1
|
Joshi PR, Adhikari S, Onah C, Carrier C, Judd A, Mack M, Baral P. Lung-innervating nociceptor sensory neurons promote pneumonic sepsis during carbapenem-resistant Klebsiella pneumoniae lung infection. SCIENCE ADVANCES 2024; 10:eadl6162. [PMID: 39241063 PMCID: PMC11378917 DOI: 10.1126/sciadv.adl6162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/30/2024] [Indexed: 09/08/2024]
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) causes Gram-negative lung infections and fatal pneumonic sepsis for which limited therapeutic options are available. The lungs are densely innervated by nociceptor sensory neurons that mediate breathing, cough, and bronchoconstriction. The role of nociceptors in defense against Gram-negative lung pathogens is unknown. Here, we found that lung-innervating nociceptors promote CRKP pneumonia and pneumonic sepsis. Ablation of nociceptors in mice increased lung CRKP clearance, suppressed trans-alveolar dissemination of CRKP, and protected mice from hypothermia and death. Furthermore, ablation of nociceptors enhanced the recruitment of neutrophils and Ly6Chi monocytes and cytokine induction. Depletion of Ly6Chi monocytes, but not of neutrophils, abrogated lung and extrapulmonary CRKP clearance in ablated mice, suggesting that Ly6Chi monocytes are a critical cellular population to regulate pneumonic sepsis. Further, neuropeptide calcitonin gene-related peptide suppressed the induction of reactive oxygen species in Ly6Chi monocytes and their CRKP-killing abilities. Targeting nociceptor signaling could be a therapeutic approach for treating multidrug-resistant Gram-negative infection and pneumonic sepsis.
Collapse
Affiliation(s)
- Prabhu Raj Joshi
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Sandeep Adhikari
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Chinemerem Onah
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Camille Carrier
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Abigail Judd
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Matthias Mack
- Department of Nephrology, Regensburg University Medical Center, Regensburg 93042, Germany
| | - Pankaj Baral
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
2
|
Bayazitov IT, Teubner BJW, Feng F, Wu Z, Li Y, Blundon JA, Zakharenko SS. Sound-evoked adenosine release in cooperation with neuromodulatory circuits permits auditory cortical plasticity and perceptual learning. Cell Rep 2024; 43:113758. [PMID: 38358887 PMCID: PMC10939737 DOI: 10.1016/j.celrep.2024.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Meaningful auditory memories are formed in adults when acoustic information is delivered to the auditory cortex during heightened states of attention, vigilance, or alertness, as mediated by neuromodulatory circuits. Here, we identify that, in awake mice, acoustic stimulation triggers auditory thalamocortical projections to release adenosine, which prevents cortical plasticity (i.e., selective expansion of neural representation of behaviorally relevant acoustic stimuli) and perceptual learning (i.e., experience-dependent improvement in frequency discrimination ability). This sound-evoked adenosine release (SEAR) becomes reduced within seconds when acoustic stimuli are tightly paired with the activation of neuromodulatory (cholinergic or dopaminergic) circuits or periods of attentive wakefulness. If thalamic adenosine production is enhanced, then SEAR elevates further, the neuromodulatory circuits are unable to sufficiently reduce SEAR, and associative cortical plasticity and perceptual learning are blocked. This suggests that transient low-adenosine periods triggered by neuromodulatory circuits permit associative cortical plasticity and auditory perceptual learning in adults to occur.
Collapse
Affiliation(s)
- Ildar T Bayazitov
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brett J W Teubner
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Feng Feng
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhaofa Wu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yulong Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jay A Blundon
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S Zakharenko
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
3
|
Yang R, Ai Y, Bai T, Lu XX, He G. Williams-Beuren syndrome in pediatric T-cell acute lymphoblastic leukemia: A rare case report and review of literature. Medicine (Baltimore) 2024; 103:e36976. [PMID: 38363891 PMCID: PMC10869033 DOI: 10.1097/md.0000000000036976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/22/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Williams-Beuren syndrome (WBS) is a rare genetic disorder caused by hemizygous microdeletion of contiguous genes on chromosome 7q11.23. Although the phenotype features extensive heterogeneity in severity and performance, WBS is not considered to be a predisposing factor for cancer development. Currently, hematologic cancers, mainly Burkitt lymphoma, are rarely reported in patients with WBS. Here in, we report a unique case of T-cell acute lymphoblastic leukemia in a male child with WBS. METHODS This retrospective study analyzed the clinical data of this case receiving chemotherapy were analyzed. This is a retrospective study. RESULTS The patient, who exhibited a typical WBS phenotype and presented with hemorrhagic spots. Chromosomal genome-wide chip analysis (CMA) revealed abnormalities on chromosomes 7 and 9. The fusion gene STIL-TAL1 and mutations in BCL11B, NOTCH1, and USP7 have also been found and all been associated with the occurrence of T-cell leukemia. The patient responded well to the chemotherapy. CONCLUSION To the best of our knowledge, this is the first reported case of WBS in T-cell acute lymphoblastic leukemia. We want to emphasize that the occurrence of leukemia in this patient might be related to the loss of 7q11.23 and microdeletion of 9p21.3 (including 3 TSGs), but the relationship between WBS and malignancy remains unclear. Further studies are required to clarify the relationship between WBS and malignancy.
Collapse
Affiliation(s)
- Rong Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yuan Ai
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ting Bai
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiao-Xi Lu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Guoqian He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
4
|
Wang L, Owusu-Hammond C, Sievert D, Gleeson JG. Stem Cell-Based Organoid Models of Neurodevelopmental Disorders. Biol Psychiatry 2023; 93:622-631. [PMID: 36759260 PMCID: PMC10022535 DOI: 10.1016/j.biopsych.2023.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
The past decade has seen an explosion in the identification of genetic causes of neurodevelopmental disorders, including Mendelian, de novo, and somatic factors. These discoveries provide opportunities to understand cellular and molecular mechanisms as well as potential gene-gene and gene-environment interactions to support novel therapies. Stem cell-based models, particularly human brain organoids, can capture disease-associated alleles in the context of the human genome, engineered to mirror disease-relevant aspects of cellular complexity and developmental timing. These models have brought key insights into neurodevelopmental disorders as diverse as microcephaly, autism, and focal epilepsy. However, intrinsic organoid-to-organoid variability, low levels of certain brain-resident cell types, and long culture times required to reach maturity can impede progress. Several recent advances incorporate specific morphogen gradients, mixtures of diverse brain cell types, and organoid engraftment into animal models. Together with nonhuman primate organoid comparisons, mechanisms of human neurodevelopmental disorders are emerging.
Collapse
Affiliation(s)
- Lu Wang
- From the Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, California
| | - Charlotte Owusu-Hammond
- From the Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, California
| | - David Sievert
- From the Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, California
| | - Joseph G Gleeson
- From the Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, California.
| |
Collapse
|
5
|
Giannoccaro S, Ferraguto C, Petroni V, Marcelly C, Nogues X, Campuzano V, Pietropaolo S. Early Neurobehavioral Characterization of the CD Mouse Model of Williams-Beuren Syndrome. Cells 2023; 12:cells12030391. [PMID: 36766733 PMCID: PMC9913557 DOI: 10.3390/cells12030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by a chromosomic microdeletion (7q11.23). WBS has been modeled by a mouse line having a complete deletion (CD) of the equivalent mouse locus. This model has been largely used to investigate the etiopathological mechanisms of WBS, although pharmacological therapies have not been identified yet. Surprisingly, CD mice were so far mainly tested in adulthood, despite the developmental nature of WBS and the critical relevance of early timing for potential treatments. Here we provide for the first time a phenotypic characterization of CD mice of both sexes during infancy and adolescence, i.e., between birth and 7 weeks of age. CD pups of both sexes showed reduced body growth, delayed sensory development, and altered patterns of ultrasonic vocalizations and exploratory behaviors. Adolescent CD mice showed reduced locomotion and acoustic startle response, and altered social interaction and communication, the latter being more pronounced in female mice. Juvenile CD mutants of both sexes also displayed reduced brain weight, cortical and hippocampal dendritic length, and spine density. Our findings highlight the critical relevance of early neurobehavioral alterations as biomarkers of WBS pathology, underlying the importance of adolescence for identifying novel therapeutic targets for this neurological disorder.
Collapse
Affiliation(s)
| | - Celeste Ferraguto
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Valeria Petroni
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Coline Marcelly
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000 Bordeaux, France
| | | | - Victoria Campuzano
- Departament de Biomedicina, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Susanna Pietropaolo
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
6
|
How a missing gene leads to super-sensitivity to sound. Nature 2022. [PMID: 36151211 DOI: 10.1038/d41586-022-03034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|