1
|
Leung MR, Sun C, Zeng J, Anderson JR, Niu Q, Huang W, Noteborn WEM, Brown A, Zeev-Ben-Mordehai T, Zhang R. Structural diversity of axonemes across mammalian motile cilia. Nature 2025:10.1038/s41586-024-08337-5. [PMID: 39743588 DOI: 10.1038/s41586-024-08337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/01/2024] [Indexed: 01/04/2025]
Abstract
Reproduction, development and homeostasis depend on motile cilia, whose rhythmic beating is powered by a microtubule-based molecular machine called the axoneme. Although an atomic model of the axoneme is available for the alga Chlamydomonas reinhardtii1, structures of mammalian axonemes are incomplete1-5. Furthermore, we do not fully understand how molecular structures of axonemes vary across motile-ciliated cell types in the body. Here we use cryoelectron microscopy, cryoelectron tomography and proteomics to resolve the 96-nm modular repeat of axonemal doublet microtubules (DMTs) from both sperm flagella and epithelial cilia of the oviduct, brain ventricles and respiratory tract. We find that sperm DMTs are the most specialized, with epithelial cilia having only minor differences across tissues. We build a model of the mammalian sperm DMT, defining the positions and interactions of 181 proteins including 34 newly identified proteins. We elucidate the composition of radial spoke 3 and uncover binding sites of kinases associated with regeneration of ATP and regulation of ciliary motility. We discover a sperm-specific, axoneme-tethered T-complex protein ring complex (TRiC) chaperone that may contribute to construction or maintenance of the long flagella of mammalian sperm. We resolve axonemal dyneins in their prestroke states, illuminating conformational changes that occur during ciliary movement. Our results illustrate how elements of chemical and mechanical regulation are embedded within the axoneme, providing valuable resources for understanding the aetiology of ciliopathy and infertility, and exemplifying the discovery power of modern structural biology.
Collapse
Affiliation(s)
- Miguel Ricardo Leung
- Structural Biochemistry Group, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands
| | - Chen Sun
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jianwei Zeng
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jacob R Anderson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Qingwei Niu
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Cell Biology & Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Willem E M Noteborn
- Netherlands Centre for Electron Nanoscopy (NeCEN), Leiden University, Leiden, the Netherlands
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Tzviya Zeev-Ben-Mordehai
- Structural Biochemistry Group, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Yun D, Gao S, Li X, Shi J, Wang L, Bu T, Yang X, Wu Y, Wu X, Sun F. 1700030J22RIK is essential for sperm flagellar function and male fertility in mice. J Genet Genomics 2024:S1673-8527(24)00363-1. [PMID: 39710003 DOI: 10.1016/j.jgg.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Spermiogenesis is an indispensable process occurring during the later stages of spermatogenesis. Despite multiple proteins being associated with spermiogenesis, the molecular mechanisms that control spermiogenesis remain poorly characterized. In this study, we show that 1700030J22RIK is exclusively expressed in the testis of mice and investigate its roles in spermiogenesis using genetic and proteomic approaches. The deficiency in 1700030J22RIK in male mice results in severe subfertility, characterized by a substantial decrease in sperm concentration, motility, and abnormalities in the flagella. Furthermore, 1700030J22RIK interacts with the A-kinase-anchoring protein AKAP3, and 1700030J22RIK knockout decreases AKAP3 and AKAP4 protein levels. Additionally, the absence of 1700030J22RIK alters spermatozoal levels of the subunits of protein kinase A, leading to reduced protein phosphorylation and impaired sperm motility. This study reveals that 1700030J22RIK plays a crucial role in the organization of sperm morphology and function in mice.
Collapse
Affiliation(s)
- Damin Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xinyao Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Jie Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Lingling Wang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Tiao Bu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiwen Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yunhao Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China; School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
3
|
Hirashima T, W P S, Noda T. Collective sperm movement in mammalian reproductive tracts. Semin Cell Dev Biol 2024; 166:13-21. [PMID: 39675229 DOI: 10.1016/j.semcdb.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Mammalian sperm cells travel from their origin in the male reproductive tract to fertilization in the female tract through a complex process driven by coordinated mechanical and biochemical mechanisms. Recent experimental and theoretical advances have illuminated the collective behaviors of sperm both in vivo and in vitro. However, our understanding of the underlying mechano-chemical processes remains incomplete. This review integrates current insights into sperm group movement, examining both immotile and motile states, which are essential for passive transport and active swimming through the reproductive tracts. We provide an overview of the current understanding of collective sperm movement, focusing on the experimental and theoretical mechanisms behind these behaviors. We also explore how sperm motility is regulated through the coordination of mechanical and chemical processes. Emerging evidence highlights the mechanosensitive properties of a sperm flagellum, suggesting that mechanical stimuli regulate flagellar beating at both individual and collective levels. This self-regulatory, mechano-chemical system reflects a broader principle observed in multicellular systems, offering a system-level insight into the regulation of motility and collective dynamics in biological systems.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore 117593, Singapore.
| | - Sound W P
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Taichi Noda
- Division of Reproductive Biology, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
4
|
Wu B, Long C, Yang Y, Zhang Z, Ma S, Ma Y, Wei H, Li J, Jiang H, Li W, Liu C. CCDC113 stabilizes sperm axoneme and head-tail coupling apparatus to ensure male fertility. eLife 2024; 13:RP98016. [PMID: 39671309 PMCID: PMC11643634 DOI: 10.7554/elife.98016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024] Open
Abstract
The structural integrity of the sperm is crucial for male fertility, defects in sperm head-tail linkage and flagellar axoneme are associated with acephalic spermatozoa syndrome (ASS) and the multiple morphological abnormalities of the sperm flagella (MMAF). Notably, impaired head-tail coupling apparatus (HTCA) often accompanies defects in the flagellum structure, however, the molecular mechanisms underlying this phenomenon remain elusive. Here, we identified an evolutionarily conserved coiled-coil domain-containing (CCDC) protein, CCDC113, and found the disruption of CCDC113 produced spermatozoa with disorganized sperm flagella and HTCA, which caused male infertility. Further analysis revealed that CCDC113 could bind to CFAP57 and CFAP91, and function as an adaptor protein for the connection of radial spokes, nexin-dynein regulatory complex (N-DRC), and doublet microtubules (DMTs) in the sperm axoneme. Moreover, CCDC113 was identified as a structural component of HTCA, collaborating with SUN5 and CENTLEIN to connect sperm head to tail during spermiogenesis. Together, our studies reveal that CCDC113 serve as a critical hub for sperm axoneme and HTCA stabilization in mice, providing insights into the potential pathogenesis of infertility associated with human CCDC113 mutations.
Collapse
Affiliation(s)
- Bingbing Wu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangzhouChina
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chenghong Long
- Guangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangzhouChina
| | - Yuzhuo Yang
- Department of Urology, Department of Reproductive Medicine Center, Peking University Third HospitalBeijingChina
- Department of Urology, Peking University First Hospital Institute of Urology, Peking UniversityBeijingChina
| | - Zhe Zhang
- Department of Urology, Department of Reproductive Medicine Center, Peking University Third HospitalBeijingChina
- Department of Urology, Peking University First Hospital Institute of Urology, Peking UniversityBeijingChina
| | - Shuang Ma
- Guangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangzhouChina
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yanjie Ma
- Guangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangzhouChina
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Huafang Wei
- Guangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangzhouChina
| | - Jinghe Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangzhouChina
| | - Hui Jiang
- Department of Urology, Department of Reproductive Medicine Center, Peking University Third HospitalBeijingChina
- Department of Urology, Peking University First Hospital Institute of Urology, Peking UniversityBeijingChina
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangzhouChina
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chao Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangzhouChina
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
5
|
Liu L, Lu X, Fan Z, Deng J, Zhang S, Zhang L, Zha X. TPCA-1 compound, inhibiting testis-specific serine/threonine protein kinase 3 for potential male sterile in Bombyx mori. PEST MANAGEMENT SCIENCE 2024; 80:6189-6200. [PMID: 39073281 DOI: 10.1002/ps.8347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Protein kinases are a type of transferase enzyme that catalyze the phosphorylation of protein substrates, including receptor proteins. Testis-specific serine/threonine kinases (TSSKs) are a highly conserved group of protein kinases found in various organisms. They play an essential role in male reproduction by influencing sperm development and function. RESULTS In this study, we report on the characterization of BmTSSK3, a TSSK from the silkworm, Bombyx mori. We found that BmTSSK3 is specifically expressed in the testis and localized to the sperm flagella, particularly in the sperm tail cyst. Furthermore, we developed BmTSSK3 inhibitors through molecular docking and binding assays. Small molecules 5-(4-Fluorophenyl)-2-ureidothiophene-3-carboxamide (TPCA-1) and Imidurea were identified to bind to BmTSSK3. Using site-specific mutation technology, we identified amino acid residues R134 and S184 as crucial binding sites for small molecules. RNA interference assay and Western blot analysis showed that knockdown of BmTSSK3 significantly decreased histone 3 phosphorylation. To confirm the inhibitory effect of these small molecules, we treated silkworm testes with TPCA-1 and observed a strong inhibitory effect. CONCLUSION TPCA-1 is an inhibitor of BmTSSK3, which raises its potential as a future candidate for male sterility of the silkworm. Thus, this study may offer a novel strategy for sterile silkworms as well as insects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lianlian Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xiuping Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Zeling Fan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Jing Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Surui Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Lulu Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xingfu Zha
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Cai X, Zhang H, Kong S, Xu W, Zheng J, Wang N, He S, Li S, Shen Y, Wang K, Zhang Z, Cai H, Ma F, Bai S, Zhu F, Xiao F, Wang F. TMEM232 is required for the formation of sperm flagellum and male fertility in mice. Cell Death Dis 2024; 15:806. [PMID: 39516485 PMCID: PMC11549365 DOI: 10.1038/s41419-024-07200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Asthenoteratozoospermia is a major cause of male infertility. Thus far, the identified related genes can explain only a small share of asthenoteratozoospermia cases, suggesting the involvement of other genes. The transmembrane protein TMEM232 is highly expressed in mouse testes. In the present study, to determine its function of TMEM232 in testes, we constructed a Tmem232-null mouse model using CRISPR-Cas9 technology. Tmem232 knockout (KO) male mice was completely infertile, and their sperm were immotile, with morphological defects of the flagellum. Electron microscopy revealed an aberrant midpiece-principal junction and the loss of the fourth outer microtubule doublet in the sperm of Tmem232-/- mice. Sperm cells presented an 8 + 2 conformation and an irregular arrangement of the mitochondrial sheath. Proteomic analysis revealed altered expression of proteins related to flagellar motility, sperm capacitation, the integrity and stability of sperm structure, especially an upregulated expression of multiple ribosome components in TMEM232-deficient spermatids. Additionally, TMEM232 was observed to be involved in autophagy by interacting with autophagy-related proteins, such as ATG14, to regulate ribosome homeostasis during spermiogenesis. These results suggest that TMEM232, as a potential scaffold protein involving in the correct assembly, distribution, and stability maintenance of certain functional complexes by recruiting key intracellular proteins, is essential for the formation of a highly structured flagellum and plays an important role in the autophagic elimination of cytosolic ribosomes to provide energy for sperm motility.
Collapse
Affiliation(s)
- Xinying Cai
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Hui Zhang
- School of Life Science, Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China.
| | - Shuai Kong
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Weilong Xu
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Jie Zheng
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Ning Wang
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Shuai He
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Shupei Li
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Yiru Shen
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Ke Wang
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Zengyunou Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Haijian Cai
- The Center for Scientific Research of Anhui Medical University, Hefei Anhui, China
| | - Fang Ma
- The Center for Scientific Research of Anhui Medical University, Hefei Anhui, China
| | - Shun Bai
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Fuxi Zhu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Fengli Xiao
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China.
- The Center for Scientific Research of Anhui Medical University, Hefei Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.
| | - Fengsong Wang
- School of Life Science, Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China.
| |
Collapse
|
7
|
Lindemann CB, Lesich KA. The mechanics of cilia and flagella: What we know and what we need to know. Cytoskeleton (Hoboken) 2024; 81:648-668. [PMID: 38780123 DOI: 10.1002/cm.21879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
In this review, we provide a condensed overview of what is currently known about the mechanical functioning of the flagellar/ciliary axoneme. We also present a list of 10 specific areas where our current knowledge is incomplete and explain the benefits of further experimental investigation. Many of the physical parameters of the axoneme and its component parts have not been determined. This limits our ability to understand how the axoneme structure contributes to its functioning in several regards. It restricts our ability to understand how the mechanics of the structure contribute to the regulation of motor function. It also confines our ability to understand the three-dimensional workings of the axoneme and how various beating modes are accomplished. Lastly, it prevents accurate computational modeling of the axoneme in three-dimensions.
Collapse
Affiliation(s)
- Charles B Lindemann
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Kathleen A Lesich
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
8
|
Kumaresan A, Yadav P, Sinha MK, Nag P, John Peter ESK, Mishra JS, Kumar S. Male infertility and perfluoroalkyl and poly-fluoroalkyl substances: evidence for alterations in phosphorylation of proteins and fertility-related functional attributes in bull spermatozoa†. Biol Reprod 2024; 111:723-739. [PMID: 38847481 PMCID: PMC11402523 DOI: 10.1093/biolre/ioae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Perfluoroalkyl and poly-fluoroalkyl substances (PFAS) are pervasive environmental pollutants and potential threats to reproductive health. Epidemiological studies have established an association between PFAS and male infertility, but the underlying mechanisms are unclear. OBJECTIVES Investigate the effect of perfluorooctane sulfonic acid (PFOS), the most prevalent and representative PFAS, on bull sperm protein phosphorylation and function. METHODS We exposed bull sperm to PFOS at 10 (average population exposure) and 100 μM (high-exposure scenario), and analyzed global proteomic and phosphoproteomic analysis by TMT labeling and Nano LC-MS/MS. We also measured sperm fertility functions by flow cytometry. RESULTS PFOS at 10-μM altered sperm proteins linked to spermatogenesis and chromatin condensation, while at 100 μM, PFOS affected proteins associated with motility and fertility. We detected 299 phosphopeptides from 116 proteins, with 45 exhibiting differential expression between control and PFOS groups. PFOS dysregulated phosphorylation of key proteins (ACRBP, PRKAR2A, RAB2B, SPAG8, TUBB4B, ZPBP, and C2CD6) involved in sperm capacitation, acrosome reaction, sperm-egg interaction, and fertilization. PFOS also affected phosphorylation of other proteins (AQP7, HSBP9, IL4I1, PRKAR1A, and CCT8L2) related to sperm stress resistance and cryotolerance. Notably, four proteins (PRM1, ACRBP, TSSK1B, and CFAP45) exhibited differential regulation at both proteomic and phosphoproteomic levels. Flow cytometric analysis confirmed that PFOS increased protein phosphorylation in sperm and also decreased sperm motility, viability, calcium, and mitochondrial membrane potential and increased mitochondrial ROS in a dose-dependent manner. CONCLUSIONS This study demonstrates that PFOS exposure negatively affects phosphorylation of proteins vital for bull sperm function and fertilization.
Collapse
Affiliation(s)
- Arumugam Kumaresan
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
- Theriogenology Laboratory, Southern Regional Station of ICAR National Dairy Research Institute, Bengaluru, Karnataka 560030, India
| | - Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR National Dairy Research Institute, Bengaluru, Karnataka 560030, India
| | - Pradeep Nag
- Department of Animal Sciences, University of Missouri, Columbia, WI 65211, USA
| | - Ebenezer Samuel King John Peter
- Theriogenology Laboratory, Southern Regional Station of ICAR National Dairy Research Institute, Bengaluru, Karnataka 560030, India
| | - Jay S Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
9
|
Li S, Fernandez JJ, Ruehle MD, Howard-Till RA, Fabritius A, Pearson CG, Agard DA, Winey ME. The Structure of Cilium Inner Junctions Revealed by Electron Cryo-tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612100. [PMID: 39314311 PMCID: PMC11419100 DOI: 10.1101/2024.09.09.612100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The cilium is a microtubule-based organelle critical for many cellular functions. Its assembly initiates at a basal body and continues as an axoneme that projects out of the cell to form a functional cilium. This assembly process is tightly regulated. However, our knowledge of the molecular architecture and the mechanism of assembly is limited. By applying electron cryotomography and subtomogram averaging, we obtained subnanometer resolution structures of the inner junction in three distinct regions of the cilium: the proximal region of the basal body, the central core of the basal body, and the flagellar axoneme. The structures allowed us to identify several basal body and axoneme components. While a few proteins are distributed throughout the entire length of the organelle, many are restricted to particular regions of the cilium, forming intricate local interaction networks and bolstering local structural stability. Finally, by knocking out a critical basal body inner junction component Poc1, we found the triplet MT was destabilized, resulting in a defective structure. Surprisingly, several axoneme-specific components were found to "infiltrate" into the mutant basal body. Our findings provide molecular insight into cilium assembly at its inner Junctions, underscoring its precise spatial regulation.
Collapse
Affiliation(s)
- Sam Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jose-Jesus Fernandez
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Marisa D. Ruehle
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rachel A. Howard-Till
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - Amy Fabritius
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Institute for Advanced Biological Imaging, Redwood Shores, CA, USA
| | - Mark E. Winey
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
10
|
Tang SX, Liu SY, Xiao H, Zhang X, Xiao Z, Zhou S, Ding YL, Yang P, Chen Q, Huang HL, Chen X, Lin X, Zhou HL, Liu MX. Novel mutations in LRRC23 cause asthenozoospermia in a nonconsanguineous family. Asian J Androl 2024; 26:484-489. [PMID: 39054792 PMCID: PMC11449404 DOI: 10.4103/aja202435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/16/2024] [Indexed: 07/27/2024] Open
Abstract
ABSTRACT The cause of asthenozoospermia (AZS) is not well understood because of its complexity and heterogeneity. Although some gene mutations have been identified as contributing factors, they are only responsible for a small number of cases. Radial spokes (RSs) are critical for adenosine triphosphate-driven flagellar beating and axoneme stability, which is essential for flagellum motility. In this study, we found novel compound heterozygous mutations in leucine-rich repeat-containing protein 23 ( LRRC23 ; c.1018C>T: p.Q340X and c.881_897 Del: p.R295Gfs*32) in a proband from a nonconsanguineous family with AZS and male infertility. Diff-Quik staining and scanning electron microscopy revealed no abnormal sperm morphology. Western blotting and immunofluorescence staining showed that these mutations suppressed LRRC23 expression in sperm flagella. Additionally, transmission electron microscopy showed the absence of RS3 in sperm flagella, which disrupts stability of the radial spoke complex and impairs motility. Following in vitro fertilization and embryo transfer, the proband's spouse achieved successful pregnancy and delivered a healthy baby. In conclusion, our study indicates that two novel mutations in LRRC23 are associated with AZS, but successful fertility outcomes can be achieved by in vitro fertilization-embryo transfer techniques.
Collapse
Affiliation(s)
- Song-Xi Tang
- Department of Andrology and Sexual Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Si-Yu Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Hong Xiao
- Department of Andrology and Sexual Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Zhuang Xiao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Shan Zhou
- Department of Andrology and Sexual Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Yi-Lang Ding
- Department of Andrology and Sexual Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Peng Yang
- Department of Andrology and Sexual Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Qiang Chen
- Department of Andrology and Sexual Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Hai-Lin Huang
- Department of Andrology and Sexual Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xi Chen
- Department of Andrology and Sexual Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xi Lin
- Public Technology Service Center Fujian Medical University, Fuzhou 350108, China
| | - Hui-Liang Zhou
- Department of Andrology and Sexual Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Ming-Xi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
11
|
Wu H, Zhang Y, Li Y, Sun S, Zhang J, Xie Q, Dong Y, Zhou S, Sha X, Li K, Chen J, Zhang X, Gao Y, Shen Q, Wang G, Zha X, Duan Z, Tang D, Xu C, Geng H, Lv M, Xu Y, Zhou P, Wei Z, Hua R, Cao Y, Liu M, He X. Adenylate kinase phosphate energy shuttle underlies energetic communication in flagellar axonemes. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1697-1714. [PMID: 38761355 DOI: 10.1007/s11427-023-2539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/29/2024] [Indexed: 05/20/2024]
Abstract
The complexities of energy transfer mechanisms in the flagella of mammalian sperm flagella have been intensively investigated and demonstrate significant diversity across species. Enzymatic shuttles, particularly adenylate kinase (AK) and creatine kinase (CK), are pivotal in the efficient transfer of intracellular ATP, showing distinct tissue- and species-specificity. Here, the expression profiles of AK and CK were investigated in mice and found to fall into four subgroups, of which Subgroup III AKs were observed to be unique to the male reproductive system and conserved across chordates. Both AK8 and AK9 were found to be indispensable to male reproduction after analysis of an infertile male cohort. Knockout mouse models showed that AK8 and AK9 were central to promoting sperm motility. Immunoprecipitation combined with mass spectrometry revealed that AK8 and AK9 interact with the radial spoke (RS) of the axoneme. Examination of various human and mouse sperm samples with substructural damage, including the presence of multiple RS subunits, showed that the head of radial spoke 3 acts as an adapter for AK9 in the flagellar axoneme. Using an ATP probe together with metabolomic analysis, it was found that AK8 and AK9 cooperatively regulated ATP transfer in the axoneme, and were concentrated at sites associated with energy consumption in the flagellum. These findings indicate a novel function for RS beyond its structural role, namely, the regulation of ATP transfer. In conclusion, the results expand the functional spectrum of AK proteins and suggest a fresh model regarding ATP transfer within mammalian flagella.
Collapse
Affiliation(s)
- Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Yanman Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Yuqian Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shuya Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Jintao Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qingsong Xie
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yue Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Shushu Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Xuan Sha
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Jinyi Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Qunshan Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Guanxiong Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaomin Zha
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Zongliu Duan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Chuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Rong Hua
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China.
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
12
|
Wang C, Xie Q, Xia X, Zhang C, Jiang S, Wang S, Zhang X, Hua R, Xue J, Zheng H. ZMYND12 serves as an IDAd subunit that is essential for sperm motility in mice. Cell Mol Life Sci 2024; 81:317. [PMID: 39066891 PMCID: PMC11335240 DOI: 10.1007/s00018-024-05344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Inner dynein arms (IDAs) are formed from a protein complex that is essential for appropriate flagellar bending and beating. IDA defects have previously been linked to the incidence of asthenozoospermia (AZS) and male infertility. The testes-enriched ZMYND12 protein is homologous with an IDA component identified in Chlamydomonas. ZMYND12 deficiency has previously been tied to infertility in males, yet the underlying mechanism remains uncertain. Here, a CRISPR/Cas9 approach was employed to generate Zmynd12 knockout (Zmynd12-/-) mice. These Zmynd12-/- mice exhibited significant male subfertility, reduced sperm motile velocity, and impaired capacitation. Through a combination of co-immunoprecipitation and mass spectrometry, ZMYND12 was found to interact with TTC29 and PRKACA. Decreases in the levels of PRKACA were evident in the sperm of these Zmynd12-/- mice, suggesting that this change may account for the observed drop in male fertility. Moreover, in a cohort of patients with AZS, one patient carrying a ZMYND12 variant was identified, expanding the known AZS-related variant spectrum. Together, these findings demonstrate that ZMYND12 is essential for flagellar beating, capacitation, and male fertility.
Collapse
Affiliation(s)
- Chang Wang
- College of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Qingsong Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, 230032, China
| | - Xun Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, 230032, China
| | - Chuanying Zhang
- College of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Shan Jiang
- College of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Sihan Wang
- College of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Xi Zhang
- Department of Reproductive Health and Infertility Clinic, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Rong Hua
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, 230032, China.
| | - Jiangyang Xue
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, 315000, China.
| | - Haoyu Zheng
- Department of Gynaecology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China.
| |
Collapse
|
13
|
Miyata H, Shimada K, Kaneda Y, Ikawa M. Development of functional spermatozoa in mammalian spermiogenesis. Development 2024; 151:dev202838. [PMID: 39036999 DOI: 10.1242/dev.202838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Infertility is a global health problem affecting one in six couples, with 50% of cases attributed to male infertility. Spermatozoa are male gametes, specialized cells that can be divided into two parts: the head and the flagellum. The head contains a vesicle called the acrosome that undergoes exocytosis and the flagellum is a motility apparatus that propels the spermatozoa forward and can be divided into two components, axonemes and accessory structures. For spermatozoa to fertilize oocytes, the acrosome and flagellum must be formed correctly. In this Review, we describe comprehensively how functional spermatozoa develop in mammals during spermiogenesis, including the formation of acrosomes, axonemes and accessory structures by focusing on analyses of mouse models.
Collapse
Affiliation(s)
- Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Kaneda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Lu H, Twan WK, Ikawa Y, Khare V, Mukherjee I, Schou KB, Chua KX, Aqasha A, Chakrabarti S, Hamada H, Roy S. Localisation and function of key axonemal microtubule inner proteins and dynein docking complex members reveal extensive diversity among vertebrate motile cilia. Development 2024; 151:dev202737. [PMID: 39007638 DOI: 10.1242/dev.202737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
Vertebrate motile cilia are classified as (9+2) or (9+0), based on the presence or absence of the central pair apparatus, respectively. Cryogenic electron microscopy analyses of (9+2) cilia have uncovered an elaborate axonemal protein composition. The extent to which these features are conserved in (9+0) cilia remains unclear. CFAP53, a key axonemal filamentous microtubule inner protein (fMIP) and a centriolar satellites component, is essential for motility of (9+0), but not (9+2) cilia. Here, we show that in (9+2) cilia, CFAP53 functions redundantly with a paralogous fMIP, MNS1. MNS1 localises to ciliary axonemes, and combined loss of both proteins in zebrafish and mice caused severe outer dynein arm loss from (9+2) cilia, significantly affecting their motility. Using immunoprecipitation, we demonstrate that, whereas MNS1 can associate with itself and CFAP53, CFAP53 is unable to self-associate. We also show that additional axonemal dynein-interacting proteins, two outer dynein arm docking (ODAD) complex members, show differential localisation between types of motile cilia. Together, our findings clarify how paralogous fMIPs, CFAP53 and MNS1, function in regulating (9+2) versus (9+0) cilia motility, and further emphasise extensive structural diversity among these organelles.
Collapse
Affiliation(s)
- Hao Lu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore138673
| | - Wang Kyaw Twan
- Laboratory for Organismal Patterning, RIKEN Centre for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-Ku, Kobe 650-0005, Japan
| | - Yayoi Ikawa
- Laboratory for Organismal Patterning, RIKEN Centre for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-Ku, Kobe 650-0005, Japan
| | - Vani Khare
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore138673
| | - Ishita Mukherjee
- Translational Research Unit of Excellence, Structural Biology and Bioinformatics Division, Council for Scientific and Industrial Research - Indian Institute of Chemical Biology, Kolkata 700091, India
| | - Kenneth Bødtker Schou
- The Danish Cancer Society Research Centre, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Kai Xin Chua
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore138673
| | - Adam Aqasha
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore138673
| | - Saikat Chakrabarti
- Translational Research Unit of Excellence, Structural Biology and Bioinformatics Division, Council for Scientific and Industrial Research - Indian Institute of Chemical Biology, Kolkata 700091, India
| | - Hiroshi Hamada
- Laboratory for Organismal Patterning, RIKEN Centre for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-Ku, Kobe 650-0005, Japan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bengaluru 560065, India
- Trivedi School of Biosciences, Ashoka University, Sonepat, 131029, India
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore138673
- Department of Paediatrics, Yong Loo Ling School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore119288
| |
Collapse
|
15
|
Pasquini M, Chiani F, Gambadoro A, Di Pietro C, Paoletti R, Orsini T, Putti S, Scavizzi F, La Sala G, Ermakova O. The Odad3 Gene Is Necessary for Spermatozoa Development and Male Fertility in Mice. Cells 2024; 13:1053. [PMID: 38920681 PMCID: PMC11201558 DOI: 10.3390/cells13121053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Odad3 gene loss-of-function mutation leads to Primary Ciliary Dyskinesia (PCD), a disease caused by motile cilia dysfunction. Previously, we demonstrated that knockout of the Odad3 gene in mice replicates several features of PCD, such as hydrocephalus, defects in left-right body symmetry, and male infertility, with a complete absence of sperm in the reproductive tract. The majority of Odad3 knockout animals die before sexual maturation due to severe hydrocephalus and failure to thrive, which precludes fertility studies. Here, we performed the expression analysis of the Odad3 gene during gonad development and in adult testes. We showed that Odad3 starts its expression during the first wave of spermatogenesis, specifically at the meiotic stage, and that its expression is restricted to the germ cells in the adult testes, suggesting that Odad3 plays a role in spermatozoa formation. Subsequently, we conditionally deleted the Odad3 gene in adult males and demonstrated that even partial ablation of the Odad3 gene leads to asthenoteratozoospermia with multiple morphological abnormalities of sperm flagella (MMAF) in mice. The analysis of the seminiferous tubules in Odad3-deficient mice revealed defects in spermatogenesis with accumulation of seminiferous tubules at the spermiogenesis and spermiation phases. Furthermore, analysis of fertility in heterozygous Odad3+/- knockout mice revealed a reduction in sperm count and motility as well as abnormal sperm morphology. Additionally, Odad3+/- males exhibited a shorter fertile lifespan. Overall, these results suggest the important role of Odad3 and Odad3 gene dosage in male fertility. These findings may have an impact on the genetic and fertility counseling practice of PCD patients carrying Odad3 loss-of-function mutations.
Collapse
Affiliation(s)
- Miriam Pasquini
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy; (M.P.); (F.C.); (A.G.); (C.D.P.); (R.P.); (T.O.); (S.P.); (F.S.)
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy
| | - Francesco Chiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy; (M.P.); (F.C.); (A.G.); (C.D.P.); (R.P.); (T.O.); (S.P.); (F.S.)
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy
| | - Alessia Gambadoro
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy; (M.P.); (F.C.); (A.G.); (C.D.P.); (R.P.); (T.O.); (S.P.); (F.S.)
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy; (M.P.); (F.C.); (A.G.); (C.D.P.); (R.P.); (T.O.); (S.P.); (F.S.)
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy
| | - Renata Paoletti
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy; (M.P.); (F.C.); (A.G.); (C.D.P.); (R.P.); (T.O.); (S.P.); (F.S.)
| | - Tiziana Orsini
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy; (M.P.); (F.C.); (A.G.); (C.D.P.); (R.P.); (T.O.); (S.P.); (F.S.)
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy
| | - Sabrina Putti
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy; (M.P.); (F.C.); (A.G.); (C.D.P.); (R.P.); (T.O.); (S.P.); (F.S.)
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy; (M.P.); (F.C.); (A.G.); (C.D.P.); (R.P.); (T.O.); (S.P.); (F.S.)
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy
| | - Gina La Sala
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy; (M.P.); (F.C.); (A.G.); (C.D.P.); (R.P.); (T.O.); (S.P.); (F.S.)
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy
| | - Olga Ermakova
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy; (M.P.); (F.C.); (A.G.); (C.D.P.); (R.P.); (T.O.); (S.P.); (F.S.)
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy
| |
Collapse
|
16
|
Yuan Z, Zhu X, Xie X, Wang C, Gu H, Yang J, Fan L, Xiang R, Yang Y, Tan Z. Identification of a novel MYO1D variant associated with laterality defects, congenital heart diseases, and sperm defects in humans. Front Med 2024; 18:558-564. [PMID: 38684630 DOI: 10.1007/s11684-023-1042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/15/2023] [Indexed: 05/02/2024]
Abstract
The establishment of left-right asymmetry is a fundamental process in animal development. Interference with this process leads to a range of disorders collectively known as laterality defects, which manifest as abnormal arrangements of visceral organs. Among patients with laterality defects, congenital heart diseases (CHD) are prevalent. Through multiple model organisms, extant research has established that myosin-Id (MYO1D) deficiency causes laterality defects. This study investigated over a hundred cases and identified a novel biallelic variant of MYO1D (NM_015194: c.1531G>A; p.D511N) in a consanguineous family with complex CHD and laterality defects. Further examination of the proband revealed asthenoteratozoospermia and shortened sperm. Afterward, the effects of the D511N variant and another known MYO1D variant (NM_015194: c.2293C>T; p.P765S) were assessed. The assessment showed that both enhance the interaction with β-actin and SPAG6. Overall, this study revealed the genetic heterogeneity of this rare disease and found that MYO1D variants are correlated with laterality defects and CHD in humans. Furthermore, this research established a connection between sperm defects and MYO1D variants. It offers guidance for exploring infertility and reproductive health concerns. The findings provide a critical basis for advancing personalized medicine and genetic counseling.
Collapse
Affiliation(s)
- Zhuangzhuang Yuan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Xin Zhu
- Department of Gynecology and Obstetrics, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Xiaohui Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Chenyu Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Heng Gu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Junlin Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Liangliang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Rong Xiang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Zhiping Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
17
|
Xuan Y, Duan Y. Achilles' heel of male infertility: good LEGO players. J Assist Reprod Genet 2024; 41:1481-1484. [PMID: 38676841 PMCID: PMC11224056 DOI: 10.1007/s10815-024-03122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
In a recent journal article, Chen et al. identified a germ cell-specific cofactor, STYXL1, associated with male fertility function. Deletion of STYXL1 prevents the LEGO player CCT complex from properly folding key microtubule proteins of the sperm flagellum, which affects sperm motility and male fertility function.
Collapse
Affiliation(s)
- Yang Xuan
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yue Duan
- Department of Urology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine, Hangzhou, 310053, China.
- Zhejiang Provincial Key Laboratory of Sexual, Function of Integrated Traditional Chinese and Western Medicine, Hangzhou, 310053, China.
| |
Collapse
|
18
|
Liang M, Ji N, Song J, Kang H, Zeng X. Flagellar pH homeostasis mediated by Na+/H+ exchangers regulates human sperm functions through coupling with CatSper and KSper activation. Hum Reprod 2024; 39:674-688. [PMID: 38366201 DOI: 10.1093/humrep/deae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/19/2024] [Indexed: 02/18/2024] Open
Abstract
STUDY QUESTION Whether and how do Na+/H+ exchangers (NHEs) regulate the physiological functions of human sperm? SUMMARY ANSWER NHE-mediated flagellar intracellular pH (pHi) homeostasis facilitates the activation of the pH-sensitive, sperm-specific Ca2+ channel (CatSper) and the sperm-specific K+ channel (KSper), which subsequently modulate sperm motility, hyperactivation, flagellar tyrosine phosphorylation, and the progesterone (P4)-induced acrosome reaction. WHAT IS KNOWN ALREADY Sperm pHi alkalization is an essential prerequisite for the acquisition of sperm-fertilizing capacity. Different sperm functions are strictly controlled by particular pHi regulatory mechanisms. NHEs are suggested to modulate sperm H+ efflux. STUDY DESIGN, SIZE, DURATION This was a laboratory study that used samples from >50 sperm donors over a period of 1 year. To evaluate NHE action on human sperm function, 5-(N,N-dimethyl)-amiloride (DMA), a highly selective inhibitor of NHEs, was utilized. All experiments were repeated at least five times using different individual sperm samples or cells. PARTICIPANTS/MATERIALS, SETTING, METHODS By utilizing the pH fluorescent indicator pHrodo Red-AM, we detected alterations in single-cell pHi value in human sperm. The currents of CatSper and KSper in human sperm were recorded by the whole-cell patch-clamp technique. Changes in population and single-cell Ca2+ concentrations ([Ca2+]i) of human sperm loaded with Fluo 4-AM were measured. Membrane potential (Vm) and population pHi were quantitatively examined by a multimode plate reader after sperm were loaded with 3,3'-dipropylthiadicarbocyanine iodide and 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyl ester, respectively. Sperm motility parameters were assessed by a computer-assisted semen analysis system. Tyrosine phosphorylation was determined by immunofluorescence, and sperm acrosome reaction was evaluated by Pisum sativum agglutinin-FITC staining. MAIN RESULTS AND THE ROLE OF CHANCE DMA-induced NHEs inhibition severely acidified the human sperm flagellar pHi from 7.20 ± 0.04 to 6.38 ± 0.12 (mean ± SEM), while the effect of DMA on acrosomal pHi was less obvious (from 5.90 ± 0.13 to 5.57 ± 0.12, mean ± SEM). The whole-cell patch-clamp recordings revealed that NHE inhibition remarkably suppressed alkalization-induced activation of CatSper and KSper. As a consequence, impairment of [Ca2+]i homeostasis and Vm maintenance were detected in the presence of DMA. During the capacitation process, pre-treatment with DMA for 2 h potently decreased sperm pHi, which in turn decreased sperm motility and kinetic parameters. Sperm capacitation-associated functions, including hyperactivation, tyrosine phosphorylation, and P4-induced acrosome reaction, were also compromised by NHE inhibition. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This was an in vitro study. Caution should be taken when extrapolating these results to in vivo applications. WIDER IMPLICATIONS OF THE FINDINGS This study revealed that NHEs are important physiological regulators for human CatSper and KSper, which are indispensable for human sperm fertility, suggesting that malfunction of NHEs could be an underlying mechanism for the pathogenesis of male infertility. FUNDING/COMPETING INTEREST(S) This work was supported by the National Natural Science Foundation of China (32271167 and 81871202 to X.Z.), Jiangsu Innovation and Entrepreneurship Talent Plan (JSSCRC20211543 to X.Z.), the Social Development Project of Jiangsu Province (No. BE2022765 to X.Z.), the Society and livelihood Project of Nantong City (No. MS22022087 to X.Z.), and the Natural Science Foundation of Jiangsu Province (BK20220608 to H.K.). The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Min Liang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Nanxi Ji
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Jian Song
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Hang Kang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| |
Collapse
|
19
|
Walton T, Doran MH, Brown A. Structural determination and modeling of ciliary microtubules. Acta Crystallogr D Struct Biol 2024; 80:220-231. [PMID: 38451206 PMCID: PMC10994176 DOI: 10.1107/s2059798324001815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/24/2024] [Indexed: 03/08/2024] Open
Abstract
The axoneme, a microtubule-based array at the center of every cilium, has been the subject of structural investigations for decades, but only recent advances in cryo-EM and cryo-ET have allowed a molecular-level interpretation of the entire complex to be achieved. The unique properties of the nine doublet microtubules and central pair of singlet microtubules that form the axoneme, including the highly decorated tubulin lattice and the docking of massive axonemal complexes, provide opportunities and challenges for sample preparation, 3D reconstruction and atomic modeling. Here, the approaches used for cryo-EM and cryo-ET of axonemes are reviewed, while highlighting the unique opportunities provided by the latest generation of AI-guided tools that are transforming structural biology.
Collapse
Affiliation(s)
- Travis Walton
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew H. Doran
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
20
|
Geng XY, Jin HJ, Xia L, Wang BB, Chen SR. Tektin bundle interacting protein, TEKTIP1, functions to stabilize the tektin bundle and axoneme in mouse sperm flagella. Cell Mol Life Sci 2024; 81:118. [PMID: 38448737 PMCID: PMC10917850 DOI: 10.1007/s00018-023-05081-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 03/08/2024]
Abstract
Tektins are microtubule inner proteins (MIPs) and localize at the inside lumen of doublet microtubules (DMTs) of cilia/flagella. TEKTIP1, a newly identified protein by cryo-electron microscopy (cryo-EM), is proposed to be localized at the center of the tektin bundle and hypothesized to recruit tektins or stabilize the bundle. However, the physiological role of TEKTIP1 is unknown. In this study, we generated Tektip1-knockout (Tektip1-/-) mice and showed that they were male subfertile primarily due to reduced sperm motility. A high percentage of sperm from Tektip1-/- mice showed moderately disorganized axoneme structures and abnormal flagellar waveforms. TEKTIP1 predominately interacted with TEKT3 among tektins. Loss of TEKTIP1 partially disturbed the organization of tektin bundle by mainly affecting the native status of TEKT3 and its interaction with other tektins. Collectively, our study reveals the physiological role and potential molecular mechanism of TEKTIP1 in axonemal structure and sperm motility, highlights the importance of MIPs in stabilizing DMTs, and suggests a potential relevance of TEKTIP1 deficiency to human asthenospermia. Tektip1-/- mice will be an excellent animal model to study the DMT organization of sperm flagella using cryo-EM in future.
Collapse
Affiliation(s)
- Xin-Yan Geng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Hui-Juan Jin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Lan Xia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Bin-Bin Wang
- Center for Genetics, National Research Institute of Family Planning, Beijing, 100081, China.
- Graduate School of Peking Union Medical College &, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, Beijing, 100081, China.
| | - Su-Ren Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China.
| |
Collapse
|
21
|
Yang W, Ling X, He S, Cui H, Wang L, Yang Z, An H, Zou P, Chen Q, Sun L, Yang H, Liu J, Cao J, Ao L. Perturbation of IP3R-dependent endoplasmic reticulum calcium homeostasis by PPARδ-activated metabolic stress leads to mouse spermatocyte apoptosis: A direct mechanism for perfluorooctane sulfonic acid-induced spermatogenic disorders. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123167. [PMID: 38110051 DOI: 10.1016/j.envpol.2023.123167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) as an archetypal representative of per- and polyfluoroalkyl substances (PFAS) is ubiquitously distributed in the environment and extensively detected in human bodies. Although accumulating evidence is suggestive of the deleterious effects of PFOS on male reproduction, the direct toxicity of PFOS towards spermatogenic cells and the relevant mechanisms remain poorly understood. The aims of the present study were to explore the direct effects and underlying molecular mechanisms of PFOS on spermatogenesis. Through integrating animal study, transcriptome profiling, in silico toxicological approaches, and in vitro validation study, we identified the molecular initiating event and key events contributing to PFOS-induced spermatogenic impairments. The mouse experiments revealed that spermatocytes were involved in PFOS-induced spermatogenic disorders and the activation of peroxisome proliferator-activated receptor delta (PPARδ) was linked to spermatocyte loss in PFOS-administrated mice. GC-2spd(ts) cells were treated with an increased gradient of PFOS, which was relevant to environmental and occupational exposure levels of PFOS in populations. Following 72-h treatment, cells was harvested for RNA sequencing. The transcriptome profiling and benchmark dose (BMD) modeling identified endoplasmic reticulum (ER) stress as the key event for PFOS-mediated spermatocyte apoptosis and determined the point-of-departure (PoD) for perturbations of ER stress signaling. Based on the calculated PoD value, further bioinformatics analyses combined with in vitro and in vivo validations showed that PFOS caused metabolic stress by activating PPARδ in mouse spermatocytes, which was responsible for Beclin 1-involved inositol 1,4,5-trisphosphate receptor (IP3R) sensitization. The disruption of IP3R-mediated ER calcium homeostasis triggered ER calcium depletion, leading to ER stress and apoptosis in mouse spermatocytes exposed to PFOS. This study systematically investigated the direct impacts of PFOS on spermatogenesis and unveiled the relevant molecular mechanism of PFOS-induced spermatogenic disorders, providing novel insights and potential preventive/therapeutic targets for PFAS-associated male reproductive toxicity.
Collapse
Affiliation(s)
- Wang Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shijun He
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Haonan Cui
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lihong Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zeyu Yang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Huihui An
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lei Sun
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huan Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
22
|
Tai L, Yin G, Huang X, Sun F, Zhu Y. In-cell structural insight into the stability of sperm microtubule doublet. Cell Discov 2023; 9:116. [PMID: 37989994 PMCID: PMC10663601 DOI: 10.1038/s41421-023-00606-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/21/2023] [Indexed: 11/23/2023] Open
Abstract
The propulsion for mammalian sperm swimming is generated by flagella beating. Microtubule doublets (DMTs) along with microtubule inner proteins (MIPs) are essential structural blocks of flagella. However, the intricate molecular architecture of intact sperm DMT remains elusive. Here, by in situ cryo-electron tomography, we solved the in-cell structure of mouse sperm DMT at 4.5-7.5 Å resolutions, and built its model with 36 kinds of MIPs in 48 nm periodicity. We identified multiple copies of Tektin5 that reinforce Tektin bundle, and multiple MIPs with different periodicities that anchor the Tektin bundle to tubulin wall. This architecture contributes to a superior stability of A-tubule than B-tubule of DMT, which was revealed by structural comparison of DMTs from the intact and deformed axonemes. Our work provides an overall molecular picture of intact sperm DMT in 48 nm periodicity that is essential to understand the molecular mechanism of sperm motility as well as the related ciliopathies.
Collapse
Affiliation(s)
- Linhua Tai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guoliang Yin
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Huang
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fei Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
| | - Yun Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
23
|
Chen Z, Shiozaki M, Haas KM, Skinner WM, Zhao S, Guo C, Polacco BJ, Yu Z, Krogan NJ, Lishko PV, Kaake RM, Vale RD, Agard DA. De novo protein identification in mammalian sperm using in situ cryoelectron tomography and AlphaFold2 docking. Cell 2023; 186:5041-5053.e19. [PMID: 37865089 PMCID: PMC10842264 DOI: 10.1016/j.cell.2023.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 08/02/2023] [Accepted: 09/16/2023] [Indexed: 10/23/2023]
Abstract
To understand the molecular mechanisms of cellular pathways, contemporary workflows typically require multiple techniques to identify proteins, track their localization, and determine their structures in vitro. Here, we combined cellular cryoelectron tomography (cryo-ET) and AlphaFold2 modeling to address these questions and understand how mammalian sperm are built in situ. Our cellular cryo-ET and subtomogram averaging provided 6.0-Å reconstructions of axonemal microtubule structures. The well-resolved tertiary structures allowed us to unbiasedly match sperm-specific densities with 21,615 AlphaFold2-predicted protein models of the mouse proteome. We identified Tektin 5, CCDC105, and SPACA9 as novel microtubule-associated proteins. These proteins form an extensive interaction network crosslinking the lumen of axonemal doublet microtubules, suggesting their roles in modulating the mechanical properties of the filaments. Indeed, Tekt5 -/- sperm possess more deformed flagella with 180° bends. Together, our studies presented a cellular visual proteomics workflow and shed light on the in vivo functions of Tektin 5.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Momoko Shiozaki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kelsey M Haas
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; J. David Gladstone Institutes, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
| | - Will M Skinner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Shumei Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Caiying Guo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Benjamin J Polacco
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
| | - Zhiheng Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; J. David Gladstone Institutes, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
| | - Polina V Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; J. David Gladstone Institutes, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
24
|
Bastin BR, Meha SM, Khindurangala L, Schneider SQ. Cooption of regulatory modules for tektin paralogs during ciliary band formation in a marine annelid larva. Dev Biol 2023; 503:95-110. [PMID: 37557946 DOI: 10.1016/j.ydbio.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Tektins are a highly conserved family of coiled-coil domain containing proteins known to play a role in structure, stability and function of cilia and flagella. Tektin proteins are thought to form filaments which run the length of the axoneme along the inner surface of the A tubule of each microtubule doublet. Phylogenetic analyses suggest that the tektin family arose via duplications from a single tektin gene in a unicellular organism giving rise to four and five tektin genes in bilaterians and in spiralians, respectively. Although tektins are found in most metazoans, little is known about their expression and function outside of a handful of model species. Here we present the first comprehensive study of tektin family gene expression in any animal system, in the spiralian annelid Platynereis dumerilii. This indirect developing species retains a full ancient spiralian complement of five tektin genes. We show that all five tektins are expressed almost exclusively in known ciliary structures following the expression of the motile cilia master regulator foxJ1. The three older bilaterian tektin-1, tektin-2, and tektin-4 genes, show a high degree of spatial and temporal co-regulation, while the spiralian specific tektin-3/5A and tektin-3/5B show a delay in onset of expression in every ciliary structure. In addition, tektin-3/5B transcripts show a restricted subcellular localization to the most apical region near the multiciliary arrays. The exact recapitulation of the sequence of expression and localization of the five tektins at different times during larval development indicates the cooption of a fixed regulatory and cellular program during the formation of each ciliary band and multiciliated cell type in this spiralian.
Collapse
Affiliation(s)
- Benjamin R Bastin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.
| | - Steffanie M Meha
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| | - Lalith Khindurangala
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.
| | - Stephan Q Schneider
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
25
|
Kikkawa M. A quest to unravel the role of the stalk and microtubule-binding domain of axonemal dyneins. FEBS Lett 2023; 597:2147-2148. [PMID: 37599096 DOI: 10.1002/1873-3468.14707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Affiliation(s)
- Masahide Kikkawa
- Department of Cell Biology & Anatomy, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
26
|
Ciazynska K. Structural organization of the sperm tail. Nat Struct Mol Biol 2023; 30:1061. [PMID: 37596469 DOI: 10.1038/s41594-023-01083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
27
|
Gu Y, Zhao Y, Ichikawa M. Tektin makes a microtubule a "micropillar". Cell 2023; 186:2725-2727. [PMID: 37352832 DOI: 10.1016/j.cell.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/25/2023]
Abstract
Inside sperm flagella, there are nine doublet microtubules composed of A and B tubules. In this issue of Cell, Leung et al. and Zhou et al. present high-resolution cryo-EM structures of doublet microtubules from mammalian sperms and show unprecedented structures of the A tubules, which are almost entirely occupied with tektin bundles.
Collapse
Affiliation(s)
- Yuzhong Gu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yimeng Zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China; Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Muneyoshi Ichikawa
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|