further abrogated by the Nrf2 antagonist ML385. Finally, MSA exhibited ameliorative effects on endothelial ferroptosis and dysfunction in the aortas of As-exposed mice. These results demonstrate that As causes endothelial ferroptosis and dysfunction by affecting the Se-Nrf2/GPX4 axis, which can be relieved by MSA. This study provides novel evidence implicating Se in As-induced endothelial dysfunction by mitigating ferroptosis.
Collapse
Affiliation(s)
- Zhihui Cai
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
| | - Yutian Zhang
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
| | - Leting He
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
| | - Miao Cui
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
| | - Weijie Zhang
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
| | - Lingling E
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Hui Yang
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
| | - Qinjie Ling
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813, United States
| | - Jingjun He
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
| | - Shan Gou
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
| | - Fei Liu
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
| | - Zhi Huang
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
15
|
Araújo-Pereira M, Andrade BB. Oxidative battles in tuberculosis: walking the ferroptotic tightrope. Trends Immunol 2025:S1471-4906(25)00052-3. [PMID: 40122726 DOI: 10.1016/j.it.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/25/2025]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the leading causes of death worldwide. TB pathogenesis is shaped by a complex interaction between the pathogen and host immune responses, particularly through mechanisms such as oxidative stress and ferroptosis; a form of regulated necrotic cell death driven by iron-dependent lipid peroxidation. This Review highlights recent insights into how Mtb modulates oxidative stress pathways and thus triggers ferroptosis in host cells. Understanding the interplay between oxidative stress responses and cellular and tissue necrosis opens new avenues for therapeutic interventions of TB by controlling bacterial growth and preventing host tissue damage.
Collapse
Affiliation(s)
- Mariana Araújo-Pereira
- Laboratório de Pesquisa Clínica e Translacional (LPCT), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia 40296-710, Brazil; Instituto de Pesquisa Clínica e Translacional (IPCT), Medicina Zarns, Clariens Educação, Salvador, Bahia 41720-200, Brazil; Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Institute, Salvador, Bahia 41810-710, Brazil.
| | - Bruno B Andrade
- Laboratório de Pesquisa Clínica e Translacional (LPCT), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia 40296-710, Brazil; Instituto de Pesquisa Clínica e Translacional (IPCT), Medicina Zarns, Clariens Educação, Salvador, Bahia 41720-200, Brazil; Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Institute, Salvador, Bahia 41810-710, Brazil.
| |
Collapse
|
16
|
He H, Chen L, Peng J, Guo J, Xiao X, Dou C, Chen H, Zhan S, Han X, Yao W. ROS-responsive nanoparticles with selenomethionine for ferroptosis modulation in abdominal aortic aneurysm. iScience 2025; 28:111880. [PMID: 40104069 PMCID: PMC11914196 DOI: 10.1016/j.isci.2025.111880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 01/21/2025] [Indexed: 03/20/2025] Open
Abstract
Oxidative stress, particularly ROS accumulation, plays a key role in the development of abdominal aortic aneurysm (AAA). Surgical treatments and current drugs for AAA have limitations, including lack of specificity and significant side effects. This study constructed ROS-responsive nanoparticles using phenylthio-modified dendritic polylysine (PDP) loaded with selenomethionine (PDPs-Se) for AAA treatment, and elucidated its mechanism of action. In-vitro studies revealed that PDPs-Se enhanced the clearance of ROS by increasing the levels of superoxide dismutase (SOD) and glutathione (GSH) while reducing malondialdehyde (MDA) levels. Furthermore, PDPs-Se upregulated the expression levels of GPX4, SLC7A11, and FTH1 to suppress ferroptosis and modulate the differentiation of vascular smooth muscle cells (VSMCs) from a synthetic to a contractile phenotype. In-vivo experiments revealed that PDPs-Se attenuated the progression of AAA by inhibiting oxidative stress responses and improving the aortic wall thickness, indicating its potential as an approach for AAA therapy.
Collapse
Affiliation(s)
- Haipeng He
- Department of Vascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lei Chen
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaxin Peng
- Department of Vascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinyan Guo
- Department of Anesthesia, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xue Xiao
- Department of Anesthesia, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chaoxun Dou
- Department of Anesthesia, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Huining Chen
- Department of Vascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Songbiao Zhan
- Department of Vascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xue Han
- Department of Anesthesia, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Weifeng Yao
- Department of Anesthesia, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
17
|
Gu WJ, Zhao FZ, Huang W, Zhu MG, Huang HY, Yin HY, Chen T. Selenium nanoparticles activate selenoproteins to mitigate septic lung injury through miR-20b-mediated RORγt/STAT3/Th17 axis inhibition and enhanced mitochondrial transfer in BMSCs. J Nanobiotechnology 2025; 23:226. [PMID: 40114196 PMCID: PMC11924768 DOI: 10.1186/s12951-025-03312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 03/09/2025] [Indexed: 03/22/2025] Open
Abstract
Sepsis-induced acute lung injury (ALI) remains a critical clinical challenge with complex inflammatory pathogenesis. While bone marrow mesenchymal stem cells (BMSCs) demonstrate therapeutic potential through anti-inflammatory and cytoprotective effects, their age-related functional decline limits clinical utility. This study developed chitosan-functionalized selenium nanoparticles (SeNPs@CS, 100 nm) to rejuvenate BMSCs through miR-20b-mediated selenoprotein biosynthesis. Mechanistic investigations revealed that SeNPs@CS-treated BMSCs exhibited enhanced mitochondrial transfer capacity, delivering functional mitochondria to damaged alveolar epithelial cells (AECII) for cellular repair. Concurrently, miR-20b upregulation suppressed the RORγt/STAT3/Th17 axis, reducing pro-inflammatory Th17 cell differentiation in CD4+ T lymphocytes. The dual-target mechanism integrates immunomodulation via Th17 pathway inhibition with mitochondrial rejuvenation therapy, representing a paradigm-shifting approach for ALI management. These engineered BMSCs mitigated inflammatory markers in murine models, demonstrating superior efficacy to conventional BMSC therapies. Our findings establish SeNPs@CS-modified BMSCs as a novel therapeutic platform combining nanotechnology-enhanced stem cell engineering with precision immunometabolic regulation, providing new avenues for the treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Wan-Jie Gu
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, China
| | - Feng-Zhi Zhao
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, China
| | - Wei Huang
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, China
| | - Ming-Gao Zhu
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, China
| | - Hai-Yan Huang
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, China
| | - Hai-Yan Yin
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, China.
| | - Tianfeng Chen
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, China.
| |
Collapse
|
18
|
Ye R, Mao YM, Fei YR, Shang Y, Zhang T, Zhang ZZ, Liu YL, Li JY, Chen SL, He YB. Targeting ferroptosis for the treatment of female reproductive system disorders. J Mol Med (Berl) 2025:10.1007/s00109-025-02528-x. [PMID: 40100417 DOI: 10.1007/s00109-025-02528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/28/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
Ferroptosis, a regulated form of cell death driven by iron-dependent lipid peroxidation, has emerged as a critical factor in female reproductive health and has been implicated in disorders such as polycystic ovary syndrome, premature ovarian insufficiency, endometriosis, and ovarian cancer. This review explores the intricate molecular mechanisms underlying ferroptosis, emphasizing its reliance on iron metabolism and oxidative stress, which disrupt key processes in reproductive tissues, including granulosa cell function, folliculogenesis, and embryo implantation. Increasing evidence linking ferroptosis to these conditions offers new therapeutic opportunities, with iron chelators, lipid peroxidation inhibitors, and antioxidants showing the potential to alleviate reproductive dysfunction by modulating ferroptotic pathways. In ovarian cancer, ferroptosis inducers combined with conventional cancer therapies, such as chemotherapy, provide promising strategies to overcome drug resistance. This review synthesizes current knowledge on ferroptosis and highlights its importance as a therapeutic target in reproductive health, emphasizing the need for further research to refine and expand treatment options, evaluate their applicability in clinical settings, and explore their role in fertility preservation. By advancing our understanding of ferroptosis regulation, these therapeutic approaches could lead to novel treatments for reproductive disorders and cancers, offering new hope for improving outcomes in women's health and cancer therapy.
Collapse
Affiliation(s)
- Rui Ye
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yi-Ming Mao
- Department of Thoracic Surgery, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, Zhejiang Province, China
| | - Yi-Ran Fei
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Yue Shang
- Reproductive Center, Hainan Branch, Shanghai Children'S Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
| | - Ting Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhe-Zhong Zhang
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Yong-Lin Liu
- Reproductive Center, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Jun-Yu Li
- Department of Pharmacy, Hainan Branch, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
| | - Shi-Liang Chen
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China.
| | - Yi-Bo He
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China.
| |
Collapse
|
19
|
Li T, Wang N, Yi D, Xiao Y, Li X, Shao B, Wu Z, Bai J, Shi X, Wu C, Qiu T, Yang G, Sun X, Zhang R. ROS-mediated ferroptosis and pyroptosis in cardiomyocytes: An update. Life Sci 2025; 370:123565. [PMID: 40113077 DOI: 10.1016/j.lfs.2025.123565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
The cardiomyocyte is an essential component of the heart, communicating and coordinating with non-cardiomyocytes (endothelial cells, fibroblasts, and immune cells), and are critical for the regulation of structural deformation, electrical conduction, and contractile properties of healthy and remodeled myocardium. Reactive oxygen species (ROS) in cardiomyocytes are mainly produced by the mitochondrial oxidative respiratory chain, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), xanthine oxidoreductase (XOR), monoamine oxidase (MAO), and p66shc. Under physiological conditions, ROS are involved in the regulation of cardiac development and cardiomyocyte maturation, cardiac calcium handling, and excitation-contraction coupling. In contrast, dysregulation of ROS metabolism is involved in the development and progression of cardiovascular diseases (CVDs), including myocardial hypertrophy, hyperlipidemia, myocardial ischemia/reperfusion injury, arrhythmias and diabetic cardiomyopathy. Further oxidative stress induced by ROS dyshomeostasis was found to be the major reason for cardiomyocyte death in cardiac diseases, and in recent years, ferroptosis induced by oxidative stress have been considered to be fatal to cardiomyocytes. In addition, ROS is also a key trigger for the activation of pyroptosis, which induces and exacerbates the inflammatory response caused by various cardiac diseases and plays a critical role in CVDs. Therefore, in this review, the sources and destinations of ROS in cardiomyocytes will be systematically addressed, so as to reveal the molecular mechanisms by which ROS accumulation triggers cardiomyocyte ferroptosis and pyroptosis under pathological conditions, and provide a new concept for the research and treatment of heart-related diseases.
Collapse
Affiliation(s)
- Tao Li
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, PR China
| | - Ningning Wang
- Experimental Teaching Center of Public Health, School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China; Global Health Research Center, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Dongxin Yi
- School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Yuji Xiao
- School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China; Bishan Hospital of Chongqing Medical University, Chongqing 402760, PR China
| | - Xiao Li
- School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Bing Shao
- School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Ziyi Wu
- School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Jie Bai
- Experimental Teaching Center of Public Health, School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Xiaoxia Shi
- Experimental Teaching Center of Public Health, School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Chenbing Wu
- Experimental Teaching Center of Public Health, School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Tianming Qiu
- Global Health Research Center, Dalian Medical University, Dalian, Liaoning 116044, PR China; Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Guang Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Xiance Sun
- Global Health Research Center, Dalian Medical University, Dalian, Liaoning 116044, PR China; Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Rongfeng Zhang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
20
|
Chen Y, Wang S, Zhang L, Peng D, Huang K, Ji B, Fu J, Xu Y. POT, an optogenetics-based endogenous protein degradation system. Commun Biol 2025; 8:455. [PMID: 40102608 PMCID: PMC11920400 DOI: 10.1038/s42003-025-07919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
Precise regulation of protein abundance is critical for cellular homeostasis, whose dysfunction may directly lead to human diseases. Optogenetics allows rapid and reversible control of precisely defined cellular processes, which has the potential to be utilized for regulation of protein dynamics at various scales. Here, we developed a novel optogenetics-based protein degradation system, namely Peptide-mediated OptoTrim-Away (POT) which employs expressed small peptides to effectively target endogenous and unmodified proteins. By engineering the light-induced oligomerization of the E3 ligase TRIM21, POT can rapidly trigger protein degradation via the proteasomal pathway. Our results showed that the developed POT-PI3K and POT-GPX4 modules, which used the iSH2 and FUNDC1 domains to specifically target phosphoinositide 3-kinase (PI3K) and glutathione peroxidase 4 (GPX4) respectively, were able to potently induce the degradation of these endogenous proteins by light. Both live-cell imaging and biochemical experiments validated the potency of these tools in downregulating cancer cell migration, proliferation, and even promotion of cell apoptosis. Therefore, we believe the POT offers an alternative and practical solution for rapid manipulation of endogenous protein levels, and it could potentially be employed to dissect complex signaling pathways in cell and for targeted cellular therapies.
Collapse
Affiliation(s)
- Yunyue Chen
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China
| | - Siyifei Wang
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China
| | - Luhao Zhang
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Dandan Peng
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, Zhejiang, China
| | - Ke Huang
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, Zhejiang, China
| | - Baohua Ji
- Department of Engineering Mechanics, Biomechanics and Biomaterials Laboratory, Zhejiang University, Hangzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, Zhejiang, China
| | - Yingke Xu
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Hong L, Chen X, Liu Y, Liang H, Zhao Y, Guo P. The relationship between ferroptosis and respiratory infectious diseases: a novel landscape for therapeutic approach. Front Immunol 2025; 16:1550968. [PMID: 40170865 PMCID: PMC11959089 DOI: 10.3389/fimmu.2025.1550968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025] Open
Abstract
Respiratory infectious diseases, particularly those caused by respiratory viruses, have the potential to lead to global pandemics, thereby posing significant threats to public and human health. Historically, the primary treatment for respiratory bacterial infections has been antibiotic therapy, while severe cases of respiratory viral infections have predominantly been managed by controlling inflammatory cytokine storms. Ferroptosis is a novel form of programmed cell death that is distinct from apoptosis and autophagy. In recent years, Recent studies have demonstrated that ferroptosis plays a significant regulatory role in various respiratory infectious diseases, indicating that targeting ferroptosis may represent a novel approach for the treatment of these conditions. This article summarized the toxic mechanisms underlying ferroptosis, its relationship with respiratory infectious diseases, the mechanisms of action, and current treatment strategies. Particular attentions were given to the interplay between ferroptosis and Mycobacterium tuberculosis, Epstein-Barr virus, severe acute respiratory syndrome coronavirus-2, Pseudomonas aeruginosa, dengue virus, influenza virus and herpes simplex virus type1infection. A deeper understanding of the regulatory mechanisms of ferroptosis in respiratory infections will not only advance our knowledge of infection-related pathophysiology but also provide a theoretical foundation for the development of novel therapeutic strategies. Targeting ferroptosis pathways represents a promising therapeutic approach for respiratory infections, with significant clinical and translational implications.
Collapse
Affiliation(s)
- Longyan Hong
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Xiangyu Chen
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yiming Liu
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Hao Liang
- Department of Health Inspection and Quarantine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yinghui Zhao
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Pengbo Guo
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
22
|
Aoyama Y, Yamazaki H, Nishimura K, Nomura M, Shigehiro T, Suzuki T, Zang W, Tatara Y, Ito H, Hayashi Y, Koike Y, Fukumoto M, Tanaka A, Zhang Y, Saika W, Hasegawa C, Kasai S, Kong Y, Minakuchi Y, Itoh K, Yamamoto M, Toyokuni S, Toyoda A, Ikawa T, Takaori-Kondo A, Inoue D. Selenoprotein-mediated redox regulation shapes the cell fate of HSCs and mature lineages. Blood 2025; 145:1149-1163. [PMID: 39775457 PMCID: PMC11923430 DOI: 10.1182/blood.2024025402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
ABSTRACT The maintenance of cellular redox balance is crucial for cell survival and homeostasis and is disrupted with aging. Selenoproteins, comprising essential antioxidant enzymes, raise intriguing questions about their involvement in hematopoietic aging and potential reversibility. Motivated by our observation of messenger RNA downregulation of key antioxidant selenoproteins in aged human hematopoietic stem cells (HSCs) and previous findings of increased lipid peroxidation in aged hematopoiesis, we used selenocysteine transfer RNA (tRNASec) gene (Trsp) knockout (KO) mouse model to simulate disrupted selenoprotein synthesis. This revealed insights into the protective roles of selenoproteins in preserving HSC stemness and B-lineage maturation, despite negligible effects on myeloid cells. Notably, Trsp KO exhibited B lymphocytopenia and reduced HSCs' self-renewal capacity, recapitulating certain aspects of aged phenotypes, along with the upregulation of aging-related genes in both HSCs and pre-B cells. Although Trsp KO activated an antioxidant response transcription factor NRF2, we delineated a lineage-dependent phenotype driven by lipid peroxidation, which was exacerbated with aging yet ameliorated by ferroptosis inhibitors such as vitamin E. Interestingly, the myeloid genes were ectopically expressed in pre-B cells of Trsp KO mice, and KO pro-B/pre-B cells displayed differentiation potential toward functional CD11b+ fraction in the transplant model, suggesting that disrupted selenoprotein synthesis induces the potential of B-to-myeloid switch. Given the similarities between the KO model and aged wild-type mice, including ferroptosis vulnerability, impaired HSC self-renewal and B-lineage maturation, and characteristic lineage switch, our findings underscore the critical role of selenoprotein-mediated redox regulation in maintaining balanced hematopoiesis and suggest the preventive potential of selenoproteins against aging-related alterations.
Collapse
Affiliation(s)
- Yumi Aoyama
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Yamazaki
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Masaki Nomura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Genome Analysis Unit, Quality Section, Facility for iPS Cell Therapy, CiRA Foundation, Kyoto, Japan
| | - Tsukasa Shigehiro
- Division of Immunology and Allergy, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Takafumi Suzuki
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Weijia Zang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yota Tatara
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiromi Ito
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Yasutaka Hayashi
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Computational and Systems Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yui Koike
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Miki Fukumoto
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Atsushi Tanaka
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Kyoto-Katsura Hospital, Kyoto, Japan
| | - Yifan Zhang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wataru Saika
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Shiga University of Medical Science, Otsu, Japan
| | - Chihiro Hasegawa
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shuya Kasai
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yohei Minakuchi
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Ken Itoh
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Tomokatsu Ikawa
- Division of Immunology and Allergy, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
23
|
Yu Y, Jiang X, Yu T, Chen F, Huang R, Xun Z, Wang X, Liu X, Xie X, Sun C, Xu Y, Liu X, Sun H, Yuan X, Ma C, Li Y, Song X, Wang D, Shao D, Shi X, Cao L. Maintaining myoprotein and redox homeostasis via an orally recharged nanoparticulate supplement potentiates sarcopenia treatment. Biomaterials 2025; 314:122863. [PMID: 39366185 DOI: 10.1016/j.biomaterials.2024.122863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Sarcopenia is a progressive skeletal muscle disorder characterized by the accelerated loss of muscle mass and function, with no promising pharmacotherapies. Understanding the imbalance of myoprotein homeostasis within myotubes, which causes sarcopenia, may facilitate the development of novel treatments for clinical use. In this study, we found a strong correlation between low serum selenium levels and muscle function in elderly patients with sarcopenia. We hypothesized that supplementation with selenium might be beneficial for the management of sarcopenia. To verify this hypothesis, we developed diselenide-bridged mesoporous silica nanoparticles (Se-Se-MSNs) with ROS-responsive degradation and release to supplement selenium. Se-Se-MSNs outperformed free selenocysteine in alleviating sarcopenia in both dexamethasone (Dex)- and denervation-induced mouse models. Subsequently, Se-Se-MSNs were loaded with leucine (Leu@Se-Se-MSNs), another nutritional supplement used in sarcopenia management. Oral administration of Leu@Se-Se-MSNs restored myoprotein homeostasis by enhancing mTOR/S6K signaling and inactivating Akt/FoxO3a/MuRF1 signaling, thus exerting optimal therapeutic effects against sarcopenia and exhibiting a more favorable in vivo safety profile. This study provides a proof of concept for treating sarcopenia by maintaining myoprotein and redox homeostasis simultaneously and offers valuable insights into the development of multifunctional nanoparticle-based supplements for sarcopenia management.
Collapse
Affiliation(s)
- Yang Yu
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Xuehan Jiang
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China; Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, Liaoning, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, Guangzhou, China
| | - Runnian Huang
- Department of Gerontology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China; Department of Epidemiology and Health Statistics, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Zhe Xun
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiaoxun Wang
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Xu Liu
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiaochun Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Chen Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Yingxi Xu
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiyan Liu
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Huayi Sun
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiaoyue Yuan
- Department of Gerontology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China; Department of Epidemiology and Health Statistics, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Chunhua Ma
- Department of Gerontology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China; Department of Epidemiology and Health Statistics, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yibai Li
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiaoyu Song
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China.
| | - Difei Wang
- Department of Gerontology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| | - Dan Shao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, Guangzhou, China.
| | - Liu Cao
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
24
|
Wang J, Shi H, Yang Y, Gong X. Crosstalk between ferroptosis and innate immune in diabetic kidney disease: mechanisms and therapeutic implications. Front Immunol 2025; 16:1505794. [PMID: 40092979 PMCID: PMC11906378 DOI: 10.3389/fimmu.2025.1505794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent complication of diabetes mellitus (DM), and its incidence is increasing alongside the number of diabetes cases. Effective treatment and long-term management of DKD present significant challenges; thus, a deeper understanding of its pathogenesis is essential to address this issue. Chronic inflammation and abnormal cell death in the kidney closely associate with DKD development. Recently, there has been considerable attention focused on immune cell infiltration into renal tissues and its inflammatory response's role in disease progression. Concurrently, ferroptosis-a novel form of cell death-has emerged as a critical factor in DKD pathogenesis, leading to increased glomerular filtration permeability, proteinuria, tubular injury, interstitial fibrosis, and other pathological processes. The cardiorenal benefits of SGLT2 inhibitors (SGLT2-i) in DKD patients have been demonstrated through numerous large clinical trials. Moreover, further exploratory experiments indicate these drugs may ameliorate serum and urinary markers of inflammation, such as TNF-α, and inhibit ferroptosis in DKD models. Consequently, investigating the interplay between ferroptosis and innate immune and inflammatory responses in DKD is essential for guiding future drug development. This review presents an overview of ferroptosis within the context of DKD, beginning with its core mechanisms and delving into its potential roles in DKD progression. We will also analyze how aberrant innate immune cells, molecules, and signaling pathways contribute to disease progression. Finally, we discuss the interactions between ferroptosis and immune responses, as well as targeted therapeutic agents, based on current evidence. By analyzing the interplay between ferroptosis and innate immunity alongside its inflammatory responses in DKD, we aim to provide insights for clinical management and drug development in this area.
Collapse
Affiliation(s)
- Jinyang Wang
- Department of Geriatric Integrative, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Haonan Shi
- School of Medicine, Shanghai University, Shanghai, China
| | - Ye Yang
- Department of Geriatric Integrative, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xueli Gong
- Department of Pathophysiology, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
25
|
Lamsira HK, Sabatini A, Ciolfi S, Ciccosanti F, Sacchi A, Piacentini M, Nardacci R. Autophagy and Programmed Cell Death Modalities Interplay in HIV Pathogenesis. Cells 2025; 14:351. [PMID: 40072080 PMCID: PMC11899401 DOI: 10.3390/cells14050351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/15/2025] Open
Abstract
Human immunodeficiency virus (HIV) infection continues to be a major global health challenge, affecting 38.4 million according to the Joint United Nations Program on HIV/AIDS (UNAIDS) at the end of 2021 with 1.5 million new infections. New HIV infections increased during the 2 years after the COVID-19 pandemic. Understanding the intricate cellular processes underlying HIV pathogenesis is crucial for developing effective therapeutic strategies. Among these processes, autophagy and programmed cell death modalities, including apoptosis, necroptosis, pyroptosis, and ferroptosis, play pivotal roles in the host-virus interaction dynamics. Autophagy, a highly conserved cellular mechanism, acts as a double-edged sword in HIV infection, influencing viral replication, immune response modulation, and the fate of infected cells. Conversely, apoptosis, a programmed cell death mechanism, is a critical defense mechanism against viral spread and contributes to the depletion of CD4+ T cells, a hallmark of HIV/AIDS progression. This review aims to dissect the complex interplay between autophagy and these programmed cell death modalities in HIV-induced pathogenesis. It highlights the molecular mechanisms involved, their roles in viral persistence and immune dysfunction, and the challenges posed by the viral reservoir and drug resistance, which continue to impede effective management of HIV pathology. Targeting these pathways holds promise for novel therapeutic strategies to mitigate immune depletion and chronic inflammation, ultimately improving outcomes for individuals living with HIV.
Collapse
Affiliation(s)
- Harpreet Kaur Lamsira
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Andrea Sabatini
- Department of Science, University ‘Roma Tre’, 00146 Rome, Italy (S.C.); (A.S.)
| | - Serena Ciolfi
- Department of Science, University ‘Roma Tre’, 00146 Rome, Italy (S.C.); (A.S.)
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, 00149 Rome, Italy; (F.C.)
| | - Alessandra Sacchi
- Department of Science, University ‘Roma Tre’, 00146 Rome, Italy (S.C.); (A.S.)
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, 00149 Rome, Italy; (F.C.)
- Department of Biology, University ‘Tor Vergata’, 00133 Rome, Italy
| | - Roberta Nardacci
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, 00149 Rome, Italy; (F.C.)
| |
Collapse
|
26
|
Rostami Ravari N, Sadri F, Mahdiabadi MA, Mohammadi Y, Ourang Z, Rezaei Z. Ferroptosis and noncoding RNAs: exploring mechanisms in lung cancer treatment. Front Cell Dev Biol 2025; 13:1522873. [PMID: 40078365 PMCID: PMC11897296 DOI: 10.3389/fcell.2025.1522873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025] Open
Abstract
Lung cancer (LC) is a highly prevalent and deadly type of cancer characterized by intricate molecular pathways that drive tumor development, metastasis, and resistance to conventional treatments. Recently, ferroptosis, a controlled mechanism of cell death instigated by iron-dependent lipid peroxidation, has gained attention for its role in LC progression and treatment. Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are emerging as key modulators of ferroptosis, significantly influencing LC biology. This review explores how ncRNAs control ferroptotic pathways and affect tumor growth, metastasis, and therapy resistance in LC. By understanding the dual functions of ncRNAs in both activating and inhibiting ferroptosis, we aim to uncover new therapeutic targets and strategies for LC. These insights provide a promising direction for the development of ncRNA-based treatments designed to induce ferroptosis, potentially improving therapeutic outcomes for patients with LC.
Collapse
Affiliation(s)
- Nadi Rostami Ravari
- Department of Animal Science Researches, Agriculture and Natural Resources Education and Research Center of Kerman, Agriculture and Natural Resources Education and Research Organization (AREEO), Kerman, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Geriatric Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Ali Mahdiabadi
- Department of Internal Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Yaser Mohammadi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ourang
- Department of Biochemistry, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Zohreh Rezaei
- Geriatric Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
27
|
Luo JY, Deng YL, Lu SY, Chen SY, He RQ, Qin DY, Chi BT, Chen G, Yang X, Peng W. Current Status and Future Directions of Ferroptosis Research in Breast Cancer: Bibliometric Analysis. Interact J Med Res 2025; 14:e66286. [PMID: 40009842 PMCID: PMC11904379 DOI: 10.2196/66286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Ferroptosis, as a novel modality of cell death, holds significant potential in elucidating the pathogenesis and advancing therapeutic strategies for breast cancer. OBJECTIVE This study aims to comprehensively analyze current ferroptosis research and future trends, guiding breast cancer research advancements and innovative treatment strategies. METHODS This research used the R package Bibliometrix (Department of Economic and Statistical Sciences at the University of Naples Federico II), VOSviewer (Centre for Science and Technology Studies at Leiden University), and CiteSpace (Drexel University's College of Information Science and Technology), to conduct a bibliometric analysis of 387 papers on breast cancer and ferroptosis from the Web of Science Core Collection. The analysis covers authors, institutions, journals, countries or regions, publication volumes, citations, and keywords. RESULTS The number of publications related to this field has surged annually, with China and the United States collaborating closely and leading in output. Sun Yat-sen University stands out among the institutions, while the journal Frontiers in Oncology and the author Efferth T contribute significantly to the field. Highly cited papers within the domain primarily focus on the induction of ferroptosis, protein regulation, and comparisons with other modes of cell death, providing a foundation for breast cancer treatment. Keyword analysis highlights the maturity of glutathione peroxidase 4-related research, with breast cancer subtypes emerging as motor themes and the tumor microenvironment, immunotherapy, and prognostic models identified as basic themes. Furthermore, the application of nanoparticles serves as an additional complement to the basic themes. CONCLUSIONS The current research status in the field of ferroptosis and breast cancer primarily focuses on the exploration of relevant theoretical mechanisms, whereas future trends and mechanisms emphasize the investigation of therapeutic strategies, particularly the clinical application of immunotherapy related to the tumor microenvironment. Nanotherapy has demonstrated significant clinical potential in this domain. Future research directions should deepen the exploration in this field and accelerate the clinical translation of research findings to provide new insights and directions for the innovation and development of breast cancer treatment strategies.
Collapse
Affiliation(s)
- Jia-Yuan Luo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu-Long Deng
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shang-Yi Lu
- Department of Hepatological and Gland Surgery, Wuzhou Gongren Hospital/The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China
| | - Si-Yan Chen
- Day Chemotherapy Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rong-Quan He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Di-Yuan Qin
- Department of Computer Science and Technology, School of Computer and Electronic Information, Guangxi University, Nanning, China
| | - Bang-Teng Chi
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xia Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Peng
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
28
|
Zhou B, Guo J, Xiao K, Liu Y. The multifaceted role of ferroptosis in infection and injury and its nutritional regulation in pigs. J Anim Sci Biotechnol 2025; 16:29. [PMID: 39994824 PMCID: PMC11854094 DOI: 10.1186/s40104-025-01165-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
Ferroptosis is a newly identified form of regulated cell death (RCD) characterized by iron overload and excessive lipid peroxidation. To date, numerous studies in human and mouse models have shown that ferroptosis is closely related to tissue damage and various diseases. In recent years, ferroptosis has also been found to play an indispensable and multifaceted role in infection and tissue injury in pigs, and nutritional regulation strategies targeting ferroptosis show great potential. In this review, we summarize the research progress of ferroptosis and its role in infection and tissue injury in pigs. Furthermore, we discuss the existing evidence on ferroptosis regulation by nutrients, aiming to provide valuable insights for future investigation into ferroptosis in pigs and offer a novel perspective for the treatment of infection and injury in pigs.
Collapse
Affiliation(s)
- Bei Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
29
|
Wu J, Zhang B, Du W, Shi Y, Xie C, Ke Y, Yi X. OC-STAMP is a potential biomarker and therapeutic target for Silicosis: an exploratory investigation. J Transl Med 2025; 23:214. [PMID: 39985047 PMCID: PMC11846239 DOI: 10.1186/s12967-024-05981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/13/2024] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Silicosis, a disease characterized by fibrous changes in lung tissue due to prolonged silica dust inhalation, exhibits a complex pathogenesis that remains inadequately addressed by current interventions. Although osteoclast stimulatory transmembrane protein (OC-STAMP) is implicated in Silicosis progression, its regulatory mechanisms are not fully understood. In this study, we detected elevated OC-STAMP expression in Silicosis patients and found that treatment with OC-STAMP siRNA can alleviate the progression of Silicosis in mice, suggesting the potential of OC-STAMP as a diagnostic and therapeutic target for Silicosis. METHODS First, rat models of Silicosis were developed at various stages. A suite of histological and molecular techniques, including Hematoxylin and eosin (HE), Masson, Prussian blue staining, and immunohistochemistry, along with real-time polymerase chain reaction (RT-PCR), were employed to assess the expression levels of OC-STAMP, as well as indicators of ferroptosis and fibrosis.Second, MLE-12 cells were cultured in vitro to establish an OC-STAMP overexpression model, and the relationship between OC-STAMP and ferroptosis was evaluated using flow cytometry, and western blotting. Subsequently, to verify the role of OC-STAMP and ferroptosis in Silicosis progression, we administered OC-STAMP siRNA and Fer-1 to Silicosis mice respectively. Whole-body volumetric plethysmography (WBP) was utilized to assess the respiratory function of the mice, and Micro-CT was applied to detect the lung nodules in the mice. The levels of OC-STAMP, as well as indexes associated with ferroptosis and fibrosis, were assessed using Hematoxylin and eosin (HE), Masson, Sirius red staining, immunohistochemistry, and western blot analysis. The polarization of macrophages towards M1 and M2 phenotypes in lung tissues was analyzed by flow cytometry. Ultimately, the plasma expression of OC-STAMP in patients diagnosed with Silicosis was quantified using enzyme-linked immunosorbent assay (ELISA). RESULTS In vivo experiments showed that OC-STAMP accelerates the fibrotic process of Silicosis, which may promote the epithelial-mesenchymal transformation by triggering ferroptosis of alveolar type II epithelial cells, and thus promote the progression of Silicosis. Furthermore, in vitro studies indicated that OC-STAMP overexpression causes ferroptosis in alveolar type II epithelial cells which contributes to fibrosis. Notably, treatment with siRNA in Silicosis mice confirmed that OC-STAMP inhibition effectively mitigates ferroptosis and retarded the progression of Silicosis fibrosis. Plasma of patients with Silicosis exhibited elevated OC-STAMP levels. CONCLUSIONS Overall, OC-STAMP induces ferroptosis and exacerbates fibrosis in Silicosis. OC-STAMP siRNA and Fer-1 mitigate abnormal collagen deposition and delay the progression of Silicosis. Collectively, these findings highlight the potential of OC-STAMP as a novel biomarker for diagnosing and treating Silicosis.
Collapse
Affiliation(s)
- Jing Wu
- Basic Medicine Department, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Public Health School of Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Bingyu Zhang
- Basic Medicine Department, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Public Health School of Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Wei Du
- Basic Medicine Department, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Public Health School of Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yimin Shi
- Basic Medicine Department, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Chunhong Xie
- Department of Clinical Laboratory, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, 361021, Fujian, China
| | - Yanyan Ke
- Basic Medicine Department, Xiamen Medical College, Xiamen, 361023, Fujian, China.
- Insitute of Respiratory Research, Xiamen Medical College, Xiamen, 361023, Fujian, China.
| | - Xue Yi
- Basic Medicine Department, Xiamen Medical College, Xiamen, 361023, Fujian, China.
- Public Health School of Fujian Medical University, Fuzhou, 350122, Fujian, China.
- Insitute of Respiratory Research, Xiamen Medical College, Xiamen, 361023, Fujian, China.
| |
Collapse
|
30
|
Cai L, Yang Q, Shao X, Wang S, Fu Y, Mao X, Hou L, Meng Y, Wei Y, Xu X. Dual-responsive triple-helix β-glucan-based self-assembled supramolecule for combination chemo-photothermal therapy against lung metastatic triple negative breast cancer. Int J Biol Macromol 2025; 306:141370. [PMID: 39988177 DOI: 10.1016/j.ijbiomac.2025.141370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
The development of multifunctional therapies with targeted release materials is desirable for overcoming the high aggressiveness and poor prognosis of triple-negative breast cancer (TNBC). Herein, we have designed a self-assembled supramolecule (BSD), in which SWNTs can be wrapped by triple-helix β-Glucan (BFP) in a self-assembled manner, and doxorubicin (DOX) is attached onto SWNTs by means of π-stacking and hydrophobic interactions with high drug encapsulation efficiency (89.3 %). BFP could significantly improve the dispersion and stability of SWNTs and DOX, and reduce toxicity. BSD provides a drug-targeting mechanism due to the pH-responsive and near-infrared radiation (NIR) thermal-responsive release of DOX, and BSD displayed excellent photo-thermal conversion effect and cyclic stability, and exhibited higher antitumor activity under near-infrared radiation than chemotherapy alone. Photothermal therapy mainly blocked the synthesis of nutrients required for tumor DNA replication, while chemotherapy markedly induced oxidative stress production, which ultimately exacerbated DNA damage of tumor cells. As a result, the combined effect of chemo-photothermal therapy ultimately promote tumor cell apoptosis and suppress the growth of primary tumor and metastasis to the lungs in vitro and in vivo. This study provides a promising pH/NIR thermal-responsive sustained prodrug for combined chemo-photothermal therapy against aggressive triple negative breast cancer in practical therapy.
Collapse
Affiliation(s)
- Liqin Cai
- School of Advanced Manufacturing, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350116, China; College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China.
| | - Qian Yang
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiang Shao
- School of Advanced Manufacturing, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Sen Wang
- School of Advanced Manufacturing, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yaming Fu
- School of Advanced Manufacturing, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xinghuai Mao
- School of Advanced Manufacturing, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Linxi Hou
- School of Advanced Manufacturing, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yongchang Wei
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China.
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
31
|
Yang G, Qian B, He L, Zhang C, Wang J, Qian X, Wang Y. Application prospects of ferroptosis in colorectal cancer. Cancer Cell Int 2025; 25:59. [PMID: 39984914 PMCID: PMC11846473 DOI: 10.1186/s12935-025-03641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/07/2025] [Indexed: 02/23/2025] Open
Abstract
Colorectal cancer (CRC) is a serious threat to human health with the third morbidity and the second cancer-related mortality worldwide. It is urgent to explore more effective strategy for CRC because of the acquired treatment resistance from the non-surgical conventional therapies, including radiation, chemotherapy, targeted therapy and immunotherapy. Ferroptosis is a novel form of programmed cell death characterized by iron-dependent lipid peroxidation species (ROS) accumulation and has been identified as a promising target for cancer treatment, especially for those with treatment resistance. In this review, we mainly summarize the recent studies on the influence and regulation of ferroptosis by which (including gut microbiota) modulating the metabolism of iron, amino acid and lipid. Thus this analysis may provide potential targets for inducing CRC ferroptosis and shed lights on the future application of ferroptosis in CRC.
Collapse
Affiliation(s)
- Gen Yang
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Boning Qian
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Liya He
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Chi Zhang
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jianqiang Wang
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xinlai Qian
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Provincial Key Laboratory of Molecular Oncologic Pathology, Xinxiang, Henan, China.
| | - Yongxia Wang
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Provincial Key Laboratory of Molecular Oncologic Pathology, Xinxiang, Henan, China.
| |
Collapse
|
32
|
Wang J, Li X, Geng J, Wang R, Ma G, Liu P. Identification of biomarkers and mechanism exploration of ferroptosis related genes regulated by m6A in type 2 diabetes mellitus. Hereditas 2025; 162:24. [PMID: 39966875 PMCID: PMC11834627 DOI: 10.1186/s41065-025-00385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
PURPOSE This study is aims to explore the role of ferroptosis genes regulated by N6-methyladenosine (m6A) in Type 2 diabetes mellitus (T2DM). MATERIAL AND METHODS Firstly, differentially expressed m6A-FRGs (DEm6A-FRGs) were obtained by intersecting the differentially expressed genes (DEGs) and the m6A-related ferroptosis genes (m6A-FRGs). After enrichment analysis of DEm6A-FRGs, artificial neural network (ANN) and nomogram models were constructed using 4 biomarkers. Moreover, the gene set enrichment analysis of biomarkers was performed. Furthermore, the transcription factors (TF)-mRNA and competing endogenous RNAs (ceRNA) regulatory networks were constructed to reveal the potential regulation of biomarkers at molecular level. In addition, the targeted drugs of biomarkers were predicted, and the molecular docking was used to study the inter-molecular interactions between biomarkers and targeted drugs by "AutoDockvina". RESULTS Totals of 10 DEm6A-FRGs were obtained by intersecting the 402 DEGs and 299 m6A-FRGs. Moreover, the ANN model and nomogram model were constructed with 4 biomarkers including CDKN1A, MIOX, MYCN and CD82, among them, CDKN1A was the most important biomarker for forecasting T2DM. Notably, the function of extracellular matrix structural constituent was low expression in CD82 and MIOX, the function of mitochondrial protein-containing complex was high expression in CD82 and CDKN1A. Furthermore, TP63 could regulate CD82, CDKN1A and MIOX, GATA3 could regulate CD82, CDKN1A and MYCN at the same time. The ceRNA network was constructed with 4 mRNAs, 51 miRNAs and 37 lncRNAs, among them, XIST was a key lncRNA that associated with 12 miRNAs, which could influence CDKN1A. In addition, bisphenol A was associated with CD82 and MYCN, CGP 25608 was associated with CDKN1A and MIOX. CONCLUSION This study revealed the potential molecular mechanisms of m6A-related ferroptosis genes in T2DM, which could provide novel insights for the clinical diagnosis and treatment of T2DM.
Collapse
Affiliation(s)
- Jing Wang
- Department of Anaesthesiology, Northwest Women's and Children's Hospital, Yanxiang Road, Yanta District, Xi'an, 710000, Shanxi Province, China
| | - Xuying Li
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Juan Geng
- Department of Anaesthesiology, Northwest Women's and Children's Hospital, Yanxiang Road, Yanta District, Xi'an, 710000, Shanxi Province, China
| | - Ruiduo Wang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi'an, 710119, China
| | - Gang Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, China 704 Shengli Street, Yinchuan, 750004, Ningxia, China.
| | - Pan Liu
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Maojian District, No. 39, Chaoyang Middle Road, Shiyan, Hubei, 442000, People's Republic of China.
| |
Collapse
|
33
|
Wang H, Chen B, Xiao P, Han D, Gao B, Yan Y, Zhao R, Pan T, Zhang J, Zhou M, Lv L, Gao H. Yersiniabactin produced by Escherichia coli promotes intestinal inflammation through lipid peroxidation and ferroptosis. Front Microbiol 2025; 16:1542801. [PMID: 40034497 PMCID: PMC11872927 DOI: 10.3389/fmicb.2025.1542801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Escherichia coli (E. coli), a major foodborne pathogen, poses significant risks to public health by causing gastrointestinal diseases. Among its virulence factors, Yersiniabactin (Ybt), a siderophore, plays a crucial role in iron acquisition and enhancing intestinal colonization. Despite previous studies highlighting E. coli-Ybt's involvement in inflammation, its exact mechanisms remain unclear. This study investigates how Ybt contributes to intestinal inflammation through ferroptosis, using both in vitro and in vivo models. Our findings demonstrate that Ybt promotes oxidative stress, lipid peroxidation, inflammation, and iron accumulation in intestinal epithelial cells, leading to ferroptosis. Mechanistically, Ybt suppresses the Keap1/Nrf2 pathway, amplifying reactive oxygen species (ROS) and activating the TNF/NF-κB pathway, which drives inflammation. Moreover, Ybt induces lipid peroxidation via the arachidonic acid pathway, producing 6-trans-leukotriene B4 (6-transLTB4), which exacerbates inflammation and ferroptosis. Exogenous 6-transLTB4 further intensifies this cascade. Additionally, Ybt disrupts iron efflux by suppressing FPN1 expression, causing excessive intracellular iron accumulation. Using tree shrews as an in vivo model, we confirm that Ybt-induced ferroptosis significantly aggravates intestinal inflammation. These findings underscore the pathogenic role of Ybt in E. coli-induced intestinal injury and highlight ferroptosis as a novel mechanism contributing to gut health disruption. This study provides new insights into the molecular pathways of E. coli infection, with implications for therapeutic strategies targeting ferroptosis in intestinal diseases.
Collapse
Affiliation(s)
- Hao Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Bingxun Chen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Peng Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Dongmei Han
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Bin Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yulin Yan
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Ru Zhao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Tianling Pan
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jingsong Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Meng Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Longbao Lv
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hong Gao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
34
|
Wang N, Chen M, Wu M, Liao Y, Xia Q, Cai Z, He C, Tang Q, Zhou Y, Zhao L, Zou Z, Chen Y, Han L. High-adhesion ovarian cancer cell resistance to ferroptosis: The activation of NRF2/FSP1 pathway by junctional adhesion molecule JAM3. Free Radic Biol Med 2025; 228:1-13. [PMID: 39706500 DOI: 10.1016/j.freeradbiomed.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Ovarian cancer remains a significant challenge due to the lack of effective treatment and the resistance to conventional therapies. Ferroptosis, a form of regulated cell death characterized by iron-depend and lipid peroxidation, has emerged as a potential therapeutic target in cancer. Ovarian cancer has been reported to exert an "iron addiction" phenotype which makes it is susceptible to ferroptosis inducers. However, we found here that high-adhesion ovarian cancer cells were resistant to ferroptosis. Mechanistically, by PCR array, we identified junctional adhesion molecule 3 (JAM3) as a key mediator of ferroptosis resistance in high-adhesion ovarian cancer cells. Knockdowning and blocking JAM3 sensitized cancer cells to ferroptosis inducers RSL3 and erastin, while JAM3 overexpression conferred resistance to these agents. In addition, JAM3 also promoted ovarian cancer cells resistance to chemotherapeutic agent cisplatin in vitro and in vivo by inhibiting ferroptosis. Furthermore, we demonstrated that JAM3 promoted ferroptosis resistance through NRF2-induced upregulation of FSP1, a critical suppressor of lipid peroxidation. Inhibition of the NRF2/FSP1 pathway eliminated high-adhesion, JAM3 overexpressed ovarian cancer cells resistance to ferroptosis, and decreased cancer cells resistance to cisplatin. Moreover, JAM3 high expression was associated with poor prognosis in patients with ovarian cancer. Altogether, this study provided novel insights into the molecular mechanisms underlying ferroptosis resistance and identify JAM3 as a potential therapeutic target for combating drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Ning Wang
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Min Chen
- The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511300, China
| | - Manting Wu
- The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511300, China
| | - Yuan Liao
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qing Xia
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Zheyou Cai
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Chengsi He
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Yuan Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Lei Zhao
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
| | - Yibing Chen
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China.
| | - Liping Han
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
35
|
Urano Y, Iwagaki A, Takeishi A, Uchiyama N, Noguchi N. Downregulation of the SREBP pathways and disruption of redox status by 25-hydroxycholesterol predispose cells to ferroptosis. Free Radic Biol Med 2025; 228:319-328. [PMID: 39778605 DOI: 10.1016/j.freeradbiomed.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Enzymatically formed side-chain oxysterols function as signaling molecules regulating cholesterol homeostasis and act as intermediates in the biosynthesis of bile acids. In addition to these physiological functions, an imbalance in oxysterol homeostasis has been implicated in pathophysiology. Cholesterol 25-hydroxylase (CH25H) and its product 25-hydroxycholesterol (25-OHC), also formed by autoxidation, are associated with amyotrophic lateral sclerosis. However, the effects of 25-OHC on cell viability in glial cells remain unclear. This study demonstrates that 25-OHC induces ferroptosis, an iron-dependent programmed cell death, in mouse Schwann IMS32 cells. Mechanistically, 25-OHC suppressed the expression of selenoprotein glutathione peroxidase 4 (GPX4) at both the transcriptional and translational levels by inhibiting the processing of sterol regulatory element-binding proteins (SREBPs). In addition, 25-OHC upregulated the expression of NADH-cytochrome b5 reductase 1 (CYB5R1) and NADPH-cytochrome P450 reductase (POR), enzymes that promote lipid peroxidation. We further found that 25-OHC increases the expression of glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1) and decreases glutathione levels. Importantly, non-cytotoxic concentrations of 25-OHC enhanced cellular sensitivity to ferroptosis inducers by downregulating GPX4 expression. These findings reveal a multifaceted approach whereby 25-OHC induces ferroptosis through SREBP pathway suppression and redox imbalance in mouse Schwann IMS32 cells.
Collapse
Affiliation(s)
- Yasuomi Urano
- Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan.
| | - Anan Iwagaki
- Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan
| | - Arisa Takeishi
- Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan
| | - Nazuna Uchiyama
- Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan
| | - Noriko Noguchi
- Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan.
| |
Collapse
|
36
|
Batyrova G, Taskozhina G, Umarova G, Umarov Y, Morenko M, Iriskulov B, Kudabayeva K, Bazargaliyev Y. Unveiling the Role of Selenium in Child Development: Impacts on Growth, Neurodevelopment and Immunity. J Clin Med 2025; 14:1274. [PMID: 40004804 PMCID: PMC11856779 DOI: 10.3390/jcm14041274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Selenium (Se) is a vital trace element for children, playing a crucial role in numerous physiological processes, including antioxidant defense, immune regulation, thyroid function, and bone metabolism. Emerging evidence highlights its potential impact on child development and growth while also underscoring the complexity of its mechanisms and the global variations in Se intake. The aim of this review is to comprehensively elucidate the significance of Se in various biological processes within the human body, with a focus on its role in child development and growth; its biochemical effects on the nervous system, thyroid function, immune system, and bone tissue; and the implications of Se deficiency and toxicity. This review integrates findings from experimental models, epidemiological studies, and clinical trials to explore Se's role in neurodevelopment, growth regulation, and immune competence in children. Selenoproteins, which regulate oxidative stress and thyroid hormone and bone metabolism, are essential for normal growth and cognitive development in children. Se deficiency and toxicity has been linked to impaired immune function, growth retardation, and decreased immune function. The findings underscore Se's influence on various biological pathways that are critical for healthy child development and its broader importance for child health. Public health strategies aimed at optimizing selenium intake may play a pivotal role in improving pediatric health outcomes worldwide.
Collapse
Affiliation(s)
- Gulnara Batyrova
- Department of Clinical Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan;
| | - Gulaim Taskozhina
- Department of Clinical Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan;
| | - Gulmira Umarova
- Department of Evidence-Based Medicine and Scientific Management, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan
| | - Yeskendir Umarov
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan;
| | - Marina Morenko
- Department of Children’s Diseases, Astana Medical University, Astana 010000, Kazakhstan;
| | - Bakhtiyar Iriskulov
- Department of Normal and Pathological Physiology, Tashkent Medical Academy, Tashkent 100109, Uzbekistan;
| | - Khatimya Kudabayeva
- Department of Internal Diseases 1, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan; (K.K.); (Y.B.)
| | - Yerlan Bazargaliyev
- Department of Internal Diseases 1, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan; (K.K.); (Y.B.)
| |
Collapse
|
37
|
Chen Y, Dai Y, Huang Y, Zhang L, Zhang C, Gao H, Yan Q. Inhibition of tubular epithelial cells ferroptosis alleviates renal interstitial fibrosis by reducing lipid hydroperoxides and TGF-β/Smad signaling. Cell Commun Signal 2025; 23:81. [PMID: 39934851 DOI: 10.1186/s12964-025-02068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Ferroptosis is a non-apoptotic form of regulated cell death that involves an imbalance in the homeostasis of two elements: iron and lipid hydroperoxides. The accumulation of lipid hydroperoxide serves as a key trigger for initiating ferroptosis. Recent studies have identified ferroptosis as a critical pathophysiology contributing to kidney disease progression. However, the specific mechanisms underlying the role of ferroptosis in chronic kidney disease (CKD) have not been elucidated. METHODS Tubular epithelial cells (TECs) ferroptosis was evaluated in unilateral ureteral obstruction (UUO) models and in TGF-β-treated HK-2 cells to explore the relationship between ferroptosis and fibrosis. Ferroptosis inhibitors (ferrostatin-1) and TECs-targeted glutathione peroxidase 4 (GPX4) overexpression in vivo and in vitro were used to investigate the effect and mechanism of TECs ferroptosis on fibrosis progression. RESULTS Our findings indicate that ferroptosis is persistently activated during various states of the UUO model. As the results, ferroptosis was identified as a core facilitator of renal interstitial fibrosis in TECs during UUO. The reduction in TECs ferroptosis significantly ameliorated renal fibrosis and maintained the structure in the proximal tubules. Persistent activation of TECs ferroptosis effectively aggravated fibrosis progression through the TGF-β/Smad pathway. CONCLUSIONS Inhibiting ferroptosis effectively rescues the accumulation of profibrotic cytokines, thereby alleviating renal fibrosis. The profibrotic mechanism of ferroptosis is closely related to the TGF-β/Smad pathway, and targeting ferroptosis and increasing GPX4 expression could be an effective strategy for treating CKD.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Division of Nephrology, Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yue Dai
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Huang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongyu Gao
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qi Yan
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
38
|
Wang Y, Wang W, Zhang Y, Fleishman JS, Wang H. Targeting ferroptosis offers therapy choice in sepsis-associated acute lung injury. Eur J Med Chem 2025; 283:117152. [PMID: 39657462 DOI: 10.1016/j.ejmech.2024.117152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/06/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Sepsis-associated acute lung injury (SALI) is a common complication of sepsis, consisting of a dysfunctional host response to infection-mediated heterogenous complexes. SALI is reported in up to 50 % of patients with sepsis and causes poor outcomes. Despite high incidence, there is a lack of understanding in its pathogenesis and optimal treatment. A better understanding of the molecular mechanisms underlying SALI may help produce better therapeutics. The effects of altered cell-death mechanisms, such as non-apoptotic regulated cell death (RCD) (i.e., ferroptosis), on the development of SALI are beginning to be discovered, while targeting ferroptosis as a meaningful target in SALI is increasingly being recognized. Here, we outline how a susceptible lung alveoli may develop SALI. Then we discuss the general mechanisms underlying ferroptosis, and how it contributes to SALI. We then outline the chemical structures of the emerging agents or compounds that can protect against SALI by inhibiting ferroptosis, summarizing their potential pharmacological effects. Finally, we highlight key limitations and possible strategies to overcome them. This review suggests that a detailed mechanistic and biological understanding of ferroptosis can foster the development of pharmacological antagonists in the treatment of SALI.
Collapse
Affiliation(s)
- Yu Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Weixue Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Yi Zhang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China.
| |
Collapse
|
39
|
Zhao X, Sun Y, Zou J, Wu Y, Huang M, Kong H, Liu G, Gerhardt H, Gu W, Zhang Y, Shang M, Wang X. Protein kinase A regulates ferroptosis by controlling GPX4 m 6A modification through phosphorylation of ALKBH5. Cell Death Differ 2025:10.1038/s41418-025-01453-3. [PMID: 39901038 DOI: 10.1038/s41418-025-01453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
GPX4-dependent ferroptosis has emerged as a therapeutic strategy for cancer treatment. Here, we demonstrated that protein kinase A (PKA) participates in the regulation of ferroptosis by controlling the m6A modification of GPX4 in an ALKBH5-dependent manner. Notably, we identified ALKBH5, an m6A demethylase, as a novel target of PKA, which drives phosphorylation-dependent degradation of ALKBH5 protein. Moreover, the deletion of ALKBH5 represses ferroptotic cell death by maintaining GPX4 m6A modification and stability. Thus, by regulating ALKBH5-dependent GPX4 stability, PKA acts as a key regulator of ferroptosis. Our study unveils the involvement of PKA in m6A modification, which could control GPX4-dependent ferroptosis and tumor progression.
Collapse
Affiliation(s)
- Xiaocheng Zhao
- Clinical Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Yanxi Sun
- Clinical Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
- Laboratory of Cell Fate and Metabolic Regulation, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Juan Zou
- Clinical Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
- Laboratory of Cell Fate and Metabolic Regulation, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yanxia Wu
- Laboratory of Cell Fate and Metabolic Regulation, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Minyi Huang
- Clinical Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
- Laboratory of Cell Fate and Metabolic Regulation, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Huimin Kong
- Clinical Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Guangda Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium. Center for Human Genetics, School of Medicine, University of Leuven, Leuven, Belgium
| | - Holger Gerhardt
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, 1130 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Yunjiao Zhang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Min Shang
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Xingwu Wang
- Laboratory of Cell Fate and Metabolic Regulation, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
40
|
Zhu Z, Huang Z, Zhang C, Xu B, Chen H, Pei S, Zhang B, Jie L, Shi X, Liu Y, Li Y, Shen X. Gallic acid protects intervertebral disc cells from ferroptosis and alleviates intervertebral disc degeneration by regulating key factors of oxidative stress. Front Pharmacol 2025; 16:1501725. [PMID: 39963245 PMCID: PMC11830718 DOI: 10.3389/fphar.2025.1501725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a chronic degenerative disease and one of the main causes of low back pain (LBP). Currently, there is no effective treatment. Ferroptosis is a cell-regulated process that depends on iron deposition and lipid peroxidation. Inhibiting ferroptosis in nucleus pulposus cells is considered a potential strategy for the treatment of IDD. Gallic acid (GA) is naturally present in a variety of plants and has anti-inflammatory, antioxidant and analgesic effects. It has been shown to alleviate ferroptosis. However, the role of GA in IDD ferroptosis remains unclear. Methods This study explored the pathological mechanism of GA in IDD in relation to ferroptosis: (1) to identify ferroptosis-related targets for GA treatment of IDD using network pharmacology and molecular docking technology, (2) to evaluate the therapeutic effect of GA in an IDD rat model and changes in ferroptosis-related targets, (3) to investigate the changes of oxidative stress and lipid peroxidation products in NP cells after GA intervention, and (4) to study the changes of ferroptosis-related proteins and iron ions in cells and mitochondria after GA intervention. Results Experimental results confirmed that GA can treat IDD by reducing the degradation of extracellular matrix (ECM) and pathological changes in IDD. GA can also mitigate ferroptosis by reducing oxidative stress and lipid peroxidation in rat nucleus pulposus (NP) cells. Conclusion The alleviation of disc degeneration ferroptosis by GA may be closely associated with the key ferroptosis proteins P53 and NRF2.
Collapse
Affiliation(s)
- Zaishi Zhu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Zeling Huang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Chaofeng Zhang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Bo Xu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Hua Chen
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Shuai Pei
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Baofei Zhang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Lishi Jie
- Jiangsu Province Hospital of TCM Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaoqing Shi
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Yujiang Liu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Yuwei Li
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Orthopaedic Traumatology Institute, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, China
| | - Xiaofeng Shen
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Orthopaedic Traumatology Institute, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
41
|
Saverio V, Ferrario E, Monzani R, Gagliardi M, Favero F, Corà D, Santoro C, Corazzari M. AKRs confer oligodendrocytes resistance to differentiation-stimulated ferroptosis. Redox Biol 2025; 79:103463. [PMID: 39671850 PMCID: PMC11699626 DOI: 10.1016/j.redox.2024.103463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024] Open
Abstract
Ferroptosis is a recently characterized form of cell death that has gained attention for its roles in both pathological and physiological contexts. The existence of multiple anti-ferroptotic pathways in both neoplastic and healthy cells, along with the critical regulation of iron metabolism involved in lipid peroxides (lipid-ROS) production-the primary mediators of this cell death process-underscores the necessity of precisely controlling or preventing accidental/unwanted ferroptosis. Conversely, dysregulated iron metabolism and alterations in the expression or activity of key anti-ferroptotic components are linked to the development and progression of various human diseases, including multiple sclerosis (MS). In MS, the improper activation of ferroptosis has been associated with the progressive loss of myelinating oligodendrocytes (myOLs). Our study demonstrates that the physiological and maturation-dependent increase in iron accumulation within oligodendrocytes acts as a pro-ferroptotic signal, countered by the concurrent expression of AKR1C1. Importantly, MS-related neuroinflammation contributes to the down-regulation of AKR1C1 through miRNA-mediated mechanisms, rendering mature oligodendrocytes more vulnerable to ferroptosis. Together, these findings highlight the role of ferroptosis in MS-associated oligodendrocyte loss and position AKR1C1 as a potential therapeutic target for preserving oligodendrocyte integrity and supporting neuronal function in MS patients.
Collapse
Affiliation(s)
- Valentina Saverio
- Department of Health Sciences, School of Medicine, and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Emanuele Ferrario
- Department of Health Sciences, School of Medicine, and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Romina Monzani
- Department of Health Sciences, School of Medicine, and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Mara Gagliardi
- Department of Health Sciences, School of Medicine, and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy; Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
| | - Francesco Favero
- Department of Translational Medicine, School of Medicine, and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Davide Corà
- Department of Translational Medicine, School of Medicine, and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Claudio Santoro
- Department of Health Sciences, School of Medicine, and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy; Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
| | - Marco Corazzari
- Department of Health Sciences, School of Medicine, and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy; Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
42
|
Chen S, Shcherbina A, Schafer ST, Mattingly ZA, Ramesh J, Narayanan C, Banerjee S, Heath B, Regester M, Chen I, Thakurela S, Hallmayer J, O'Hara R, Solomon M, Nordahl CW, Amaral DG, Chetty S. Cellular mechanisms of early brain overgrowth in autistic children: elevated levels of GPX4 and resistance to ferroptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635706. [PMID: 39975145 PMCID: PMC11838294 DOI: 10.1101/2025.01.30.635706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Autistic individuals with disproportionate megalencephaly (ASD-DM), characterized by enlarged brains relative to body height, have higher rates of intellectual disability and face more severe cognitive challenges than autistic children with average brain sizes. The cellular and molecular mechanisms underlying this neurophenotype remain poorly understood. To investigate these mechanisms, we generated human induced pluripotent stem cells from non-autistic typically developing children and autistic children with and without disproportionate megalencephaly. We assessed these children longitudinally from ages two to twelve years using magnetic resonance imaging and comprehensive cognitive and medical evaluations. We show that neural progenitor cells (NPCs) derived from ASD-DM children exhibit increased rates of cell survival and suppressed cell death, accompanied by heightened oxidative stress and ferrous iron accumulation. Despite these stressors, ASD-DM NPCs actively suppress apoptosis and ferroptosis by regulating proteins such as caspase-3 (CASP3), poly(ADP-ribose) polymerase 1 (PARP1), and glutathione peroxidase 4 (GPX4). Cellular ferroptotic signatures are further supported by elevated expression of selenocysteine genes, including GPX4 , in the blood of ASD-DM children and their mothers, suggesting potential hereditary or environmental influences. Furthermore, we show that peripheral expression of GPX4 and other selenocysteine genes correlate with cognitive outcomes (IQ). These findings underscore the role of ferroptosis in autism, pointing to potential diagnostic biomarkers and targets for intervention.
Collapse
|
43
|
Cai L, Fan Q, Pang R, Chen C, Zhang Y, Xie H, Huang J, Wang Y, Li P, Huang D, Jin X, Zhou Y, Li Y. Microglia programmed cell death in neurodegenerative diseases and CNS injury. Apoptosis 2025; 30:446-465. [PMID: 39656359 PMCID: PMC11799081 DOI: 10.1007/s10495-024-02041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2024] [Indexed: 02/06/2025]
Abstract
Programmed cell death (PCD) has emerged as a critical regulatory mechanism in the initiation and progression of various pathological conditions. PCD in microglia, including necroptosis, pyroptosis, apoptosis, ferroptosis, and autophagy, occurs in a variety of central nervous system (CNS) diseases. Dysregulation of microglia can lead to excessive tissue damage or neuronal death in CNS injury. Various injury stimuli trigger aberrant activation of the PCD pathway of microglia, which then further leads to inflammatory cascades that exacerbates CNS pathology in a vicious cycle. Therefore, targeting PCD in microglia is considered an important avenue for the treatment of various neurodegenerative diseases and CNS injury. In this review, we summarize the major and recent findings focusing on the mechanisms of PCD in microglia modulating functions in neurodegenerative diseases and CNS injury and provide a systematic overview of the current inhibitors targeting various PCD pathways, which may provide important therapeutic targets that merit further investigation.
Collapse
Affiliation(s)
- Ling Cai
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyue Fan
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Pang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueman Zhang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyi Xie
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Huang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Huang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Jin
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yuxi Zhou
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Li
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
44
|
Xu K, Li K, He Y, Mao Y, Li X, Zhang L, Tan M, Yang Y, Luo Z, Liu P, Cai K. Engineered nanoplatform mediated gas therapy enhanced ferroptosis for tumor therapy in vivo. Bioact Mater 2025; 44:488-500. [PMID: 39559423 PMCID: PMC11570688 DOI: 10.1016/j.bioactmat.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
The high glutathione (GSH) environment poses a significant challenge for inducing ferroptosis in tumor cells, necessitating the development of nanoplatforms that can deplete intracellular GSH. In this study, we developed an engineered nanoplatform (MIL-100@Era/L-Arg-HA) that enhances ferroptosis through gas therapy. First, we confirmed that the Fe element in the nanoplatform undergoes valence changes under the influence of high GSH and H2O2 in tumor cells. Meanwhile, L-Arg generates NO gas in the presence of intracellular H2O2, which reacts with GSH. Additionally, Erastin depletes GSH by inhibiting the cystine/glutamate antiporter system, reducing cystine uptake and impairing GPX4, while also increasing intracellular H2O2 levels by activating NOX4 protein expression. Through these combined GSH-depletion mechanisms, we demonstrated that MIL-100@Era/L-Arg-HA effectively depletes GSH levels, disrupts GPX4 function, and increases intracellular lipid ROS levels in vitro. Furthermore, this nanoplatform significantly inhibited tumor cell growth and extended the survival time of tumor-bearing mice in vivo. This engineered nanoplatform, which enhances ferroptosis through gas therapy, shows significant promise for ferroptosis-based cancer therapy and offers potential strategies for clinical tumor treatment.
Collapse
Affiliation(s)
- Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Ke Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
- Thomas Lord Department of Mechanical Engineered and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ye He
- Thomas Lord Department of Mechanical Engineered and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Yulan Mao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| | - Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| | - Liangshuai Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| | - Meijun Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| | - Yulu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| |
Collapse
|
45
|
Yang H, Xiong W, Jiang J, Jiang R. Icariin inhibits hyperglycemia-induced cell death in penile cavernous tissue and improves erectile function in type 1 diabetic rats. Sex Med 2025; 13:qfaf017. [PMID: 40161546 PMCID: PMC11950537 DOI: 10.1093/sexmed/qfaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/08/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Background Hyperglycemia can cause endothelial cell (EC) and smooth muscle cell (SMC) death in the penile cavernous tissue of rats and lead to erectile dysfunction (ED). Objectives To investigate the proportions of apoptotic, pyroptotic, and ferroptotic cells among ECs and SMCs in the penile cavernous tissue of type 1 diabetic (T1DM) rats and the mechanism by which icariin (ICA) improves the erectile function of T1DM rats. Methods A total of 24 9-week-old Sprague-Dawley (SD) rats were randomly divided into 4 groups (n = 6): control group, control + ICA group, diabetic mellitus (DM) group, and DM + ICA group. T1DM rats were generated via the intraperitoneal injection of STZ (45 mg/kg). After 8 weeks, the rats in the control + ICA group and the DM + ICA group were administered ICA (10 mg/kg/d) by gavage for 4 weeks. ROS, MDA, SOD, GSH, SM/C, and NO levels, and GPX4, ACSL4, caspase-1, GSDMD, caspase-3, CD31, α-SMA, and p-eNOS/eNOS expression in penile cavernous tissue and the ICPmax/MAP of 21-week-old rats were detected. Results The percentage of pyroptotic SMCs in penile cavernosum was no statistically significant difference among these groups. Vs control group, the percentages of apoptotic (20.70% ± 1.60%), pyroptotic (21.02% ± 1.97%), and ferroptotic (9.01% ± 2.00%) ECs and the percentages of apoptotic (15.47% ± 1.36%) and ferroptotic (26.33% ± 3.11%) SMCs in the penile cavernous tissue of the DM group were significantly greater. Vs DM group, the percentages of apoptotic (9.13% ± 1.28%), pyroptotic (13.22 ± 1.26%), and ferroptotic (4.01% ± 0.86%) ECs and the percentages of apoptotic (11.60% ± 1.91%) and ferroptotic (12.71% ± 2.92%) SMCs of the DM + ICA group were significantly lower. Vs the DM group, the levels of caspase-1, GSDMD, ACSL4, and ROS were significantly lower in the penile cavernous tissue of the DM + ICA group. Meanwhile, the levels of GPX4 and maximum intracavernous pressure/mean arterial pressure (ICPmax/MAP) were significantly higher. Clinical Implications The combined inhibition of apoptosis, pyroptosis, and ferroptosis in penile cavernous tissue by ICA provides a theoretical basis for the clinical development of multi-target drugs for the treatment of type 1 diabetes-induced ED. Strengths and Limitations Further experiments are required to clarify whether other types of cell death are involved in the loss of ECs and SMCs in the penile cavernous tissue of T1DM rats. Conclusion Inhibiting oxidative stress and thereby inhibiting apoptosis, pyroptosis, and ferroptosis in ECs and SMCs of penile cavernous tissue constitute one of the mechanisms through which ICA improves erectile function in T1DM rats.
Collapse
Affiliation(s)
- Haowei Yang
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wenju Xiong
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Jiang
- Department of Thyroid Surgery; the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Rui Jiang
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
46
|
Wei S, Han C, Mo S, Huang H, Luo X. Advancements in programmed cell death research in antitumor therapy: a comprehensive overview. Apoptosis 2025; 30:401-421. [PMID: 39487314 DOI: 10.1007/s10495-024-02038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Cell death is a normal physiological process within cells that involves multiple pathways, such as normal DNA damage, cell cycle arrest, and programmed cell death (PCD). Cell death has been a hot spot of research in tumor-related fields, especially programmed cell death, which is a key form of cell death and is classified into different types according to the mechanism of occurrence, such as apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and disulfidptosis. Given the important role of PCD in maintaining tissue homeostasis and inhibiting tumorigenesis and development, more and more basic and clinical studies are devoted to revealing its potential application in anti-tumor strategies. The purpose of this review is to systematically review the regulatory mechanisms of PCD and to summarize the latest research progress of anti-tumor treatment strategies based on PCD.
Collapse
Affiliation(s)
- Shuxin Wei
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University, Nanning, 530021, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University, Nanning, 530021, China
| | - Shutian Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hailian Huang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoling Luo
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University, Nanning, 530021, China.
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China.
| |
Collapse
|
47
|
Wu Z, Zhang Y, Zhong W, Wu K, Zhong T, Jiang T. Targeting ferroptosis: a promising approach for treating lung carcinoma. Cell Death Discov 2025; 11:33. [PMID: 39875356 PMCID: PMC11775225 DOI: 10.1038/s41420-025-02308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Lung carcinoma incidence and fatality rates remain among the highest on a global scale. The efficacy of targeted therapies and immunotherapies is commonly compromised by the emergence of drug resistance and other factors, resulting in a lack of durable therapeutic benefits. Ferroptosis, a distinct pattern of cell death marked by the buildup of iron-dependent lipid peroxides, has been shown to be a novel and potentially more effective treatment for lung carcinoma. However, the mechanism and regulatory network of ferroptosis are exceptionally complex, and many unanswered questions remain. In addition, research on ferroptosis in the diagnosis and treatment of lung cancer has been growing exponentially. Therefore, it is necessary to provide a thorough summary of the latest advancements in the field of ferroptosis. Here, we comprehensively analyze the mechanisms underlying the preconditions of ferroptosis, the defense system, and the associated molecular networks. The potential strategies of ferroptosis in the treatment of lung carcinoma are also highlighted. Targeting ferroptosis improves tumor cell drug resistance and enhances the effectiveness of targeted drugs and immunotherapies. These findings may shed fresh light on the diagnosis and management of lung carcinoma, as well as the development of drugs related to ferroptosis.
Collapse
Affiliation(s)
- Ziyang Wu
- School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Yan Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wendi Zhong
- School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Kunjian Wu
- School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Tao Jiang
- School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China.
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao.
| |
Collapse
|
48
|
Gong FH, Liu L, Wang X, Xiang Q, Yi X, Jiang DS. Ferroptosis induced by environmental pollutants and its health implications. Cell Death Discov 2025; 11:20. [PMID: 39856053 PMCID: PMC11759704 DOI: 10.1038/s41420-025-02305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Environmental pollution represents a significant public health concern, with the potential health risks associated with environmental pollutants receiving considerable attention over an extended period. In recent years, a substantial body of research has been dedicated to this topic. Since the discovery of ferroptosis, an iron-dependent programmed cell death typically characterized by lipid peroxidation, in 2012, there have been significant advances in the study of its role and mechanism in various diseases. A growing number of recent studies have also demonstrated the involvement of ferroptosis in the damage caused to the organism by environmental pollutants, and the molecular mechanisms involved have been partially elucidated. The targeting of ferroptosis has been demonstrated to be an effective means of ameliorating the health damage caused by PM2.5, organic and inorganic pollutants, and ionizing radiation. This review begins by providing a summary of the most recent and important advances in ferroptosis. It then proceeds to offer a critical analysis of the health effects and molecular mechanisms of ferroptosis induced by various environmental pollutants. Furthermore, as is the case with all rapidly evolving research areas, there are numerous unanswered questions and challenges pertaining to environmental pollutant-induced ferroptosis, which we discuss in this review in an attempt to provide some directions and clues for future research in this field.
Collapse
Affiliation(s)
- Fu-Han Gong
- Department of Cardiology, Tongren People's Hospital, Tongren, Guizhou, China
| | - Liyuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuesheng Wang
- Department of Cardiology, Tongren People's Hospital, Tongren, Guizhou, China
| | - Qi Xiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
49
|
Fatahiyan F, Najafi F, Shirkhani Z. Enhancing salt stress tolerance in Carthamus tinctorius L. through selenium soil treatment: anatomical, biochemical, and physiological insights. BMC PLANT BIOLOGY 2025; 25:100. [PMID: 39856597 PMCID: PMC11760698 DOI: 10.1186/s12870-025-06078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
Selenium (Se) plays a crucial role in ameliorating the negative impact of abiotic stress. The present study was performed to elucidate the efficacy of soil treatment of Se in reducing salt-induced stress in Carthamus tinctorius L. In this study, three different levels of Na2SeO4 (0, 0.01, and 0.02 g kg- 1) and four levels of NaCl (0, 0.5, 1.5, and 2.5 g kg- 1) were applied. The findings revealed that while NaCl decreased seed germination parameters, growth characteristics, K+ content, relative water content (RWC), and photosynthetic pigments, it increased Na+ content, soluble carbohydrates, H2O2 content, and malondialdehyde (MDA) level. The application of Se showed a positive effect on seed germination and growth characteristics under salinity conditions, which is linked to alterations in anatomical, biochemical, and physiological factors. Anatomical studies showed that treatment with Se led to increased stem diameter, cortical parenchyma thickness, and pith diameter under salinity stress. However, variations in the thickness of the xylem and phloem did not reach statistical significance. The application of Se (0.02 g kg- 1) raised Na+ content (7.65%), K+ content (29.24%), RWC (15%), Chl a (17%), Chl b (21.73%), Chl a + b (16.9%), Car (4.22%), and soluble carbohydrates (11%) in plants subjected to NaCl (2.5 g kg- 1) stress. Furthermore, it decreased H2O2 (25.65%) and MDA (11.9%) in the shoots. The findings of the current study advocate the application of the Se-soil treating technique as an approach for salt stress mitigation in crops grown in saline conditions.
Collapse
Affiliation(s)
- Fatemeh Fatahiyan
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, P. O. Box 17719-14911, Tehran, Iran
| | - Farzaneh Najafi
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, P. O. Box 17719-14911, Tehran, Iran.
| | - Zohreh Shirkhani
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, P. O. Box 17719-14911, Tehran, Iran
| |
Collapse
|
50
|
Chen Y, Li W, Li S, Liu L, Yang J, Wang P. Sulfone-Embedded NIR Fluorophore with Large Stokes Shift for Monitoring Viscosity Changes during NAFLD-Induced Ferroptosis. ACS Sens 2025; 10:398-406. [PMID: 39849954 DOI: 10.1021/acssensors.4c02699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
The accumulation of lipids in hepatocytes in nonalcoholic fatty liver disease (NAFLD) leads to an increase in reactive oxygen species and changes in the intracellular microenvironment, while ferroptosis is the result of the accumulation of iron-dependent lipid peroxidation. Studies have shown that ferroptosis plays an important role in the pathogenesis of NAFLD. Herein, we have developed a viscosity-sensitive fluorescence probe PTSO with near-infrared emission and a large Stokes shift, which were achieved by introducing the sulfone group into the dioxothiochromen-malononitrile fluorophore as an electron-withdrawing group. This probe showed satisfactory selectivity and sensitivity toward viscosity. Importantly, probe PTSO could discriminate between normal and tumor cells, and was further employed in monitoring the viscosity changes during NAFLD-induced ferroptosis. With the help of probe PTSO, our results have validated the close relationship between viscosity and ferroptosis in NAFLD at both cellular and tissue levels, potentially offering novel insights for the clinical diagnosis and treatment of NAFLD.
Collapse
Affiliation(s)
- Yanli Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wenqing Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Shuai Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Li Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Yang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|