1
|
Al Demour S, Adwan S, Jafar H, Alhawari H, Awidi A. Stem cell therapy in diabetic men with erectile dysfunction: a 24-month follow-up of safety and efficacy of two intracavernous autologous bone marrow derived mesenchymal stem cells injections, an open label phase 2 clinical trial. Basic Clin Androl 2024; 34:13. [PMID: 38965462 PMCID: PMC11225209 DOI: 10.1186/s12610-024-00229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Recently we reported results of phase 1 pilot clinical trial of 2 consecutive intracavernous (IC) injection of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) for the first time in the treatment of diabetic patients with erectile dysfunction (DM-ED). In phase 2 of this study our aim is to evaluate long term safety and efficacy of IC injections of BM-MSC on additional eight patients with DM-ED. RESULTS Each patient received 2 consecutive IC injections of BM-MSC and evaluated at 1, 3, 6, 12, and 24-month time points. Primary outcome was the tolerability and safety of stem cells therapy (SCT), while the secondary outcome was improvement of erectile function (EF) as assessed using the International Index of Erectile Function-5 (IIEF-5), Erection Hardness Score (EHS) questionnaires, and Color Duplex Doppler Ultrasound (CDDU). IC injections of BM-MSCs was safe and well-tolerated. Minor local and short-term adverse events related to the bone marrow aspiration and IC injections were observed and treated conservatively. There were significant improvement in mean IIEF-5, EHS, all over the follow-up time points in comparison to the baseline. At 24-month follow up there were significant decline in the mean IIEF-5, and EHS compared to the baseline. The mean basal and 20-min peak systolic velocity was significantly higher at 3-month after the IC injections compared to baseline. CONCLUSIONS This phase 2 clinical trial confirmed that IC injections of BM-MSC are safe and improve EF. The decline in EF over time suggests a need for assessing repeated injections. CLINICAL TRIAL REGISTRATION NCT02945462.
Collapse
Affiliation(s)
- Saddam Al Demour
- Department of Special Surgery, Division of Urology, School of Medicine, The University of Jordan, Amman, 11942, Jordan.
- Dr. Sulaiman Al Habib Medical Group, Riyadh, Kingdom of Saudi Arabia.
| | - Sofia Adwan
- Cell Therapy Center, The University of Jordan, 11942, Amman, Jordan
- Department of Medical Laboratories, Faculty of Health Sciences, American University of Madaba, 11821, Madaba, Jordan
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, 11942, Amman, Jordan
| | - Hussam Alhawari
- Department of Internal Medicine, School of Medicine, The University of Jordan, 11942, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, 11942, Amman, Jordan.
- Department of Internal Medicine, School of Medicine, The University of Jordan, 11942, Amman, Jordan.
- Department of Hematology-Oncology, Jordan University Hospital, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
2
|
Nitahara-Kasahara Y, Posadas-Herrera G, Hirai K, Oda Y, Snagu-Miyamoto N, Yamanashi Y, Okada T. Characterization of disease-specific alterations in metabolites and effects of mesenchymal stromal cells on dystrophic muscles. Front Cell Dev Biol 2024; 12:1363541. [PMID: 38946797 PMCID: PMC11211584 DOI: 10.3389/fcell.2024.1363541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/22/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Duchenne muscular dystrophy (DMD) is a genetic disorder caused by mutations in the dystrophin-encoding gene that leads to muscle necrosis and degeneration with chronic inflammation during growth, resulting in progressive generalized weakness of the skeletal and cardiac muscles. We previously demonstrated the therapeutic effects of systemic administration of dental pulp mesenchymal stromal cells (DPSCs) in a DMD animal model. We showed preservation of long-term muscle function and slowing of disease progression. However, little is known regarding the effects of cell therapy on the metabolic abnormalities in DMD. Therefore, here, we aimed to investigate the mechanisms underlying the immunosuppressive effects of DPSCs and their influence on DMD metabolism. Methods A comprehensive metabolomics-based approach was employed, and an ingenuity pathway analysis was performed to identify dystrophy-specific metabolomic impairments in the mdx mice to assess the therapeutic response to our established systemic DPSC-mediated cell therapy approach. Results and Discussion We identified DMD-specific impairments in metabolites and their responses to systemic DPSC treatment. Our results demonstrate the feasibility of the metabolomics-based approach and provide insights into the therapeutic effects of DPSCs in DMD. Our findings could help to identify molecular marker targets for therapeutic intervention and predict long-term therapeutic efficacy.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Guillermo Posadas-Herrera
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kunio Hirai
- Division of Cell and Gene Therapy, Nippon Medical School, Tokyo, Japan
| | - Yuki Oda
- Division of Cell and Gene Therapy, Nippon Medical School, Tokyo, Japan
| | - Noriko Snagu-Miyamoto
- Division of Cell and Gene Therapy, Nippon Medical School, Tokyo, Japan
- Division of Oral and Maxillofacial Surgical, Tokyo Women’s Medical School, Tokyo, Japan
| | - Yuji Yamanashi
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Mello DB, Mesquita FCP, Silva dos Santos D, Asensi KD, Dias ML, Campos de Carvalho AC, Goldenberg RCDS, Kasai-Brunswick TH. Mesenchymal Stromal Cell-Based Products: Challenges and Clinical Therapeutic Options. Int J Mol Sci 2024; 25:6063. [PMID: 38892249 PMCID: PMC11173248 DOI: 10.3390/ijms25116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Mesenchymal stromal cell (MSC)-based advanced therapy medicinal products (ATMPs) are being tried in a vast range of clinical applications. These cells can be isolated from different donor tissues by using several methods, or they can even be derived from induced pluripotent stem cells or embryonic stem cells. However, ATMP heterogeneity may impact product identity and potency, and, consequently, clinical trial outcomes. In this review, we discuss these topics and the need to establish minimal criteria regarding the manufacturing of MSCs so that these innovative therapeutics may be better positioned to contribute to the advancement of regenerative medicine.
Collapse
Affiliation(s)
- Debora B. Mello
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
| | | | - Danúbia Silva dos Santos
- Center of Cellular Technology, National Institute of Cardiology, INC, Rio de Janeiro 22240-002, Brazil;
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
| | - Karina Dutra Asensi
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Marlon Lemos Dias
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Antonio Carlos Campos de Carvalho
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Regina Coeli dos Santos Goldenberg
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Tais Hanae Kasai-Brunswick
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
4
|
Li Y, Shi G, Liang W, Shang H, Li H, Han Y, Zhao W, Bai L, Qin C. Allogeneic Adipose-Derived Mesenchymal Stem Cell Transplantation Alleviates Atherosclerotic Plaque by Inhibiting Ox-LDL Uptake, Inflammatory Reaction and Endothelial Damage in Rabbits. Cells 2023; 12:1936. [PMID: 37566014 PMCID: PMC10417209 DOI: 10.3390/cells12151936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of arteries fueled by lipids. It is a major cause of cardiovascular morbidity and mortality. Mesenchymal stem cells have been used for the treatment of atherosclerotic lesions. Adipose-derived stem cells (ADSCs) have been shown to regulate the activation state of macrophages and exhibit anti-inflammatory capabilities. However, the effect of allogeneic ADSCs in the treatment of AS have not been investigated. In this study, the early treatment effect and preliminary mechanism analysis of allogeneic rabbit ADSCs intravenous transplantation were investigated in a high-fat diet rabbit model. The polarization mechanism of rabbit ADSCs on the macrophage was further analyzed in vitro. Compared with the model group, blood lipid levels declined, the plaque area, oxidized low-density lipoprotein (ox-LDL) uptake, scavenger receptor A1 and cluster of differentiation (CD) 36 levels were all significantly reduced, and the accumulation of inflammatory M1 macrophages, apoptosis, interleukin (IL)-6 and tumor necrosis factor (TNF)-α expression were decreased. The endothelial cells (CD31), M2 macrophages, IL-10 and the transforming growth factor (TGF)-β levels increased. In vitro, ADSCs can promote the M1 macrophage phenotypic switch toward the M2 macrophage through their secreted exosomes, and the main mechanism includes increasing arginase 1 expression and IL-10 secretion, declining inducible nitric oxide synthase (iNOS) expression and TNF-α secretion, and activating the STAT6 pathway. Therefore, allogeneic rabbit ADSC transplantation can transmigrate to the aortic atherosclerotic plaques and show a good effect in lowering blood lipids and alleviating atherosclerotic plaque in the early stage of AS by inhibiting ox-LDL uptake, inflammatory response, and endothelial damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chuan Qin
- NHC Key Laboratory of Human Diseases Comparative Medicine, National Human Diseases Animal Model Resource Center, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| |
Collapse
|
5
|
Nitahara-Kasahara Y, Nakayama S, Kimura K, Yamaguchi S, Kakiuchi Y, Nito C, Hayashi M, Nakaishi T, Ueda Y, Okada T. Immunomodulatory amnion-derived mesenchymal stromal cells preserve muscle function in a mouse model of Duchenne muscular dystrophy. Stem Cell Res Ther 2023; 14:108. [PMID: 37106393 PMCID: PMC10142496 DOI: 10.1186/s13287-023-03337-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an incurable genetic disease characterized by degeneration and necrosis of myofibers, chronic inflammation, and progressive muscle weakness resulting in premature mortality. Immunosuppressive multipotent mesenchymal stromal cell (MSC) therapy could be an option for DMD patients. We focused on amnion-derived mesenchymal stromal cells (AMSCs), a clinically viable cell source owing to their unique characteristics, such as non-invasive isolation, mitotic stability, ethical acceptability, and minimal risk of immune reaction and cancer. We aimed to identify novel immunomodulatory effects of AMSCs on macrophage polarization and their transplantation strategies for the functional recovery of skeletal and cardiac muscles. METHODS We used flow cytometry to analyze the expression of anti-inflammatory M2 macrophage markers on peripheral blood mononuclear cells (PBMCs) co-cultured with human AMSCs (hAMSCs). hAMSCs were intravenously injected into DMD model mice (mdx mice) to assess the safety and efficacy of therapeutic interventions. hAMSC-treated and untreated mdx mice were monitored using blood tests, histological examinations, spontaneous wheel-running activities, grip strength, and echocardiography. RESULTS hAMSCs induced M2 macrophage polarization in PBMCs via prostaglandin E2 production. After repeated systemic hAMSC injections, mdx mice exhibited a transient downregulation of serum creatin kinase. Limited mononuclear cell infiltration and a decreased number of centrally nucleated fibers were indicative of regenerated myofibers following degeneration, suggesting an improved histological appearance of the skeletal muscle of hAMSC-treated mdx mice. Upregulated M2 macrophages and altered cytokine/chemokine expressions were observed in the muscles of hAMSC-treated mdx mice. During long-term experiments, a significant decrease in the grip strength in control mdx mice significantly improved in the hAMSC-treated mdx mice. hAMSC-treated mdx mice maintained running activity and enhanced daily running distance. Notably, the treated mice could run longer distances per minute, indicating high running endurance. Left ventricular function in DMD mice improved in hAMSC-treated mdx mice. CONCLUSIONS Early systemic hAMSC administration in mdx mice ameliorated progressive phenotypes, including pathological inflammation and motor dysfunction, resulting in the long-term improvement of skeletal and cardiac muscle function. The therapeutic effects might be associated with the immunosuppressive properties of hAMSCs via M2 macrophage polarization. This treatment strategy could provide therapeutic benefits to DMD patients.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan.
| | - Soya Nakayama
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Japan
| | - Koichi Kimura
- Department of Laboratory Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Sho Yamaguchi
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Japan
| | - Yuko Kakiuchi
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Chikako Nito
- Laboratory for Clinical Research, Collaborative Research Center, Nippon Medical School, Tokyo, Japan
| | - Masahiro Hayashi
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Japan
| | - Tomoyuki Nakaishi
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Japan
| | - Yasuyoshi Ueda
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
6
|
Liu X, Yao S, Pan M, Cai Y, Shentu W, Cai W, Yu H. Two-dimensional speckle tracking echocardiography demonstrates improved myocardial function after intravenous infusion of bone marrow mesenchymal stem in the X-Linked muscular dystrophy mice. BMC Cardiovasc Disord 2022; 22:461. [PMID: 36329408 PMCID: PMC9635191 DOI: 10.1186/s12872-022-02886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Background Bone marrow mesenchymal stem cells (BMSCs) are commonly used in regenerative medicine. However, it is not clear whether transplantation of BMSCs can improve cardiac function of the X-Linked Muscular Dystrophy Mice (mdx) and how to detect it. We aimed to investigate the role of speckle tracking echocardiography (STE) in detecting cardiac function of the BMSCs-transplanted mdx in comparison with the untreated mdx. Methods The experimental mice were divided into the BMSCs-transplanted mdx, untreated mdx, and control mice groups (n = 6 per group). The BMSCs were transplanted via tail vein injections into a subset of mdx at 20 weeks of age. After four weeks, the cardiac functional parameters of all the mice in the 3 groups were analyzed by echocardiography. Then, all the mice were sacrificed, and the cardiac tissues were harvested and analyzed by immunofluorescence. The serum biochemical parameters were also analyzed to determine the beneficial effects of BMSCs transplantation. Results Traditional echocardiography parameters did not show statistically significant differences after BMSCs transplantation for the three groups of mice. In comparison with the control group, mdx showed significantly lower left ventricular (LV) STE parameters in both the long-axis and short-axis LV images (P < 0.05). However, BMSCs-transplanted mdx showed improvements in several STE parameters including significant increases in a few STE parameters (P < 0.05). Immunofluorescence staining of the myocardium tissues showed statistically significant differences between the mdx and the control mice (P < 0.05), and the mdx transplanted with BMSCs demonstrated significantly improvement compared with the untreated mdx (P < 0.05). Conclusion This study demonstrated that the early reduction in the LV systolic and diastolic function in the mdx were accurately detected by STE. Furthermore, our study demonstrated that the transplantation of BMSCs significantly improved myocardial function in the mdx.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Ultrasonography, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Fu-tian), Shenzhen, Guangdong, China
| | - Shixiang Yao
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min Pan
- Department of Ultrasonography, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Fu-tian), Shenzhen, Guangdong, China
| | - Yingying Cai
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weihui Shentu
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenqian Cai
- Heart Center, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongkui Yu
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China. .,Department of Ultrasonography, Shenzhen Children's Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Qin H, Sun C, Zhu Y, Qin Y, Ren S, Wang Z, Li C, Li X, Zhang B, Hao J, Li G, Wang H, Shao B, Zhang J, Wang H. IL-37 overexpression promotes endometrial regenerative cell-mediated inhibition of cardiac allograft rejection. Stem Cell Res Ther 2022; 13:302. [PMID: 35841010 PMCID: PMC9284885 DOI: 10.1186/s13287-022-02982-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endometrial regenerative cells (ERCs) play an important role in attenuation of acute allograft rejection, while their effects are limited. IL-37, a newly discovered immunoregulatory cytokine of the IL-1 family, can regulate both innate and adaptive immunity. Whether IL-37 overexpression can enhance the therapeutic effects of ERCs in inhibition of acute cardiac allograft rejection remains unknown and will be explored in this study. METHODS C57BL/6 mice recipients receiving BALB/c mouse heterotopic heart allografts were randomly divided into the phosphate-buffered saline (untreated), ERC treated, negative lentiviral control ERC (NC-ERC) treated, and IL-37 overexpressing ERC (IL-37-ERC) treated groups. Graft pathological changes were assessed by H&E staining. The intra-graft cell infiltration and splenic immune cell populations were analyzed by immunohistochemistry and flow cytometry, respectively. The stimulatory property of recipient DCs was tested by an MLR assay. Furthermore, serum cytokine profiles of recipients were measured by ELISA assay. RESULTS Mice treated with IL-37-ERCs achieved significantly prolonged allograft survival compared with the ERC-treated group. Compared with all the other control groups, IL-37-ERC-treated group showed mitigated inflammatory response, a significant increase in tolerogenic dendritic cells (Tol-DCs), regulatory T cells (Tregs) in the grafts and spleens, while a reduction of Th1 and Th17 cell population. Additionally, there was a significant upregulation of immunoregulatory IL-10, while a reduction of IFN-γ, IL-17A, IL-12 was detected in the sera of IL-37-ERC-treated recipients. CONCLUSION IL-37 overexpression can promote the therapeutic effects of ERCs to inhibit acute allograft rejection and further prolong graft survival. This study suggests that gene-modified ERCs overexpressing IL-37 may pave the way for novel therapeutic options in the field of transplantation.
Collapse
Affiliation(s)
- Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Shaohua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Zhaobo Wang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Baoren Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Jingpeng Hao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China.,Department of Anorectal Surgery, Tianjin Medical University Second Hospital, Tianjin, China
| | - Guangming Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Jingyi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin General Surgery Institute, Tianjin, China.
| |
Collapse
|
8
|
Matsuzaka Y, Hirai Y, Hashido K, Okada T. Therapeutic Application of Extracellular Vesicles-Capsulated Adeno-Associated Virus Vector via nSMase2/Smpd3, Satellite, and Immune Cells in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:1551. [PMID: 35163475 PMCID: PMC8836108 DOI: 10.3390/ijms23031551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Yukihiko Hirai
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| | - Kazuo Hashido
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| |
Collapse
|
9
|
Chen T, Zhang S, Jin H, Fu X, Shang L, Lu Y, Sun Y, Hisham Yahaya B, Liu Y, Lin J. Nonfreezing Low Temperature Maintains the Viability of Menstrual Blood-Derived Endometrial Stem Cells Under Oxygen-Glucose Deprivation Through the Sustained Release of Autophagy-Produced Energy. Cell Transplant 2022; 31:9636897221086971. [PMID: 35416078 PMCID: PMC9014719 DOI: 10.1177/09636897221086971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Between the completion of the mesenchymal stem cell (MSCs) preparation and the transplantation into the patient, there is a time interval during which the quality control and transport of MSC products occur, which usually involves suspending the cells in normal saline in an oxygen-glucose deprivation (OGD) microenvironments. Thus, how to effectively maintain MSC viability during the abovementioned time interval is bound to play a significant role in the therapeutic effect of MSC-based therapies. Recently, menstrual blood-derived endometrial stem cells (MenSCs) have attracted extensive attention in regenerative medicine due to their superior biological characteristics, including noninvasive protocols for their collection, abundant source material, stable donation, and autotransplantation. Therefore, this study aimed to mainly determine the effect of storage temperature on the maintenance of MenSC viabilities in an OGD microenvironment, and to preliminarily explore its potential mechanism. Simultaneously, the effects of solvents commonly used in the clinic on MenSC viability were also examined to support the clinical application of MenSCs. Consequently, our results demonstrated that in the OGD microenvironment, a nonfreezing low temperature (4°C) was suitable and cost-effective for MenSC storage, and the maintenance of MenSC viability stored at 4°C was partly contributed by the sustained releases of autophagy-produced energy. Furthermore, the addition of human serum albumin effectively inhibited the cell sedimentations in the MenSC suspension. These results provide support and practical experience for the extensive application of MenSCs in the clinic.
Collapse
Affiliation(s)
- Tongtong Chen
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Shenghui Zhang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongzhang Jin
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaofei Fu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lingrui Shang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Yilin Lu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Yuliang Sun
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang Malaysia
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
10
|
Cell Therapy of Stroke: Do the Intra-Arterially Transplanted Mesenchymal Stem Cells Cross the Blood-Brain Barrier? Cells 2021; 10:cells10112997. [PMID: 34831220 PMCID: PMC8616541 DOI: 10.3390/cells10112997] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023] Open
Abstract
Animal model studies and first clinical trials have demonstrated the safety and efficacy of the mesenchymal stem cells' (MSCs) transplantation in stroke. Intra-arterial (IA) administration looks especially promising, since it provides targeted cell delivery to the ischemic brain, is highly effective, and can be safe as long as the infusion is conducted appropriately. However, wider clinical application of the IA MSCs transplantation will only be possible after a better understanding of the mechanism of their therapeutic action is achieved. On the way to achieve this goal, the study of transplanted cells' fate and their interactions with the blood-brain barrier (BBB) structures could be one of the key factors. In this review, we analyze the available data concerning one of the most important aspects of the transplanted MSCs' action-the ability of cells to cross the blood-brain barrier (BBB) in vitro and in vivo after IA administration into animals with experimental stroke. The collected data show that some of the transplanted MSCs temporarily attach to the walls of the cerebral vessels and then return to the bloodstream or penetrate the BBB and either undergo homing in the perivascular space or penetrate deeper into the parenchyma. Transmigration across the BBB is not necessary for the induction of therapeutic effects, which can be incited through a paracrine mechanism even by cells located inside the blood vessels.
Collapse
|
11
|
Elhussieny A, Nogami K, Sakai-Takemura F, Maruyama Y, Takemura N, Soliman WT, Takeda S, Miyagoe-Suzuki Y. Mesenchymal stem cells derived from human induced pluripotent stem cells improve the engraftment of myogenic cells by secreting urokinase-type plasminogen activator receptor (uPAR). Stem Cell Res Ther 2021; 12:532. [PMID: 34627382 PMCID: PMC8501581 DOI: 10.1186/s13287-021-02594-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is a severe X-linked recessive disease caused by mutations in the dystrophin gene. Transplantation of myogenic stem cells holds great promise for treating muscular dystrophies. However, poor engraftment of myogenic stem cells limits the therapeutic effects of cell therapy. Mesenchymal stem cells (MSCs) have been reported to secrete soluble factors necessary for skeletal muscle growth and regeneration. Methods We induced MSC-like cells (iMSCs) from induced pluripotent stem cells (iPSCs) and examined the effects of iMSCs on the proliferation and differentiation of human myogenic cells and on the engraftment of human myogenic cells in the tibialis anterior (TA) muscle of NSG-mdx4Cv mice, an immunodeficient dystrophin-deficient DMD model. We also examined the cytokines secreted by iMSCs and tested their effects on the engraftment of human myogenic cells. Results iMSCs promoted the proliferation and differentiation of human myogenic cells to the same extent as bone marrow-derived (BM)-MSCs in coculture experiments. In cell transplantation experiments, iMSCs significantly improved the engraftment of human myogenic cells injected into the TA muscle of NSG-mdx4Cv mice. Cytokine array analysis revealed that iMSCs produced insulin-like growth factor-binding protein 2 (IGFBP2), urokinase-type plasminogen activator receptor (uPAR), and brain-derived neurotrophic factor (BDNF) at higher levels than did BM-MSCs. We further found that uPAR stimulates the migration of human myogenic cells in vitro and promotes their engraftment into the TA muscles of immunodeficient NOD/Scid mice. Conclusions Our results indicate that iMSCs are a new tool to improve the engraftment of myogenic progenitors in dystrophic muscle. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02594-1.
Collapse
Affiliation(s)
- Ahmed Elhussieny
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Neurology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ken'ichiro Nogami
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Fusako Sakai-Takemura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Yusuke Maruyama
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Natsumi Takemura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Wael Talaat Soliman
- Department of Neurology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Yuko Miyagoe-Suzuki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
12
|
Kostyuk SV, Proskurnina EV, Ershova ES, Kameneva LV, Malinovskaya EM, Savinova EA, Sergeeva VA, Umriukhin PE, Dolgikh OA, Khakina EA, Kraevaya OA, Troshin PA, Kutsev SI, Veiko NN. The Phosphonate Derivative of C 60 Fullerene Induces Differentiation towards the Myogenic Lineage in Human Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22179284. [PMID: 34502190 PMCID: PMC8431706 DOI: 10.3390/ijms22179284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022] Open
Abstract
Inductors of myogenic stem cell differentiation attract attention, as they can be used to treat myodystrophies and post-traumatic injuries. Functionalization of fullerenes makes it possible to obtain water-soluble derivatives with targeted biochemical activity. This study examined the effects of the phosphonate C60 fullerene derivatives on the expression of myogenic transcription factors and myogenic differentiation of human mesenchymal stem cells (MSCs). Uptake of the phosphonate C60 fullerene derivatives in human MSCs, intracellular ROS visualization, superoxide scavenging potential, and the expression of myogenic, adipogenic, and osteogenic differentiation genes were studied. The prolonged MSC incubation (within 7–14 days) with the C60 pentaphoshonate potassium salt promoted their differentiation towards the myogenic lineage. The transcription factors and gene expressions determining myogenic differentiation (MYOD1, MYOG, MYF5, and MRF4) increased, while the expression of osteogenic differentiation factors (BMP2, BMP4, RUNX2, SPP1, and OCN) and adipogenic differentiation factors (CEBPB, LPL, and AP2 (FABP4)) was reduced or did not change. The stimulation of autophagy may be one of the factors contributing to the increased expression of myogenic differentiation genes in MSCs. Autophagy may be caused by intracellular alkalosis and/or short-term intracellular oxidative stress.
Collapse
Affiliation(s)
- Svetlana V. Kostyuk
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Elena V. Proskurnina
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
- Correspondence:
| | - Elizaveta S. Ershova
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Larisa V. Kameneva
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Elena M. Malinovskaya
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Ekaterina A. Savinova
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Vasilina A. Sergeeva
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Pavel E. Umriukhin
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
- Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Mohovaya Str. 11-4, 125009 Moscow, Russia
| | - Olga A. Dolgikh
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Ekaterina A. Khakina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavylova St. 28, B-334, 119991 Moscow, Russia;
| | - Olga A. Kraevaya
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, Semenov Prospect 1, 142432 Chernogolovka (Moscow Region), Russia; (O.A.K.); (P.A.T.)
| | - Pavel A. Troshin
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, Semenov Prospect 1, 142432 Chernogolovka (Moscow Region), Russia; (O.A.K.); (P.A.T.)
| | - Sergey I. Kutsev
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Natalia N. Veiko
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| |
Collapse
|
13
|
Chitena L, Masisi K, Masisi K, Kwape TE, Gaobotse G. Application of Stem Cell Therapy during the treatment of HIV/AIDS and Duchenne Muscular Dystrophy. Curr Stem Cell Res Ther 2021; 17:633-647. [PMID: 35135463 DOI: 10.2174/1574888x16666210810104445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022]
Abstract
Treating diseases such as Muscular dystrophy (MD) and HIV/AIDS poses several challenges to the rapidly evolving field of regenerative medicine. Previously, stem cell therapy has been said to affect the clinical courses of HIV/AIDS and MD, but, in practice, eradication or control of these diseases was not achievable. The introduction of gene editing into stem cell therapy has stimulated HIV/AIDS and MD cell therapy research studies substantially. Here, we review current methods of treating HIV/AIDS and MD using stem cell therapy. This review also details the use of different types of cells and methods in cell therapy and the modeling of new cell-based therapies to treat Duchenne muscular dystrophy. We speculate that the effective use stem cell therapy in conjunction with other treatment therapies such as steroids and rehabilitation could improve livelihood.
Collapse
Affiliation(s)
- Lorraine Chitena
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye. Botswana
| | - Keletso Masisi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye. Botswana
| | - Kabo Masisi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye. Botswana
| | - Tebogo E Kwape
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye. Botswana
| | - Goabaone Gaobotse
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye. Botswana
| |
Collapse
|
14
|
Boyer O, Butler-Browne G, Chinoy H, Cossu G, Galli F, Lilleker JB, Magli A, Mouly V, Perlingeiro RCR, Previtali SC, Sampaolesi M, Smeets H, Schoewel-Wolf V, Spuler S, Torrente Y, Van Tienen F. Myogenic Cell Transplantation in Genetic and Acquired Diseases of Skeletal Muscle. Front Genet 2021; 12:702547. [PMID: 34408774 PMCID: PMC8365145 DOI: 10.3389/fgene.2021.702547] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/16/2021] [Indexed: 01/04/2023] Open
Abstract
This article will review myogenic cell transplantation for congenital and acquired diseases of skeletal muscle. There are already a number of excellent reviews on this topic, but they are mostly focused on a specific disease, muscular dystrophies and in particular Duchenne Muscular Dystrophy. There are also recent reviews on cell transplantation for inflammatory myopathies, volumetric muscle loss (VML) (this usually with biomaterials), sarcopenia and sphincter incontinence, mainly urinary but also fecal. We believe it would be useful at this stage, to compare the same strategy as adopted in all these different diseases, in order to outline similarities and differences in cell source, pre-clinical models, administration route, and outcome measures. This in turn may help to understand which common or disease-specific problems have so far limited clinical success of cell transplantation in this area, especially when compared to other fields, such as epithelial cell transplantation. We also hope that this may be useful to people outside the field to get a comprehensive view in a single review. As for any cell transplantation procedure, the choice between autologous and heterologous cells is dictated by a number of criteria, such as cell availability, possibility of in vitro expansion to reach the number required, need for genetic correction for many but not necessarily all muscular dystrophies, and immune reaction, mainly to a heterologous, even if HLA-matched cells and, to a minor extent, to the therapeutic gene product, a possible antigen for the patient. Finally, induced pluripotent stem cell derivatives, that have entered clinical experimentation for other diseases, may in the future offer a bank of immune-privileged cells, available for all patients and after a genetic correction for muscular dystrophies and other myopathies.
Collapse
Affiliation(s)
- Olivier Boyer
- Department of Immunology & Biotherapy, Rouen University Hospital, Normandy University, Inserm U1234, Rouen, France
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Hector Chinoy
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, Manchester, United Kingdom
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
- InSpe and Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Francesco Galli
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - James B. Lilleker
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Rita C. R. Perlingeiro
- Department of Medicine, Lillehei Heart Institute, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Stefano C. Previtali
- InSpe and Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Hubert Smeets
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, Netherlands
- School for Developmental Biology and Oncology (GROW), Maastricht University, Maastricht, Netherlands
| | - Verena Schoewel-Wolf
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Yvan Torrente
- Unit of Neurology, Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Florence Van Tienen
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
15
|
Świątkowska-Flis B, Zdolińska-Malinowska I, Sługocka D, Boruczkowski D. The use of umbilical cord-derived mesenchymal stem cells in patients with muscular dystrophies: Results from compassionate use in real-life settings. Stem Cells Transl Med 2021; 10:1372-1383. [PMID: 34313400 PMCID: PMC8459640 DOI: 10.1002/sctm.21-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/10/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Muscular dystrophies are genetically determined progressive diseases with no cause‐related treatment and limited supportive treatment. Although stem cells cannot resolve the underlying genetic conditions, their wide‐ranging therapeutic properties may ameliorate the consequences of the involved mutations (oxidative stress, inflammation, mitochondrial dysfunction, necrosis). In this study, we administered advanced therapy medicinal product containing umbilical cord‐derived mesenchymal stem cells (UC‐MSCs) to 22 patients with muscular dystrophies. Patients received one to five intravenous and/or intrathecal injections per treatment course in up to two courses every 2 months. Four standard doses of 10, 20, 30, or 40 × 106 UC‐MSCs per injection were used; the approximate dose per kilogram was 1 × 106 UC‐MSCs. Muscle strength was measured with a set of CQ Dynamometer computerized force meters (CQ Elektronik System, Czernica, Poland). Statistical analysis of muscle strength in the whole group showed significant improvement in the right upper limb (+4.0 N); left hip straightening (+4.5 N) and adduction (+0.5 N); right hip straightening (+1.0 N), bending (+7.5 N), and adduction (+2.5 N); right knee straightening (+8.5 N); left shoulder revocation (+13.0 N), straightening (+5.5 N), and bending (+6.5 N); right shoulder adduction (+3.0 N), revocation (+10.5 N), and bending (+5 N); and right elbow straightening (+9.5 N); all these differences were statistically significant. In six patients (27.3%) these changes led to improvement in gait analysis or movement scale result. Only one patient experienced transient headache and lower back pain after the last administration. In conclusion, UC‐MSC therapy may be considered as a therapeutic option for these patients.
Collapse
Affiliation(s)
- Beata Świątkowska-Flis
- Polish Center of Cell Therapy and Immunotherapy in Częstochowa, CM Klara, Częstochowa, Poland.,Faculty of Health Sciences, Jan Długosz University of Humanities and Life Sciences, Częstochowa, Poland
| | | | - Dominika Sługocka
- Polish Center of Cell Therapy and Immunotherapy in Częstochowa, CM Klara, Częstochowa, Poland
| | | |
Collapse
|
16
|
Ausems CRM, van Engelen BGM, van Bokhoven H, Wansink DG. Systemic cell therapy for muscular dystrophies : The ultimate transplantable muscle progenitor cell and current challenges for clinical efficacy. Stem Cell Rev Rep 2021; 17:878-899. [PMID: 33349909 PMCID: PMC8166694 DOI: 10.1007/s12015-020-10100-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 01/07/2023]
Abstract
The intrinsic regenerative capacity of skeletal muscle makes it an excellent target for cell therapy. However, the potential of muscle tissue to renew is typically exhausted and insufficient in muscular dystrophies (MDs), a large group of heterogeneous genetic disorders showing progressive loss of skeletal muscle fibers. Cell therapy for MDs has to rely on suppletion with donor cells with high myogenic regenerative capacity. Here, we provide an overview on stem cell lineages employed for strategies in MDs, with a focus on adult stem cells and progenitor cells resident in skeletal muscle. In the early days, the potential of myoblasts and satellite cells was explored, but after disappointing clinical results the field moved to other muscle progenitor cells, each with its own advantages and disadvantages. Most recently, mesoangioblasts and pericytes have been pursued for muscle cell therapy, leading to a handful of preclinical studies and a clinical trial. The current status of (pre)clinical work for the most common forms of MD illustrates the existing challenges and bottlenecks. Besides the intrinsic properties of transplantable cells, we discuss issues relating to cell expansion and cell viability after transplantation, optimal dosage, and route and timing of administration. Since MDs are genetic conditions, autologous cell therapy and gene therapy will need to go hand-in-hand, bringing in additional complications. Finally, we discuss determinants for optimization of future clinical trials for muscle cell therapy. Joined research efforts bring hope that effective therapies for MDs are on the horizon to fulfil the unmet clinical need in patients.
Collapse
Affiliation(s)
- C Rosanne M Ausems
- Donders lnstitute for Brain Cognition and Behavior, Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
- Donders lnstitute for Brain Cognition and Behavior, Department of Neurology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Donders lnstitute for Brain Cognition and Behavior, Department of Neurology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Donders lnstitute for Brain Cognition and Behavior, Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands.
| | - Derick G Wansink
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands.
| |
Collapse
|
17
|
Biressi S, Filareto A, Rando TA. Stem cell therapy for muscular dystrophies. J Clin Invest 2021; 130:5652-5664. [PMID: 32946430 DOI: 10.1172/jci142031] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Muscular dystrophies are a heterogeneous group of genetic diseases, characterized by progressive degeneration of skeletal and cardiac muscle. Despite the intense investigation of different therapeutic options, a definitive treatment has not been developed for this debilitating class of pathologies. Cell-based therapies in muscular dystrophies have been pursued experimentally for the last three decades. Several cell types with different characteristics and tissues of origin, including myogenic stem and progenitor cells, stromal cells, and pluripotent stem cells, have been investigated over the years and have recently entered in the clinical arena with mixed results. In this Review, we do a roundup of the past attempts and describe the updated status of cell-based therapies aimed at counteracting the skeletal and cardiac myopathy present in dystrophic patients. We present current challenges, summarize recent progress, and make recommendations for future research and clinical trials.
Collapse
Affiliation(s)
- Stefano Biressi
- Department of Cellular, Computational and Integrative Biology (CIBIO) and.,Dulbecco Telethon Institute, University of Trento, Povo, Italy
| | - Antonio Filareto
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Conneticut, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences and.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, California, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
18
|
Nitahara-Kasahara Y, Kuraoka M, Oda Y, Hayashita-Kinoh H, Takeda S, Okada T. Enhanced cell survival and therapeutic benefits of IL-10-expressing multipotent mesenchymal stromal cells for muscular dystrophy. Stem Cell Res Ther 2021; 12:105. [PMID: 33541428 PMCID: PMC7860619 DOI: 10.1186/s13287-021-02168-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Multipotent mesenchymal stromal cells (MSCs) are potentially therapeutic for muscle disease because they can accumulate at the sites of injury and act as immunosuppressants. MSCs are attractive candidates for cell-based strategies that target diseases with chronic inflammation, such as Duchenne muscular disease (DMD). We focused on the anti-inflammatory properties of IL-10 and hypothesized that IL-10 could increase the typically low survival of MSCs by exerting a paracrine effect after transplantation. METHODS We developed a continuous IL-10 expression system of MSCs using an adeno-associated virus (AAV) vector. To investigate the potential benefits of IL-10 expressing AAV vector-transduced MSCs (IL-10-MSCs), we examined the cell survival rates in the skeletal muscles after intramuscular injection into mice and dogs. Systemic treatment with IL-10-MSCs derived from dental pulp (DPSCs) was comprehensively analyzed using the canine X-linked muscular dystrophy model in Japan (CXMDJ), which has a severe phenotype similar to that of DMD patients. RESULTS In vivo bioluminescence imaging analysis revealed higher retention of IL-10-MSCs injected into the hindlimb muscle of mice. In the muscles of dogs, myofiber-like tissue was formed after the stable engraftment of IL-10-MSCs. Repeated systemic administration of IL-10-DPSCs into the CXMDJ model resulted in long-term engraftment of cells and slightly increased the serum levels of IL-10. IL-10-hDPSCs showed significantly reduced expression of pro-inflammatory MCP-1 and upregulation of stromal-derived factor-1 (SDF-1). MRI and histopathology of the hDPSC-treated CXMDJ indicated the regulation of inflammation in the muscles, but not myogenic differentiation from treated cells. hDPSC-treated CXMDJ showed improved running capability and recovery in tetanic force with concomitant increase in physical activity. Serum creatine kinase levels, which increased immediately after exercise, were suppressed in IL-10-hDPSC-treated CXMDJ. CONCLUSIONS In case of local injection, IL-10-MSCs could maintain the long-term engraftment status and facilitate associated tissue repair. In case of repeated systemic administration, IL-10-MSCs facilitated the long-term retention of the cells in the skeletal muscle and also protected muscles from physical damage-induced injury, which improved muscle dysfunction in DMD. We can conclude that the local and systemic administration of IL-10-producing MSCs offers potential benefits for DMD therapy through the beneficial paracrine effects of IL-10 involving SDF-1.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo City, Tokyo, Japan. .,Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo City, Tokyo, Japan. .,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| | - Mutsuki Kuraoka
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Laboratory of Experimental Animal Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Yuki Oda
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo City, Tokyo, Japan
| | - Hiromi Hayashita-Kinoh
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo City, Tokyo, Japan.,Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo City, Tokyo, Japan.,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo City, Tokyo, Japan. .,Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo City, Tokyo, Japan. .,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
19
|
Evolution of Stem Cells in Cardio-Regenerative Therapy. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Combined Cell Therapy in the Treatment of Neurological Disorders. Biomedicines 2020; 8:biomedicines8120613. [PMID: 33333803 PMCID: PMC7765161 DOI: 10.3390/biomedicines8120613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
Cell therapy of neurological diseases is gaining momentum. Various types of stem/progenitor cells and their derivatives have shown positive therapeutic results in animal models of neurological disorders and in clinical trials. Each tested cell type proved to have its advantages and flaws and unique cellular and molecular mechanism of action, prompting the idea to test combined transplantation of two or more types of cells (combined cell therapy). This review summarizes the results of combined cell therapy of neurological pathologies reported up to this point. The number of papers describing experimental studies or clinical trials addressing this subject is still limited. However, its successful application to the treatment of neurological pathologies including stroke, spinal cord injury, neurodegenerative diseases, Duchenne muscular dystrophy, and retinal degeneration has been reported in both experimental and clinical studies. The advantages of combined cell therapy can be realized by simple summation of beneficial effects of different cells. Alternatively, one kind of cells can support the survival and functioning of the other by enhancing the formation of optimum environment or immunomodulation. No significant adverse events were reported. Combined cell therapy is a promising approach for the treatment of neurological disorders, but further research needs to be conducted.
Collapse
|
21
|
Tijore A, Lee BH, Salila Vijayalal Mohan HK, Li H, Tan LP. Bioactive micropatterned platform to engineer myotube-like cells from stem cells. Biofabrication 2020; 13. [PMID: 33285529 DOI: 10.1088/1758-5090/abd157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 11/12/2022]
Abstract
Skeletal muscle has the capacity to repair and heal itself after injury. However, this self-healing ability is diminished in the event of severe injuries and myopathies. In such conditions, stem cell-based regenerative treatments can play an important part in post injury restoration. We herein report the development of a bioactive (integrin-β1 antibody immobilized) gold micropatterned platform to promote human mesenchymal stem cells (hMSCs) differentiation into the myotube-like cells. hMSCs grown on bioactive micropattern differentiated into the myotube-like cells within two weeks. Further, up-regulation of myogenic markers, multi-nucleated state with continuous actin cytoskeleton and absence of proliferation marker confirmed the formation of myotube-like cells on bioactive micropattern. Prominent expression of elongated integrin-β1 focal adhesions (ITG-β1 FAs) and development of anisotropic stress fibres in those differentiated cells elucidated their importance in stem cell myogenesis. Together these findings delineate the synergistic role of engineered cell anisotropy and ITG-β1 mediated signaling in the development of myotube-like cells from hMSCs.
Collapse
Affiliation(s)
- Ajay Tijore
- National University of Singapore, Mechanobiology Institute, Singapore, 119260, SINGAPORE
| | - Bae Hoon Lee
- Nanyang Technological University, School of Materials Science and Engineering, Singapore, Singapore, 639798, SINGAPORE
| | | | - Holden Li
- Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore, Singapore, 639798, SINGAPORE
| | - Lay Poh Tan
- Nanyang Technological University, School of Materials Science and Engineering, Singapore, Singapore, 639798, SINGAPORE
| |
Collapse
|
22
|
Co-Transplantation of Bone Marrow-MSCs and Myogenic Stem/Progenitor Cells from Adult Donors Improves Muscle Function of Patients with Duchenne Muscular Dystrophy. Cells 2020; 9:cells9051119. [PMID: 32365922 PMCID: PMC7290387 DOI: 10.3390/cells9051119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder associated with a progressive deficiency of dystrophin that leads to skeletal muscle degeneration. In this study, we tested the hypothesis that a co-transplantation of two stem/progenitor cell populations, namely bone marrow-derived mesenchymal stem cells (BM-MSCs) and skeletal muscle-derived stem/progenitor cells (SM-SPCs), directly into the dystrophic muscle can improve the skeletal muscle function of DMD patients. Three patients diagnosed with DMD, confirmed by the dystrophin gene mutation, were enrolled into a study approved by the local Bioethics Committee (no. 79/2015). Stem/progenitor cells collected from bone marrow and skeletal muscles of related healthy donors, based on HLA matched antigens, were expanded in a closed MC3 cell culture system. A simultaneous co‑transplantation of BM-MSCs and SM-SPCs was performed directly into the biceps brachii (two patients) and gastrocnemius (one patient). During a six‑month follow‑up, the patients were examined with electromyography (EMG) and monitored for blood kinase creatine level. Muscle biopsies were examined with histology and assessed for dystrophin at the mRNA and protein level. A panel of 27 cytokines was analysed with multiplex ELISA. We did not observe any adverse effects after the intramuscular administration of cells. The efficacy of BM‑MSC and SM‑SPC application was confirmed through an EMG assessment by an increase in motor unit parameters, especially in terms of duration, amplitude range, area, and size index. The beneficial effect of cellular therapy was confirmed by a decrease in creatine kinase levels and a normalised profile of pro-inflammatory cytokines. BM-MSCs may support the pro-regenerative potential of SM-SPCs thanks to their trophic, paracrine, and immunomodulatory activity. Both applied cell populations may fuse with degenerating skeletal muscle fibres in situ, facilitating skeletal muscle recovery. However, further studies are required to optimise the dose and timing of stem/progenitor cell delivery.
Collapse
|
23
|
Salmaninejad A, Jafari Abarghan Y, Bozorg Qomi S, Bayat H, Yousefi M, Azhdari S, Talebi S, Mojarrad M. Common therapeutic advances for Duchenne muscular dystrophy (DMD). Int J Neurosci 2020; 131:370-389. [DOI: 10.1080/00207454.2020.1740218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Arash Salmaninejad
- Halal Research Center of IRI, FDA, Tehran, Iran
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Jafari Abarghan
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Bozorg Qomi
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Bayat
- Medical Nano-Technology & Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Meysam Yousefi
- Department of Medical Genetics Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Samaneh Talebi
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Gogou M, Pavlou E, Haidopoulou K. Therapies that are available and under development for Duchenne muscular dystrophy: What about lung function? Pediatr Pulmonol 2020; 55:300-315. [PMID: 31834673 DOI: 10.1002/ppul.24605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Respiratory failure is the principal source of morbidity and mortality among patients with Duchenne muscular dystrophy exerting a negative influence on their total quality of life. The aim of this review is to provide systematically current literature evidence about the effects of different treatment options (available or under development) for Duchenne muscular dystrophy on the pulmonary function of these patients. METHODS A comprehensive search was undertaken using multiple health-related databases, while two independent reviewers assessed the eligibility of studies. A third person addressed any disagreements between reviewers. The quality of the methodology of the included studies was also assessed. RESULTS A total of 19 original research papers (nine evaluating the role of steroids, six idebenone, three eteplirsen, one stem-cell therapy, and one ataluren) were found to fulfill our selection criteria with the majority of them (14 of 19) being prospective studies, not always including a control group. Endpoints mainly used in these studies were values of pulmonary function tests. Current and under development treatments proved to be safe and no significant adverse events were reported. A beneficial impact on pulmonary function was described by authors in the majority of these studies. The principal effect was slowing of lung disease progress, as expressed by spirometric values. However, the risk of bias was introduced in many of the above studies, while high heterogeneity in terms of treatment protocols and outcome measures limits the comparability of the results. CONCLUSION Glucocorticoids remain the best-studied pharmacologic therapy for Duchenne muscular dystrophy and very likely delay the expected decline in lung function. With regard to new therapeutic agents, initial study results are encouraging. However, larger clinical trials are needed that minimize the risk of study bias, optimize the comparability of treatment groups, examine clinically meaningful pulmonary outcome measures, and include long-term follow up.
Collapse
Affiliation(s)
- Maria Gogou
- Second Department of Pediatrics, University General Hospital AHEPA, Thessaloniki, Greece
| | - Evangelos Pavlou
- Second Department of Pediatrics, University General Hospital AHEPA, Thessaloniki, Greece
| | - Katerina Haidopoulou
- Second Department of Pediatrics, University General Hospital AHEPA, Thessaloniki, Greece
| |
Collapse
|
25
|
Kook MG, Lee S, Shin N, Kong D, Kim DH, Kim MS, Kang HK, Choi SW, Kang KS. Repeated intramuscular transplantations of hUCB-MSCs improves motor function and survival in the SOD1 G 93A mice through activation of AMPK. Sci Rep 2020; 10:1572. [PMID: 32005848 PMCID: PMC6994691 DOI: 10.1038/s41598-020-58221-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/06/2020] [Indexed: 11/09/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by loss of motor neurons and degeneration of neuromuscular junctions. To improve disease progression, previous studies have suggested many options that have shown beneficial effects in diseases, especially stem cell therapy. In this study, we used repeated intramuscular transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) and observed positive effects on muscle atrophy and oxidative stress. In an in vivo study, motor function, body weight and survival rate were assessed, and skeletal muscle tissues were analyzed by western blotting and immunohistochemistry. After intramuscular transplantation, the hUCB-MSCs survived within the skeletal muscle for at least 1 week. Transplantation ameliorated muscle atrophy and the rate of neuromuscular degeneration in skeletal muscle through reductions in intracellular ROS levels. Both expression of skeletal muscle atrophy markers, muscle atrophy F-box (MAFbx)/atrogin1 and muscle RING finger 1 (MuRF1), were also reduced; however, the reductions were not significant. Moreover, transplantation of hUCB-MSCs improved protein synthesis and inhibited the iNOS/NO signaling pathway through AMPK activation. Our results suggest that repeated intramuscular transplantation of hUCB-MSCs can be a practical option for stem cell therapy for ALS.
Collapse
Affiliation(s)
- Myung Geun Kook
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - SeungEun Lee
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nari Shin
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dasom Kong
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Da-Hyun Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Soo Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Kyoung Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
26
|
Bieri M, Said E, Antonini G, Dickerson D, Tuma J, Bartlett CE, Patel AN, Gershman A. Phase I and registry study of autologous bone marrow concentrate evaluated in PDE5 inhibitor refractory erectile dysfunction. J Transl Med 2020; 18:24. [PMID: 31937310 PMCID: PMC6958721 DOI: 10.1186/s12967-019-02195-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/24/2019] [Indexed: 01/09/2023] Open
Abstract
Background Bone marrow mononuclear cells have been successfully utilized for numerous regenerative purposes. In the current study, patients suffering from erectile dysfunction (ED) unresponsive to phosphodiesterase 5 inhibitors were administered autologous bone marrow concentrate delivered intracavernously utilizing a point of care FDA cleared medical device. Methods A total of 40 patients were treated in the primary trial and 100 in the clinical registry, with the longest follow up of 12 months. Results Minimal treatment associated adverse effects where observed related to short term bruising at the site of harvest or injection. No long-term adverse events were noted related to the intervention. Mean improvements in IIEF-5 score were 2 in the Caverstem 1.0 low dose group, 3 in the high dose Caverstem 1.0 group and 9 in the Caverstem 2.0 group. Furthermore, improvements peaked by 3 months and maintained at 6 months follow-up. Conclusion These data support the safety and efficacy of point of care, minimally to non-manipulated, non-expanded bone marrow concentrate for the treatment of ED. Trial registration Funded by Creative Medical Health, Inc.; Clinicaltrials.gov number: NCT03699943; https://clinicaltrials.gov/ct2/show/NCT03699943?term=caverstem&rank=1; initially registered December 12, 2015.
Collapse
Affiliation(s)
- Mark Bieri
- Regenerative Health LLC, Las Cruces, NM, USA
| | - Elias Said
- Regenerative Health LLC, Las Cruces, NM, USA
| | | | | | - Jorge Tuma
- Monterrico Clinic & San Felipe Clinic, Lima, Peru
| | | | - Amit N Patel
- University of Utah - Bioengineering, Salt Lake City, UT, USA.
| | - Alexander Gershman
- Institute for Advanced Urology LLC/University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
27
|
Gois Beghini D, Iwao Horita S, Monteiro da Fonseca Cardoso L, Anastacio Alves L, Nagaraju K, Henriques-Pons A. A Promising Future for Stem-Cell-Based Therapies in Muscular Dystrophies-In Vitro and In Vivo Treatments to Boost Cellular Engraftment. Int J Mol Sci 2019; 20:ijms20215433. [PMID: 31683627 PMCID: PMC6861917 DOI: 10.3390/ijms20215433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/28/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023] Open
Abstract
Muscular dystrophies (MD) are a group of genetic diseases that lead to skeletal muscle wasting and may affect many organs (multisystem). Unfortunately, no curative therapies are available at present for MD patients, and current treatments mainly address the symptoms. Thus, stem-cell-based therapies may present hope for improvement of life quality and expectancy. Different stem cell types lead to skeletal muscle regeneration and they have potential to be used for cellular therapies, although with several limitations. In this review, we propose a combination of genetic, biochemical, and cell culture treatments to correct pathogenic genetic alterations and to increase proliferation, dispersion, fusion, and differentiation into new or hybrid myotubes. These boosted stem cells can also be injected into pretreate recipient muscles to improve engraftment. We believe that this combination of treatments targeting the limitations of stem-cell-based therapies may result in safer and more efficient therapies for MD patients. Matricryptins have also discussed.
Collapse
Affiliation(s)
- Daniela Gois Beghini
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | - Samuel Iwao Horita
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | | | - Luiz Anastacio Alves
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | - Kanneboyina Nagaraju
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, New York, NY 13902, USA.
| | - Andrea Henriques-Pons
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| |
Collapse
|
28
|
Bouglé A, Rocheteau P, Briand D, Hardy D, Verdonk F, Tremolada C, Hivelin M, Chrétien F. Beneficial role of adipose-derived mesenchymal stem cells from microfragmented fat in a murine model of duchenne muscular dystrophy. Muscle Nerve 2019; 60:328-335. [PMID: 31228273 DOI: 10.1002/mus.26614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 01/05/2023]
Abstract
INTRODUCTION No etiologic therapy is available for Duchenne muscular dystrophy (DMD), but mesenchymal stem cells were shown to be effective in preclinical models of DMD. The objective of this study is to investigate the effect of microfragmented fat extracted on a murine model of DMD. METHODS Fat tissue was extracted from healthy human participants and injected IM into DMD mice. Histological analysis, cytokines, and force measurement were performed up to 4 weeks after injection. RESULTS Duchenne muscular dystrophy mice injected with microfragmented fat exhibited an improved muscle phenotype (decreased necrosis and fibrosis), a decrease of inflammatory cytokines, and increased strength. DISCUSSION Administration of microfragmented fat in key muscles may improve muscular phenotype in patients with DMD. Muscle Nerve, 2019.
Collapse
Affiliation(s)
- Adrien Bouglé
- Infection and Epidemiology Department, Experimental Neuropathology Unit, Institut Pasteur, Paris, France.,Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Department of Anesthesiology and Critical Care Medicine, Pitié-Salpêtrière Hospital, Paris, France.,Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Anesthesiology and Critical Care Medicine, Institute of Cardiology, Pitié-Salpêtrière Hospital, Paris, France
| | - Pierre Rocheteau
- Infection and Epidemiology Department, Experimental Neuropathology Unit, Institut Pasteur, Paris, France.,Service Hospitalo-Universitaire, Centre Hospitalier Sainte Anne, Paris, France.,Laboratoire Universitaire de Neuropathologie, Centre Hospitalier Sainte Anne, Paris, France
| | - David Briand
- Infection and Epidemiology Department, Experimental Neuropathology Unit, Institut Pasteur, Paris, France
| | - David Hardy
- Infection and Epidemiology Department, Experimental Neuropathology Unit, Institut Pasteur, Paris, France
| | - Franck Verdonk
- Infection and Epidemiology Department, Experimental Neuropathology Unit, Institut Pasteur, Paris, France.,Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Department of Anesthesiology and Critical Care Medicine, Pitié-Salpêtrière Hospital, Paris, France.,Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Anesthesiology and Critical Care Department, Saint-Antoine Hospital, Paris, France
| | | | - Mikael Hivelin
- Assistance Publique-Hôpitaux de Paris, Paris, France.,Descartes University, Assistance Publique - Hôpitaux de Paris, Department of Plastic Surgery, Hôpital Européen Georges Pompidou, Paris, France.,Department of Plastic Surgery, Hôpital Européen Georges Pompidou, Paris, France
| | - Fabrice Chrétien
- Infection and Epidemiology Department, Experimental Neuropathology Unit, Institut Pasteur, Paris, France.,Laboratoire Universitaire de Neuropathologie, Centre Hospitalier Sainte Anne, Paris, France.,Descartes University, Assistance Publique - Hôpitaux de Paris, Department of Plastic Surgery, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
29
|
Sun Y, Ren Y, Yang F, He Y, Liang S, Guan L, Cheng F, Liu Y, Lin J. High-yield isolation of menstrual blood-derived endometrial stem cells by direct red blood cell lysis treatment. Biol Open 2019; 8:bio.038885. [PMID: 31036750 PMCID: PMC6550070 DOI: 10.1242/bio.038885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recently, menstrual blood-derived endometrial stem cells (MenSCs) have become attractive for stem cell based therapy due to their abundance, easy and non-invasive extraction and isolation process, high proliferative capacity, and multi-lineage differentiation potential. MenSC-based therapies for various diseases are being extensively researched. However, the high death rate and poor engraftment in sites of damaged tissues reduce the therapeutic value of these stem cells for transplantation. In theory, periodic stem cell transplantation is an alternative strategy to overcome the challenge of the loss of beneficial stem cell-derived effects due to the rapid disappearance of the stem cells in vivo. However, periodic stem cell transplantation requires sufficient amounts of the desired stem cells with a low number of subculture passages. Our previous results have demonstrated that primary MenSCs mainly reside in the deciduous endometrium, and considerable amounts of deciduous endometrium intertwined with menstrual blood clots were discarded after conventional density gradient centrifugation (DGC). Therefore, the aim of this study was to determine whether primary MenSCs exist in the sedimentation of the deciduous endometrium after DGC and further to evaluate the isolation of MenSCs by direct red blood cell lysis treatment. As expected, our results confirmed that substantial amounts of primary MenSCs still remain in the sedimentation after DGC and indicated that MenSC isolation by directly lysing the red blood cells not only guaranteed substantial amounts of superior MenSCs with a low number of subculture passages, but also was time efficient and economical, providing a solid support for extensive clinical application. Summary: MenSC isolation by directly lysing the red blood cells not only guarantees substantial amounts of superior MenSCs with low passage number, but also is time efficient and economical.
Collapse
Affiliation(s)
- Yuliang Sun
- Stem Cell Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang 453003, China
| | - Yakun Ren
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang 453003, China
| | - Fen Yang
- Stem Cell Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Yanan He
- Stem Cell Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang 453003, China
| | - Shengying Liang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang 453003, China
| | - Lihong Guan
- Stem Cell Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang 453003, China
| | - Fangfang Cheng
- Stem Cell Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang 453003, China
| | - Yanli Liu
- Stem Cell Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China .,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang 453003, China
| | - Juntang Lin
- Stem Cell Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China .,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang 453003, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
30
|
Liu Y, Niu R, Li W, Lin J, Stamm C, Steinhoff G, Ma N. Therapeutic potential of menstrual blood-derived endometrial stem cells in cardiac diseases. Cell Mol Life Sci 2019; 76:1681-1695. [PMID: 30721319 PMCID: PMC11105669 DOI: 10.1007/s00018-019-03019-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/13/2018] [Accepted: 01/15/2019] [Indexed: 12/21/2022]
Abstract
Despite significant developments in medical and surgical strategies, cardiac diseases remain the leading causes of morbidity and mortality worldwide. Numerous studies involving preclinical and clinical trials have confirmed that stem cell transplantation can help improve cardiac function and regenerate damaged cardiac tissue, and stem cells isolated from bone marrow, heart tissue, adipose tissue and umbilical cord are the primary candidates for transplantation. During the past decade, menstrual blood-derived endometrial stem cells (MenSCs) have gradually become a promising alternative for stem cell-based therapy due to their comprehensive advantages, which include their ability to be periodically and non-invasively collected, their abundant source material, their ability to be regularly donated, their superior proliferative capacity and their ability to be used for autologous transplantation. MenSCs have shown positive therapeutic potential for the treatment of various diseases. Therefore, aside from a brief introduction of the biological characteristics of MenSCs, this review focuses on the progress being made in evaluating the functional improvement of damaged cardiac tissue after MenSC transplantation through preclinical and clinical studies. Based on published reports, we conclude that the paracrine effect, transdifferentiation and immunomodulation by MenSC promote both regeneration of damaged myocardium and improvement of cardiac function.
Collapse
Affiliation(s)
- Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
- Institute of Chemistry and Biochemistry, Free University Berlin, 14195, Berlin, Germany
| | - Rongcheng Niu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Wenzhong Li
- Institute of Chemistry and Biochemistry, Free University Berlin, 14195, Berlin, Germany.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China.
| | - Christof Stamm
- Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Gustav Steinhoff
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Rostock, 18055, Rostock, Germany
| | - Nan Ma
- Institute of Chemistry and Biochemistry, Free University Berlin, 14195, Berlin, Germany
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Rostock, 18055, Rostock, Germany
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513, Teltow, Germany
| |
Collapse
|
31
|
Chubinskiy-Nadezhdin VI, Sudarikova AV, Shilina MA, Vasileva VY, Grinchuk TM, Lyublinskaya OG, Nikolsky NN, Negulyaev YA. Cell Cycle-Dependent Expression of Bk Channels in Human Mesenchymal Endometrial Stem Cells. Sci Rep 2019; 9:4595. [PMID: 30872711 PMCID: PMC6418245 DOI: 10.1038/s41598-019-41096-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022] Open
Abstract
The study of ion channels in stem cells provides important information about their role in stem cell fate. Previously we have identified the activity of calcium-activated potassium channels of big conductance (BK channels) in human endometrium-derived mesenchymal stem cells (eMSCs). BK channels could have significant impact into signaling processes by modulating membrane potential. The membrane potential and ionic permeability dynamically changes during cycle transitions. Here, we aimed at verification of the role of BK channels as potassium transporting pathway regulating cell cycle passageway of eMSCs. The functional expression of native BK channels was confirmed by patch-clamp and immunocytochemistry. In non-synchronized cells immunofluorescent analysis revealed BK-positive and BK-negative stained eMSCs. Using cell synchronization, we found that the presence of BK channels in plasma membrane was cell cycle-dependent and significantly decreased in G2M phase. However, the study of cell cycle progression in presence of selective BK channel inhibitors showed no effect of pore blockers on cycle transitions. Thus, BK channel-mediated K+ transport is not critical for the fundamental mechanism of passageway through cell cycle of eMSCs. At the same time, the dynamics of the presence of BK channels on plasma membrane of eMSCs can be a novel indicator of cellular proliferation.
Collapse
Affiliation(s)
| | | | - Mariia A Shilina
- Institute of Cytology RAS, 194064, Tikhoretsky Ave. 4, St. Petersburg, Russia
| | - Valeria Y Vasileva
- Institute of Cytology RAS, 194064, Tikhoretsky Ave. 4, St. Petersburg, Russia
| | - Tatiana M Grinchuk
- Institute of Cytology RAS, 194064, Tikhoretsky Ave. 4, St. Petersburg, Russia
| | - Olga G Lyublinskaya
- Institute of Cytology RAS, 194064, Tikhoretsky Ave. 4, St. Petersburg, Russia
| | - Nikolai N Nikolsky
- Institute of Cytology RAS, 194064, Tikhoretsky Ave. 4, St. Petersburg, Russia
| | - Yuri A Negulyaev
- Institute of Cytology RAS, 194064, Tikhoretsky Ave. 4, St. Petersburg, Russia
- Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya st., 195251, St. Petersburg, Russia
| |
Collapse
|
32
|
Li JZ, Cao TH, Han JC, Qu H, Jiang SQ, Xie BD, Yan XL, Wu H, Liu XL, Zhang F, Leng XP, Kang K, Jiang SL. Comparison of adipose‑ and bone marrow‑derived stem cells in protecting against ox‑LDL‑induced inflammation in M1‑macrophage‑derived foam cells. Mol Med Rep 2019; 19:2660-2670. [PMID: 30720126 PMCID: PMC6423631 DOI: 10.3892/mmr.2019.9922] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 12/17/2018] [Indexed: 01/01/2023] Open
Abstract
Adipose‑derived stem cells (ADSCs) and bone marrow‑derived stem cells (BMSCs) are considered to be prospective sources of mesenchymal stromal cells (MSCs), that can be used in cell therapy for atherosclerosis. The present study investigated whether ADSCs co‑cultured with M1 foam macrophages via treatment with oxidized low‑density lipoprotein (ox‑LDL) would lead to similar or improved anti‑inflammatory effects compared with BMSCs. ADSCs, peripheral blood monocytes, BMSCs and ox‑LDL were isolated from ten coronary heart disease (CHD) patients. After three passages, the supernatants of the ADSCs and BMSCs were collected and systematically analysed by liquid chromatography‑quadrupole time‑of‑flight‑mass spectrometry (6530; Agilent Technologies, Inc., Santa Clara, CA, USA). Cis‑9, trans‑11 was deemed to be responsible for the potential differences in the metabolic characteristics of ADSCs and BMSCs. These peripheral blood monocytes were characterized using flow cytometry. Following peripheral blood monocytes differentiation into M1 macrophages, the formation of M1 foam macrophages was achieved through treatment with ox‑LDL. Overall, 2x106 ADSCs, BMSCs or BMSCs+cis‑9, trans‑11 were co‑cultured with M1 foam macrophages. Anti‑inflammatory capability, phagocytic activity, anti‑apoptotic capability and cell viability assays were compared among these groups. It was demonstrated that the accumulation of lipid droplets decreased following ADSCs, BMSCs or BMSCs+cis‑9, trans‑11 treatment in M1 macrophages derived from foam cells. Consistently, ADSCs exhibited great advantageous anti‑inflammatory capabilities, phagocytic activity, anti‑apoptotic capability activity and cell viability over BMSCs or BMSCs+cis‑9, trans‑11. Additionally, BMSCs+cis‑9, trans‑11 also demonstrated marked improvement in anti‑inflammatory capability, phagocytic activity, anti‑apoptotic capability activity and cell viability in comparison with BMSCs. The present results indicated that ADSCs would be more appropriate for transplantation to treat atherosclerosis than BMSCs alone or BMSCs+cis‑9, trans‑11. This may be an important mechanism to regulate macrophage immune function.
Collapse
Affiliation(s)
- Jian-Zhong Li
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Tian-Hui Cao
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Jin-Cheng Han
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Hui Qu
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Shuang-Quan Jiang
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Bao-Dong Xie
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Xiao-Long Yan
- Division of Thoracic Surgery, Tang Du Hospital of Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hua Wu
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Xiang-Lan Liu
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Fan Zhang
- Division of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xiao-Ping Leng
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Kai Kang
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Shu-Lin Jiang
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
33
|
Chen L, Qu J, Xiang C. The multi-functional roles of menstrual blood-derived stem cells in regenerative medicine. Stem Cell Res Ther 2019; 10:1. [PMID: 30606242 PMCID: PMC6318883 DOI: 10.1186/s13287-018-1105-9] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Menstrual blood-derived stem cells (MenSCs) are a novel source of mesenchymal stem cells (MSCs). MenSCs are attracting more and more attention since their discovery in 2007. MenSCs also have no moral dilemma and show some unique features of known adult-derived stem cells, which provide an alternative source for the research and application in regenerative medicine. Currently, people are increasingly interested in their clinical potential due to their high proliferation, remarkable versatility, and periodic acquisition in a non-invasive manner with no other sources of MSCs that are comparable in adult tissue. In this review, the plasticity of pluripotent biological characteristics, immunophenotype and function, differentiative potential, and immunomodulatory properties are assessed. Furthermore, we also summarize their therapeutic effects and functional characteristics in various diseases, including liver disease, diabetes, stroke, Duchenne muscular dystrophy, ovarian-related disease, myocardial infarction, Asherman syndrome, Alzheimer’s disease, acute lung injury, cutaneous wound, endometriosis, and neurodegenerative diseases. Subsequently, the clinical potential of MenSCs is investigated. There is a need for a deeper understanding of its immunomodulatory and diagnostic properties with safety concern on a variety of environmental conditions (such as epidemiological backgrounds, age, hormonal status, and pre-contraceptive). In summary, MenSC has a great potential for reducing mortality and improving the quality of life of severe patients. As a kind of adult stem cells, MenSCs have multiple properties in treating a variety of diseases in regenerative medicine for future clinical applications.
Collapse
Affiliation(s)
- Lijun Chen
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Jingjing Qu
- Lung Cancer and Gastroenterology Department, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, 410008, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
34
|
Lavenus S, Rozé J, Louarn G, Layrolle P. Impact of nanotechnology on dental implants. NANOBIOMATERIALS IN CLINICAL DENTISTRY 2019:385-399. [DOI: 10.1016/b978-0-12-815886-9.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
35
|
Gaur M, Dobke M, Lunyak VV. Methods and Strategies for Procurement, Isolation, Characterization, and Assessment of Senescence of Human Mesenchymal Stem Cells from Adipose Tissue. Methods Mol Biol 2019; 2045:37-92. [PMID: 30838605 DOI: 10.1007/7651_2018_174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Human adipose-derived mesenchymal stem (stromal) cells (hADSC) represent an attractive source of the cells for numerous therapeutic applications in regenerative medicine. These cells are also an efficient model to study biological pathways of stem cell action, tissue injury and disease. Like any other primary somatic cells in culture, industrial-scale expansion of mesenchymal stromal cells (MSC) leads to the replicative exhaustion/senescence as defined by the "Hayflick limit." The senescence is not only greatly effecting in vivo potency of the stem cell cultures but also might be the cause and the source of clinical inconsistency arising from infused cell preparations. In this light, the characterization of hADSC replicative and stressor-induced senescence phenotypes is of great interest.This chapter summarizes some of the essential protocols and assays used at our laboratories and clinic for the human fat procurement, isolation, culture, differentiation, and characterization of mesenchymal stem cells from adipose tissue and the stromal vascular fraction. Additionally, we provide manuals for characterization of hADSC senescence in a culture based on stem cells immunophenotype, proliferation rate, migration potential, and numerous other well-accepted markers of cellular senescence. Such methodological framework will be immensely helpful to design standards and surrogate measures for hADSC-based therapeutic applications.
Collapse
Affiliation(s)
| | - Marek Dobke
- Division of Plastic Surgery, University of California, San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
36
|
Lv H, Hu Y, Cui Z, Jia H. Human menstrual blood: a renewable and sustainable source of stem cells for regenerative medicine. Stem Cell Res Ther 2018; 9:325. [PMID: 30463587 PMCID: PMC6249727 DOI: 10.1186/s13287-018-1067-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Stem cells (SCs) play an important role in autologous and even allogenic applications. Menstrual blood discharge has been identified as a valuable source of SCs which are referred to as menstrual blood-derived stem cells (MenSCs). Compared to SCs from bone marrow and adipose tissues, MenSCs come from body discharge and obtaining them is non-invasive to the body, they are easy to collect, and there are no ethical concerns. There is, hence, a growing interest in the functions of MenSCs and their potential applications in regenerative medicine. This review presents recent progress in research into MenSCs and their potential application. Clinical indications of using MenSCs for various regenerative medicine applications are emphasized, and future research is recommended to accelerate clinical applications of MenSCs.
Collapse
Affiliation(s)
- Haining Lv
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Graduate School of Peking Union Medical College, 321 Zhongshan Road, Nanjing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Graduate School of Peking Union Medical College, 321 Zhongshan Road, Nanjing, China.
| | - Zhanfeng Cui
- Tissue Engineering Group, Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, ORCRB, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Huidong Jia
- Tissue Engineering Group, Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, ORCRB, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK.
| |
Collapse
|
37
|
Dai A, Baspinar O, Yeşilyurt A, Sun E, Aydemir Çİ, Öztel ON, Capkan DU, Pinarli F, Agar A, Karaöz E. Efficacy of stem cell therapy in ambulatory and nonambulatory children with Duchenne muscular dystrophy - Phase I-II. Degener Neurol Neuromuscul Dis 2018; 8:63-77. [PMID: 30498389 PMCID: PMC6207384 DOI: 10.2147/dnnd.s170087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Duchenne muscular dystrophy (DMD) is an X-linked recessive pediatric disorder that ultimately leads to progressive muscle degeneration. It has been known that cell-based therapies were used to promote muscle regeneration. The main purpose of this study was to investigate the effects of allogeneic Wharton jelly-derived mesenchymal stem cells therapy in Duchenne muscular dystrophy. Patients and methods Four ambulatory and five nonambulatory male patients were assessed as having acceptance criteria. Gene expression and immunohistochemical analysis were performed for dystrophin gene expression. The fluorescent in situ hybridization method was used for detection of chimerism and donor–recipient compatibility. Complement dependent lymphocytotoxic crossmatch test and detection of panel reactive antigen were performed. All patients were treated with 2 × 106 cells/kg dose of allogeneic Wharton jelly-derived mesenchymal stem cells via intra-arterial and intramuscular administration. Stability was maintained in patient follow-up tests, which are respiratory capacity tests, cardiac measurements, and muscle strength tests. Results The vastus intermedius muscle was observed in one patient with MRI. Chimerism was detected by fluorescent in situ hybridization and mean gene expression was increased to 3.3-fold. An increase in muscle strength measurements and pulmonary function tests was detected. Additionally, we observed two of nine patients with positive panel reactive antigen result. Conclusion All our procedures are well tolerated, and we have not seen any application-related complications so far. Our main purpose of this study was to investigate the effects of allogeneic mesenchymal stem cell therapy and determine its suitability and safety as a form of treatment in this untreatable disorder.
Collapse
Affiliation(s)
- Alper Dai
- Gaziantep University Medical Faculty, Pediatric Neurology Department, Gaziantep, Turkey
| | - Osman Baspinar
- Gaziantep University Medical Faculty, Pediatric Cardiology Department, Gaziantep, Turkey
| | - Ahmet Yeşilyurt
- Diskapi Yildirim Beyazit Research and Education Hospital, University of Health Sciences, Center for Genetic Diagnosis, Ankara, Turkey
| | - Eda Sun
- İstinye University, Center for Stem Cell Research and Application, İstanbul, Turkey,
| | - Çiğdem İnci Aydemir
- Liv Hospital - Center for Regenerative Medicine and Stem Cell Research and Manufacturing, İstanbul, Turkey,
| | - Olga Nehir Öztel
- Liv Hospital - Center for Regenerative Medicine and Stem Cell Research and Manufacturing, İstanbul, Turkey,
| | | | - Ferda Pinarli
- Diskapi Yildirim Beyazit Research and Education Hospital, University of Health Sciences, Center for Genetic Diagnosis, Ankara, Turkey
| | - Abdullah Agar
- University of Travnik, Travnik, Bosnia and Herzegovina
| | - Erdal Karaöz
- İstinye University, Center for Stem Cell Research and Application, İstanbul, Turkey, .,Liv Hospital - Center for Regenerative Medicine and Stem Cell Research and Manufacturing, İstanbul, Turkey, .,İstinye University, Medical Faculty, Histology and Embryology Department, İstanbul, Turkey,
| |
Collapse
|
38
|
Sagheddu R, Chiappalupi S, Salvadori L, Riuzzi F, Donato R, Sorci G. Targeting RAGE as a potential therapeutic approach to Duchenne muscular dystrophy. Hum Mol Genet 2018; 27:3734-3746. [DOI: 10.1093/hmg/ddy288] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Roberta Sagheddu
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM)
| | - Sara Chiappalupi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM)
| | - Laura Salvadori
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM)
| | - Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM)
| | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM)
- Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM)
| |
Collapse
|
39
|
Ichim TE, O'Heeron P, Kesari S. Fibroblasts as a practical alternative to mesenchymal stem cells. J Transl Med 2018; 16:212. [PMID: 30053821 PMCID: PMC6064181 DOI: 10.1186/s12967-018-1536-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/01/2018] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy offers great potential for treatment of disease through the multifunctional and responsive ability of these cells. In numerous contexts, MSC have been shown to reduce inflammation, modulate immune responses, and provide trophic factor support for regeneration. While the most commonly used MSC source, the bone marrow provides relatively little starting material for cellular expansion, and requires invasive extraction means, fibroblasts are easily harvested in large numbers from various biological wastes. Additionally, in vitro expansion of fibroblasts is significantly easier given the robustness of these cells in tissue culture and shorter doubling time compared to typical MSC. In this paper we put forward the concept that in some cases, fibroblasts may be utilized as a more practical, and potentially more effective cell therapy than mesenchymal stem cells. Anti-inflammatory, immune modulatory, and regenerative properties of fibroblasts will be discussed in the context of regenerative medicine.
Collapse
Affiliation(s)
| | | | - Santosh Kesari
- Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute and Pacific Neuroscience Institute, Santa Monica, CA, USA
| |
Collapse
|
40
|
Lorant J, Larcher T, Jaulin N, Hedan B, Lardenois A, Leroux I, Dubreil L, Ledevin M, Goubin H, Moullec S, Deschamps JY, Thorin C, André C, Adjali O, Rouger K. Vascular Delivery of Allogeneic MuStem Cells in Dystrophic Dogs Requires Only Short-Term Immunosuppression to Avoid Host Immunity and Generate Clinical/Tissue Benefits. Cell Transplant 2018; 27:1096-1110. [PMID: 29871519 PMCID: PMC6158548 DOI: 10.1177/0963689718776306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 01/15/2023] Open
Abstract
Growing demonstrations of regenerative potential for some stem cells led recently to promising therapeutic proposals for neuromuscular diseases. We have shown that allogeneic MuStem cell transplantation into Golden Retriever muscular dystrophy (GRMD) dogs under continuous immunosuppression (IS) leads to persistent clinical stabilization and muscle repair. However, long-term IS in medical practice is associated with adverse effects raising safety concerns. Here, we investigate whether the IS removal or its restriction to the transplantation period could be considered. Dogs aged 4-5 months old received vascular infusions of allogeneic MuStem cells without IS (GRMDMU/no-IS) or under transient IS (GRMDMU/tr-IS). At 5 months post-infusion, persisting clinical status improvement of the GRMDMU/tr-IS dogs was observed while GRMDMU/no-IS dogs exhibited no benefit. Histologically, only 9-month-old GRMDMU/tr-IS dogs showed an increased muscle regenerative activity. A mixed cell reaction with the host peripheral blood mononucleated cells (PBMCs) and corresponding donor cells revealed undetectable to weak lymphocyte proliferation in GRMDMU/tr-IS dogs compared with a significant proliferation in GRMDMU/no-IS dogs. Importantly, any dog group showed neither cellular nor humoral anti-dystrophin responses. Our results show that transient IS is necessary and sufficient to sustain allogeneic MuStem cell transplantation benefits and prevent host immunity. These findings provide useful critical insight to designing therapeutic strategies.
Collapse
Affiliation(s)
- Judith Lorant
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307, France
- Judith Lorant and Thibaut Larcher both contributed equally to this work
| | - Thibaut Larcher
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307, France
- Judith Lorant and Thibaut Larcher both contributed equally to this work
| | - Nicolas Jaulin
- INSERM, UMR1089, Centre Hospitalier Universitaire, Nantes, France
| | - Benoît Hedan
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Université Rennes 1, Rennes, France
- Université Rennes 1, UEB, IFR140, Faculté de Médecine, Rennes, France
| | - Aurélie Lardenois
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307, France
| | - Isabelle Leroux
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307, France
| | - Laurence Dubreil
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307, France
| | - Mireille Ledevin
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307, France
| | - Hélicia Goubin
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307, France
| | | | - Jack-Yves Deschamps
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307, France
- Centre de Boisbonne, Oniris, Nantes, France
| | - Chantal Thorin
- Laboratoire de Physiopathologie Animale et Pharmacologie Fonctionnelle, Oniris, Nantes, France
| | - Catherine André
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Université Rennes 1, Rennes, France
- Université Rennes 1, UEB, IFR140, Faculté de Médecine, Rennes, France
| | - Oumeya Adjali
- INSERM, UMR1089, Centre Hospitalier Universitaire, Nantes, France
| | - Karl Rouger
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307, France
| |
Collapse
|
41
|
Qiu X, Liu S, Zhang H, Zhu B, Su Y, Zheng C, Tian R, Wang M, Kuang H, Zhao X, Jin Y. Mesenchymal stem cells and extracellular matrix scaffold promote muscle regeneration by synergistically regulating macrophage polarization toward the M2 phenotype. Stem Cell Res Ther 2018; 9:88. [PMID: 29615126 PMCID: PMC5883419 DOI: 10.1186/s13287-018-0821-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/14/2018] [Accepted: 02/26/2018] [Indexed: 02/08/2023] Open
Abstract
Background Skeletal muscle plays an important role in the body’s physiology but there are still no effective treatments for volumetric muscle loss (VML) resulting from severe traumatic injury or tumor excision. Recent studies show that a tissue engineering strategy using a compound containing mesenchymal stem cells (MSCs) and decellularized extracellular matrix (ECM) scaffold generates significant regenerative effects on VML injury, but the underlying mechanisms are not fully understood. Methods The characteristics of human umbilical cord MSCs, including multiplication capacity and multidifferentiation ability, were determined. We constructed a compound containing MSCs and decellularized ECM scaffold which was used for tissue regeneration in a VML model. Results We found that MSCs and decellularized ECM scaffold generated synergistic effects on promoting skeletal muscle tissue regeneration. Interestingly, both MSCs and decellularized ECM scaffold could promote macrophage polarization toward the M2 phenotype and suppress macrophage polarization toward the M1 phenotype, which is widely regarded as an important promoting factor in tissue regeneration. More importantly, MSCs and decellularized ECM scaffold generate synergistic promoting effects on macrophage polarization toward the M2 phenotype, not just an additive effect. Conclusions Our findings uncover a previously unknown mechanism that MSCs and decellularized ECM scaffold promote tissue regeneration via collaboratively regulating macrophage polarization. Electronic supplementary material The online version of this article (10.1186/s13287-018-0821-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinyu Qiu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hao Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Bin Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Department of Stomatology, General Hospital of Tibet Military Region, Lhasa, Tibet, 850007, China
| | - Yuting Su
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chenxi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Rong Tian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Miao Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Huijuan Kuang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xinyi Zhao
- State Key Laboratory of Military Stomatology, Department of Dental Materials, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China. .,Department of Dental Materials, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China. .,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
42
|
B7-H1 Expression Is Required for Human Endometrial Regenerative Cells in the Prevention of Transplant Vasculopathy in Mice. Stem Cells Int 2018; 2018:2405698. [PMID: 29731774 PMCID: PMC5872625 DOI: 10.1155/2018/2405698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/02/2018] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Vasculopathy is one of the primary pathological changes in chronic rejection of vascularized allograft transplantation. Endometrial regenerative cells (ERCs) are mesenchymal-like stromal cells with immunosuppressive effect. B7-H1 is a negative costimulator that mediates active immune suppression. The aim of this study was to investigate the requirement of B7-H1 in the immunoregulation of ERCs in preventing transplant vasculopathy of aorta allografts. The results showed that B7-H1 expression on ERCs was upregulated by IFN-γ in a dose-dependent manner and it was required for ERCs to inhibit the proliferation of peripheral blood mononuclear cells (PBMCs) in vitro. ERCs could alleviate transplant vasculopathy, as the intimal growth of transplanted aorta was limited, and the preventive effects were correlated with an increase in the percentages of CD11c+MHC class IIlowCD86low dendritic cells, CD68+CD206+ macrophages, and CD4+CD25+Foxp3+ T cells, as well as a decrease in the percentages of CD68+ macrophages, CD3+CD4+ T cells, CD3+CD8+ T cells, and donor-reactive IgM and IgG antibodies. Moreover, overexpression of B7-H1 by IFN-γ can promote the immunosuppressive effect of ERCs. These results suggest that overexpression of B7-H1 stimulated by IFN-γ is required for ERCs to prevent the transplant vasculopathy, and this study provides a theoretical basis for the future clinical use of human ERCs.
Collapse
|
43
|
Muscle Stem/Progenitor Cells and Mesenchymal Stem Cells of Bone Marrow Origin for Skeletal Muscle Regeneration in Muscular Dystrophies. Arch Immunol Ther Exp (Warsz) 2018. [PMID: 29536116 PMCID: PMC6154032 DOI: 10.1007/s00005-018-0509-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Muscular dystrophies represent a group of diseases which may develop in several forms, and severity of the disease is usually associated with gene mutations. In skeletal muscle regeneration and in muscular dystrophies, both innate and adaptive immune responses are involved. The regenerative potential of mesenchymal stem/stromal cells (MSCs) of bone marrow origin was confirmed by the ability to differentiate into diverse tissues and by their immunomodulatory and anti-inflammatory properties by secretion of a variety of growth factors and anti-inflammatory cytokines. Skeletal muscle comprises different types of stem/progenitor cells such as satellite cells and non-satellite stem cells including MSCs, interstitial stem cells positive for stress mediator PW1 expression and negative for PAX7 called PICs (PW1+/PAX7− interstitial cells), fibro/adipogenic progenitors/mesenchymal stem cells, muscle side population cells and muscle resident pericytes, and all of them actively participate in the muscle regeneration process. In this review, we present biological properties of MSCs of bone marrow origin and a heterogeneous population of muscle-resident stem/progenitor cells, their interaction with the inflammatory environment of dystrophic muscle and potential implications for cellular therapies for muscle regeneration. Subsequently, we propose—based on current research results, conclusions, and our own experience—hypothetical mechanisms for modulation of the complete muscle regeneration process to treat muscular dystrophies.
Collapse
|
44
|
Subramani K, Lavenus S, Rozé J, Louarn G, Layrolle P. Impact of nanotechnology on dental implants. EMERGING NANOTECHNOLOGIES IN DENTISTRY 2018:83-97. [DOI: 10.1016/b978-0-12-812291-4.00005-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Lunyak VV, Amaro-Ortiz A, Gaur M. Mesenchymal Stem Cells Secretory Responses: Senescence Messaging Secretome and Immunomodulation Perspective. Front Genet 2017; 8:220. [PMID: 29312442 PMCID: PMC5742268 DOI: 10.3389/fgene.2017.00220] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSC) have been tested in a significant number of clinical trials, where they exhibit regenerative and repair properties directly through their differentiation into the cells of the mesenchymal origin or by modulation of the tissue/organ microenvironment. Despite various clinical effects upon transplantation, the functional properties of these cells in natural settings and their role in tissue regeneration in vivo is not yet fully understood. The omnipresence of MSC throughout vascularized organs equates to a reservoir of potentially therapeutic regenerative depots throughout the body. However, these reservoirs could be subjected to cellular senescence. In this review, we will discuss current progress and challenges in the understanding of different biological pathways leading to senescence. We set out to highlight the seemingly paradoxical property of cellular senescence: its beneficial role in the development and tissue repair and detrimental impact of this process on tissue homeostasis in aging and disease. Taking into account the lessons from the different cell systems, this review elucidates how autocrine and paracrine properties of senescent MSC might impose an additional layer of complexity on the regulation of the immune system in development and disease. New findings that have emerged in the last few years could shed light on sometimes seemingly controversial results obtained from MSC therapeutic applications.
Collapse
Affiliation(s)
| | | | - Meenakshi Gaur
- Aelan Cell Technologies, San Francisco, CA, United States
| |
Collapse
|
46
|
Employment of Microencapsulated Sertoli Cells as a New Tool to Treat Duchenne Muscular Dystrophy. J Funct Morphol Kinesiol 2017. [DOI: 10.3390/jfmk2040047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
47
|
Xiao D, Yan H, Wang Q, Lv X, Zhang M, Zhao Y, Zhou Z, Xu J, Sun Q, Sun K, Li W, Lu M. Trilayer Three-Dimensional Hydrogel Composite Scaffold Containing Encapsulated Adipose-Derived Stem Cells Promotes Bladder Reconstruction via SDF-1α/CXCR4 Pathway. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38230-38241. [PMID: 29022693 DOI: 10.1021/acsami.7b10630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bladder acellular matrix graft-alginate dialdehyde-gelatin hydrogel-silk mesh (BAMG-HS) encapsulated with adipose-derived stem cells (ASCs) was evaluated in a rat model of augmentation cystoplasty, including BAMG-HS-ASCs (n = 18, subgroup n = 6 for 2, 4, and 12 weeks), acellular BAMG-HS (n = 6 for 12 weeks) and cystotomy control (n = 6 for 12 weeks) groups. Equipped with good cytocompatibility and superior mechanical properties (elastic modulus: 5.33 ± 0.96 MPa, maximum load: 28.90 ± 0.69 N), BAMG-HS acted a trilayer "sandwich" scaffold with minimal interference in systemic homeostasis. ASCs in BAMG-HS promoted morphological and histological bladder restoration by accelerating scaffold degradation (p < 0.05), ameliorating fibrosis (p < 0.05) and inflammation (p < 0.01). Additionally, ASCs facilitated the recovery of bladder function by enhancing smooth muscle regeneration (p < 0.05), innervation (p < 0.01) and angiogenesis (p < 0.001). Except for a small number of endothelium-differentiated ASCs, the pro-angiogenic effects of ASCs were mainly related to ERK1/2 phosphorylation in the downstream of SDF-1α/CXCR4 pathway.
Collapse
Affiliation(s)
- Dongdong Xiao
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200001, China
| | - Hao Yan
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200001, China
| | - Qiong Wang
- Department of Urology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University , Guangzhou 510120, China
| | - Xiangguo Lv
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200001, China
| | - Ming Zhang
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200001, China
| | - Yang Zhao
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200001, China
| | - Zhe Zhou
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200001, China
| | - Jiping Xu
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200011, China
| | - Qian Sun
- The State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Kang Sun
- The State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Wei Li
- The State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Mujun Lu
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200001, China
| |
Collapse
|
48
|
Pelatti MV, Gomes JPA, Vieira NMS, Cangussu E, Landini V, Andrade T, Sartori M, Petrus L, Zatz M. Transplantation of Human Adipose Mesenchymal Stem Cells in Non-Immunosuppressed GRMD Dogs is a Safe Procedure. Stem Cell Rev Rep 2017; 12:448-53. [PMID: 27193781 DOI: 10.1007/s12015-016-9659-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The possibility to treat Duchenne muscular dystrophy (DMD), a lethal X-linked disorder, through cell therapy with mesenchymal stromal cells (MSCs) has been widely investigated in different animal models. However, some crucial questions need to be addressed before starting human therapeutic trials, particularly regarding its use for genetic disorders. How safe is the procedure? Are there any side effects following mesenchymal stem cell transplantation? To address these questions for DMD the best model is the golden retriever muscular dystrophy dog (GRMD), which is the closest model to the human condition displaying a much longer lifespan than other models. Here we report the follow-up of 5 GRMD dogs, which were repeatedly transplanted with human adipose-derived mesenchymal stromal cells (hASC), derived from different donors. Xenogeneic cell transplantation, which was done without immunosuppression, was well tolerated in all animals with no apparent long-term adverse effect. In the present study, we show that repeated heterologous stem-cell injection is a safe procedure, which is fundamental before starting human clinical trials.
Collapse
Affiliation(s)
- M V Pelatti
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - J P A Gomes
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - N M S Vieira
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - E Cangussu
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - V Landini
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - T Andrade
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - M Sartori
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - L Petrus
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - Mayana Zatz
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090.
| |
Collapse
|
49
|
Lan X, Wang G, Xu X, Lu S, Li X, Zhang B, Shi G, Zhao Y, Du C, Wang H. Stromal Cell-Derived Factor-1 Mediates Cardiac Allograft Tolerance Induced by Human Endometrial Regenerative Cell-Based Therapy. Stem Cells Transl Med 2017; 6:1997-2008. [PMID: 28941322 PMCID: PMC6430050 DOI: 10.1002/sctm.17-0091] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
Endometrial regenerative cells (ERCs) are mesenchymal-like stromal cells, and their therapeutic potential has been tested in the prevention of renal ischemic reperfusion injury, acute liver injury, ulcerative colitis, and immunosuppression. However, their potential in the induction of transplant tolerance has not been investigated. The present study was undertaken to investigate the efficacy of ERCs in inducing cardiac allograft tolerance and the function of stromal cell-derived factor-1 (SDF-1) in the ERC-mediated immunoregulation. The inhibitory efficacy of human ERCs in the presence or absence of rapamycin was examined in both mouse cardiac allograft models between BALB/c (H-2d ) donors and C57BL/6 (H-2b ) recipients and in vitro cocultured splenocytes. AMD3100 was used to inhibit the function of SDF-1. Intragraft antibody (IgG and IgM) deposition and immune cell (CD4+ and CD8+ ) infiltration were measured by immunohistochemical staining, and splenocyte phenotypes were determined by fluorescence-activated cell sorting analysis. The results showed that ERC-based therapy induced donor-specific allograft tolerance, and functionally inhibiting SDF-1 resulted in severe allograft rejection. The negative effects of inhibiting SDF-1 on allograft survival were correlated with increased levels of intragraft antibodies and infiltrating immune cells, and also with reduced levels of regulatory immune cells including MHC class IIlow CD86low CD40low dendritic cells, CD68+ CD206+ macrophages, CD4+ CD25+ Foxp3+ T cells, and CD1dhigh CD5high CD83low IL-10high B cells both in vivo and in vitro. These data showed that human ERC-based therapy induces cardiac allograft tolerance in mice, which is associated with SDF-1 activity, suggesting that SDF-1 mediates the immunosuppression of ERC-based therapy for the induction of transplant tolerance. Stem Cells Translational Medicine 2017;6:1997-2008.
Collapse
Affiliation(s)
- Xu Lan
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Grace Wang
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Xiaoxi Xu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Shanzheng Lu
- Department of Anorectal Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Baoren Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Ganggang Shi
- Department of Colorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yiming Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Caigan Du
- Department of Urologic Sciences, the University of British Columbia, Vancouver, British Columbia, Canada.,Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
50
|
Shehata AS, Al-Ghonemy NM, Ahmed SM, Mohamed SR. Effect of mesenchymal stem cells on induced skeletal muscle chemodenervation atrophy in adult male albino rats. Int J Biochem Cell Biol 2017; 85:135-148. [PMID: 28232107 DOI: 10.1016/j.biocel.2017.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 12/11/2022]
Abstract
The present research was conducted to evaluate the effect of bone marrow derived mesenchymal stem cells (BM-MSCs) as a potential therapeutic tool for improvement of skeletal muscle recovery after induced chemodenervation atrophy by repeated local injection of botulinum toxin-A in the right tibialis anterior muscle of adult male albino rats. Forty five adult Wistar male albino rats were classified into control and experimental groups. Experimental group was further subdivided into 3 equal subgroups; induced atrophy, BM-MSCs treated and recovery groups. Biochemical analysis of serum LDH, CK and Real-time PCR for Bcl-2, caspase 3 and caspase 9 was measured. Skeletal muscle sections were stained with H and E, Mallory trichrome, and Immunohistochemical reaction for Bax and CD34. Improvement in the skeletal muscle histological structure was noticed in BM-MSCs treated group, however, in the recovery group, some sections showed apparent transverse striations and others still affected. Immunohistochemical reaction of Bax protein showed strong positive immunoreaction in the cytoplasm of muscle fibers in the induced atrophy group. BM-MSCs treated group showed weak positive reaction while the recovery group showed moderate reaction in the cytoplasm of muscle fibers. Immunohistochemical reaction for CD34 revealed occasional positive CD34 stained cells in the induced atrophy group. In BM-MSCs treated group, multiple positive CD34 stained cells were detected. However, recovery group showed some positive CD34 stained cells at the periphery of the muscle fibers. Marked improvement in the regenerative capacity of skeletal muscles after BM-MSCs therapy. Hence, stem cell therapy provides a new hope for patients suffering from myopathies and severe injuries.
Collapse
Affiliation(s)
| | | | - Samah M Ahmed
- Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | | |
Collapse
|