1
|
Distribution and Assembly of TRP Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1349:111-138. [PMID: 35138613 DOI: 10.1007/978-981-16-4254-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last several decades, a large family of ion channels have been identified and studied intensively as cellular sensors for diverse physical and/or chemical stimuli. Named transient receptor potential (TRP) channels, they play critical roles in various aspects of cellular physiology. A large number of human hereditary diseases are found to be linked to TRP channel mutations, and their dysregulations lead to acute or chronical health problems. As TRP channels are named and categorized mostly based on sequence homology rather than functional similarities, they exhibit substantial functional diversity. Rapid advances in TRP channel study have been made in recent years and reported in a vast body of literature; a summary of the latest advancements becomes necessary. This chapter offers an overview of current understandings of TRP channel distribution and subunit assembly.
Collapse
|
2
|
Santoni G, Amantini C, Maggi F, Marinelli O, Santoni M, Morelli MB. The Mucolipin TRPML2 Channel Enhances the Sensitivity of Multiple Myeloma Cell Lines to Ibrutinib and/or Bortezomib Treatment. Biomolecules 2022; 12:biom12010107. [PMID: 35053255 PMCID: PMC8773734 DOI: 10.3390/biom12010107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/03/2022] Open
Abstract
Multiple myeloma (MM) is a haematological B cell malignancy characterised by clonal proliferation of plasma cells and their accumulation in the bone marrow. The aim of the present study is the evaluation of biological effects of Ibrutinib in human MM cell lines alone or in combination with different doses of Bortezomib. In addition, the relationship between the expression of TRPML2 channels and chemosensitivity of different MM cell lines to Ibrutinib administered alone or in combination with Bortezomib has been evaluated. By RT-PCR and Western blot analysis, we found that the Ibrutinib-resistant U266 cells showed lower TRPML2 expression, whereas higher TRPML2 mRNA and protein levels were evidenced in RPMI cells. Moreover, TRPML2 gene silencing in RPMI cells markedly reverted the effects induced by Ibrutinib alone or in combination with Bortezomib suggesting that the sensitivity to Ibrutinib is TRPML2 mediated. In conclusion, this study suggests that the expression of TRPML2 in MM cells increases the sensitivity to Ibrutinib treatment, suggesting for a potential stratification of Ibrutinib sensitivity of MM patients on the basis of the TRPML2 expression. Furthermore, studies in vitro and in vivo should still be necessary to completely address the molecular mechanisms and the potential role of TRPML2 channels in therapy and prognosis of MM patients.
Collapse
Affiliation(s)
- Giorgio Santoni
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
- Correspondence: (G.S.); (M.B.M.); Tel.: +39-0737403319 (G.S.); +39-0737403312 (M.B.M.)
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (C.A.); (F.M.)
| | - Federica Maggi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (C.A.); (F.M.)
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy
| | | | - Matteo Santoni
- Medical Oncology Unit, Hospital of Macerata, 62100 Macerata, Italy;
| | - Maria Beatrice Morelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
- Correspondence: (G.S.); (M.B.M.); Tel.: +39-0737403319 (G.S.); +39-0737403312 (M.B.M.)
| |
Collapse
|
3
|
Gan N, Jiang Y. Structural biology of cation channels important for lysosomal calcium release. Cell Calcium 2022; 101:102519. [PMID: 34952412 PMCID: PMC8752501 DOI: 10.1016/j.ceca.2021.102519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/03/2023]
Abstract
Calcium is one of the most important second messengers in cells. The uptake and release of calcium ions are conducted by channels and transporters. Inside a eukaryotic cell, calcium is stored in intracellular organelles including the endoplasmic reticulum (ER), mitochondrion, and lysosome. Lysosomes are acid membrane-bounded organelles serving as the crucial degradation and recycling center of the cell. Lysosomes involve in multiple important signaling events, including nutrient sensing, lipid metabolism, and trafficking. Hitherto, two lysosomal cation channel families have been suggested to function as calcium release channels, namely the Two-pore Channel (TPC) family, and the Transient Receptor Potential Channel Mucolipin (TRPML) family. Additionally, a few plasma membrane calcium channels have also been found in the lysosomal membrane under certain circumstances. In this review, we will discuss the structural mechanism of the cation channels that may be important for lysosomal calcium release, primarily focusing on the TPCs and TRPMLs.
Collapse
Affiliation(s)
- Ninghai Gan
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| | - Youxing Jiang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| |
Collapse
|
4
|
Moraes RDA, Webb RC, Silva DF. Vascular Dysfunction in Diabetes and Obesity: Focus on TRP Channels. Front Physiol 2021; 12:645109. [PMID: 33716794 PMCID: PMC7952965 DOI: 10.3389/fphys.2021.645109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Transient receptor potential (TRP) superfamily consists of a diverse group of non-selective cation channels that has a wide tissue distribution and is involved in many physiological processes including sensory perception, secretion of hormones, vasoconstriction/vasorelaxation, and cell cycle modulation. In the blood vessels, TRP channels are present in endothelial cells, vascular smooth muscle cells, perivascular adipose tissue (PVAT) and perivascular sensory nerves, and these channels have been implicated in the regulation of vascular tone, vascular cell proliferation, vascular wall permeability and angiogenesis. Additionally, dysfunction of TRP channels is associated with cardiometabolic diseases, such as diabetes and obesity. Unfortunately, the prevalence of diabetes and obesity is rising worldwide, becoming an important public health problems. These conditions have been associated, highlighting that obesity is a risk factor for type 2 diabetes. As well, both cardiometabolic diseases have been linked to a common disorder, vascular dysfunction. In this review, we briefly consider general aspects of TRP channels, and we focus the attention on TRPC (canonical or classical), TRPV (vanilloid), TRPM (melastatin), and TRPML (mucolipin), which were shown to be involved in vascular alterations of diabetes and obesity or are potentially linked to vascular dysfunction. Therefore, elucidation of the functional and molecular mechanisms underlying the role of TRP channels in vascular dysfunction in diabetes and obesity is important for the prevention of vascular complications and end-organ damage, providing a further therapeutic target in the treatment of these metabolic diseases.
Collapse
Affiliation(s)
- Raiana Dos Anjos Moraes
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - R Clinton Webb
- Department of Cell Biology and Anatomy and Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Darízy Flávia Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| |
Collapse
|
5
|
The intracellular Ca 2+ release channel TRPML1 regulates lower urinary tract smooth muscle contractility. Proc Natl Acad Sci U S A 2020; 117:30775-30786. [PMID: 33199609 PMCID: PMC7720193 DOI: 10.1073/pnas.2016959117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
TRPML1 (transient receptor potential mucolipin 1) is a Ca2+-permeable, nonselective cation channel that is localized to late endosomes and lysosomes. Here, we investigated the function of TRPML1 channels in regulating lower urinary tract (LUT) smooth muscle cell (SMC) contractility. We found that TRPML1 forms a stable signaling complex with ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR). We further showed that TRPML1 channels are important for initiating an essential Ca2+-signaling negative feedback mechanism between RyRs on SR membranes and K+ channels on the plasma membrane. Knockout of TRPML1 channels in mice impaired this pathway, resulting in LUT smooth muscle hypercontractility and symptoms of overactive bladder. Our findings demonstrate a critical role for TRPML1 in LUT function. TRPML1 (transient receptor potential mucolipin 1) is a Ca2+-permeable, nonselective cation channel that is predominantly localized to the membranes of late endosomes and lysosomes (LELs). Intracellular release of Ca2+ through TRPML1 is thought to be pivotal for maintenance of intravesicular acidic pH as well as the maturation, fusion, and trafficking of LELs. Interestingly, genetic ablation of TRPML1 in mice (Mcoln1−/−) induces a hyperdistended/hypertrophic bladder phenotype. Here, we investigated this phenomenon further by exploring an unconventional role for TRPML1 channels in the regulation of Ca2+-signaling activity and contractility in bladder and urethral smooth muscle cells (SMCs). Four-dimensional (4D) lattice light-sheet live-cell imaging showed that the majority of LELs in freshly isolated bladder SMCs were essentially immobile. Superresolution microscopy revealed distinct nanoscale colocalization of LEL-expressing TRPML1 channels with ryanodine type 2 receptors (RyR2) in bladder SMCs. Spontaneous intracellular release of Ca2+ from the sarcoplasmic reticulum (SR) through RyR2 generates localized elevations of Ca2+ (“Ca2+ sparks”) that activate plasmalemmal large-conductance Ca2+-activated K+ (BK) channels, a critical negative feedback mechanism that regulates smooth muscle contractility. This mechanism was impaired in Mcoln1−/− mice, which showed diminished spontaneous Ca2+ sparks and BK channel activity in bladder and urethra SMCs. Additionally, ex vivo contractility experiments showed that loss of Ca2+ spark–BK channel signaling in Mcoln1−/− mice rendered both bladder and urethra smooth muscle hypercontractile. Voiding activity analyses revealed bladder overactivity in Mcoln1−/− mice. We conclude that TRPML1 is critically important for Ca2+ spark signaling, and thus regulation of contractility and function, in lower urinary tract SMCs.
Collapse
|
6
|
Thakore P, Pritchard HAT, Griffin CS, Yamasaki E, Drumm BT, Lane C, Sanders KM, Feng Earley Y, Earley S. TRPML1 channels initiate Ca 2+ sparks in vascular smooth muscle cells. Sci Signal 2020; 13:13/637/eaba1015. [PMID: 32576680 DOI: 10.1126/scisignal.aba1015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
TRPML1 (transient receptor potential mucolipin 1) is a Ca2+-permeable, nonselective cation channel localized to the membranes of endosomes and lysosomes and is not present or functional on the plasma membrane. Ca2+ released from endosomes and lysosomes into the cytosol through TRPML1 channels is vital for trafficking, acidification, and other basic functions of these organelles. Here, we investigated the function of TRPML1 channels in fully differentiated contractile vascular smooth muscle cells (SMCs). In live-cell confocal imaging studies, we found that most endosomes and lysosomes in freshly isolated SMCs from cerebral arteries were essentially immobile. Using nanoscale super-resolution microscopy, we found that TRPML1 channels present in late endosomes and lysosomes formed stable complexes with type 2 ryanodine receptors (RyR2) on the sarcoplasmic reticulum (SR). Spontaneous Ca2+ signals resulting from the release of SR Ca2+ through RyR2s ("Ca2+ sparks") and corresponding Ca2+-activated K+ channel activity are critically important for balancing vasoconstriction. We found that these signals were essentially absent in SMCs from TRPML1-knockout (Mcoln1-/- ) mice. Using ex vivo pressure myography, we found that loss of this critical signaling cascade exaggerated the vasoconstrictor responses of cerebral and mesenteric resistance arteries. In vivo radiotelemetry studies showed that Mcoln1-/- mice were spontaneously hypertensive. We conclude that TRPML1 is crucial for the initiation of Ca2+ sparks in SMCs and the regulation of vascular contractility and blood pressure.
Collapse
Affiliation(s)
- Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Harry A T Pritchard
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Caoimhin S Griffin
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Evan Yamasaki
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Conor Lane
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Yumei Feng Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA.,Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA.
| |
Collapse
|
7
|
Spix B, Chao YK, Abrahamian C, Chen CC, Grimm C. TRPML Cation Channels in Inflammation and Immunity. Front Immunol 2020; 11:225. [PMID: 32184778 PMCID: PMC7058977 DOI: 10.3389/fimmu.2020.00225] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/28/2020] [Indexed: 12/24/2022] Open
Abstract
Background: In 1883, Ilya Mechnikov discovered phagocytes and established the concept of phagocytosis by macrophages. In 1908, he was awarded the Nobel Prize in Physiology/Medicine for his findings, which laid the foundations for today's understanding of the innate immune response. Only in the 1960s, Max Cooper and Robert Good significantly advanced our understanding of the immune system by demonstrating that B- and T-cells cooperate to regulate the adaptive immune response. Both, innate and adaptive immune response are essential to effectively protect the individual against infectious agents, such as viruses, bacterial or insect toxins, or allergens. Innate immune responses occur rapidly upon exposure to noxious or infectious agents or organisms, in contrast to the adaptive immune system that needs days rather than hours to develop and acts primarily on the basis of antigen-specific receptors expressed on the surface of B- and T-lymphocytes. In recent years, it has become evident that endosomes and lysosomes are involved in many aspects of immune cell function, such as phagocytosis, antigen presentation and processing by antigen-presenting cells, release of proinflammatory mediators, e.g., by mast cells, or secretion of the pore-forming protein perforin by cytotoxic T lymphocytes. Several lysosomal storage disorders (LSDs) have been associated with defects in immune system function or immune system hyperactivity, such as Gaucher, Fabry, or Niemann-Pick type C1 disease, mucopolysaccharidoses (MPS), gangliosidosis, or juvenile neuronal ceroid lipofuscinosis (JNCL). Beside accumulating evidence on the importance of endolysosomes in immune cell function, recent results suggest direct roles of endolysosomal ion channels, such as the TRPML channels (mucolipins), which are members of the transient receptor potential (TRP) superfamily of non-selective cation channels, for different aspects of immune cell function. The aim of this review is to discuss the current knowledge about the roles of TRPML channels in inflammation and immunity, and to assess their potential as drug targets to influence immune cell functions. Advances: Examples of recently established roles of TRPML channels in immune system function and immune response include the TRPML1-mediated modulation of secretory lysosomes, granzyme B content, and tuning of effector function in NK cells, TRPML1-dependent directional dendritic cell (DC) migration and DC chemotaxis, and the role of TRPML2 in chemokine release from LPS-stimulated macrophages. Outlook: Although our understanding of the functional roles of TRPML channels in inflammation and immunity is still in its infancy, a few interesting findings have been made in the past years, encouraging further and more detailed work on the role of TRPMLs, e.g., in intracellular trafficking and release of chemokines, cytokines, or granzyme B, or in phagocytosis and bacterial toxin and virus trafficking through the endolysosomal machinery.
Collapse
Affiliation(s)
- Barbara Spix
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Yu-Kai Chao
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Carla Abrahamian
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Cheng-Chang Chen
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Christian Grimm
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
8
|
Chao YK, Chang SY, Grimm C. Endo-Lysosomal Cation Channels and Infectious Diseases. Rev Physiol Biochem Pharmacol 2020; 185:259-276. [PMID: 32748124 DOI: 10.1007/112_2020_31] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Among the infectious diseases caused by pathogenic microorganisms such as bacteria, viruses, parasites, or fungi, the most prevalent ones today are malaria, tuberculosis, influenza, HIV/AIDS, Ebola, dengue fever, and methicillin-resistant Staphylococcus aureus (MRSA) infection, and most recently Covid-19 (SARS-CoV2). Others with a rather devastating history and high fatality rates such as plague, cholera, or typhus seem less threatening today but have not been eradicated, and with a declining efficacy of current antibiotics they ought to be watched carefully. Another emerging issue in this context is health-care associated infection. About 100,000 hospitalized patients in the USA ( www.cdc.gov ) and 33,000 in Europe ( https://www.ecdc.europa.eu ) die each year as a direct consequence of an infection caused by bacteria resistant to antibiotics. Among viral infections, influenza is responsible for about 3-5 million cases of severe illness, and about 250,000 to 500,000 deaths annually ( www.who.int ). About 37 million people are currently living with HIV infection and about one million die from it each year. Coronaviruses such as MERS-CoV, SARS-CoV, but in particular the recent outbreak of Covid-19 (caused by SARS-CoV2) have resulted in large numbers of infections worldwide with an estimated several hundred thousand deaths (anticipated fatality rate: <5%). With a comparatively low mortality rate dengue virus causes between 50 and 100 million infections every year, leading to 50,000 deaths. In contrast, Ebola virus is the causative agent for one of the deadliest viral diseases. The Ebola outbreak in West Africa in 2014 is considered the largest outbreak in history with more than 11,000 deaths. Many of the deadliest pathogens such as Ebola virus, influenza virus, mycobacterium tuberculosis, dengue virus, and cholera exploit the endo-lysosomal trafficking system of host cells for penetration into the cytosol and replication. Defects in endo-lysosomal maturation, trafficking, fusion, or pH homeostasis can efficiently reduce the cytotoxicity caused by these pathogens. Most of these functions critically depend on endo-lysosomal membrane proteins such as transporters and ion channels. In particular, cation channels such as the mucolipins (TRPMLs) or the two-pore channels (TPCs) are involved in all of these aspects of endo-lysosomal integrity. In this review we will discuss the correlations between pathogen toxicity and endo-lysosomal cation channel function, and their potential as drug targets for infectious disease therapy.
Collapse
Affiliation(s)
- Yu-Kai Chao
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
9
|
Girón-Pérez DA, Piedra-Quintero ZL, Santos-Argumedo L. Class I myosins: Highly versatile proteins with specific functions in the immune system. J Leukoc Biol 2019; 105:973-981. [PMID: 30821871 DOI: 10.1002/jlb.1mr0918-350rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/20/2022] Open
Abstract
Connections established between cytoskeleton and plasma membrane are essential in cellular processes such as cell migration, vesicular trafficking, and cytokinesis. Class I myosins are motor proteins linking the actin-cytoskeleton with membrane phospholipids. Previous studies have implicated these molecules in cell functions including endocytosis, exocytosis, release of extracellular vesicles and the regulation of cell shape and membrane elasticity. In immune cells, those proteins also are involved in the formation and maintenance of immunological synapse-related signaling. Thus, these proteins are master regulators of actin cytoskeleton dynamics in different scenarios. Although the localization of class I myosins has been described in vertebrates, their functions, regulation, and mechanical properties are not very well understood. In this review, we focused on and summarized the current understanding of class I myosins in vertebrates with particular emphasis in leukocytes.
Collapse
Affiliation(s)
- Daniel Alberto Girón-Pérez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Zayda Lizbeth Piedra-Quintero
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
10
|
Di Paola S, Scotto-Rosato A, Medina DL. TRPML1: The Ca (2+)retaker of the lysosome. Cell Calcium 2017; 69:112-121. [PMID: 28689729 DOI: 10.1016/j.ceca.2017.06.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 12/27/2022]
Abstract
Efficient functioning of lysosome is necessary to ensure the correct performance of a variety of intracellular processes such as degradation of cargoes coming from the endocytic and autophagic pathways, recycling of organelles, and signaling mechanisms involved in cellular adaptation to nutrient availability. Mutations in lysosomal genes lead to more than 50 lysosomal storage disorders (LSDs). Among them, mutations in the gene encoding TRPML1 (MCOLN1) cause Mucolipidosis type IV (MLIV), a recessive LSD characterized by neurodegeneration, psychomotor retardation, ophthalmologic defects and achlorhydria. At the cellular level, MLIV patient fibroblasts show enlargement and engulfment of the late endo-lysosomal compartment, autophagy impairment, and accumulation of lipids and glycosaminoglycans. TRPML1 is the most extensively studied member of a small family of genes that also includes TRPML2 and TRPML3, and it has been found to participate in vesicular trafficking, lipid and ion homeostasis, and autophagy. In this review we will provide an update on the latest and more novel findings related to the functions of TRPMLs, with particular focus on the emerging role of TRPML1 and lysosomal calcium signaling in autophagy. Moreover, we will also discuss new potential therapeutic approaches for MLIV and LSDs based on the modulation of TRPML1-mediated signaling.
Collapse
Affiliation(s)
- Simone Di Paola
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli ,NA, Italy
| | - Anna Scotto-Rosato
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli ,NA, Italy
| | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli ,NA, Italy.
| |
Collapse
|
11
|
Cuajungco MP, Silva J, Habibi A, Valadez JA. The mucolipin-2 (TRPML2) ion channel: a tissue-specific protein crucial to normal cell function. Pflugers Arch 2015; 468:177-92. [PMID: 26336837 DOI: 10.1007/s00424-015-1732-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/26/2022]
Abstract
The discovery of the TRPML subfamily of ion channels has created an exciting niche in the fields of membrane trafficking, signal transduction, autophagy, and metal homeostasis. The TRPML protein subfamily consists of three members, TRPML1, TRPML2, and TRPML3, which are encoded by MCOLN1, MCOLN2, and MCOLN3 genes, respectively. They are non-selective cation channels with six predicted transmembrane domains and intracellular amino- and carboxyl-terminus regions. They localize to the plasma membrane, endosomes, and lysosomes of cells. TRPML1 is associated with the human lysosomal storage disease known as mucolipidosis type IV (MLIV), but TRPML2 and TRPML3 have not been linked with a human disease. Although TRPML1 is expressed in many tissues, TRPML3 is expressed in a varied but limited set of tissues, while TRPML2 has a more limited expression pattern where it is mostly detected in lymphoid and myeloid tissues. This review focuses on TRPML2 because it appears to play an important, yet unrecognized role in the immune system. While the evidence has been mostly indirect, we present and discuss relevant data that strengthen the connection of TRPML2 with cellular immunity. We also discuss the functional redundancy between the TRPML proteins, and how such features could be exploited as a potential therapeutic strategy for MLIV disease. We present evidence that TRPML2 expression may complement certain phenotypic alterations in MLIV cells and briefly examine the challenges of functional complementation. In conclusion, the function of TRPML2 still remains obscure, but emerging data show that it may serve a critical role in immune cell development and inflammatory responses.
Collapse
Affiliation(s)
- Math P Cuajungco
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831, USA. .,Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, 92831, USA.
| | - Joshua Silva
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| | - Ania Habibi
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| | - Jessica A Valadez
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| |
Collapse
|
12
|
Valadez JA, Cuajungco MP. PAX5 is the transcriptional activator of mucolipin-2 (MCOLN2) gene. Gene 2014; 555:194-202. [PMID: 25445271 DOI: 10.1016/j.gene.2014.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/25/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
Transient receptor potential mucolipin (TRPML) proteins belong to the TRP superfamily of non-selective cation channels. The TRPML1, -2, and -3 proteins are encoded by Mucolipin (MCOLN)-1, -2 and -3 genes, respectively. TRPML1 has been associated with mucolipidosis type IV (MLIV), while no disease phenotype has been linked with TRPML2 or -3 protein. The TRPML proteins share high sequence similarities, form hetero-tetramers, and serve in membrane trafficking, autophagy, and metal homeostasis. Previous studies suggest that TRPML2 serves a role in the immune system; however, the evidence is mostly indirect. We hypothesize that if TRPML2 is involved in immune function its expression would be likely regulated by an immune-associated transcription factor protein. Thus, we set out to identify the core promoter region and the transcription factor responsible for MCOLN2 gene expression. Using dual-luciferase assay and over-expression analyses, we reveal for the first time that B-cell lineage specific activator protein (BSAP), also known as paired box 5 (PAX5), controls MCOLN2 expression. Specifically, heterologous expression of PAX5 in HEK-293 cells significantly increased endogenous MCOLN2 transcript and TRPML2 protein levels, while RNA interference targeting endogenous PAX5 reduced its effect. Site-directed mutagenesis studies showed that the core promoter and PAX5 binding region to be between -79 and -60 base pairs upstream of the transcriptional start site. Thus, our findings add to a growing list of evidence for TRPML2's possible involvement in the immune system. The knowledge gained from this study could be used to further characterize the role of TRPML2 in B-cell development and function.
Collapse
Affiliation(s)
- Jessica A Valadez
- Department of Biological Science, and Center for Applied Biotechnology Studies, California State University Fullerton, CA 92831, USA
| | - Math P Cuajungco
- Department of Biological Science, and Center for Applied Biotechnology Studies, California State University Fullerton, CA 92831, USA; Mental Health Research Institute, Melbourne Brain Centre, Parkville, Victoria 3052, Australia.
| |
Collapse
|
13
|
Santos-Argumedo L, Maravillas-Montero JL, López-Ortega O. Class I myosins in B-cell physiology: functions in spreading, immune synapses, motility, and vesicular traffic. Immunol Rev 2014; 256:190-202. [PMID: 24117822 DOI: 10.1111/imr.12105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myosins comprise a family of motor proteins whose role in muscle contraction and motility in a large range of eukaryotic cells has been widely studied. Although these proteins have been characterized extensively and much is known about their function in different cellular compartments, little is known about these molecules in hematopoietic cells. Myosins expressed by cells from the immune response are involved in maintaining plasma membrane tension, moving and secreting vesicles, endo- and exocytotic processes, and promoting the adhesion and motility of cells. Herein, we summarize our current understanding of class I myosins in B cells, with an emphasis on the emerging roles of these molecular motors in immune functions.
Collapse
|
14
|
Abstract
The TRPML2 protein, encoded by the Mcoln2 gene, is one of the three mucolipins (TRPML1-3), a subset of the TRP superfamily of ion channels. Although there are no thorough studies on the cellular distribution of TRPML2, its mRNA appears to be largely restricted to lymphocytes and other immune cells. This contrasts with the ubiquitous expression of TRPML1 and the limited but diverse expression of TRPML3 and clearly suggests a specialized role for TRPML2 in immunity. Localization studies indicate that TRPML2 is present in lysosomes (including the specialized lysosome-related organelle that B-lymphocytes use for processing of the antigen-bound B-cell receptor), late endosomes, recycling endosomes, and, at a much lower level, the plasma membrane. Heterologously expressed TRPML2, like TRPML1 and/or TRPML3, forms ion channels that can be activated by a gain-of-function mutation (alanine to proline in the fifth transmembrane domain, close to the pore) that favors the open state, by a transient reduction of extracellular sodium followed by sodium replenishment, by small chemicals related to sulfonamides, and by PI(3,5)P2, a rare phosphoinositide that naturally accumulates in the membranes of endosomes and lysosomes and thus could act as a physiologically relevant agonist. TRPML2 channels are inwardly rectifying and permeable to Ca(2+), Na(+), and Fe(2+). When heterologously co-expressed, TRPML2 can form heteromultimers with TRPML1 and TRPML3. In B-lymphocytes, TRPML2 and TRPML1 may play redundant roles in the function of their specialized lysosome. Although the specific subcellular function of TRPML2 is unknown, distribution and channel properties suggest roles in calcium release from endolysosomes, perhaps to regulate vesicle fusion and/or subsequent scission or to release calcium from intracellular acidic stores for signaling in the cytosol. Alternatively, TRPML2 could function in the plasma membrane, and its abundance in vesicles of the endocytic pathway could simply be due to regulation by endocytosis and exocytosis. The Mcoln2 gene is closely downstream from and in the same orientation as Mcoln3 in the genomes of most jawed vertebrates (from humans to sharks) with the exception of pigs, Xenopus tropicalis, and ray-finned fishes. The close homology of TRPML2 and 3 (closer to each other than to TRPML1) suggests that Mcoln2 and Mcoln3 arose from unequal crossing over that duplicated a common ancestor and placed both gene copies in tandem. These genes would have come apart subsequently in pigs, Xenopus, and the ancestor to ray-finned fishes. All jawed vertebrates for which we have thorough genomic knowledge have distinct Mcoln1, 2, and 3 genes (except ray-finned fishes which, probably due to the whole-genome duplication in their common ancestor, have two Mcoln1-like genes and two Mcoln3-like genes, although only one Mcoln2 gene). However, the available genomes of invertebrate deuterostomes (a sea urchin, lancelet, and two tunicates) contain a single mucolipin gene that is equally distant from the three vertebrate mucolipins. Hence, vertebrate mucolipins arose through two rounds of gene duplication (the first one likely producing Mcoln1 and the ancestor to Mcoln2 and 3) at some time between the onset of craniates and that of jawed vertebrates. This is also the evolutionary period during which adaptive immunity appeared. Given the restricted expression of TRPML2 in immune cells, this evolutionary history suggests a functional role in the adaptive immunity characteristic of vertebrates.
Collapse
|
15
|
Abstract
TRP channels constitute a large superfamily of cation channel forming proteins, all related to the gene product of the transient receptor potential (trp) locus in Drosophila. In mammals, 28 different TRP channel genes have been identified, which exhibit a large variety of functional properties and play diverse cellular and physiological roles. In this article, we provide a brief and systematic summary of expression, function, and (patho)physiological role of the mammalian TRP channels.
Collapse
Affiliation(s)
- Maarten Gees
- Laboratory Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Campus Gasthuisberg, Leuven, Belgium
| | | | | | | |
Collapse
|
16
|
Bakay M, Pandey R, Hakonarson H. Genes involved in type 1 diabetes: an update. Genes (Basel) 2013; 4:499-521. [PMID: 24705215 PMCID: PMC3924830 DOI: 10.3390/genes4030499] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/26/2013] [Accepted: 09/05/2013] [Indexed: 01/06/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic multifactorial disease with a strong genetic component, which, through interactions with specific environmental factors, triggers disease onset. T1D typically manifests in early to mid childhood through the autoimmune destruction of pancreatic β cells resulting in a lack of insulin production. Historically, prior to genome-wide association studies (GWAS), six loci in the genome were fully established to be associated with T1D. With the advent of high-throughput single nucleotide polymorphism (SNP) genotyping array technologies, enabling investigators to perform high-density GWAS, many additional T1D susceptibility genes have been discovered. Indeed, recent meta-analyses of multiple datasets from independent investigators have brought the tally of well-validated T1D disease genes to almost 60. In this mini-review, we address recent advances in the genetics of T1D and provide an update on the latest susceptibility loci added to the list of genes involved in the pathogenesis of T1D.
Collapse
Affiliation(s)
- Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Rahul Pandey
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Liu QJ, He YL, Liu HY, Wei HJ, Xu L, Wang Q. Clinical significance of expression of SASH1 in esophageal squamous cell carcinoma. Shijie Huaren Xiaohua Zazhi 2013; 21:2198-2201. [DOI: 10.11569/wcjd.v21.i22.2198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of SAM- and SH3-domain containing 1 (SASH1) in human esophageal squamous cell carcinoma (ESCC), and to analyze the relationship between SASH1 expression and clinical and pathological parameters of ESCC.
METHODS: The expression of SASH1 was detected by immunohistochemistry in 72 ESCC specimens and 40 tumor-adjacent specimens.
RESULTS: The positive rate of SASH1 protein expression in ESCC was significantly lower than that in tumor-adjacent non-carcinoma tissue (41.67% vs 80.00%, P < 0.001). The positive rate of SASH1 protein expression was significantly higher in patients without lymph node metastasis than in those with lymph node metastasis (χ2 = 6.583, P < 0.05). Expression of SASH1 was associated with tumor differentiation and TNM stage in ESCC (both P < 0.05).
CONCLUSION: Down-regulation of SASH1 expression occurs in ESCC. SASH1 may be a novel tumor suppressor in ESCC and can be used as a molecular maker for the diagnosis and treatment of ESCC.
Collapse
|
18
|
Winer ES, Ingham RR, Castillo JJ. PCI-32765: a novel Bruton's tyrosine kinase inhibitor for the treatment of lymphoid malignancies. Expert Opin Investig Drugs 2012; 21:355-61. [PMID: 22300471 DOI: 10.1517/13543784.2012.656199] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION There has been a significant paradigm shift in the manner in which lymphoid malignancies are treated and managed. Treatment has been moving away from conventional chemotherapy and towards targeted therapy. The success of new classes of agents such as monoclonal antibodies, proteasome inhibitors and immunomodulatory derivatives has sparked further searches for novel pathways to inhibit. The Bruton's tyrosine kinase (Btk) pathway is a downstream mediator of the B-cell receptor (BCR) pathway, which is crucial in B-cell production and maintenance, and a potential therapeutic target. AREAS COVERED This review will summarize the current knowledge of the Btk pathway and its role in lymphoid malignancies. It will also discuss the present data about PCI-32765 in both the preclinical and clinical setting. EXPERT OPINION PCI-32765 is an oral irreversible Btk inhibitor with high potency and both preclinical and clinical activity in chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphoma (NHL). Phase I studies have demonstrated that it is well tolerated and has an excellent safety profile. Further studies are ongoing as a single agent and in combination with other targeted and conventional therapies. PCI-32765 is a very promising targeted therapy, and the data from these trials will ultimately decide its future role and success.
Collapse
Affiliation(s)
- Eric S Winer
- Division of Hematology/Oncology, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA.
| | | | | |
Collapse
|
19
|
Flores EN, García-Añoveros J. TRPML2 and the evolution of mucolipins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:221-8. [PMID: 21290298 DOI: 10.1007/978-94-007-0265-3_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
TRPML2, the polypeptide product of the gene Trpml2 (aka Mcoln2), is a member of the TRPML or mucolipin branch of the TRP super family of ion channels. Although no known agonists have been discovered, the wild type channel gives basal currents when heterologously expressed in Drosophila (S2) cells and is constitutively active in mammalian cells when bearing a cell degeneration-causing, proline to alanine substitution in the fifth trans-membrane domain. TRPML2 forms channels that are inwardly rectifying and permeable to Ca(+2), Na(+), and Fe(+2). Localization studies indicate TRPML2 is present in lysosomes, late endosomes, recycling endosomes and, at a lower level, the plasma membrane. Tissue and organ distribution of TRPML2 is solely reported through RT-PCR and it is uncertain which cell types express this channel. However, various studies suggest that lymphoid cells express TRPML2. Although the function of TRPML2 is not known, distribution and channel properties suggest it could play roles in calcium release from endolysosomes, perhaps to mediate calcium-dependent events such as vesicle fusion, or to release calcium from intracellular acidic stores. However, TRPML2 may also function in the plasma membrane and its abundance in vesicles of the endocytic pathaway might occur because its presence in the cell surface is regulated by endocytosis and exocytosis. An evolutionary analysis of Trpml2 and its relatives reveals that vertebrate and invertebrate chordates have only one Trpml gene, that Trpml1 and Trpml2 are common to vertebrates, and that Trpml3 is only found in tetrapods. Ray-finned fishes contain another isoform, which we term Trpml4 or Mcoln4 (and its product TRPML4). Trpml2 is next to Trpml3 in all tetrapod genomes except that of the frog Xenopus tropicalis and of the domesticated pig, which seems to lack most of the Trpml3 gene. This close linkage across species implies that it is maintained by selective pressure and suggests that the regulation of both genes is interdependent.
Collapse
Affiliation(s)
- Emma N Flores
- Departments of Anesthesiology, Physiology and Neurology, Northwestern University Institute for Neuroscience, Chicago, IL 60611, USA.
| | | |
Collapse
|
20
|
Abe K, Puertollano R. Role of TRP channels in the regulation of the endosomal pathway. Physiology (Bethesda) 2011; 26:14-22. [PMID: 21357899 DOI: 10.1152/physiol.00048.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Some members of the transient receptor potential (TRP) channel superfamily have proved to be essential in maintaining adequate ion homeostasis, signaling, and membrane trafficking in the endosomal pathway. The unique properties of the TRP channels confer cells the ability to integrate cytosolic and intraluminal stimuli and allow maintained and regulated release of Ca(2+) from endosomes and lysosomes.
Collapse
Affiliation(s)
- Ken Abe
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
21
|
LMO7 mediates cell-specific activation of the Rho-myocardin-related transcription factor-serum response factor pathway and plays an important role in breast cancer cell migration. Mol Cell Biol 2011; 31:3223-40. [PMID: 21670154 DOI: 10.1128/mcb.01365-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Serum response factor (SRF) is a ubiquitously expressed transcription factor that regulates cell-specific functions such as muscle development and breast cancer metastasis. The myocardin-related transcription factors (MRTFs), which are transcriptional coactivators mediating cell-specific functions of SRF, are also ubiquitously expressed. How MRTFs and SRF drive cell-specific transcription is still not fully understood. Here we show that LIM domain only 7 (LMO7) is a cell-specific regulator of MRTFs and plays an important role in breast cancer cell migration. LMO7 activates MRTFs by relieving actin-mediated inhibition in a manner that requires, and is synergistic with, Rho GTPase. Whereas Rho is required for LMO7 to activate full-length MRTFs that have three RPEL actin-binding motifs, the disruption of individual actin-RPEL interactions is sufficient to eliminate the Rho dependency and to allow the strong Rho-independent function of LMO7. Mechanistically, we show that LMO7 colocalizes with F-actin and reduces the G-actin/F-actin ratio via a Rho-independent mechanism. The knockdown of LMO7 in HeLa and MDA-MB-231 cells compromises both basal and Rho-stimulated MRTF activities and impairs the migration of MDA-MB-231 breast cancer cells. We also show that LMO7 is upregulated in the stroma of invasive breast carcinoma in a manner that correlates with the increased expression of SRF target genes that regulate muscle and actin cytoskeleton functions. Together, this study reveals a novel cell-specific mechanism regulating Rho-MRTF-SRF signaling and breast cancer cell migration and identifies a role for actin-RPEL interactions in integrating Rho and cell-specific signals to achieve both the synergistic and Rho-dependent activation of MRTFs.
Collapse
|
22
|
Dedeic Z, Cetera M, Cohen TV, Holaska JM. Emerin inhibits Lmo7 binding to the Pax3 and MyoD promoters and expression of myoblast proliferation genes. J Cell Sci 2011; 124:1691-702. [DOI: 10.1242/jcs.080259] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
X-linked Emery–Dreifuss muscular dystrophy (X-EDMD) is caused by mutations in the inner nuclear membrane protein emerin. Previous studies have shown that emerin binds to and inhibits the activity of LIM domain only 7 (Lmo7), a transcription factor that regulates the expression of genes implicated in X-EDMD. Here, we analyzed Lmo7 function in C2C12 myoblast differentiation and its regulation by emerin. We found that Lmo7 was required for proper myoblast differentiation. Lmo7-downregulated myoblasts exhibited reduced expression of Pax3, Pax7, Myf5 and MyoD, whereas overexpression of GFP–Lmo7 increased the expression of MyoD and Myf5. Upon myotube formation, Lmo7 shuttled from the nucleus to the cytoplasm, concomitant with reduced expression of MyoD, Pax3 and Myf5. Importantly, we show that Lmo7 bound the Pax3, MyoD and Myf5 promoters both in C2C12 myoblasts and in vitro. Because emerin inhibited Lmo7 activity, we tested whether emerin competed with the MyoD promoter for binding to Lmo7 or whether emerin sequestered promoter-bound Lmo7 to the nuclear periphery. Supporting the competition model, emerin binding to Lmo7 inhibited Lmo7 binding to and activation of the MyoD and Pax3 promoters. These findings support the hypothesis that the functional interaction between emerin and Lmo7 is crucial for temporally regulating the expression of key myogenic differentiation genes.
Collapse
Affiliation(s)
- Zinaida Dedeic
- University of Chicago Committee on Developmental Biology, 920 East 58th Street, Chicago IL 60637, USA
| | - Maureen Cetera
- University of Chicago Committee on Developmental Biology, 920 East 58th Street, Chicago IL 60637, USA
| | - Tatiana V. Cohen
- Children's National Medical Center, Center for Genetic Medicine, 111 Michigan Avenue, Washington DC 20010-2970, USA
| | - James M. Holaska
- University of Chicago Committee on Developmental Biology, 920 East 58th Street, Chicago IL 60637, USA
- Department of Medicine, Section of Cardiology, The University of Chicago, 947 East 58th Street, Chicago, IL 60637, USA
- Committee on Genetics, Genomics and Systems Biology, 5812 S. Ellis Street, Chicago IL 60637, USA
| |
Collapse
|
23
|
Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation. PLoS One 2010; 5:e14152. [PMID: 21152398 PMCID: PMC2994767 DOI: 10.1371/journal.pone.0014152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 10/25/2010] [Indexed: 12/26/2022] Open
Abstract
Background High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation. Principal Findings We have identified 7117 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Conclusions Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health.
Collapse
|
24
|
Uckun FM, Qazi S. Bruton's tyrosine kinase as a molecular target in treatment of leukemias and lymphomas as well as inflammatory disorders and autoimmunity. Expert Opin Ther Pat 2010; 20:1457-70. [DOI: 10.1517/13543776.2010.517750] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
25
|
Lev S, Zeevi DA, Frumkin A, Offen-Glasner V, Bach G, Minke B. Constitutive activity of the human TRPML2 channel induces cell degeneration. J Biol Chem 2010; 285:2771-82. [PMID: 19940139 PMCID: PMC2807332 DOI: 10.1074/jbc.m109.046508] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/19/2009] [Indexed: 01/01/2023] Open
Abstract
The mucolipin (TRPML) ion channel proteins represent a distinct subfamily of channel proteins within the transient receptor potential (TRP) superfamily of cation channels. Mucolipin 1, 2, and 3 (TRPML1, -2, and -3, respectively) are channel proteins that share high sequence homology with each other and homology in the transmembrane domain with other TRPs. Mutations in the TRPML1 protein are implicated in mucolipidosis type IV, whereas mutations in TRPML3 are found in the varitint-waddler mouse. The properties of the wild type TRPML2 channel are not well known. Here we show functional expression of the wild type human TRPML2 channel (h-TRPML2). The channel is functional at the plasma membrane and characterized by a significant inward rectification similar to other constitutively active TRPML mutant isoforms. The h-TRPML2 channel displays nonselective cation permeability, which is Ca(2+)-permeable and inhibited by low extracytosolic pH but not Ca(2+) regulated. In addition, constitutively active h-TRPML2 leads to cell death by causing Ca(2+) overload. Furthermore, we demonstrate by functional mutation analysis that h-TRPML2 shares similar characteristics and structural similarities with other TRPML channels that regulate the channel in a similar manner. Hence, in addition to overall structure, all three TRPML channels also share common modes of regulation.
Collapse
Affiliation(s)
- Shaya Lev
- From the Department of Medical Neurobiology and the Kühne Minerva Center for Studies of Visual Transduction, Faculty of Medicine of the Hebrew University, and
| | - David A. Zeevi
- the Department of Human Genetics, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Ayala Frumkin
- the Department of Human Genetics, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Vered Offen-Glasner
- the Department of Human Genetics, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Gideon Bach
- the Department of Human Genetics, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Baruch Minke
- From the Department of Medical Neurobiology and the Kühne Minerva Center for Studies of Visual Transduction, Faculty of Medicine of the Hebrew University, and
| |
Collapse
|
26
|
Samie MA, Grimm C, Evans JA, Curcio-Morelli C, Heller S, Slaugenhaupt SA, Cuajungco MP. The tissue-specific expression of TRPML2 (MCOLN-2) gene is influenced by the presence of TRPML1. Pflugers Arch 2010; 459:79-91. [PMID: 19763610 DOI: 10.1007/s00424-009-0716-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/12/2009] [Accepted: 08/14/2009] [Indexed: 11/29/2022]
Abstract
Mucolipidosis type IV is a lysosomal storage disorder caused by the loss or dysfunction of the mucolipin-1 (TRPML1) protein. It has been suggested that TRPML2 could genetically compensate (i.e., become upregulated) for the loss of TRPML1. We thus investigated this possibility by first studying the expression pattern of mouse TRPML2 and its basic channel properties using the varitint-waddler (Va) model. Here, we confirmed the presence of long variant TRPML2 (TRPML2lv) and short variant (TRPML2sv) isoforms. We showed for the first time that, heterologously expressed, TRPML2lv-Va is an active, inwardly rectifying channel. Secondly, we quantitatively measured TRPML2 and TRPML3 mRNA expressions in TRPML1-/- null and wild-type (Wt) mice. In wild-type mice, the TRPML2lv transcripts were very low while TRPML2sv and TRPML3 transcripts have predominant expressions in lymphoid and kidney organs. Significant reductions of TRPML2sv, but not TRPML2lv or TRPML3 transcripts, were observed in lymphoid and kidney organs of TRPML1-/- mice. RNA interference of endogenous human TRPML1 in HEK-293 cells produced a comparable decrease of human TRPML2 transcript levels that can be restored by overexpression of human TRPML1. Conversely, significant upregulation of TRPML2sv transcripts was observed when primary mouse lymphoid cells were treated with nicotinic acid adenine dinucleotide phosphate, or N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinoline sulfonamide, both known activators of TRPML1. In conclusion, our results indicate that TRPML2 is unlikely to compensate for the loss of TRPML1 in lymphoid or kidney organs and that TRPML1 appears to play a novel role in the tissue-specific transcriptional regulation of TRPML2.
Collapse
Affiliation(s)
- Mohammad A Samie
- Department of Biological Science, and Center for Applied, Biotechnology Studies, California State University Fullerton, 800 N State College Blvd, Fullerton, CA 92831, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Mohamed AJ, Yu L, Bäckesjö CM, Vargas L, Faryal R, Aints A, Christensson B, Berglöf A, Vihinen M, Nore BF, Smith CIE. Bruton's tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 2009; 228:58-73. [PMID: 19290921 DOI: 10.1111/j.1600-065x.2008.00741.x] [Citation(s) in RCA: 360] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bruton's agammaglobulinemia tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase important in B-lymphocyte development, differentiation, and signaling. Btk is a member of the Tec family of kinases. Mutations in the Btk gene lead to X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Activation of Btk triggers a cascade of signaling events that culminates in the generation of calcium mobilization and fluxes, cytoskeletal rearrangements, and transcriptional regulation involving nuclear factor-kappaB (NF-kappaB) and nuclear factor of activated T cells (NFAT). In B cells, NF-kappaB was shown to bind to the Btk promoter and induce transcription, whereas the B-cell receptor-dependent NF-kappaB signaling pathway requires functional Btk. Moreover, Btk activation is tightly regulated by a plethora of other signaling proteins including protein kinase C (PKC), Sab/SH3BP5, and caveolin-1. For example, the prolyl isomerase Pin1 negatively regulates Btk by decreasing tyrosine phosphorylation and steady state levels of Btk. It is intriguing that PKC and Pin1, both of which are negative regulators, bind to the pleckstrin homology domain of Btk. To this end, we describe here novel mutations in the pleckstrin homology domain investigated for their transforming capacity. In particular, we show that the mutant D43R behaves similar to E41K, already known to possess such activity.
Collapse
Affiliation(s)
- Abdalla J Mohamed
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Huddinge University Hospital, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ott EB, van den Akker NMS, Sakalis PA, Gittenberger-de Groot AC, Te Velthuis AJW, Bagowski CP. The lim domain only protein 7 is important in zebrafish heart development. Dev Dyn 2009; 237:3940-52. [PMID: 19035355 DOI: 10.1002/dvdy.21807] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The LIM domain only protein 7 (LMO7), a member of the PDZ and LIM domain-containing protein family is a candidate gene with possible roles in embryonic development and breast cancer progression. LMO7 has been linked to actin cytoskeleton organization through nectin/afadin and to cell-cell adhesion by means of E-cadherin/catenin. In addition, LMO7 has been shown to regulate transcription of the nuclear membrane protein Emerin and other muscle relevant genes. In this study, we used in situ hybridization to investigate LMO7 expression during embryonic development in three widely used vertebrate model species: the zebrafish, the chicken and the mouse. Our temporal and spatial gene expression analysis revealed both common and distinct patterns between these species. In mouse and chicken embryos we found expression in the outflow tract, the inflow tract, the pro-epicardial organ and the second heart field, structures highly important in the developing heart. Furthermore, gene knockdown experiments in zebrafish embryos resulted in severe defects in heart development with effects on the conduction system and on heart localization. In summary, we present here the first developmental study of LMO7. We reveal the temporal and spatial expression patterns of this important gene during mouse, chicken and fish development and our findings suggest essential functions for LMO7 during vertebrate heart development.
Collapse
Affiliation(s)
- Elisabeth B Ott
- Institute of Biology, Department of Molecular and Cellular Biology, University of Leiden, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Host biomarkers and biological pathways that are associated with the expression of experimental cerebral malaria in mice. Infect Immun 2008; 76:4518-29. [PMID: 18644885 DOI: 10.1128/iai.00525-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cerebral malaria (CM) is a primary cause of malaria-associated deaths among young African children. Yet no diagnostic tools are available that could be used to predict which of the children infected with Plasmodium falciparum malaria will progress to CM. We used the Plasmodium berghei ANKA murine model of experimental cerebral malaria (ECM) and high-density oligonucleotide microarray analyses to identify host molecules that are strongly associated with the clinical symptoms of ECM. Comparative expression analyses were performed with C57BL/6 mice, which have an ECM-susceptible phenotype, and with mice that have ECM-resistant phenotypes: CD8 knockout and perforin knockout mice on the C57BL/6 background and BALB/c mice. These analyses allowed the identification of more than 200 host molecules (a majority of which had not been identified previously) with altered expression patterns in the brain that are strongly associated with the manifestation of ECM. Among these host molecules, brain samples from mice with ECM expressed significantly higher levels of p21, metallothionein, and hemoglobin alpha1 proteins by Western blot analysis than mice unaffected by ECM, suggesting the possible utility of these molecules as prognostic biomarkers of CM in humans. We suggest that the higher expression of hemoglobin alpha1 in the brain may be associated with ECM and could be a source of excess heme, a molecule that is considered to trigger the pathogenesis of CM. Our studies greatly enhance the repertoire of host molecules for use as diagnostics and novel therapeutics in CM.
Collapse
|
31
|
The varitint-waddler mouse phenotypes and the TRPML3 ion channel mutation: cause and consequence. Pflugers Arch 2008; 457:463-73. [PMID: 18504603 DOI: 10.1007/s00424-008-0523-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 04/22/2008] [Indexed: 10/24/2022]
Abstract
The transient receptor potential mucolipins (TRPMLs) are the most recently discovered subfamily of TRP ion channel proteins. Positional cloning approach has identified two mutations in the TRPML3 (Mcoln3) gene that cause the varitint-waddler mouse phenotypes. Short for variable tint (diluted coat color), the varitint-waddler consists two phenotypes Va and Va ( J ). The mutation associated with the Va phenotype is an alanine to proline substitution at position 419 (A419P) within the predicted fifth transmembrane (TM5) domain of TRPML3. The second Va ( J ) mouse phenotype arose spontaneously from an isoleucine to threonine substitution at position 362 (I362T) that is proximal to the predicted TM3 domain in addition to the existing A419P mutation on TM5. Mice with the Va and Va ( J ) mutations exhibit a spectrum of disease phenotypes from diluted coat color to auditory and vestibular problems, depending on which alleles are present. It has been over 5 years since the discovery of these TRPML3 mutations, and it was just recently that the nature of these mutations has been characterized. In this review, we discuss the molecular and cell physiological effects of the two distinct TRPML3 mutations. We reveal the effects of proline substitution on transmembrane domain structure and channel function and discuss how the Va mutation confers its cytotoxicity, while the Va ( J ) mutation results in an apparent rescue phenotype. Finally, we briefly tackle molecular strategies that have been employed to neutralize the cytotoxic effect and constitutive channel activity of the Va mutation.
Collapse
|
32
|
Karacsonyi C, Miguel AS, Puertollano R. Mucolipin-2 localizes to the Arf6-associated pathway and regulates recycling of GPI-APs. Traffic 2007; 8:1404-14. [PMID: 17662026 DOI: 10.1111/j.1600-0854.2007.00619.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In mammals, the mucolipin family includes three members mucolipin-1, mucolipin-2, and mucolipin-3 (MCOLN1-3). While mutations in MCOLN1 and MCOLN3 have been associated with mucolipidosis type IV and the varitint-waddler mouse phenotype, respectively, little is known about the function and cellular distribution of MCOLN2. Here we show that MCOLN2 traffics via the Arf6-associated pathway and colocalizes with major histocompatibility protein class I (MHCI) and glycosylphosphatidylinositol-anchored proteins (GPI-APs), such as CD59 in both vesicles and long tubular structures. Expression of a constitutive active Arf6 mutant, or activation of endogenous Arf6 by transfection with EFA6 or treatment with aluminum fluoride, caused accumulation of MCOLN2 in enlarged vacuoles that also contain MHCI and CD59. In addition, overexpression of MCOLN2 promoted efficient activation of Arf6 in vivo, thus suggesting that MCOLN2 may have a role in the traffic of cargo through the Arf6-associated pathway. In support of this we found that overexpression of a MCOLN2 inactive mutant decreases recycling of CD59 to the plasma membrane. Therefore, our results indicate that MCOLN2 localizes to the Arf6-regulated pathway and regulates sorting of GPI-APs.
Collapse
Affiliation(s)
- Claudia Karacsonyi
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
33
|
Grant JE, Hu J, Liu T, Jain MR, Elkabes S, Li H. Post-translational modifications in the rat lumbar spinal cord in experimental autoimmune encephalomyelitis. J Proteome Res 2007; 6:2786-91. [PMID: 17567059 PMCID: PMC2435290 DOI: 10.1021/pr070013c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Changes in protein methylation, citrullination, and phosphorylation during experimental autoimmune encephalomyelitis, a rodent model of multiple sclerosis, were evaluated using isobaric tags for relative and absolute quantification analysis of peptides produced from normal and diseased rat lumbar spinal cords. We observed alterations in the post-translational modification of key proteins regulating signal transduction and axonal integrity. Dephosphorylation of discrete serine residues within the neurofilament heavy subunit C-terminus was observed. We report for the first time elevated citrullination of Arg27 in glial fibrillary acidic protein, which may contribute to the pathophysiology of astrocytes.
Collapse
Affiliation(s)
- Jennifer E Grant
- Center for Advanced Proteomics Research and Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07103, USA
| | | | | | | | | | | |
Collapse
|
34
|
Rimkus C, Martini M, Friederichs J, Rosenberg R, Doll D, Siewert JR, Holzmann B, Janssen KP. Prognostic significance of downregulated expression of the candidate tumour suppressor gene SASH1 in colon cancer. Br J Cancer 2006; 95:1419-23. [PMID: 17088907 PMCID: PMC2360597 DOI: 10.1038/sj.bjc.6603452] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The gene SASH1 (SAM- and SH3-domain containing 1) has originally been identified as a candidate tumour suppressor gene in breast cancer. SASH1 is a member of the SH3-domain containing expressed in lymphocytes (SLY1) gene family that encodes signal adapter proteins composed of several protein–protein interaction domains. The other members of this family are expressed mainly in haematopoietic cells, whereas SASH1 shows ubiquitous expression. We have used quantitative real-time PCR to investigate the expression of SASH1 in tissue samples from 113 patients with colon carcinoma, and compared the expression with 15 normal colon tissue samples. Moreover, nine benign adenomas and 10 liver metastases were analysed. Expression levels of SASH1 were strongly and significantly reduced in colon cancer of UICC stage II, III, and IV, as well as in liver metastases. Moreover, SASH1 was also found to be downregulated on protein levels by immunoblot analysis. However, SASH1 expression was not significantly deregulated in precancerous adenomas and in earlier stage lesions (UICC I). Overall, 48 out of 113 primary colon tumours showed SASH1 expression that was at least 10-fold lower than the levels found in normal colon tissue. Downregulation of SASH1 expression was correlated with the formation of metachronous distant metastasis, and multivariate analysis identified SASH1 downregulation as an independent negative prognostic parameter for patient survival. This study demonstrates for the first time that expression of a member of the SLY1-gene family has prognostic significance in human cancer.
Collapse
Affiliation(s)
- C Rimkus
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, Munich81675, Germany
| | - M Martini
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, Munich81675, Germany
| | - J Friederichs
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, Munich81675, Germany
| | - R Rosenberg
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, Munich81675, Germany
| | - D Doll
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, Munich81675, Germany
| | - J R Siewert
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, Munich81675, Germany
| | - B Holzmann
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, Munich81675, Germany
| | - K P Janssen
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, Munich81675, Germany
- E-mail:
| |
Collapse
|
35
|
Lindvall JM, Blomberg KEM, Berglöf A, Smith CIE. Distinct gene expression signature in Btk-defective T1 B-cells. Biochem Biophys Res Commun 2006; 346:461-9. [PMID: 16764821 DOI: 10.1016/j.bbrc.2006.05.146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 05/19/2006] [Indexed: 11/20/2022]
Abstract
Bruton's tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase important for B-lymphocyte maturation. Mutations in Btk give rise to the primary immunodeficiency disease X-linked agammaglobulinemia (XLA) in man and X-linked immunodeficiency (Xid) in mice. Recent studies have subdivided the mouse immature, or transitional, B-cells into two distinct subsets according to their respective surface markers. Transitional type 1 (T1) and transitional type 2 (T2) cells are also located in distinct anatomic locations. Based on a limited number of markers it has previously been reported that the earliest phenotypic sign of Btk deficiency is manifested at the T2 stage in mice. Here, we report on distinct genome-wide transcriptomic signature differences found in T1 B-lymphocytes from Btk-defective compared to normal mice and demonstrate that Btk deficiency is visible already at this stage.
Collapse
Affiliation(s)
- Jessica M Lindvall
- Clinical Research Center, Karolinska University Hospital, Huddinge, Sweden
| | | | | | | |
Collapse
|