1
|
Shi C, Tian Z, Yan J, Zhang M, Sukhumalchandra P, Chang E, Yang G, You J, Cui M, Shi Q, Kerros C, Philips A, Qiao N, Torikai H, Patchametla S, Sergeeva A, St John L, He H, Wiederschain D, Lee BH, Paulus GLC, Zha D, Molldrem J, Alatrash G. Immunotherapy targeting a leader sequence cathepsin G-derived peptide. Leukemia 2025; 39:888-898. [PMID: 39939820 PMCID: PMC11976275 DOI: 10.1038/s41375-025-02520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/22/2024] [Accepted: 01/22/2025] [Indexed: 02/14/2025]
Abstract
Myeloid azurophil granules provide a rich source of intracellular leukemia antigens. Cathepsin G (CG) is a serine protease that has higher expression in acute myeloid leukemia (AML) blasts in comparison to normal myeloid progenitors. Based on the unique biology of HLA-A*0201 (HLA-A2), in which presentation of leader sequence (LS)-derived peptides is favored, we focused on the LS-CG-derived peptide CG1 (FLLPTGAEA). We previously detected CG1/HLA-A2 complexes on the surface of primary HLA-A2+ AML blasts and cell lines, and immunity targeting CG1/HLA-A2 in leukemia patients. T cell receptor (TCR)-mimic (m) antibodies are immunotherapeutic antibodies that target peptide-HLA (pHLA) complexes. Here we report on the engineering, preclinical efficacy, and safety evaluation of a novel CG1/HLA-A2-targeting, T cell-engager, bispecific antibody (CG1/A2xCD3). CG1/A2xCD3 showed high binding affinity to CG1/HLA-A2 monomers, CD3-Fc fusion protein, and to AML and T cells, with potent killing of HLA-A2+ primary AML and cell lines in vitro and in vivo. This correlated with both tumor- and CG1/A2xCD3-dependent T cell activation and cytokine secretion. Lastly, CG1/A2xCD3 had no activity against normal bone marrow. Together, these results support the targeting of LS-derived peptides and the continued clinical development of CG1/A2xCD3 in the setting of AML.
Collapse
MESH Headings
- Humans
- Animals
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Immunotherapy/methods
- Mice
- Cathepsin G/immunology
- Cathepsin G/chemistry
- HLA-A2 Antigen/immunology
- Peptides/immunology
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/therapeutic use
- Protein Sorting Signals
- T-Lymphocytes/immunology
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chunhua Shi
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ze Tian
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Yan
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mao Zhang
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pariya Sukhumalchandra
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edward Chang
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guojun Yang
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junping You
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meng Cui
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qing Shi
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Celine Kerros
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne Philips
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Na Qiao
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroki Torikai
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sathvik Patchametla
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Sergeeva
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisa St John
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Helen He
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - Dongxing Zha
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey Molldrem
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Gheath Alatrash
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Chanteloube S, Ya C, Le Provost G, Berthier A, Dieryckx C, Vadon-Le Goff S, Nadal F, Fromy B, Debret R. A noncanonical-GPRC5A signaling regulates keratinocyte adhesion and migration by nuclear translocation. FASEB J 2025; 39:e70323. [PMID: 39812615 DOI: 10.1096/fj.202400122r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/30/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
G-Protein Coupled Receptor, Class C, Group 5, Member A (GPRC5A) has been extensively studied in lung and various epithelial cancers. Nevertheless, its role in the skin remains to be elucidated. In this study, we sought to investigate the function of this receptor in skin biology. Our research demonstrated that its expression responds to mechanical substrate changes in human primary keratinocytes. Furthermore, we observed the reinduction of GPRC5A during wound healing at the leading edges in an ex vivo burn model, coinciding with the translocation of its C-terminal region into the nucleus. We identified the cleavage site of GPRC5A by N-TAILS analysis, and cathepsin G was characterized as the protease responsible for proteolysis in cultured cells. In order to gain a deeper understanding of the role of GPRC5A in keratinocytes, we performed a GPRC5A knockdown in N/TERT-1 cells using short-hairpin RNA. Our findings indicate a strong association between GPRC5A and adhesion regulation pathways. Additionally, our results demonstrate that GPRC5AKD enhances cell adhesion while reducing cell migration and differentiation. It is noteworthy that these effects were reversed by the addition of a recombinant polypeptide that mimics the C-terminal region of GPRC5A. In conclusion, our study reveals that GPRC5A plays an unexpected role in regulating keratinocyte behavior, with implications for its C-terminal region translocation into the nucleus. These results offer promising avenues for future research in the field of wound healing.
Collapse
Affiliation(s)
- Sarah Chanteloube
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305 CNRS, University Lyon 1, Lyon Cedex 07, France
| | - Choua Ya
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305 CNRS, University Lyon 1, Lyon Cedex 07, France
- Isispharma Dermatologie, Immeuble Le Dauphiné Part-Dieu, Lyon, France
| | - Gabrielle Le Provost
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305 CNRS, University Lyon 1, Lyon Cedex 07, France
| | - Aurore Berthier
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305 CNRS, University Lyon 1, Lyon Cedex 07, France
| | - Cindy Dieryckx
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305 CNRS, University Lyon 1, Lyon Cedex 07, France
| | - Sandrine Vadon-Le Goff
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305 CNRS, University Lyon 1, Lyon Cedex 07, France
| | - Florence Nadal
- Isispharma Dermatologie, Immeuble Le Dauphiné Part-Dieu, Lyon, France
| | - Bérengère Fromy
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305 CNRS, University Lyon 1, Lyon Cedex 07, France
| | - Romain Debret
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305 CNRS, University Lyon 1, Lyon Cedex 07, France
| |
Collapse
|
3
|
Li B, Zhang J, He T, Yuan H, Wu H, Wang P, Wu C. PRR adjuvants restrain high stability peptides presentation on APCs. eLife 2024; 13:RP99173. [PMID: 39475096 PMCID: PMC11524579 DOI: 10.7554/elife.99173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Adjuvants can affect APCs function and boost adaptive immune responses post-vaccination. However, whether they modulate the specificity of immune responses, particularly immunodominant epitope responses, and the mechanisms of regulating antigen processing and presentation remain poorly defined. Here, using overlapping synthetic peptides, we screened the dominant epitopes of Th1 responses in mice post-vaccination with different adjuvants and found that the adjuvants altered the antigen-specific CD4+ T-cell immunodominant epitope hierarchy. MHC-II immunopeptidomes demonstrated that the peptide repertoires presented by APCs were significantly altered by the adjuvants. Unexpectedly, no novel peptide presentation was detected after adjuvant treatment, whereas peptides with high binding stability for MHC-II presented in the control group were missing after adjuvant stimulation, particularly in the MPLA- and CpG-stimulated groups. The low-stability peptide present in the adjuvant groups effectively elicited robust T-cell responses and formed immune memory. Collectively, our results suggest that adjuvants (MPLA and CpG) inhibit high-stability peptide presentation instead of revealing cryptic epitopes, which may alter the specificity of CD4+ T-cell-dominant epitope responses. The capacity of adjuvants to modify peptide-MHC (pMHC) stability and antigen-specific T-cell immunodominant epitope responses has fundamental implications for the selection of suitable adjuvants in the vaccine design process and epitope vaccine development.
Collapse
Affiliation(s)
- Bin Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| | - Jin Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| | - Taojun He
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| | - Hanmei Yuan
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| | - Hui Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| |
Collapse
|
4
|
Yakupu A, Zhang D, Guan H, Jiang M, Dong J, Niu Y, Tang J, Liu Y, Ma X, Lu S. Single-cell analysis reveals melanocytes may promote inflammation in chronic wounds through cathepsin G. Front Genet 2023; 14:1072995. [PMID: 36755572 PMCID: PMC9900029 DOI: 10.3389/fgene.2023.1072995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
During acute wound (AW) healing, a series of proper communications will occur between different epidermal cells at precise temporal stages to restore the integrity of the skin. However, it is still unclear what variation happened in epidermal cell interaction in the chronic wound environment. To provide new insights into chronic wound healing, we reconstructed the variations in the epidermal cell-cell communication network that occur in chronic wound healing via single-cell RNA-seq (scRNA-seq) data analysis. We found that the intricate cellular and molecular interactions increased in pressure ulcer (PU) compared to AW, especially the PARs signaling pathways were significantly upregulated. It shows that the PARs signaling pathways' main source was melanocytes and the CTSG-F2RL1 ligand-receptor pairs were its main contributor. Cathepsin G (CatG or CTSG) is a serine protease mainly with trypsin- and chymotrypsin-like specificity. It is synthesized and secreted by some immune or non-immune cells. Whereas, it has not been reported that melanocytes can synthesize and secrete the CTSG. F2R Like Trypsin Receptor 1 (F2RL1) is a member of proteinase-activated receptors (PARs) that are irreversibly activated by proteolytic cleavage and its stimulation can promote inflammation and inflammatory cell infiltration. In this study, we found that melanocytes increased in pressure ulcers, melanocytes can synthesize and secrete the CTSG and may promote inflammation in chronic wounds through CTSG-F2RL1 pairs, which may be a novel potential target and a therapeutic strategy in the treatment of chronic wounds.
Collapse
Affiliation(s)
- Aobuliaximu Yakupu
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Di Zhang
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haonan Guan
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Minfei Jiang
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiaoyun Dong
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiwen Niu
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiajun Tang
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingkai Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xian Ma
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Xian Ma, ; Shuliang Lu,
| | - Shuliang Lu
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Xian Ma, ; Shuliang Lu,
| |
Collapse
|
5
|
Burster T, Knippschild U, Molnár F, Zhanapiya A. Cathepsin G and its Dichotomous Role in Modulating Levels of MHC Class I Molecules. Arch Immunol Ther Exp (Warsz) 2020; 68:25. [PMID: 32815043 DOI: 10.1007/s00005-020-00585-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/11/2020] [Indexed: 12/21/2022]
Abstract
Cathepsin G (CatG) is involved in controlling numerous processes of the innate and adaptive immune system. These features include the proteolytic activity of CatG and play a pivotal role in alteration of chemokines as well as cytokines, clearance of exogenous and internalized pathogens, platelet activation, apoptosis, and antigen processing. This is in contrast to the capability of CatG acting in a proteolytic-independent manner due to the net charge of arginine residues in the CatG sequence which interferes with bacteria. CatG is a double-edged sword; CatG is also responsible in pathophysiological conditions, such as autoimmunity, chronic pulmonary diseases, HIV infection, tumor progression and metastasis, photo-aged human skin, Papillon-Lefèvre syndrome, and chronic inflammatory pain. Here, we summarize the latest findings for functional responsibilities of CatG in immunity, including bivalent regulation of major histocompatibility complex class I molecules, which underscore an additional novel role of CatG within the immune system.
Collapse
Affiliation(s)
- Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan, 010000, Kazakhstan.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, 89081, Ulm, Germany
| | - Ferdinand Molnár
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan, 010000, Kazakhstan
| | - Anuar Zhanapiya
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan, 010000, Kazakhstan
| |
Collapse
|
6
|
Zamolodchikova TS, Tolpygo SM, Svirshchevskaya EV. Cathepsin G-Not Only Inflammation: The Immune Protease Can Regulate Normal Physiological Processes. Front Immunol 2020; 11:411. [PMID: 32194574 PMCID: PMC7062962 DOI: 10.3389/fimmu.2020.00411] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Tatyana S Zamolodchikova
- Physiology of Motivation Laboratory, P. K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - Svetlana M Tolpygo
- Physiology of Motivation Laboratory, P. K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - Elena V Svirshchevskaya
- Immunology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
7
|
Orchestration of Adaptive T Cell Responses by Neutrophil Granule Contents. Mediators Inflamm 2019; 2019:8968943. [PMID: 30983883 PMCID: PMC6431490 DOI: 10.1155/2019/8968943] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/28/2019] [Accepted: 02/06/2019] [Indexed: 01/05/2023] Open
Abstract
Neutrophils are the most abundant leukocytes in peripheral blood and respond rapidly to danger, infiltrating tissues within minutes of infectious or sterile injury. Neutrophils were long thought of as simple killers, but now we recognise them as responsive cells able to adapt to inflammation and orchestrate subsequent events with some sophistication. Here, we discuss how these rapid responders release mediators which influence later adaptive T cell immunity through influences on DC priming and directly on the T cells themselves. We consider how the release of granule contents by neutrophils—through NETosis or degranulation—is one way in which the innate immune system directs the phenotype of the adaptive immune response.
Collapse
|
8
|
Class II MHC antigen processing in immune tolerance and inflammation. Immunogenetics 2018; 71:171-187. [PMID: 30421030 DOI: 10.1007/s00251-018-1095-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
Presentation of peptide antigens by MHC-II proteins is prerequisite to effective CD4 T cell tolerance to self and to recognition of foreign antigens. Antigen uptake and processing pathways as well as expression of the peptide exchange factors HLA-DM and HLA-DO differ among the various professional and non-professional antigen-presenting cells and are modulated by cell developmental state and activation. Recent studies have highlighted the importance of these cell-specific factors in controlling the source and breadth of peptides presented by MHC-II under different conditions. During inflammation, increased presentation of selected self-peptides has implications for maintenance of peripheral tolerance and autoimmunity.
Collapse
|
9
|
Interleukin-1 Beta-A Friend or Foe in Malignancies? Int J Mol Sci 2018; 19:ijms19082155. [PMID: 30042333 PMCID: PMC6121377 DOI: 10.3390/ijms19082155] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/14/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
Interleukin-1 beta (IL-1β) is induced by inflammatory signals in a broad number of immune cell types. IL-1β (and IL-18) are the only cytokines which are processed by caspase-1 after inflammasome-mediated activation. This review aims to summarize current knowledge about parameters of regulation of IL-1β expression and its multi-facetted role in pathophysiological conditions. IL-1 signaling activates innate immune cells including antigen presenting cells, and drives polarization of CD4+ T cells towards T helper type (Th) 1 and Th17 cells. Therefore, IL-1β has been attributed a largely beneficial role in resolving acute inflammations, and by initiating adaptive anti-tumor responses. However, IL-1β generated in the course of chronic inflammation supports tumor development. Furthermore, IL-1β generated within the tumor microenvironment predominantly by tumor-infiltrating macrophages promotes tumor growth and metastasis via different mechanisms. These include the expression of IL-1 targets which promote neoangiogenesis and of soluble mediators in cancer-associated fibroblasts that evoke antiapoptotic signaling in tumor cells. Moreover, IL-1 promotes the propagation of myeloid-derived suppressor cells. Using genetic mouse models as well as agents for pharmacological inhibition of IL-1 signaling therapeutically applied for treatment of IL-1 associated autoimmune diseases indicate that IL-1β is a driver of tumor induction and development.
Collapse
|
10
|
Pacheco-Martelo V, Roldán-Vasco S. Enzymes and cytokines disease in total hip arthroplasty: promoters of immune loosening. REVISTA DE LA FACULTAD DE MEDICINA 2018. [DOI: 10.15446/revfacmed.v66n3.61525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Introducción. Una de las causas más importantes de falla de la prótesis de cadera lo constituye el fenómeno de aflojamiento, el cual se relaciona con la liberación de enzimas mediada por citocinas y produce la lisis del hueso que soporta el implante.Objetivo. Describir los mecanismos de interacción biológica de las moléculas promotoras del aflojamiento de la prótesis total de cadera que con mayor frecuencia están presentes en el proceso.Materiales y métodos. Se realizó una búsqueda de artículos originales y casos clínicos en las bases de datos PubMed y Scopus, sin límite de fecha de publicación, utilizando los términos MeSH “hip prosthesis loosening”, “aseptic loosening”, “cytokines” y “hip arthroplasty failure”. La extracción de datos se hizo mediante la lectura de 250 estudios, de los cuales se seleccionaron 66 para fines de redacción.Resultados. Los autores describen las moléculas más representativas implicadas en el aflojamiento de la prótesis de cadera, además se presentan las interacciones entre ellas.Conclusiones. Enzimas y citocinas han sido ampliamente estudiadas por cuatro décadas, aunque sus mecanismos de interacción son poco conocidos. Los autores proponen un mecanismo de interacción, proceso que podría denominarse “enfermedad de las enzimas y citocinas” o “aflojamiento inmunológico”.
Collapse
|
11
|
Woo SM, Min KJ, Seo SU, Kim S, Park JW, Song DK, Lee HS, Kim SH, Kwon TK. Up-regulation of 5-lipoxygenase by inhibition of cathepsin G enhances TRAIL-induced apoptosis through down-regulation of survivin. Oncotarget 2017; 8:106672-106684. [PMID: 29290980 PMCID: PMC5739765 DOI: 10.18632/oncotarget.22508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/01/2017] [Indexed: 01/04/2023] Open
Abstract
Cathepsin G is a serine protease secreted from activated neutrophils, it has important roles in inflammation and immune response. Moreover, cathepsin G promotes tumor cell-cell adhesion and migration in cancer cells. In this study, we investigated whether inhibition of cathepsin G could sensitize TRAIL-mediated apoptosis in cancer cells. An inhibitor of cathepsin G [Cathepsin G inhibitor I (Cat GI); CAS 429676-93-7] markedly induced TRAIL-mediated apoptosis in human renal carcinoma (Caki, ACHN, and A498), lung cancer (A549) and cervical cancer (Hela) cells. In contrast, combined treatment with Cat GI and TRAIL had no effect on apoptosis in normal cells [mesangial cell (MC) and human skin fibroblast (HSF)]. Cat GI induced down-regulation of survivin expression at the post-translational level, and overexpression of survivin markedly blocked apoptosis induced by combined treatment with Cat GI plus TRAIL. Interestingly, Cat GI induced down-regulation of survivin via 5-lipoxygenase (5-LOX)-mediated reactive oxygen species (ROS) production. Inhibition of 5-LOX by gene silencing (siRNA) or a pharmacological inhibitor of 5-LOX (zileuton) markedly attenuated combined treatment-induced apoptosis. Taken together, our results indicate that inhibition of cathepsin G sensitizes TRAIL-induced apoptosis through 5-LOX-mediated down-regulation of survivin expression.
Collapse
Affiliation(s)
- Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Jong-Wook Park
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Dae Kyu Song
- Department of Physiology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, South Korea
| | - Sang Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| |
Collapse
|
12
|
Genes differentially expressed by methylprednisolone in vivo in CD4 T lymphocytes from multiple sclerosis patients: potential biomarkers. THE PHARMACOGENOMICS JOURNAL 2016; 18:98-105. [PMID: 27670768 DOI: 10.1038/tpj.2016.71] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/15/2016] [Accepted: 06/23/2016] [Indexed: 12/17/2022]
Abstract
Intravenous methylprednisolone (IVMP) is the gold standard treatment in acute relapses of multiple sclerosis. Knowing the response to IVMP in advance could facilitate earlier selection of patients for subsequent courses of therapy. However, molecular mechanisms and changes in gene expression induced by methylprednisolone remain unknown. The aim of the study was to identify in vivo differentially expressed genes in relapsing-remitting multiple sclerosis patients after 3-6 days of treatment with IVMP. For this purpose, whole-genome transcription profiling of CD4+ T lymphocytes was performed before and after treatment with IVMP in 8 relapsing-remitting multiple sclerosis patients during relapse using Human GE 4x44K v2 microarrays. Differentially expressed genes were identified using a paired t test on GeneSpring v13.0 software. A P-value <0.001 and a twofold change were considered significant. Microarray data were confirmed using real-time PCR. Microarray revealed changes in gene expression: four genes were downregulated (B3GNT3, ZNF683, IFNG and TNF) and seven upregulated (DEFA4, CTSG, DEFA8P, AZU1, MPO, ELANE and PRTN3). Pathway analysis revealed the transforming growth factor-β signaling pathway to be affected. Comparison with previously published data on in vitro methylprednisolone-regulated genes showed that SMAD7, TNF and CHI3L1 were also downregulated in vivo in relapsing-remitting multiple sclerosis patients. In summary, we performed the first in vivo transcriptome analysis in CD4+ T lymphocytes before and after the treatment with IVMP in patients with multiple sclerosis. Identification of differentially expressed genes in patients receiving IVMP could improve our understanding of the molecular mechanisms underlying the therapeutic effects of IVMP and highlight potential biomarkers of the response to IVMP.
Collapse
|
13
|
Collado JA, Guitart C, Ciudad MT, Alvarez I, Jaraquemada D. The Repertoires of Peptides Presented by MHC-II in the Thymus and in Peripheral Tissue: A Clue for Autoimmunity? Front Immunol 2013; 4:442. [PMID: 24381570 PMCID: PMC3865459 DOI: 10.3389/fimmu.2013.00442] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/26/2013] [Indexed: 11/13/2022] Open
Abstract
T-cell tolerance to self-antigens is established in the thymus through the recognition by developing thymocytes of self-peptide-MHC complexes and induced and maintained in the periphery. Efficient negative selection of auto-reactive T cells in the thymus is dependent on the in situ expression of both ubiquitous and tissue-restricted self-antigens and on the presentation of derived peptides. Weak or inadequate intrathymic expression of self-antigens increases the risk to generate an autoimmune-prone T-cell repertoire. Indeed, even small changes of self-antigen expression in the thymus affect negative selection and increase the predisposition to autoimmunity. Together with other mechanisms, tolerance is maintained in the peripheral lymphoid organs via the recognition by mature T cells of a similar set of self-peptides in homeostatic conditions. However, non-lymphoid peripheral tissue, where organ-specific autoimmunity takes place, often have differential functional processes that may lead to the generation of epitopes that are absent or non-presented in the thymus. These putative differences between peptides presented by MHC molecules in the thymus and in peripheral tissues might be a major key to the initiation and maintenance of autoimmune conditions.
Collapse
Affiliation(s)
- Javier A Collado
- Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Carolina Guitart
- Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - M Teresa Ciudad
- Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Iñaki Alvarez
- Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Dolores Jaraquemada
- Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona , Spain
| |
Collapse
|
14
|
Stoeckle C, Quecke P, Rückrich T, Burster T, Reich M, Weber E, Kalbacher H, Driessen C, Melms A, Tolosa E. Cathepsin S dominates autoantigen processing in human thymic dendritic cells. J Autoimmun 2012; 38:332-43. [PMID: 22424724 DOI: 10.1016/j.jaut.2012.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 02/25/2012] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
Abstract
The interaction of developing thymocytes with peptide-MHC complexes on thymic antigen presenting cells (APC) is crucial for T cell development, both for positive selection of "useful" thymocytes as well as negative selection of autoreactive thymocytes to prevent autoimmunity. The peptides presented on MHC II molecules are generated by lysosomal proteases such as the cathepsins. At the same time, lysosomal proteases will also destroy other potential T cell epitopes from self-antigens. This will lead to a lack of presentation on negatively selecting thymic antigen presenting cells and consequently, escape of autoreactive T cells recognizing these epitopes. In order to understand the processes that govern generation or destruction of self-epitopes in thymic APC, we studied the antigen processing machinery and epitope processing in the human thymus. We find that each type of thymic APC expresses a different signature of lysosomal proteases, providing indirect evidence that positive and negative selection of CD4(+) T cells might occur on different sets of peptides, in analogy to what has been proposed for CD8(+) T cells. We also find that myeloid dendritic cells (DC) are more efficient in processing autoantigen than plasmacytoid DC. In addition, we observed that cathepsin S plays a central role in processing of the autoantigens myelin basic protein and proinsulin in thymic dendritic cells. Cathepsin S destroyed a number of known T cell epitopes, which would be expected to result in lack of presentation and consequently, escape of autoreactive T cells. Cathepsin S therefore appears to be an important factor that influences selection of autoreactive T cells.
Collapse
Affiliation(s)
- Christina Stoeckle
- Hertie Institute for Clinical Brain Research, University of Tuebingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Reich M, Zou F, Sieńczyk M, Oleksyszyn J, Boehm BO, Burster T. Invariant chain processing is independent of cathepsin variation between primary human B cells/dendritic cells and B-lymphoblastoid cells. Cell Immunol 2011; 269:96-103. [PMID: 21543057 DOI: 10.1016/j.cellimm.2011.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/16/2011] [Accepted: 03/13/2011] [Indexed: 01/01/2023]
Abstract
As part of the endocytic antigen processing pathway, proteolytic cleavage of the invariant chain (Ii) is important for the generation of class II-associated invariant chain peptide (CLIP). CLIP remains associated with the major histocompatibility complex (MHC) class II molecule to prevent premature loading of antigenic peptides. Cysteine proteases, such as Cathepsin S (CatS), CatL, or CatV, play a pivotal role in the final stage of Ii degradation depending on the cell type studied. Less is known regarding the early stages of Ii processing. We therefore explored whether the serine protease CatG is involved in the initial step of Ii degradation in primary antigen presenting cells (APC), since the cathepsin distribution differs between primary APC and cell lines. While primary human B cells and dendritic cells (DC) do harbor CatG, this protease is absent in B-lymphoblastoid cells (BLC) or monocyte-derived DC generated in vitro. In addition, other proteases, such as CatC, CatL, and the asparagine endoprotease (AEP), are active in BLC and monocyte-derived DC. Here we demonstrate that CatG progressively degraded Ii in vitro resulting in several intermediates. However, pharmacological inhibition of CatG in primary B cells and DC did not alter Ii processing, indicating that CatG is dispensable in Ii degradation. Interestingly, stalling of cysteine proteases by inhibition in BLC vs. primary B cells and DC did not result in any differences in the generation of distinct Ii intermediates between the cells tested, suggesting that Ii processing is independent of the cathepsin variation within professional human APC.
Collapse
Affiliation(s)
- Michael Reich
- Division of Endocrinology and Diabetes, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Stoeckle C, Tolosa E. Antigen processing and presentation in multiple sclerosis. Results Probl Cell Differ 2010; 51:149-72. [PMID: 19582405 DOI: 10.1007/400_2009_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
CD4(+) T cells play a central role in the pathogenesis of multiple sclerosis (MS). Generation, activation and effector function of these cells crucially depends on their interaction with MHC II-peptide complexes displayed by antigen presenting cells (APC). Processing and presentation of self antigens by different APC therefore influences the disease course at all stages. Selection by thymic APC leads to the generation of autoreactive T cells, which can be activated by peripheral APC. Reactivation by central nervous system APC leads to the initiation of the inflammatory response resulting in demyelination. In this review we will focus on how MHC class II antigenic epitopes are created by different APC from the thymus, the periphery and from the brain, and will discuss the relevance of the balance between creation and destruction of such epitopes in the context of MS. A solid understanding of these processes offers the possibility for designing future therapeutic strategies.
Collapse
Affiliation(s)
- Christina Stoeckle
- Department of General Neurology, Hertie Institute for Clinical Brain Research, Otfried-Mueller-Str. 27, 72076, Tuebingen, Germany.
| | | |
Collapse
|
17
|
Raymond WW, Trivedi NN, Makarova A, Ray M, Craik CS, Caughey GH. How immune peptidases change specificity: cathepsin G gained tryptic function but lost efficiency during primate evolution. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:5360-8. [PMID: 20889553 PMCID: PMC3954857 DOI: 10.4049/jimmunol.1002292] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cathepsin G is a major secreted serine peptidase of neutrophils and mast cells. Studies in Ctsg-null mice suggest that cathepsin G supports antimicrobial defenses but can injure host tissues. The human enzyme has an unusual "Janus-faced" ability to cleave peptides at basic (tryptic) as well as aromatic (chymotryptic) sites. Tryptic activity has been attributed to acidic Glu(226) in the primary specificity pocket and underlies proposed important functions, such as activation of prourokinase. However, most mammals, including mice, substitute Ala(226) for Glu(226), suggesting that human tryptic activity may be anomalous. To test this hypothesis, human cathepsin G was compared with mouse wild-type and humanized active site mutants, revealing that mouse primary specificity is markedly narrower than that of human cathepsin G, with much greater Tyr activity and selectivity and near absence of tryptic activity. It also differs from human in resisting tryptic peptidase inhibitors (e.g., aprotinin), while favoring angiotensin destruction at Tyr(4) over activation at Phe(8). Ala(226)Glu mutants of mouse cathepsin G acquire tryptic activity and human ability to activate prourokinase. Phylogenetic analysis reveals that the Ala(226)Glu missense mutation appearing in primates 31-43 million years ago represented an apparently unprecedented way to create tryptic activity in a serine peptidase. We propose that tryptic activity is not an attribute of ancestral mammalian cathepsin G, which was primarily chymotryptic, and that primate-selective broadening of specificity opposed the general trend of increased specialization by immune peptidases and allowed acquisition of new functions.
Collapse
Affiliation(s)
- Wilfred W. Raymond
- Cardiovascular Research Institute, University of California at San Francisco, California 94143
| | - Neil N. Trivedi
- Department of Medicine, University of California at San Francisco, California 94143
- Veterans Health Research Institute and Veterans Affairs Medical Center, San Francisco, California 94121
| | - Anastasia Makarova
- Veterans Health Research Institute and Veterans Affairs Medical Center, San Francisco, California 94121
| | - Manisha Ray
- Department of Pharmaceutical Chemistry, University of California at San Francisco, California 94143
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California at San Francisco, California 94143
| | - George H. Caughey
- Cardiovascular Research Institute, University of California at San Francisco, California 94143
- Department of Medicine, University of California at San Francisco, California 94143
- Veterans Health Research Institute and Veterans Affairs Medical Center, San Francisco, California 94121
| |
Collapse
|
18
|
Burster T, Macmillan H, Hou T, Schilling J, Truong P, Boehm BO, Zou F, Lau K, Strohman M, Schaffert S, Busch R, Mellins ED. Masking of a cathepsin G cleavage site in vivo contributes to the proteolytic resistance of major histocompatibility complex class II molecules. Immunology 2010; 130:436-46. [PMID: 20331476 PMCID: PMC2913223 DOI: 10.1111/j.1365-2567.2010.03247.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/21/2009] [Accepted: 01/11/2010] [Indexed: 11/27/2022] Open
Abstract
SUMMARY The expression of major histocompatibility complex class II (MHC II) molecules is post-translationally regulated by endocytic protein turnover. Here, we identified the serine protease cathepsin G (CatG) as an MHC II-degrading protease by in vitro screening and examined its role in MHC II turnover in vivo. CatG, uniquely among endocytic proteases tested, initiated cleavage of detergent-solubilized native and recombinant soluble MHC II molecules. CatG cleaved human leukocyte antigen (HLA)-DR isolated from both HLA-DM-expressing and DM-null cells. Even following CatG cleavage, peptide binding was retained by pre-loaded, soluble recombinant HLA-DR. MHC II cleavage occurred on the loop between fx1 and fx2 of the membrane-proximal beta2 domain. All allelic variants of HLA-DR tested and murine I-A(g7) class II molecules were susceptible, whereas murine I-E(k) and HLA-DM were not, consistent with their altered sequence at the P1' position of the CatG cleavage site. CatG effects were reduced on HLA-DR molecules with DRB mutations in the region implicated in interaction with HLA-DM. In contrast, addition of CatG to intact B-lymphoblastoid cell lines (B-LCLs) did not cause degradation of membrane-bound MHC II. Moreover, inhibition or genetic ablation of CatG in primary antigen-presenting cells did not cause accumulation of MHC II molecules. Thus, in vivo, the CatG cleavage site is sterically inaccessible or masked by associated molecules. A combination of intrinsic and context-dependent proteolytic resistance may allow peptide capture by MHC II molecules in harshly proteolytic endocytic compartments, as well as persistent antigen presentation in acute inflammatory settings with extracellular proteolysis.
Collapse
Affiliation(s)
- Timo Burster
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, Ulm University, Ulm, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Matthews SP, Werber I, Deussing J, Peters C, Reinheckel T, Watts C. Distinct protease requirements for antigen presentation in vitro and in vivo. THE JOURNAL OF IMMUNOLOGY 2010; 184:2423-31. [PMID: 20164435 DOI: 10.4049/jimmunol.0901486] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Asparagine endopeptidase (AEP) or legumain is a potentially important Ag-processing enzyme that introduces limited cleavages that trigger unfolding and class II MHC binding of different Ag substrates. AEP is necessary and sufficient for optimal processing and presentation of the tetanus toxin C fragment (TTCF) Ag in vitro, but its importance has not been tested in vivo. Surprisingly, virtually normal T cell and Ab responses to TTCF were mounted in AEP-deficient mice when examined 10 d after immunization. This was the case when TTCF was emulsified with CFA, adsorbed onto alum, or expressed within live Salmonella typhimurium. In addition, the dominant Ab and T cell determinants recognized in TTCF were essentially unchanged in AEP-deficient mice. These data are explained, at least in part, by the much lower levels of AEP expressed in primary murine APCs compared with immortalized B cell lines. Even so, the initial in vivo kinetics of TTCF presentation were slower in AEP-deficient mice and, as expected, boosting AEP levels in primary APCs enhanced and accelerated TTCF processing and presentation in vitro. Thus, AEP remains the protease of choice for TTCF processing; however, in its absence, other enzymes can substitute to enable slower, but equally robust, adaptive immune responses. Moreover, clear relationships between Ags and processing proteases identified from short-term in vitro processing and presentation studies do not necessarily predict an absolute in vivo dependency on those processing enzymes, not least because they may be expressed at strikingly different levels in vitro versus in vivo.
Collapse
Affiliation(s)
- Stephen P Matthews
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | |
Collapse
|
20
|
Burster T, Boehm BO. Processing and presentation of (pro)-insulin in the MHC class II pathway: the generation of antigen-based immunomodulators in the context of type 1 diabetes mellitus. Diabetes Metab Res Rev 2010; 26:227-38. [PMID: 20503254 DOI: 10.1002/dmrr.1090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Both CD4(+) and CD8(+) T lymphocytes play a crucial role in the autoimmune process leading to T1D. Dendritic cells take up foreign antigens and autoantigens; within their endocytic compartments, proteases degrade exogenous antigens for subsequent presentation to CD4(+) T cells via MHC class II molecules. A detailed understanding of autoantigen processing and the identification of autoantigenic T cell epitopes are crucial for the development of antigen-based specific immunomodulators. APL are peptide analogues of auto-immunodominant T cell epitopes that bind to MHC class II molecules and can mediate T cell activation. However, APL can be rapidly degraded by proteases occurring in the extracellular space and inside cells, substantially weakening their efficiency. By contrast, protease-resistant APL function as specific immunomodulators and can be used at low doses to examine the functional plasticity of T cells and to potentially interfere with autoimmune responses. Here, we review the latest achievements in (pro)-insulin processing in the MHC class II pathway and the generation of APL to mitigate autoreactive T cells and to activate Treg cells.
Collapse
Affiliation(s)
- Timo Burster
- Division of Endocrinology and Diabetes, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany.
| | | |
Collapse
|
21
|
Baumgartner CK, Malherbe LP. Regulation of CD4 T-cell receptor diversity by vaccine adjuvants. Immunology 2010; 130:16-22. [PMID: 20331477 DOI: 10.1111/j.1365-2567.2010.03265.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
New vaccines based on soluble recombinant antigens (Ags) require adjuvants to elicit long-lasting protective humoral and cellular immunity. Despite the importance of CD4 T helper cells for the generation of long-lived memory B and CD8 T cells, the impact of adjuvants on CD4 T-cell responses is still poorly understood. Adjuvants are known to promote dendritic cell (DC) maturation and migration to secondary lymphoid organs where they present foreign peptides bound to class II major histocompatibility complex molecules (pMHCII) to naïve CD4 T cells. Random and imprecise rearrangements of genetic elements during thymic development ensure that a vast amount of T-cell receptors (TCRs) are present in the naïve CD4 T-cell repertoire. Ag-specific CD4 T cells are selected from this vast pre-immune repertoire based on the affinity of their TCR for pMHCII. Here, we review the evidence demonstrating a link between the adjuvant and the specificity and clonotypic diversity of the CD4 T-cell response, and consider the potential mechanisms at play.
Collapse
|
22
|
Reich M, Spindler KD, Burret M, Kalbacher H, Boehm BO, Burster T. Cathepsin A is expressed in primary human antigen-presenting cells. Immunol Lett 2009; 128:143-7. [PMID: 19954752 DOI: 10.1016/j.imlet.2009.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 11/13/2009] [Accepted: 11/25/2009] [Indexed: 11/25/2022]
Abstract
Cathepsins are expressed in antigen-presenting cells (APC). These cathepsins are known to regulate antigen processing and degradation of the invariant chain (Ii) into the class II-associated Ii peptide (CLIP), which occupies the peptide-binding groove of the major histocompatibility complex (MHC) class II molecule. Previous studies have identified the serine carboxypeptidase cathepsin A (CatA) in various tissues and cells; however, it is not clear whether CatA is also expressed in primary human APC. We demonstrate the expression of CatA in B lymphoblastoid cells (BLC), primary human B cells, both subsets of myeloid dendritic cells (mDC1 and mDC2), as well as in plasmacytoid DC. PMSF or lactacystin-mediated inhibition of serine proteases in BLC-derived lysosomal proteases resulted in the inhibition of amino acid release from the C-terminal end of two model peptides. This inhibition did not occur by using a proline rich peptide. Our data suggest that CatA is involved in the C-terminal fine-tuning of antigenic T cell epitopes in human APC.
Collapse
Affiliation(s)
- Michael Reich
- Division of Endocrinology and Diabetes, Center for Internal Medicine, University Medical Center Ulm, Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Burster T, Macmillan H, Hou T, Boehm BO, Mellins ED. Cathepsin G: roles in antigen presentation and beyond. Mol Immunol 2009; 47:658-65. [PMID: 19910052 DOI: 10.1016/j.molimm.2009.10.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/02/2009] [Accepted: 10/06/2009] [Indexed: 12/19/2022]
Abstract
Contributions from multiple cathepsins within endosomal antigen processing compartments are necessary to process antigenic proteins into antigenic peptides. Cysteine and aspartyl cathepsins have been known to digest antigenic proteins. A role for the serine protease, cathepsin G (CatG), in this process has been described only recently, although CatG has long been known to be a granule-associated proteolytic enzyme of neutrophils. In line with a role for this enzyme in antigen presentation, CatG is found in endocytic compartments of a variety of antigen presenting cells. CatG is found in primary human monocytes, B cells, myeloid dendritic cells 1 (mDC1), mDC2, plasmacytoid DC (pDC), and murine microglia, but is not expressed in B cell lines or monocyte-derived DC. Purified CatG can be internalized into endocytic compartments in CatG non-expressing cells, widening the range of cells where this enzyme may play a role in antigen processing. Functional assays have implicated CatG as a critical enzyme in processing of several antigens and autoantigens. In this review, historical and recent data on CatG expression, distribution, function and involvement in disease will be summarized and discussed, with a focus on its role in antigen presentation and immune-related events.
Collapse
Affiliation(s)
- Timo Burster
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, Ulm University, Ulm, Germany.
| | | | | | | | | |
Collapse
|
24
|
Reich M, Lesner A, Legowska A, Sieńczyk M, Oleksyszyn J, Boehm BO, Burster T. Application of specific cell permeable cathepsin G inhibitors resulted in reduced antigen processing in primary dendritic cells. Mol Immunol 2009; 46:2994-9. [PMID: 19615749 DOI: 10.1016/j.molimm.2009.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 06/16/2009] [Indexed: 11/15/2022]
Abstract
The serine protease cathepsin G (CatG) is expressed in primary antigen-presenting cells and regulates autoantigen processing in CatG pre-loaded fibroblasts. To further investigate the function of CatG in the major histocompatibility complex (MHC) class II loading compartments, a specific, cell permeable CatG-inhibitor is needed. In this study, several CatG-inhibitors were tested for their ability to penetrate the cell membrane of peripheral blood mononuclear cells (PBMC). We find that the commercially available reversible CatG-specific inhibitor I (CatG inhibitor) and the irreversible Suc-Val-Pro-Phe(P) (OPh)(2) (Suc-VPF) are both cell permeable and specifically inhibit intracellular CatG in the PBMC. Furthermore, selective inhibition of CatG resulted in reduced tetanus toxin C-fragment (TTC) and hemagglutinin (HA) processing and presentation to CD4(+) T cells. We conclude that these CatG inhibitors can be used for both antigen-processing studies and for modulation of T cell response in situ and in vivo.
Collapse
Affiliation(s)
- Michael Reich
- Catheomics, Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Reich M, Wieczerzak E, Jankowska E, Palesch D, Boehm BO, Burster T. Specific cathepsin B inhibitor is cell-permeable and activates presentation of TTC in primary human dendritic cells. Immunol Lett 2009; 123:155-9. [PMID: 19428564 DOI: 10.1016/j.imlet.2009.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/10/2009] [Accepted: 03/10/2009] [Indexed: 10/21/2022]
Abstract
Cathepsins of the cysteine, aspartyl, and serine classes are involved in antigen processing in the class II major histocompatibility complex (MHC) loading compartment. Investigation of these proteases in living cells is difficult to perform due to the lack of highly specific cell-permeable inhibitors. Recently, a highly selective cathepsin B (CatB) inhibitor, Z-Arg-Leu-Arg-alpha-aza-glycyl-Ile-Val-OMe (ZRLR), was described. We found that ZRLR is cell-permeable and specifically inhibits CatB, in contrast to the CatB inhibitor, CA074-OMe, which blocks cysteine cathepsins in addition to CatB in primary human antigen-presenting cells (APC). Furthermore, we compared both CA074-OMe and ZRLR in the ability to alter tetanus toxin C-fragment (TTC) presentation to T cells by different APC. As a result, we found enhanced presentation of TTC in the presence of ZRLR, as determined by detection of pro-inflammatory cytokines. We conclude that ZRLR is a specific, cell-permeable CatB inhibitor which can be used for antigen presenting studies in situ.
Collapse
Affiliation(s)
- Michael Reich
- Catheomics, Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|