1
|
Balhara M, Neikirk K, Marshall A, Hinton A, Kirabo A. Endoplasmic Reticulum Stress in Hypertension and Salt Sensitivity of Blood Pressure. Curr Hypertens Rep 2024; 26:273-290. [PMID: 38602583 PMCID: PMC11166838 DOI: 10.1007/s11906-024-01300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Hypertension is a principal risk factor for cardiovascular morbidity and mortality, with its severity exacerbated by high sodium intake, particularly in individuals with salt-sensitive blood pressure. However, the mechanisms underlying hypertension and salt sensitivity are only partly understood. Herein, we review potential interactions in hypertension pathophysiology involving the immune system, endoplasmic reticulum (ER) stress, the unfolded protein response (UPR), and proteostasis pathways; identify knowledge gaps; and discuss future directions. RECENT FINDINGS Recent advancements by our research group and others reveal interactions within and between adaptive and innate immune responses in hypertension pathophysiology. The salt-immune-hypertension axis is further supported by the discovery of the role of dendritic cells in hypertension, marked by isolevuglandin (IsoLG) formation. Alongside these broadened understandings of immune-mediated salt sensitivity, the contributions of T cells to hypertension have been recently challenged by groups whose findings did not support increased resistance of Rag-1-deficient mice to Ang II infusion. Hypertension has also been linked to ER stress and the UPR. Notably, a holistic approach is needed because the UPR engages in crosstalk with autophagy, the ubiquitin proteasome, and other proteostasis pathways, that may all involve hypertension. There is a critical need for studies to establish cause and effect relationships between ER stress and the UPR in hypertension pathophysiology in humans and to determine whether the immune system and ER stress function mainly to exacerbate or initiate hypertension and target organ injury. This review of recent studies proposes new avenues for future research for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Maria Balhara
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37212-8802, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Andrea Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37212-8802, USA.
- Vanderbilt Center for Immunobiology, Nashville, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, USA.
- Vanderbilt Institute for Global Health, Nashville, USA.
| |
Collapse
|
2
|
Di Conza G, Ho PC, Cubillos-Ruiz JR, Huang SCC. Control of immune cell function by the unfolded protein response. Nat Rev Immunol 2023; 23:546-562. [PMID: 36755160 DOI: 10.1038/s41577-023-00838-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/10/2023]
Abstract
Initiating and maintaining optimal immune responses requires high levels of protein synthesis, folding, modification and trafficking in leukocytes, which are processes orchestrated by the endoplasmic reticulum. Importantly, diverse extracellular and intracellular conditions can compromise the protein-handling capacity of this organelle, inducing a state of 'endoplasmic reticulum stress' that activates the unfolded protein response (UPR). Emerging evidence shows that physiological or pathological activation of the UPR can have effects on immune cell survival, metabolism, function and fate. In this Review, we discuss the canonical role of the adaptive UPR in immune cells and how dysregulation of this pathway in leukocytes contributes to diverse pathologies such as cancer, autoimmunity and metabolic disorders. Furthermore, we provide an overview as to how pharmacological approaches that modulate the UPR could be harnessed to control or activate immune cell function in disease.
Collapse
Affiliation(s)
- Giusy Di Conza
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| | - Stanley Ching-Cheng Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
3
|
Li HY, Huang LF, Huang XR, Wu D, Chen XC, Tang JX, An N, Liu HF, Yang C. Endoplasmic Reticulum Stress in Systemic Lupus Erythematosus and Lupus Nephritis: Potential Therapeutic Target. J Immunol Res 2023; 2023:7625817. [PMID: 37692838 PMCID: PMC10484658 DOI: 10.1155/2023/7625817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease. Approximately one-third to two-thirds of the patients with SLE progress to lupus nephritis (LN). The pathogenesis of SLE and LN has not yet been fully elucidated, and effective treatment for both conditions is lacking. The endoplasmic reticulum (ER) is the largest intracellular organelle and is a site of protein synthesis, lipid metabolism, and calcium storage. Under stress, the function of ER is disrupted, and the accumulation of unfolded or misfolded proteins occurs in ER, resulting in an ER stress (ERS) response. ERS is involved in the dysfunction of B cells, macrophages, T cells, dendritic cells, neutrophils, and other immune cells, causing immune system disorders, such as SLE. In addition, ERS is also involved in renal resident cell injury and contributes to the progression of LN. The molecular chaperones, autophagy, and proteasome degradation pathways inhibit ERS and restore ER homeostasis to improve the dysfunction of immune cells and renal resident cell injury. This may be a therapeutic strategy for SLE and LN. In this review, we summarize advances in this field.
Collapse
Affiliation(s)
- Hui-Yuan Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Li-Feng Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiao-Rong Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Dan Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiao-Cui Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ning An
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
4
|
Wang H, Mi K. Emerging roles of endoplasmic reticulum stress in the cellular plasticity of cancer cells. Front Oncol 2023; 13:1110881. [PMID: 36890838 PMCID: PMC9986440 DOI: 10.3389/fonc.2023.1110881] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Cellular plasticity is a well-known dynamic feature of tumor cells that endows tumors with heterogeneity and therapeutic resistance and alters their invasion-metastasis progression, stemness, and drug sensitivity, thereby posing a major challenge to cancer therapy. It is becoming increasingly clear that endoplasmic reticulum (ER) stress is a hallmark of cancer. The dysregulated expression of ER stress sensors and the activation of downstream signaling pathways play a role in the regulation of tumor progression and cellular response to various challenges. Moreover, mounting evidence implicates ER stress in the regulation of cancer cell plasticity, including epithelial-mesenchymal plasticity, drug resistance phenotype, cancer stem cell phenotype, and vasculogenic mimicry phenotype plasticity. ER stress influences several malignant characteristics of tumor cells, including epithelial-to-mesenchymal transition (EMT), stem cell maintenance, angiogenic function, and tumor cell sensitivity to targeted therapy. The emerging links between ER stress and cancer cell plasticity that are implicated in tumor progression and chemoresistance are discussed in this review, which may aid in formulating strategies to target ER stress and cancer cell plasticity in anticancer treatments.
Collapse
Affiliation(s)
- Hao Wang
- Breast Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kun Mi
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Lyu C, Sun Y. Immunometabolism in the pathogenesis of vitiligo. Front Immunol 2022; 13:1055958. [PMID: 36439174 PMCID: PMC9684661 DOI: 10.3389/fimmu.2022.1055958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 01/25/2023] Open
Abstract
Vitiligo is a common depigmenting skin disorder characterized by the selective loss of melanocytes. Autoimmunity, genetic, environmental, and biochemical etiology have been proposed in vitiligo pathogenesis. However, the exact molecular mechanisms of vitiligo development and progression are unclear, particularly for immunometabolism. Sporadic studies have suggested mitochondrial dysfunction, enhanced oxidative stress, and specific defects in other metabolic pathways can promote dysregulation of innate and adaptive immune responses in vitiligo. These abnormalities appear to be driven by genetic and epigenetic factors modulated by stochastic events. In addition, glucose and lipid abnormalities in metabolism have been associated with vitiligo. Specific skin cell populations are also involved in the critical role of dysregulation of metabolic pathways, including melanocytes, keratinocytes, and tissue-resident memory T cells in vitiligo pathogenesis. Novel therapeutic treatments are also raised based on the abnormalities of immunometabolism. This review summarizes the current knowledge on immunometabolism reprogramming in the pathogenesis of vitiligo and novel treatment options.
Collapse
|
6
|
Salvagno C, Mandula JK, Rodriguez PC, Cubillos-Ruiz JR. Decoding endoplasmic reticulum stress signals in cancer cells and antitumor immunity. Trends Cancer 2022; 8:930-943. [PMID: 35817701 PMCID: PMC9588488 DOI: 10.1016/j.trecan.2022.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022]
Abstract
The tumor microenvironment (TME) provokes endoplasmic reticulum (ER) stress in malignant cells and infiltrating immune populations. Sensing and responding to ER stress is coordinated by the unfolded protein response (UPR), an integrated signaling pathway governed by three ER stress sensors: activating transcription factor (ATF6), inositol-requiring enzyme 1α (IRE1α), and protein kinase R (PKR)-like ER kinase (PERK). Persistent UPR activation modulates malignant progression, tumor growth, metastasis, and protective antitumor immunity. Hence, therapies targeting ER stress signaling can be harnessed to elicit direct tumor killing and concomitant anticancer immunity. We highlight recent findings on the role of the ER stress responses in onco-immunology, with an emphasis on genetic vulnerabilities that render tumors highly sensitive to therapeutic UPR modulation.
Collapse
Affiliation(s)
- Camilla Salvagno
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jessica K Mandula
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.
| |
Collapse
|
7
|
Lu G, Li Q, Liu J, Jia Y, Tang J, Zhang X. Inhibition of endoplasmic reticulum stress and the downstream pathways protects CD4 + T cells against apoptosis and immune dysregulation in sepsis. IUBMB Life 2022; 74:1070-1080. [PMID: 35859520 DOI: 10.1002/iub.2666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/10/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Immunosuppression mediated by CD4+ T cell apoptosis and dysfunction is a key factor in promoting the progression of sepsis. Endoplasmic reticulum (ER) stress participates in the apoptosis and dysfunction of immune cells. AIM We aimed to investigate the role of ER stress inhibition in CD4+ T cells in both in vitro and in vivo models of sepsis. METHODS In vitro model of sepsis was established with lipopolysaccharide (LPS) and the rat model of sepsis was established using cecal ligation and puncture (CLP). After the LPS treatment or CLP, ER stress inhibitors including 4-PBA, SNJ-1945, and SP600125 were used to treat cells or rats, and the CD4+ T cells were obtained by magnetic bead sorting. The effects of ER stress inhibitors on apoptosis and the function of CD4+ T cells were evaluated. RESULTS After the LPS stimulation or CLP, the levels of ER stress and downstream markers (PERK, eIF2α, IRE-1α, ATF6, ATF4, XBP-1s, GRP78, CHOP, and p-JNK) were increased in CD4+ T cells at the beginning of sepsis. Meanwhile, the number of apoptotic CD4+ T cells markedly increased. In addition, sepsis impaired the function of CD4+ T cells, manifested by the increased population of Th1, Th2, Th17, and Treg, as well as the production of TNF-α, interleukin (IL)-6, IL-4, and IL-10. However, inhibitors of ER stress, JNK, and calpain all decreased the induction of Th1 and Th17, enhanced the increase of Th2 and Treg, decreased the production of TNF-α and IL-6, and enhanced the production of IL-4 and IL-10. CONCLUSION Our findings indicate that ER stress inhibitors may play a protective role by reducing CD4+ T cell apoptosis and maintaining CD4+ T cell function, which may be useful for enhancing the immune function and poor prognosis of patients with sepsis.
Collapse
Affiliation(s)
- Gang Lu
- Department of Trauma Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qingqing Li
- Department of Trauma Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianjun Liu
- Department of Trauma Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yanan Jia
- Department of Geriatrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xuemin Zhang
- Department of Trauma Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Feng ZZ, Luo N, Liu Y, Hu JN, Ma T, Yao YM. ER stress and its PERK branch enhance TCR-induced activation in regulatory T cells. Biochem Biophys Res Commun 2021; 563:8-14. [PMID: 34058476 DOI: 10.1016/j.bbrc.2021.05.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/17/2021] [Indexed: 01/21/2023]
Abstract
Although accumulating evidence indicates participation of endoplasmic reticulum (ER) stress pathway or the unfolded protein response (UPR) in immunity, there still exists little information linking ER stress to regulatory T cells (Tregs). To evaluate the potential contribution of the UPR, we tested the effects of thapsigargin (TG), an ER stress inducer, on the function of Tregs. Here we reported that TG stimulation induced the up-regulation of the endoplasmic reticulum (ER)-stress chaperon Glucose-Regulated Protein 78 (GRP78), which is a master regulator of the UPR, the phosphorylation of eukaryotic initiation factor 2 alpha (elF2α) and the induction of activating transcription factor 4 (ATF4), which are both protein kinase R (PKR)-like ER kinase (PERK) downstream targets in Tregs. Simultaneously, we demonstrated that, under ER stress conditions, Tregs presented enhanced functional activity upon TCR stimulation, as illustrated with forkhead box transcription factor (Foxp3) expression, interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) production and suppressive functional analysis. Notably, pretreatment with GSK2656157, a potent and selective PERK inhibitor, markedly diminished the TG-induced hyperresponsiveness of Tregs upon T cell antigen receptor (TCR) stimulation. Therefore, our findings illustrated the inter-connection and coordination of the evolutionarily conserved ER stress response and TCR signaling in Tregs and uncover a critical new role of the PERK branch of UPR in the regulation of Tregs function.
Collapse
Affiliation(s)
- Zhen-Zhen Feng
- Department of Intensive Care Unit, The Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Ning Luo
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Ying Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Jian-Nan Hu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yong-Ming Yao
- Department of Microbiology and Immunology, Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, PR China.
| |
Collapse
|
9
|
Jadeja SD, Mayatra JM, Vaishnav J, Shukla N, Begum R. A Concise Review on the Role of Endoplasmic Reticulum Stress in the Development of Autoimmunity in Vitiligo Pathogenesis. Front Immunol 2021; 11:624566. [PMID: 33613564 PMCID: PMC7890234 DOI: 10.3389/fimmu.2020.624566] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Vitiligo is characterized by circumscribed depigmented macules in the skin resulting due to the autoimmune destruction of melanocytes from the epidermis. Both humoral as well as cell-mediated autoimmune responses are involved in melanocyte destruction. Several studies including ours have established that oxidative stress is involved in vitiligo onset, while autoimmunity contributes to the disease progression. However, the underlying mechanism involved in programing the onset and progression of the disease remains a conundrum. Based on several direct and indirect evidences, we suggested that endoplasmic reticulum (ER) stress might act as a connecting link between oxidative stress and autoimmunity in vitiligo pathogenesis. Oxidative stress disrupts cellular redox potential that extends to the ER causing the accumulation of misfolded proteins, which activates the unfolded protein response (UPR). The primary aim of UPR is to resolve the stress and restore cellular homeostasis for cell survival. Growing evidences suggest a vital role of UPR in immune regulation. Moreover, defective UPR has been implicated in the development of autoimmunity in several autoimmune disorders. ER stress-activated UPR plays an essential role in the regulation and maintenance of innate as well as adaptive immunity, and a defective UPR may result in systemic/tissue level/organ-specific autoimmunity. This review emphasizes on understanding the role of ER stress-induced UPR in the development of systemic and tissue level autoimmunity in vitiligo pathogenesis and its therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
10
|
Salminen A, Kaarniranta K, Kauppinen A. ER stress activates immunosuppressive network: implications for aging and Alzheimer's disease. J Mol Med (Berl) 2020; 98:633-650. [PMID: 32279085 PMCID: PMC7220864 DOI: 10.1007/s00109-020-01904-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) contains stress sensors which recognize the accumulation of unfolded proteins within the lumen of ER, and subsequently these transducers stimulate the unfolded protein response (UPR). The ER sensors include the IRE1, PERK, and ATF6 transducers which activate the UPR in an attempt to restore the quality of protein folding and thus maintain cellular homeostasis. If there is excessive stress, UPR signaling generates alarmins, e.g., chemokines and cytokines, which activate not only tissue-resident immune cells but also recruit myeloid and lymphoid cells into the affected tissues. ER stress is a crucial inducer of inflammation in many pathological conditions. A chronic low-grade inflammation and cellular senescence have been associated with the aging process and many age-related diseases, such as Alzheimer’s disease. Currently, it is known that immune cells can exhibit great plasticity, i.e., they are able to display both pro-inflammatory and anti-inflammatory phenotypes in a context-dependent manner. The microenvironment encountered in chronic inflammatory conditions triggers a compensatory immunosuppression which defends tissues from excessive inflammation. Recent studies have revealed that chronic ER stress augments the suppressive phenotypes of immune cells, e.g., in tumors and other inflammatory disorders. The activation of immunosuppressive network, including myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg), has been involved in the aging process and Alzheimer’s disease. We will examine in detail whether the ER stress-related changes found in aging tissues and Alzheimer’s disease are associated with the activation of immunosuppressive network, as has been observed in tumors and many chronic inflammatory diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
11
|
Li A, Song NJ, Riesenberg BP, Li Z. The Emerging Roles of Endoplasmic Reticulum Stress in Balancing Immunity and Tolerance in Health and Diseases: Mechanisms and Opportunities. Front Immunol 2020; 10:3154. [PMID: 32117210 PMCID: PMC7026265 DOI: 10.3389/fimmu.2019.03154] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is an organelle equipped with mechanisms for proper protein folding, trafficking, and degradation to maintain protein homeostasis in the secretory pathway. As a defense mechanism, perturbation of ER proteostasis by ER stress agents activates a cascade of signaling pathways from the ER to the nucleus known as unfolded protein response (UPR). The primary goal of UPR is to induce transcriptional and translational programs to restore ER homeostasis for cell survival. As such, defects in UPR signaling have been implicated as a key contributor to multiple diseases including metabolic diseases, degenerative diseases, inflammatory disorders, and cancer. Growing evidence support the critical role of ER stress in regulating the fate as well as the magnitude of the immune response. Moreover, the availability of multiple UPR pharmacological inhibitors raises the hope that targeting UPR can be a new strategy for immune modulation and immunotherapy of diseases. This paper reviews the principal mechanisms by which ER stress affects immune cell biology and function, with a focus of discussion on UPR-associated immunopathology and the development of potential ER stress-targeted therapeutics.
Collapse
Affiliation(s)
- Anqi Li
- College of Medicine, The Ohio State University, Columbus, OH, United States.,The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - No-Joon Song
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Brian P Riesenberg
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Zihai Li
- College of Medicine, The Ohio State University, Columbus, OH, United States.,The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States.,Division of Medical Oncology, Department of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
12
|
Stressed: The Unfolded Protein Response in T Cell Development, Activation, and Function. Int J Mol Sci 2019; 20:ijms20071792. [PMID: 30978945 PMCID: PMC6479341 DOI: 10.3390/ijms20071792] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022] Open
Abstract
The unfolded protein response (UPR) is a highly conserved pathway that allows cells to respond to stress in the endoplasmic reticulum caused by an accumulation of misfolded and unfolded protein. This is of great importance to secretory cells because, in order for proteins to traffic from the endoplasmic reticulum (ER), they need to be folded appropriately. While a wealth of literature has implicated UPR in immune responses, less attention has been given to the role of UPR in T cell development and function. This review discusses the importance of UPR in T cell development, homeostasis, activation, and effector functions. We also speculate about how UPR may be manipulated in T cells to ameliorate pathologies.
Collapse
|
13
|
So JS. Roles of Endoplasmic Reticulum Stress in Immune Responses. Mol Cells 2018; 41:705-716. [PMID: 30078231 PMCID: PMC6125421 DOI: 10.14348/molcells.2018.0241] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/03/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is a critical organelle for protein synthesis, folding and modification, and lipid synthesis and calcium storage. Dysregulation of ER functions leads to the accumulation of misfolded- or unfolded-protein in the ER lumen, and this triggers the unfolded protein response (UPR), which restores ER homeostasis. The UPR is characterized by three distinct downstream signaling pathways that promote cell survival or apoptosis depending on the stressor, the intensity and duration of ER stress, and the cell type. Mammalian cells express the UPR transducers IRE1, PERK, and ATF6, which control transcriptional and translational responses to ER stress. Direct links between ER stress and immune responses are also evident, but the mechanisms by which UPR signaling cascades are coordinated with immunity remain unclear. This review discusses recent investigations of the roles of ER stress in immune responses that lead to differentiation, maturation, and cytokine expression in immune cells. Further understanding of how ER stress contributes to the pathogenesis of immune disorders will facilitate the development of novel therapies that target UPR pathways.
Collapse
Affiliation(s)
- Jae-Seon So
- Department of Medical Biotechnology, Dongguk University Gyeongju, Gyeongju 38066,
Korea
| |
Collapse
|
14
|
Yuan X, Wang J, Li Y, He X, Niu B, Wu D, Lan N, Wang X, Zhang Y, Dai X, Wang X, Liu Z, Li G. Allergy immunotherapy restores airway epithelial barrier dysfunction through suppressing IL-25 -induced endoplasmic reticulum stress in asthma. Sci Rep 2018; 8:7950. [PMID: 29784924 PMCID: PMC5962552 DOI: 10.1038/s41598-018-26221-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/01/2018] [Indexed: 12/27/2022] Open
Abstract
Constant exposure to allergen triggers destructive type 2 cell-mediated inflammation. The effect of allergen specific immunotherapy (SIT) in maintaining airway epithelial barrier function in asthma remains unknown. In the current study, we showed that SIT maintained airway epithelial homeostasis in mice exposed to dermatophagoides farinae (Der f), which induced increased expression of IL-25, endoplasmic reticulum (ER) stress and airway epithelial apoptosis. Meanwhile, SIT treatment ameliorated airway inflammatory infiltration and hyper-responsiveness in allergic mice. SIT treatment restored the airway epithelial integrity, attenuated Der f -induced airway epithelial ER stress and epithelial apoptosis. We also found that 4-PBA, an inhibitor of ER stress, suppressed airway epithelial ER stress and apoptosis in vitro. The pathological changes were partially induced by IL-25-induced ER stress, epithelial tight junction damage, and cell apoptosis in airways following allergen exposure. Furthermore, IL-25 induced ER stress in airway epithelial cells in vitro. The IL-25-induced airway epithelial apoptosis dependent on PERK activity was inhibited by 4-PBA. Taken together, we demonstrate that SIT is effective in allergic asthma and dependent on its depressive effect on the expression of IL-25, epithelial integrity damage, and epithelial ER stress.
Collapse
Affiliation(s)
- Xiefang Yuan
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Junyi Wang
- Department of Respiratory Disease, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Yin Li
- The First Clinic College, Chongqing Medical University, Chongqing, 401331, China
| | - Xiang He
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Bin Niu
- Respiratory Disease Departments, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Dehong Wu
- Department of Respiratory Disease, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Nan Lan
- Respiratory Disease Departments, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiaoyun Wang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yun Zhang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xi Dai
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhigang Liu
- The State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, 518060, China.
| | - Guoping Li
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China. .,Department of Respiratory Disease, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
15
|
Zhu XM, Dong N, Wang YB, Zhang QH, Yu Y, Yao YM, Liang HP. The involvement of endoplasmic reticulum stress response in immune dysfunction of dendritic cells after severe thermal injury in mice. Oncotarget 2018; 8:9035-9052. [PMID: 28118617 PMCID: PMC5354713 DOI: 10.18632/oncotarget.14764] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022] Open
Abstract
Suppressed adaptive immune function is one of the major concerns responsible for the development of opportunistic infections and subsequent sepsis with high mortality in severe burns. Endoplasmic reticulum stress (ERS) is the endogenous self-protective mechanism, and it plays an important role in almost every process of living by regulating the balance between homeostasis and apoptosis. The current study investigated the involvement of ERS in the pathogenesis of dysfunction of dendritic cells (DCs) in burn mice. Our results show a significant ERS response in splenic DC after burn injury. Treatment with salubrinal (Sal, reported to protect cells against ERS-induced apoptosis.) decrease the apoptotic rate of DC induced by burns, and promote maturation and activation of DC, as well as the ability to promote T cell proliferation and polarization towards Th1 immunity (all P<0.05). Gene silence of XBP-1 (key molecular in ERS response) results in the increased apoptosis and suppressed phenotypical maturation of splenic DC in burn mice. These results show that the excessive ERS is essential for immunosuppression during severe thermal injury. XBP-1 plays a pivotal role in DC functional immunomodulation in burn mice. Inhibition of apoptotic ERS response benefits mice from major burns.
Collapse
Affiliation(s)
- Xiao-Mei Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing, China.,Department of Microbiology and Immunology, Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | - Ning Dong
- Department of Microbiology and Immunology, Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | - Yan-Bo Wang
- Department of Microbiology and Immunology, Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | - Qing-Hong Zhang
- Department of Microbiology and Immunology, Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | - Yan Yu
- Department of Microbiology and Immunology, Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | - Yong-Ming Yao
- Department of Microbiology and Immunology, Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | - Hua-Ping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
16
|
Sun J, Lian M, Ma H, Wang R, Ma Z, Wang H, Zhai J, Meng L, Feng L, Bai Y, Cui X, Fang J. Competing endogenous RNA network analysis of CD274, IL‑10 and FOXP3 co‑expression in laryngeal squamous cell carcinoma. Mol Med Rep 2017; 17:3859-3869. [PMID: 29257349 DOI: 10.3892/mmr.2017.8307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 06/15/2017] [Indexed: 11/06/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is one of the most common types of head and neck malignant tumor; however, there is a lack of effective molecular targets for therapy. The present study detected the expression of three immunity‑associated molecules [forkhead box (FOX)3, interleukin (IL)‑10 and cluster of differentiation (CD)274] in 133 LSCC samples using immunohistochemistry (IHC); subsequently, the association between their expression and the clinical characteristics of LSCC were analyzed. Spearman's rank correlation method, Kaplan‑Meier and Cox regression model were used to analyze the correlations of the three proteins and their clinical significance. StarBase and miRTarBase databases were used to establish the competitive endogenous (ce)RNA network of the three molecules. IHC demonstrated that the positive expression rates of FOXP3, IL‑10 and CD274 were 68.4, 73.7 and 58.6% in 133 LSCC samples, respectively. In addition, it was identified that the expression of the three proteins was closely correlated with the clinical characteristics of LSCC, including lymph node metastasis and prognosis (P<0.05). There was also a significant association of co‑expression between any two proteins (P<0.001). Furthermore, the expression levels of FOXP3, IL‑10 and CD274 were negatively associated with the survival rate of patients with LSCC (P<0.05). The results of a Cox regression model suggested that the three proteins were prognostic risk factors for LSCC (P<0.05). The ceRNA network revealed that 10 microRNAs (miRs; including miR‑16‑5p and miR‑214‑3p), 123 long non‑coding RNAs (including X‑inactive specific transcript, H19 and metastasis associated lung adenocarcinoma transcript 1) and 408 circular RNAs (including ATP‑binding cassette subfamily C member 1 hsa_circ_001569 and ISY1 splicing factor homolog hsa_circ_001859) may regulate the expression of FOXP3, IL‑10 and CD274. The data generated from the present study may increase the understanding of the immune escape mechanisms of LSCC and may be beneficial for the development of a specific immunotherapy.
Collapse
Affiliation(s)
- Juan Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Hongzhi Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Zhihong Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Haizhou Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Jie Zhai
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Lingzhao Meng
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Ling Feng
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Yunfei Bai
- Department of Otorhinolaryngology, Inner Mongolia Medical University Affiliated Hospital, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xiaobo Cui
- Department of Otorhinolaryngology, Inner Mongolia Medical University Affiliated Hospital, Hohhot, Inner Mongolia 010050, P.R. China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
17
|
Endoplasmic Reticulum Stress and Homeostasis in Reproductive Physiology and Pathology. Int J Mol Sci 2017; 18:ijms18040792. [PMID: 28397763 PMCID: PMC5412376 DOI: 10.3390/ijms18040792] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 01/07/2023] Open
Abstract
The endoplasmic reticulum (ER), comprises 60% of the total cell membrane and interacts directly or indirectly with several cell organelles i.e., Golgi bodies, mitochondria and proteasomes. The ER is usually associated with large numbers of attached ribosomes. During evolution, ER developed as the specific cellular site of synthesis, folding, modification and trafficking of secretory and cell-surface proteins. The ER is also the major intracellular calcium storage compartment that maintains cellular calcium homeostasis. During the production of functionally effective proteins, several ER-specific molecular steps sense quantity and quality of synthesized proteins as well as proper folding into their native structures. During this process, excess accumulation of unfolded/misfolded proteins in the ER lumen results in ER stress, the homeostatic coping mechanism that activates an ER-specific adaptation program, (the unfolded protein response; UPR) to increase ER-associated degradation of structurally and/or functionally defective proteins, thus sustaining ER homeostasis. Impaired ER homeostasis results in aberrant cellular responses, contributing to the pathogenesis of various diseases. Both female and male reproductive tissues undergo highly dynamic cellular, molecular and genetic changes such as oogenesis and spermatogenesis starting in prenatal life, mainly controlled by sex-steroids but also cytokines and growth factors throughout reproductive life. These reproductive changes require ER to provide extensive protein synthesis, folding, maturation and then their trafficking to appropriate cellular location as well as destroying unfolded/misfolded proteins via activating ER-associated degradation mediated proteasomes. Many studies have now shown roles for ER stress/UPR signaling cascades in the endometrial menstrual cycle, ovarian folliculogenesis and oocyte maturation, spermatogenesis, fertilization, pre-implantation embryo development and pregnancy and parturition. Conversely, the contribution of impaired ER homeostasis by severe/prolong ER stress-mediated UPR signaling pathways to several reproductive tissue pathologies including endometriosis, cancers, recurrent pregnancy loss and pregnancy complications associated with pre-term birth have been reported. This review focuses on ER stress and UPR signaling mechanisms, and their potential roles in female and male reproductive physiopathology involving in menstrual cycle changes, gametogenesis, preimplantation embryo development, implantation and placentation, labor, endometriosis, pregnancy complications and preterm birth as well as reproductive system tumorigenesis.
Collapse
|
18
|
Martins AS, Alves I, Helguero L, Domingues MR, Neves BM. The Unfolded Protein Response in Homeostasis and Modulation of Mammalian Immune Cells. Int Rev Immunol 2016; 35:457-476. [PMID: 27119724 DOI: 10.3109/08830185.2015.1110151] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The endoplasmic reticulum (ER) plays important roles in eukaryotic protein folding and lipid biosynthesis. Several exogenous and endogenous cellular sources of stress can perturb ER homeostasis leading to the accumulation of unfolded proteins in the lumen. Unfolded protein accumulation triggers a signal-transduction cascade known as the unfolded protein response (UPR), an adaptive mechanism which aims to protect cells from protein aggregates and to restore ER functions. Further to this protective mechanism, in immune cells, UPR molecular effectors have been shown to participate in a wide range of biological processes such as cell differentiation, survival and immunoglobulin and cytokine production. Recent findings also highlight the involvement of the UPR machinery in the maturational program and antigen presentation capacities of dendritic cells. UPR is therefore a key element in immune system homeostasis with direct implications on both adaptive and innate immune responses. The present review summarizes the knowledge on the emerging roles of UPR signaling cascades in mammalian immune cells as well as the consequences of their dysregulation in relation to the pathogenesis of several diseases.
Collapse
Affiliation(s)
- Ana Sofia Martins
- a Mass Spectrometry Centre, Department of Chemistry and QOPNA , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Inês Alves
- a Mass Spectrometry Centre, Department of Chemistry and QOPNA , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Luisa Helguero
- a Mass Spectrometry Centre, Department of Chemistry and QOPNA , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal.,b Institute for Research in Biomedicine - iBiMED, Health Sciences Program, Universidade de Aveiro , Portugal
| | - Maria Rosário Domingues
- a Mass Spectrometry Centre, Department of Chemistry and QOPNA , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Bruno Miguel Neves
- a Mass Spectrometry Centre, Department of Chemistry and QOPNA , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal.,c Faculty of Pharmacy and Centre for Neuroscience and Cell Biology, University of Coimbra , Coimbra , Portugal
| |
Collapse
|
19
|
Burns JC, Franco A. The immunomodulatory effects of intravenous immunoglobulin therapy in Kawasaki disease. Expert Rev Clin Immunol 2016; 11:819-25. [PMID: 26099344 DOI: 10.1586/1744666x.2015.1044980] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The introduction of intravenous immunoglobulin (IVIG) for modulation of inflammation in acute Kawasaki disease was a great therapeutic triumph. However, three decades later, the mechanisms underlying immune regulation by IVIG are only beginning to be revealed. Stimulation of an immature myeloid population of dendritic cells that secretes IL-10 and the elucidation of Fc-specific natural regulatory T cells provide insights into the mechanisms of IVIG. Other potential mechanisms include provision of agent-specific neutralizing antibody, anti-idiotype and anti-cytokine antibodies, blockade of activating Fcγ receptors and stimulation of the inhibitory FcγRIIb receptor. New initiatives must seek to understand the mechanisms of IVIG in order to replace it one day with more affordable and more targeted therapies.
Collapse
Affiliation(s)
- Jane C Burns
- Department of Pediatrics, UCSD School of Medicine, 9500 Gilman Dr, La Jolla, CA 92093-0641, USA
| | | |
Collapse
|
20
|
Galgani M, Insabato L, Calì G, Della Gatta AN, Mirra P, Papaccio F, Santopaolo M, Alviggi C, Mollo A, Strina I, Matarese G, Beguinot F, De Placido G, Ulianich L. Regulatory T cells, inflammation, and endoplasmic reticulum stress in women with defective endometrial receptivity. Fertil Steril 2015; 103:1579-86.e1. [PMID: 25935494 DOI: 10.1016/j.fertnstert.2015.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/23/2015] [Accepted: 03/17/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate immunologic parameters and endoplasmic reticulum (ER) stress associated with unexplained infertility. DESIGN Case-control study. SETTING Academic center. PATIENT(S) Women with no fertility problems (FS) (n = 13), women with recurrent miscarriage (RM) (n = 15) and women with repeated in vitro fertilization failure (RIF) (n = 15). INTERVENTION(S) Endometrial biopsy and collection of peripheral blood during the midsecretory phase of menstrual cycle. MAIN OUTCOME MEASURE(S) Leptin, resistin, soluble tumor necrosis factor receptor (sTNF-R), myeloperoxidase (MPO), soluble intercellular adhesion molecule 1 (sICAM-1), and interleukin 22 (IL-22) concentration in peripheral blood, endometrial CD3(+), CD4(+), CD5(+), CD8(+), and FoxP3(+) T lymphocytes, and endometrial expression of HSPA5, a specific marker of ER stress. RESULT(S) We found an increase of proinflammatory molecules such as resistin, leptin, and IL-22 in both RM and RIF patients; sTNF-R and MPO only in RIF patients when compared with the FS women. We also found in endometria of infertile women a statistically significant increase of CD3(+), CD4(+), CD8(+) in both RM and RIF patients and CD5(+) in RM patients when compared with FS women. This was paralleled by a statistically significant reduction of infiltrating FoxP3(+) regulatory T cells. Finally, endometrial HSPA5 expression levels were statistically significantly up-regulated in both RM and RIF patients. CONCLUSION(S) Women with RM and RIF showed an increase of circulating proinflammatory cytokines, altered endometrial T lymphocytes subsets, and signs of endometrial ER stress.
Collapse
Affiliation(s)
- Mario Galgani
- Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore" CNR, Naples, Italy
| | - Luigi Insabato
- Dipartimento di Scienze Biomediche Avanzate, Università "Federico II," Naples, Italy
| | - Gaetano Calì
- Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore" CNR, Naples, Italy
| | - Anna Nunzia Della Gatta
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università "Federico II," Naples, Italy
| | - Paola Mirra
- Dipartimento di Scienze Mediche Traslazionali and Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore" CNR, Università "Federico II," Naples, Italy
| | - Federica Papaccio
- Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore" CNR, Naples, Italy
| | - Marianna Santopaolo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università "Federico II," Naples, Italy
| | - Carlo Alviggi
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università "Federico II," Naples, Italy
| | - Antonio Mollo
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università "Federico II," Naples, Italy
| | - Ida Strina
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università "Federico II," Naples, Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina e Chirurgia, Università di Salerno, Baronissi Campus, Salerno, Italy; IRCCS Multimedica, Milan, Italy
| | - Francesco Beguinot
- Dipartimento di Scienze Mediche Traslazionali and Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore" CNR, Università "Federico II," Naples, Italy
| | - Giuseppe De Placido
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università "Federico II," Naples, Italy
| | - Luca Ulianich
- Dipartimento di Scienze Mediche Traslazionali and Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore" CNR, Università "Federico II," Naples, Italy.
| |
Collapse
|
21
|
Burns JC, Touma R, Song Y, Padilla RL, Tremoulet AH, Sidney J, Sette A, Franco A. Fine specificities of natural regulatory T cells after IVIG therapy in patients with Kawasaki disease. Autoimmunity 2015; 48:181-8. [PMID: 25822882 DOI: 10.3109/08916934.2015.1027817] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The activation of natural regulatory T cells (nTreg) recognizing the heavy constant region (Fc) of IgG is an important mechanism of action of intravenous immunoglobulin (IVIG) therapy in Kawasaki disease (KD). Lack of circulating Fc-specific nTreg in the sub-acute phase of KD is correlated with the development of coronary artery abnormalities (CAA). Here, we characterize the fine specificity of nTreg in sub-acute (2- to 8-week post-IVIG) and convalescent (1- to 10-year post-IVIG) KD subjects by testing the immunogenicity of 64 peptides, 15 amino acids in length with a 10 amino acid-overlap spanning the entire Fc protein. About 12 Fc peptides (6 pools of 2 consecutive peptides) were recognized by nTreg in the cohorts studied, including two patients with CAA. To test whether IVIG expands the same nTreg populations that maintain vascular homeostasis in healthy subjects, we compared these results with results obtained in healthy adult controls. Similar nTreg fine specificities were observed in KD patients after IVIG and in healthy donors. These results suggest that T cell fitness rather than T cell clonal deletion or anergy is responsible for the lack of Fc-specific nTreg in KD patients who develop CAA. Furthermore, we found that adolescents and adults who had KD during childhood without developing CAA did not respond to the Fc protein in vitro, suggesting that the nTreg response induced by IVIG in KD patients is short-lived. Our results support the concept that peptide epitopes may be a viable therapeutic approach to expand Fc-specific nTreg and more effectively prevent CAA in KD patients.
Collapse
Affiliation(s)
- Jane C Burns
- Department of Pediatrics, Rady Children's Hospital, School of Medicine, University of California San Diego , La Jolla, CA , USA and
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Increased skeletal muscle expression of the endoplasmic reticulum chaperone GRP78 in patients with myasthenia gravis. J Neuroimmunol 2014; 273:72-6. [PMID: 24882382 DOI: 10.1016/j.jneuroim.2014.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/11/2014] [Accepted: 05/13/2014] [Indexed: 12/22/2022]
Abstract
In myasthenia gravis (MG), damage to neuromuscular junctions may induce endoplasmic reticulum (ER) stress in skeletal muscles. In the current study, skeletal muscles obtained from patients with MG exhibited upregulation of glucose-regulated protein 78 (GRP78) mRNA that was activated by ER stress. Furthermore, GRP78 mRNA expression was higher in patients with MG and myositis than in patients with non-myopathy. We also observed a significant positive correlation between GRP78 mRNA expression and GRP78 protein levels and between GRP78 mRNA expression and age of MG onset. Our findings suggest that muscle weakness in MG might be caused by both neuromuscular junction disruption and ER stress.
Collapse
|
23
|
Topol І, Kamyshny A, Abramov A, Kolesnik Y. Expression of XBP1 in lymphocytes of the small intestine in rats under chronic social stress and modulation of intestinal microflora composition. ACTA ACUST UNITED AC 2014. [DOI: 10.15407/fz60.02.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Kim SR, Kim DI, Kang MR, Lee KS, Park SY, Jeong JS, Lee YC. Endoplasmic reticulum stress influences bronchial asthma pathogenesis by modulating nuclear factor κB activation. J Allergy Clin Immunol 2013; 132:1397-408. [PMID: 24161747 DOI: 10.1016/j.jaci.2013.08.041] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 08/06/2013] [Accepted: 08/13/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Despite many studies on endoplasmic reticulum (ER) stress in patients with various inflammatory diseases, there is scarce information on ER stress in patients with bronchial asthma. OBJECTIVE In this study we aimed to elucidate the role of ER stress in the pathogenesis of bronchial asthma. METHODS Using mice sensitized with ovalbumin (OVA) and LPS and challenged with OVA (OVA(LPS)-OVA mice), as well as mice sensitized and challenged with OVA (OVA-OVA mice), we investigated whether ER stress is involved in the pathogenesis of bronchial asthma. Moreover, we also determined the levels of ER stress markers in blood and bronchoalveolar lavage fluid from asthmatic patients. RESULTS The OVA(LPS)-OVA mice showed that the expression of ER stress markers and the protein levels of unfolded protein response-related markers in lung tissue were significantly increased after OVA challenge. Moreover, we found that ER stress markers in PBMCs and bronchoalveolar lavage fluid from human asthmatic patients were dramatically increased compared with those from healthy control subjects. In OVA(LPS)-OVA mice 4-phenylbutyric acid (4-PBA), a chemical chaperone, significantly reduced the increases in ER stress, nuclear translocation of nuclear factor κB, inflammatory cytokine levels, dendritic cell infiltration, Toll-like receptor 4 expression, airway inflammation, and bronchial hyperresponsiveness, whereas it further enhanced the increase in IL-10 levels. Additionally, the established asthmatic features of OVA-OVA mice were substantially attenuated by 4-PBA administered after completion of OVA challenge. CONCLUSION These results indicate that ER stress might be implicated in the pathogenesis of bronchial asthma at least in part through modulation of nuclear factor κB activation.
Collapse
Affiliation(s)
- So Ri Kim
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Niu J, Wang K, Zhelyabovska O, Saad Y, Kolattukudy PE. MCP-1-induced protein promotes endothelial-like and angiogenic properties in human bone marrow monocytic cells. J Pharmacol Exp Ther 2013; 347:288-97. [PMID: 24008336 DOI: 10.1124/jpet.113.207316] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Monocytic cells enhance neovascularization by releasing proangiogenic mediators and/or by transdifferentiating into endothelial-like cells. However, the mechanisms that govern this transdifferentiation process are largely unknown. Recently, monocyte chemotactic protein-1 (MCP-1)-induced protein (MCPIP) has been identified as a novel CCCH-type zinc-finger protein expressed primarily in monocytic cells. Here, we analyzed whether MCPIP might exert angiogenic effects by promoting differentiation of monocytic cells into endothelial cell (EC)-like phenotype. The expression of MCPIP increased during MCP-1-induced transdifferentiation in human bone marrow mononuclear cells (BMNCs). Knockdown of MCPIP with small interfering RNA (siRNA) abolished MCP-1-induced expression of EC markers Flk-1 and Tie-2 in human BMNCs. BMNCs transfected with MCPIP expression vector displayed EC-like morphology accompanied by downregulation of monocytic markers CD14 and CD11b, upregulation of EC markers Flk-1 and Tie-2, induction of cadherin (cdh)-12 and -19, activation of endoplasmic reticulum (ER) stress, and autophagy. Knockdown of cdh-12 or cdh-19 markedly inhibited MCPIP-induced enhancement of cell attachment and EC-marker expression. Inhibition of ER stress by tauroursodeoxycholate abolished MCPIP-induced expression of EC markers. Inhibition of autophagy by knockdown of Beclin-1 with siRNA or by an autophagy inhibitor 3'-methyladenine inhibited MCPIP-induced expression of EC markers. Expression of MCPIP in BMNCs enhanced uptake of acetylated low-density lipoprotein (acLDL), formation of EC-colony, incorporation of cells into capillary-like structure on Matrigel, and exhibited increased neovascularization in the ischemic hindlimb in mice. These results demonstrate that MCPIP may be an important regulator of inflammatory angiogenesis and provide novel mechanistic insights into the link between MCP-1 and cardiovascular diseases.
Collapse
Affiliation(s)
- Jianli Niu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida (J N., O.Z., Y.S., P.E.K.); Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China (K.W.)
| | | | | | | | | |
Collapse
|
26
|
Zanetti M. Cell-extrinsic effects of the tumor unfolded protein response on myeloid cells and T cells. Ann N Y Acad Sci 2013; 1284:6-11. [PMID: 23651187 DOI: 10.1111/nyas.12103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tumor-infiltrating myeloid cells, macrophages, and dendritic cells (DCs) are key regulators of tumor immunity and growth. The origin of tumor-derived signals that instruct myeloid cells in the tumor microenvironment is only partially understood. The endoplasmic reticulum (ER) stress response, or unfolded protein response (UPR), provides survival advantages to tumor growth. However, the cell-extrinsic effects of the tumor UPR on immune cells have not been explored. Our laboratory recently showed that the tumor UPR can be transmitted by yet unidentified factor(s) to myeloid cells, macrophages, and DCs. ER stress transmission to receiver myeloid cells upregulates the production of proinflammatory cytokines, and contextually of arginase I, leading to a proinflammatory/suppressive phenotype. DCs imprinted by tumor-borne ER stress transmissible factor(s) have decreased cross-presentation of antigen and defective cross-priming, causing T cell activation without proliferation. When DCs imprinted by transmissible ER stress are admixed with tumor cells and injected in vivo, facilitation of tumor growth is observed. Thus, tumor-borne ER stress plays a hitherto unappreciated role at the tumor/immune interface that ultimately facilitates tumor growth.
Collapse
Affiliation(s)
- Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
27
|
Mahadevan NR, Anufreichik V, Rodvold JJ, Chiu KT, Sepulveda H, Zanetti M. Cell-extrinsic effects of tumor ER stress imprint myeloid dendritic cells and impair CD8⁺ T cell priming. PLoS One 2012; 7:e51845. [PMID: 23272178 PMCID: PMC3525659 DOI: 10.1371/journal.pone.0051845] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/06/2012] [Indexed: 11/18/2022] Open
Abstract
Tumor-infiltrating myeloid cells, such as dendritic cells (BMDC), are key regulators of tumor growth. However, the tumor-derived signals polarizing BMDC to a phenotype that subverts cell-mediated anti-tumor immunity have yet to be fully elucidated. Addressing this unresolved problem we show that the tumor unfolded protein response (UPR) can function in a cell-extrinsic manner via the transmission of ER stress (TERS) to BMDC. TERS-imprinted BMDC upregulate the production of pro-inflammatory, tumorigenic cytokines but also the immunosuppressive enzyme arginase. Importantly, they downregulate cross-presentation of high-affinity antigen and fail to effectively cross-prime CD8(+) T cells, causing T cell activation without proliferation and similarly dominantly suppress cross-priming by bystander BMDC. Lastly, TERS-imprinted BMDC facilitate tumor growth in vivo with fewer tumor-infiltrating CD8(+) T cells. In sum, we demonstrate that tumor-borne ER stress imprints ab initio BMDC to a phenotype that recapitulates several of the inflammatory/suppressive characteristics ascribed to tumor-infiltrating myeloid cells, highlighting the tumor UPR as a critical controller of anti-tumor immunity and a new target for immune modulation in cancer.
Collapse
Affiliation(s)
- Navin R. Mahadevan
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Veronika Anufreichik
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Jeffrey J. Rodvold
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Kevin T. Chiu
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | | | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Chang JS, Ocvirk S, Berger E, Kisling S, Binder U, Skerra A, Lee AS, Haller D. Endoplasmic reticulum stress response promotes cytotoxic phenotype of CD8αβ+ intraepithelial lymphocytes in a mouse model for Crohn's disease-like ileitis. THE JOURNAL OF IMMUNOLOGY 2012; 189:1510-20. [PMID: 22753943 DOI: 10.4049/jimmunol.1200166] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endoplasmic reticulum (ER) unfolded protein responses (UPR) are implicated in the pathogenesis of inflammatory bowel disease. Cytotoxic CD8αβ(+) intraepithelial lymphocytes (IEL) contribute to the development of Crohn's disease-like ileitis in TNF(ΔARE/+) mice. In this study, we characterized the role of ER-UPR mechanisms in contributing to the disease-associated phenotype of cytotoxic IEL under conditions of chronic inflammation. Inflamed TNF(ΔARE/+) mice exhibited increased expression of Grp78, ATF6, ATF4, and spliced XBP1 in CD8αβ(+) IEL but not in CD8αα(+) IEL or in lamina propria lymphocytes. Chromatin immunoprecipitation analysis in CD8αβ(+) T cells showed selective recruitment of ER-UPR transducers to the granzyme B gene promoter. Heterozygous Grp78(-/+) mice exhibited an attenuated granzyme B-dependent cytotoxicity of CD8αβ(+) T cells against intestinal epithelial cells, suggesting a critical activity of this ER-associated chaperone in maintaining a cytotoxic T cell phenotype. Granzyme B-deficient CD8αβ(+) T cells showed a defect in IL-2-mediated proliferation in Grp78(-/+) mice. Adoptively transferred Grp78(-/+) CD8αβ(+) T cells had a decreased frequency of accumulation in the intestine of RAG2(-/-) recipient mice. The tissue pathology in TNF(ΔARE/+) × Grp78(-/+) mice was similar to TNF(ΔARE/+) mice, even though the cytotoxic effector functions of CD8αβ(+) T cells were significantly reduced. In conclusion, ER stress-associated UPR mechanisms promote the development and maintenance of the pathogenic cytotoxic CD8αβ(+) IEL phenotype in the mouse model of Crohn's disease-like ileitis.
Collapse
Affiliation(s)
- Jung-Su Chang
- Chair for Biofunctionality, Research Centre for Nutrition and Food Science, Centre for Diet and Disease, Technical University of Munich, 85350 Freising-Weihenstephan, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhu XM, Yao FH, Yao YM, Dong N, Yu Y, Sheng ZY. Endoplasmic reticulum stress and its regulator XBP-1 contributes to dendritic cell maturation and activation induced by high mobility group box-1 protein. Int J Biochem Cell Biol 2012; 44:1097-105. [PMID: 22504285 DOI: 10.1016/j.biocel.2012.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 12/14/2022]
Abstract
High mobility group box-1 protein (HMGB1) had been proved to induce maturation and activation of dendritic cell (DC), however, the endogenous changes and mechanisms underlying are unknown. Since endoplasmic reticulum stress (ERS) activates an adaptive unfolded protein response (UPR) that facilitates cellular survival and repair, we hypothesized that HMGB1 may regulate the function of DC by modulating ERS. In our study, HMGB1 stimulation induced significant ERS responses in DCs in a time- and dose-dependent manner, demonstrated by the up-regulation of a number of ERS markers. Gene silence of XBP-1 in splenic DCs decreased the levels of CD80, CD86 as well as major histocompatibility complex (MHC)-II expression and cytokine secretion after HMGB1 treatment, when compared with untransfected or nontargeting-transfected DCs (all P<0.05). Moreover, XBP-1 silenced DCs after treatment with HMGB1 failed to stimulate notable proliferation and differentiation of T cells, unlike normal DCs or nontargeting-transfected DCs (all P<0.05). Gene silence of XBP-1 resulted in down-regulation of the receptor for advanced glycation end products (RAGE) expression on the surface of splenic DCs induced by HMGB1 stimulation (P<0.05). These findings demonstrate an important role for ERS and its regulator XBP-1 in HMGB1-induced maturation and activation of DCs.
Collapse
Affiliation(s)
- Xiao-mei Zhu
- Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, PR China
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
BACKGROUND Interleukin-10 is a pleiotropic cytokine, whose main function is limitation and ultimately termination of immune responses. This is especially true for environmental interfaces such as the gastrointestinal tract. IL-10 acts as a key mediator for maintaining gut homeostasis. IL-10 knockout mice are well established as a genetic model for inflammatory bowel disease (IBD), and sequence variants in the IL-10 locus contribute to ulcerative colitis (UC). DESIGN This review covers the significance of IL-10 signalling in the intestinal immune response both in health and disease. It explains the biological role of IL-10, its deregulation in IBD and its contribution to intestinal inflammation via endoplasmic reticulum stress response. RESULTS Many IBD susceptibility genes have been discovered in the past years, linking fundamental biological systems, like innate and adaptive immunity, stress responses, autophagy and mucosal barrier to the pathogenesis of Crohn's disease (CD) and UC. IL-10 has long been known for its substantial role in regulating gut immunity, but its contribution to IBD was somewhat elusive. A recent study identified mutations in either IL-10 receptor subunits that are associated with early-onset enterocolitis, a severe phenotype of IBD. Other than genetic variants of IL-10 receptors, IL-10 and STAT3 genes are also associated with IBD, emphasizing the involvement of the IL-10 signalling cascade in the pathogenesis of CD and UC. CONCLUSIONS The discovery of inherited deregulations in the IL-10 signalling cascade is not only considered the missing link between IL-10 and intestinal homeostasis, but also demonstrates how findings made in animal models help explaining human disease.
Collapse
Affiliation(s)
- Gregor Paul
- Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
31
|
Mahadevan NR, Zanetti M. Tumor stress inside out: cell-extrinsic effects of the unfolded protein response in tumor cells modulate the immunological landscape of the tumor microenvironment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:4403-9. [PMID: 22013206 PMCID: PMC11299296 DOI: 10.4049/jimmunol.1101531] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The unfolded protein response (UPR) is a eukaryotic cellular adaptive mechanism that functions to cope with stress of the endoplasmic reticulum (ER). Accumulating evidence demonstrates that the tumor microenvironment contains stressors that elicit a UPR, which has been demonstrated to be a cell-intrinsic mechanism crucial for tumorigenesis. In addition, the UPR is a source of proinflammatory signaling whose downstream mediators may hamper antitumor immunity. We discuss how the UPR may impair Ag presentation, which could result in defective T cell priming, also leading to tumor escape and growth. Further, we discuss the recent finding that ER stress and attendant proinflammation can be transmitted from ER-stressed tumor cells to myeloid cells. The ideas presented suggest that, in addition to being a cell-intrinsic mechanism of tumor survival, the tumor UPR can serve as a cell-extrinsic regulator of tumorigenesis by remodeling the immune response in the tumor microenvironment.
Collapse
Affiliation(s)
- Navin R Mahadevan
- Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|