1
|
Villageliu DN, Cunningham KC, Smith DR, Knoell DL, Mandolfo M, Wyatt TA, Samuelson DR. Natural killer cell effector function is critical for host defense against alcohol-associated bacterial pneumonia. NPJ Biofilms Microbiomes 2024; 10:79. [PMID: 39227647 PMCID: PMC11372167 DOI: 10.1038/s41522-024-00558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 08/25/2024] [Indexed: 09/05/2024] Open
Abstract
Alcohol use is an independent risk factor for the development of bacterial pneumonia due, in part, to impaired mucus-facilitated clearance, macrophage phagocytosis, and recruitment of neutrophils. Alcohol consumption is also known to reduce peripheral natural killer (NK) cell numbers and compromise NK cell cytolytic activity, especially NK cells with a mature phenotype. However, the role of innate lymphocytes, such as NK cells during host defense against alcohol-associated bacterial pneumonia is essentially unknown. We have previously shown that indole supplementation mitigates increases in pulmonary bacterial burden and improves pulmonary NK cell recruitment in alcohol-fed mice, which were dependent on aryl hydrocarbon receptor (AhR) signaling. Employing a binge-on-chronic alcohol-feeding model we sought to define the role and interaction of indole and NK cells during pulmonary host defense against alcohol-associated pneumonia. We demonstrate that alcohol dysregulates NK cell effector function and pulmonary recruitment via alterations in two key signaling pathways. We found that alcohol increases transforming growth factor beta (TGF-β) signaling while suppressing AhR signaling. We further demonstrated that NK cells isolated from alcohol-fed mice have a reduced ability to kill Klebsiella pneumoniae. NK cell migratory capacity to chemokines was also significantly altered by alcohol, as NK cells isolated from alcohol-fed mice exhibited preferential migration in response to CXCR3 chemokines but exhibited reduced migration in response to CCR2, CXCR4, and CX3CR1 chemokines. Together this data suggests that alcohol disrupts NK cell-specific TGF-β and AhR signaling pathways leading to decreased pulmonary recruitment and cytolytic activity thereby increasing susceptibility to alcohol-associated bacterial pneumonia.
Collapse
Affiliation(s)
- Daniel N Villageliu
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kelly C Cunningham
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Deandra R Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daren L Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mason Mandolfo
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Todd A Wyatt
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Veterans Affairs Nebraska, University of Nebraska Medical Center, Western Iowa Health Care System, Omaha, NE, USA
| | - Derrick R Samuelson
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA.
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
2
|
Wang L, Mao L, Xiao W, Chen P. Natural killer cells immunosenescence and the impact of lifestyle management. Biochem Biophys Res Commun 2023; 689:149216. [PMID: 37976836 DOI: 10.1016/j.bbrc.2023.149216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Natural killer cells (NKs) are lymphocytes of the innate immune system that quickly respond to viruses, infections, and tumors during their short cell life cycle. However, it was recently found that NKs undergo quantitative, distributional, structural, and functional phenotypic changes during aging that suppress immune responses, which is known as immunosenescence. The aging host environment, cytokine regulation, cytomegalovirus status, and hypothalamic‒pituitary‒adrenal axis have significant effects on NK function. Different lifestyle management interventions modulate the number and cytotoxic activity of NKs, which are essential for rebuilding the immune barrier against pathogens in elderly individuals. Based on recent studies, we review the phenotypic changes of and potential threats of NKs during aging and explore the underlying mechanisms. By summarizing the effects of lifestyle management on NKs and their application prospects, we aim to provide evidence for enhancing immune system function against immune diseases in elderly individuals.
Collapse
Affiliation(s)
- Lian Wang
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Liwei Mao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Weihua Xiao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Peijie Chen
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
3
|
Liang T, Cheng M, Lu L, Liu R. Competing endogenous RNA network characterization of lymph node metastases in Leuran gastric cancer subtypes. J Cancer Res Clin Oncol 2023; 149:16043-16053. [PMID: 37688630 DOI: 10.1007/s00432-023-05382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Gastric cancer is a kind of tumor with strong heterogeneity. Long noncoding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) play significant roles in the development of tumors. In this study, we divided all TCGA gastric cancer patients into the whole, intestinal and diffuse cohorts for further analysis, and constructed competitive endogenous RNA network and evaluated immune cells using CIBERSORTx. The support vector machines recursive feature elimination (SVM-RFE) was used for screening significant signatures and the support vector machines (SVM) for establishing model predicting the lymph node metastasis. The performance of SVM model was good in the intestinal and diffuse cohort, while the model in the whole cohort was relatively poor. Some important co-expression patterns between immune cells and ceRNAs network indicated significant correlation CD70 with dendritic cells and so on. Our research inferred competing endogenous RNA network of lymph node metastasis and built an excellent predicting model.
Collapse
Affiliation(s)
- Tianyu Liang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Minjun Cheng
- Intensive Care Unit, Chun'an First People's Hospital (Chun'an Branch of Zhejiang Provincial People's Hospital and Chun'an Hospital Affiliated to Hangzhou Medical College), Hangzhou, China
| | - Ling Lu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Renyang Liu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
4
|
Samuelson D, Villageliu D, Cunningham K, Smith D, Knoell D, Mandolfo M, Wyatt T. Regulation of Natural Killer Cell TGF-β and AhR Signaling Pathways Via the Intestinal Microbiota is Critical for Host Defense Against Alcohol-Associated Bacterial Pneumonia. RESEARCH SQUARE 2023:rs.3.rs-3328953. [PMID: 37886455 PMCID: PMC10602187 DOI: 10.21203/rs.3.rs-3328953/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Alcohol use is an independent risk factor for the development of bacterial pneumonia due, in part, to impaired mucus-facilitated clearance, macrophage phagocytosis, and recruitment of neutrophils. Alcohol consumption is also known to reduce peripheral natural killer (NK) cell numbers and compromises NK cell cytolytic activity, especially NK cells with a mature phenotype. However, the role of innate lymphocytes, such as NK cells during host defense against alcohol-associated bacterial pneumonia is essentially unknown. We have previously shown that indole supplementation mitigates increases in pulmonary bacterial burden and improves pulmonary NK cell recruitment in alcohol-fed mice, which were dependent of aryl hydrocarbon receptor (AhR) signaling. Employing a binge-on-chronic alcohol-feeding model we sought to define the role and interaction of indole and NK cells during pulmonary host defense against alcohol-associated pneumonia. We demonstrate that alcohol dysregulates NK cell effector function and pulmonary recruitment via alterations in two key signaling pathways. We found that alcohol increases transforming growth factor beta (TGF-β) signaling, while suppressing AhR signaling. We further demonstrated that NK cells isolated from alcohol-fed mice have a reduced ability to kill Klebsiella pneumoniae. NK cell migratory capacity to chemokines was also significantly altered by alcohol, as NK cells isolated from alcohol-fed mice exhibited preferential migration in response to CXCR3 chemokines but exhibited reduced migration in response to CCR2, CXCR4, and CX3CR1 chemokines. Together this data suggests that alcohol disrupts NK cell specific TGF-β and AhR signaling pathways leading to decreased pulmonary recruitment and cytolytic activity thereby increasing susceptibility to alcohol-associated bacterial pneumonia.
Collapse
|
5
|
Zhai Z, Yamauchi T, Shangraw S, Hou V, Matsumoto A, Fujita M. Ethanol Metabolism and Melanoma. Cancers (Basel) 2023; 15:1258. [PMID: 36831600 PMCID: PMC9954650 DOI: 10.3390/cancers15041258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Malignant melanoma is the deadliest form of skin cancer. Despite significant efforts in sun protection education, melanoma incidence is still rising globally, drawing attention to other socioenvironmental risk factors for melanoma. Ethanol and acetaldehyde (AcAH) are ubiquitous in our diets, medicines, alcoholic beverages, and the environment. In the liver, ethanol is primarily oxidized to AcAH, a toxic intermediate capable of inducing tumors by forming adducts with proteins and DNA. Once in the blood, ethanol and AcAH can reach the skin. Although, like the liver, the skin has metabolic mechanisms to detoxify ethanol and AcAH, the risk of ethanol/AcAH-associated skin diseases increases when the metabolic enzymes become dysfunctional in the skin. This review highlights the evidence linking cutaneous ethanol metabolism and melanoma. We summarize various sources of skin ethanol and AcAH and describe how the reduced activity of each alcohol metabolizing enzyme affects the sensitivity threshold to ethanol/AcAH toxicity. Data from the Gene Expression Omnibus database also show that three ethanol metabolizing enzymes (alcohol dehydrogenase 1B, P450 2E1, and catalase) and an AcAH metabolizing enzyme (aldehyde dehydrogenase 2) are significantly reduced in melanoma tissues.
Collapse
Affiliation(s)
- Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Shangraw
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vincent Hou
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Akiko Matsumoto
- Department of Social Medicine, School of Medicine, Saga University, Saga 849-8501, Japan
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Yamauchi T, Shangraw S, Zhai Z, Ravindran Menon D, Batta N, Dellavalle RP, Fujita M. Alcohol as a Non-UV Social-Environmental Risk Factor for Melanoma. Cancers (Basel) 2022; 14:5010. [PMID: 36291794 PMCID: PMC9599745 DOI: 10.3390/cancers14205010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Although cancer mortality has declined among the general population, the incidence of melanoma continues to rise. While identifying high-risk cohorts with genetic risk factors improves public health initiatives and clinical care management, recognizing modifiable risk factors such as social-environmental risk factors would also affect the methods of patient outreach and education. One major modifiable social-environmental risk factor associated with melanoma is ultraviolet (UV) radiation. However, not all forms of melanoma are correlated with sun exposure or occur in sun-exposed areas. Additionally, UV exposure is rarely associated with tumor progression. Another social-environmental factor, pregnancy, does not explain the sharply increased incidence of melanoma. Recent studies have demonstrated that alcohol consumption is positively linked with an increased risk of cancers, including melanoma. This perspective review paper summarizes epidemiological data correlating melanoma incidence with alcohol consumption, describes the biochemical mechanisms of ethanol metabolism, and discusses how ethanol and ethanol metabolites contribute to human cancer, including melanoma.
Collapse
Affiliation(s)
- Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Shangraw
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dinoop Ravindran Menon
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nisha Batta
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert P Dellavalle
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Sun J, Tang Q, Zhang J, Chen G, Peng J, Chen L. Possible Immunotherapeutic Strategies Based on Carcinogen-Dependent Subgroup Classification for Oral Cancer. Front Mol Biosci 2021; 8:717038. [PMID: 34497832 PMCID: PMC8419237 DOI: 10.3389/fmolb.2021.717038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
The oral cavity serves as an open local organ of the human body, exposed to multiple external factors from the outside environment. Coincidentally, initiation and development of oral cancer are attributed to many external factors, such as smoking and drinking, to a great extent. This phenomenon was partly explained by the genetic abnormalities traditionally induced by carcinogens. However, more and more attention has been attracted to the influence of carcinogens on the local immune status. On the other hand, immune heterogeneity of cancer patients is a huge obstacle for enhancing the clinical efficacy of tumor immunotherapy. Thus, in this review, we try to summarize the current opinions about variant genetic changes and multiple immune alterations induced by different oral cancer carcinogens and discuss the prospects of targeted immunotherapeutic strategies based on specific immune abnormalities caused by different carcinogens, as a predictive way to improve clinical outcomes of immunotherapy-treated oral cancer patients.
Collapse
Affiliation(s)
- Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Junyuan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
8
|
Liu S, Shi J, Liu Y, Wang L, Zhang J, Huang Y, Chen Z, Yang J. Analysis of mRNA expression differences in bladder cancer metastasis based on TCGA datasets. J Int Med Res 2021; 49:300060521996929. [PMID: 33787386 PMCID: PMC8020247 DOI: 10.1177/0300060521996929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To investigate the metastatic mechanism of muscle invasive bladder cancer (MIBC), which accounts for approximately 30% of all bladder cancer cases, and is a considerable medical problem with high metastatic and mortality rates. METHODS The mRNA levels of patients with metastatic MIBC and nonmetastatic MIBC from The Cancer Genome Atlas dataset were compared. An integrated bioinformatics analysis was performed of the differentially expressed genes (DEGs), and analyses of Gene Ontology, Kyoto Encyclopaedia of Genes and Genomes pathway, protein-protein interaction, and survival were performed to investigate differences between metastatic and nonmetastatic MIBC. RESULTS Data from 264 patients were included (131 with, and 133 without, metastasis). A total of 385 significantly DEGs were identified, including 209 upregulated genes and 176 downregulated genes. Based on results using the STRING database and the MCODE plugin of Cytoscape software, two clusters were obtained. Moreover, two genes were identified that may be valuable for prognostic analysis: Keratin 38, type I (KRT38) and Histone cluster 1, H3f (HIST1H3F). CONCLUSION The KRT38 and HIST1H3F genes may be important in metastasis of MIBC.
Collapse
Affiliation(s)
- Sha Liu
- Department of Cell Biology, Third Military Medical University, Chongqing, China.,Department of Urology, Chinese People's Armed Police Force Tibet Corps Hospital, Lhasa, Tibet, China
| | - Jiazhong Shi
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Yuting Liu
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Liwei Wang
- Department of Urology, the First Affiliated Hospital of the Third Military Medical University, Chongqing, China
| | - Jingqi Zhang
- Department of Urology, the First Affiliated Hospital of the Third Military Medical University, Chongqing, China
| | - Yaqin Huang
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Zhiwen Chen
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Jin Yang
- Department of Urology, the First Affiliated Hospital of the Third Military Medical University, Chongqing, China
| |
Collapse
|
9
|
Yue R, Wei X, Zhao J, Zhou Z, Zhong W. Essential Role of IFN-γ in Regulating Gut Antimicrobial Peptides and Microbiota to Protect Against Alcohol-Induced Bacterial Translocation and Hepatic Inflammation in Mice. Front Physiol 2021; 11:629141. [PMID: 33536944 PMCID: PMC7848155 DOI: 10.3389/fphys.2020.629141] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanisms by which alcohol provokes bacterial translocation in the development of alcoholic liver disease (ALD) remain incompletely defined. Our previous study demonstrates that impaired gut epithelial antimicrobial defense is critically involved in the pathogenesis of ALD. The study was set to determine the mechanisms of how alcohol inhibits the antimicrobial ability of intestinal epithelial cells (IECs) and to explore possible solutions to this issue. C57BL/6J mice were fed either alcohol or isocaloric dextrin liquid diet for 8 weeks, and intestinal IFN-γ-signal transducer and activator of transcription (STAT) signaling was analyzed. We found that chronic alcohol exposure led to a significant reduction in intestinal IFN-γ levels compared to a control; the protein levels of phosphorylated STAT1 (p-STAT1) and p-STAT3 were both declined by alcohol. We then tested the effects of IFN-γ-STAT signaling on regulating antimicrobial peptides (AMPs), gut microbiota, and disease progression of ALD in a mouse model of chronic alcohol feeding, time-course acute IFN-γ treatment, and in vivo and in vitro IEC-specific STAT1 or STAT3 knockout mouse models, respectively. Administration of IFN-γ activated intestinal STAT1 and STAT3, upregulated the expression of Reg3 and α-defensins, orchestrated gut microbiota, and reversed alcohol-induced intestinal ZO-1 disruption and systemic endotoxin elevation as well as hepatic inflammation. Meanwhile, acute IFN-γ treatment time-dependently induced AMP expression and α-defensin activation. We then dissected the roles of STAT1 and STAT3 in this progress. Lack of IEC-specific STAT3 inhibited IFN-γ-induced expression of Reg3 and α-defensins and hindered activation of α-defensins via inactivating matrix metallopeptidase 7 (MMP7), whereas lack of IEC-specific STAT1 impaired IFN-γ-stimulated expression of α-defensins and the IEC marker, sodium-hydrogen exchanger 3. Lastly, we found that interleukin (IL)-18, a known IFN-γ inducer, was also reduced by alcohol in mice. IL-18 treatment to alcohol-fed mice normalized gut IFN-γ levels and ameliorated organ damages in both the intestine and liver. Taken together, the study reveals that IFN-γ is critically involved in the regulation of AMPs through regulation of STAT1 and STAT3; impaired IFN-γ-STAT signaling provides an explanation for alcohol-induced gut antimicrobial dysfunction and microbial dysbiosis. Therefore, IFN-γ remains a promising host defense-enhancing cytokine with unexplored clinical potential in ALD therapy.
Collapse
Affiliation(s)
- Ruichao Yue
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| | - Xiaoyuan Wei
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, United States
| | - Jiangchao Zhao
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, United States
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States.,Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| | - Wei Zhong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States.,Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| |
Collapse
|
10
|
|
11
|
Ahmadi M, Gharibi T, Dolati S, Rostamzadeh D, Aslani S, Baradaran B, Younesi V, Yousefi M. Epigenetic modifications and epigenetic based medication implementations of autoimmune diseases. Biomed Pharmacother 2017; 87:596-608. [DOI: 10.1016/j.biopha.2016.12.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
|
12
|
Zhang F, Little A, Zhang H. Chronic alcohol consumption inhibits peripheral NK cell development and maturation by decreasing the availability of IL-15. J Leukoc Biol 2016; 101:1015-1027. [PMID: 27837016 DOI: 10.1189/jlb.1a0716-298rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 01/13/2023] Open
Abstract
NK cells are innate immune cells and have important roles in antiviral and antitumor immunity. Based on the transcriptional regulation, organ distribution, and cell function, NK cells have recently been further divided into cytotoxic conventional NK cells (cNK) and noncytotoxic helper-like group 1 innate lymphoid cells (ILC1s). It is well known that chronic alcohol consumption decreases peripheral NK cell number and cytolytic activity; however, the underlying mechanism remains to be elucidated. How chronic alcohol consumption affects ILC1s is, to our knowledge, completely unexplored. Herein, we used a well-established mouse model of chronic alcohol consumption to study the effects of alcohol on transcription factor expression, maturation, and cytokine production of cNK cells and ILC1s in various organs. We found that alcohol consumption significantly decreased Eomes-expressing cNK cells in all the examined organs, except BM, but did not significantly affect ILC1s. Alcohol consumption compromised cNK cell development and maturation. Exogenous IL-15/IL-15Rα treatment caused full recovery of Eomes-expressing cNK cell number and maturation. Taken together, our data indicated that chronic alcohol consumption decreases cNK cell number and cytolytic activity by arresting cNK cell development at the CD27+CD11b+ stage. This developmental arrest of NK cells results from a lack of IL-15 availability in the microenvironment. IL-15/IL-15Rα treatment can recover alcohol consumption-induced developmental defect in NK cells.
Collapse
Affiliation(s)
- Faya Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA
| | - Alex Little
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA
| | - Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA
| |
Collapse
|
13
|
Gaither KA, Little AA, McBride AA, Garcia SR, Brar KK, Zhu Z, Platt A, Zhang F, Meadows GG, Zhang H. The immunomodulatory, antitumor and antimetastatic responses of melanoma-bearing normal and alcoholic mice to sunitinib and ALT-803: a combinatorial treatment approach. Cancer Immunol Immunother 2016; 65:1123-34. [PMID: 27481107 PMCID: PMC11029158 DOI: 10.1007/s00262-016-1876-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/21/2016] [Indexed: 01/13/2023]
Abstract
ALT-803, a novel IL-15/IL-15 receptor alpha complex, and the tyrosine kinase inhibitor, sunitinib, were examined for their single and combined effects on the growth of subcutaneous B16BL6 melanoma and on lymph node and lung metastasis. The study was conducted in immunocompetent C57BL/6 mice drinking water (Water mice) and in mice that chronically consumed alcohol (Alcohol mice), which are deficient in CD8(+) T cells. Sunitinib inhibited melanoma growth and was more effective in Alcohol mice. ALT-803 did not alter tumor growth or survival in Water or Alcohol mice. Combined ALT-803 and sunitinib inhibited melanoma growth and increased survival, and these effects were greater than sunitinib alone in Water mice. ALT-803 and alcohol independently suppressed lymph node and lung metastasis, whereas sunitinib alone or in combination with ALT-803 increased lymph node and lung metastasis in Water and Alcohol mice. Initially, ALT-803 increased IFN-γ-producing CD8(+)CD44(hi) memory T cells and CD8(+)CD44(hi)CD62L(lo) effector memory T cells and sunitinib decreased immunosuppressive MDSC and T regulatory cells (Treg). However, the impact of these treatments diminished with time. Subcutaneous tumors from Water mice showed increased numbers of CD8(+) T cells, CD8(+)CD44(hi) T cells, NK cells, and MDSC cells and decreased Treg cells after ALT-803 treatment.
Collapse
Affiliation(s)
- Kari A Gaither
- Department of Pharmaceutical Sciences and the Pharmaceutical Sciences Graduate Program, College of Pharmacy, Washington State University Spokane, PBS 323, P. O. Box 1495, Spokane, WA, 99210-1495, USA
| | - Alexander A Little
- Department of Pharmaceutical Sciences and the Pharmaceutical Sciences Graduate Program, College of Pharmacy, Washington State University Spokane, PBS 323, P. O. Box 1495, Spokane, WA, 99210-1495, USA
| | - Alisha A McBride
- Department of Pharmaceutical Sciences and the Pharmaceutical Sciences Graduate Program, College of Pharmacy, Washington State University Spokane, PBS 323, P. O. Box 1495, Spokane, WA, 99210-1495, USA
| | - Savanna R Garcia
- Department of Pharmaceutical Sciences and the Pharmaceutical Sciences Graduate Program, College of Pharmacy, Washington State University Spokane, PBS 323, P. O. Box 1495, Spokane, WA, 99210-1495, USA
| | - Kiranjot K Brar
- Department of Pharmaceutical Sciences and the Pharmaceutical Sciences Graduate Program, College of Pharmacy, Washington State University Spokane, PBS 323, P. O. Box 1495, Spokane, WA, 99210-1495, USA
| | - Zhaohui Zhu
- Department of Pharmaceutical Sciences and the Pharmaceutical Sciences Graduate Program, College of Pharmacy, Washington State University Spokane, PBS 323, P. O. Box 1495, Spokane, WA, 99210-1495, USA
| | - Amity Platt
- Department of Pharmaceutical Sciences and the Pharmaceutical Sciences Graduate Program, College of Pharmacy, Washington State University Spokane, PBS 323, P. O. Box 1495, Spokane, WA, 99210-1495, USA
| | - Faya Zhang
- Department of Pharmaceutical Sciences and the Pharmaceutical Sciences Graduate Program, College of Pharmacy, Washington State University Spokane, PBS 323, P. O. Box 1495, Spokane, WA, 99210-1495, USA
| | - Gary G Meadows
- Department of Pharmaceutical Sciences and the Pharmaceutical Sciences Graduate Program, College of Pharmacy, Washington State University Spokane, PBS 323, P. O. Box 1495, Spokane, WA, 99210-1495, USA.
| | - Hui Zhang
- Department of Pharmaceutical Sciences and the Pharmaceutical Sciences Graduate Program, College of Pharmacy, Washington State University Spokane, PBS 323, P. O. Box 1495, Spokane, WA, 99210-1495, USA.
| |
Collapse
|
14
|
Im HJ, Kim HG, Lee JS, Kim HS, Cho JH, Jo IJ, Park SJ, Son CG. A Preclinical Model of Chronic Alcohol Consumption Reveals Increased Metastatic Seeding of Colon Cancer Cells in the Liver. Cancer Res 2016; 76:1698-704. [PMID: 26857263 DOI: 10.1158/0008-5472.can-15-2114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/17/2016] [Indexed: 11/16/2022]
Abstract
Liver metastasis is the main cause of death from colorectal cancer. Alcohol consumption impacts liver function and is suggested to be an independent risk factor for liver metastasis of colorectal cancer, but no experimental evidence supporting this hypothesis has been demonstrated to date. In this study, we investigated the effect of alcohol intake on liver metastasis. We examined colon cancer cell spread from the spleen in mice provided with water (control group), alcohol for 4 weeks before tumor injection (prealcohol), alcohol for 3 weeks after tumor injection (postalcohol), or alcohol throughout the 7-week study (alcohol). Alcohol intake significantly increased hepatic metastatic burden in the prealcohol (2.4-fold, P < 0.001), postalcohol (2.0-fold, P < 0.01), and alcohol groups (2.2-fold, P < 0.001). A fluorescence-based metastasis tracking assay also confirmed an alcohol-induced increase in the abundance of tumor cells in the liver (2.5-fold, P < 0.001). Investigation of the host microenvironment revealed an alcohol-induced inflammatory response marked by elevated TNFα, IL1β, IL6, and IFNγ protein levels, as well as increased expression of intercellular molecule-1 (ICAM1) in hepatic tissues after 4 weeks of alcohol consumption. Moreover, the peripheral blood of mice provided with alcohol for 4 weeks exhibited reduced natural killer and CD8(+) T-cell counts. Collectively, our findings suggest that chronic alcohol consumption accelerates liver metastasis of colorectal cancer cells through alterations to the liver microenvironment and inactivation of immune surveillance. Cancer Res; 76(7); 1698-704. ©2016 AACR.
Collapse
Affiliation(s)
- Hwi-Jin Im
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Oriental Medical Collage of Daejeon University, Jung-gu, Daejeon, Republic of Korea
| | - Hyeong-Geug Kim
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Oriental Medical Collage of Daejeon University, Jung-gu, Daejeon, Republic of Korea
| | - Jin-Seok Lee
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Oriental Medical Collage of Daejeon University, Jung-gu, Daejeon, Republic of Korea
| | - Hyo-Seon Kim
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Oriental Medical Collage of Daejeon University, Jung-gu, Daejeon, Republic of Korea
| | - Jung-Hyo Cho
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Oriental Medical Collage of Daejeon University, Jung-gu, Daejeon, Republic of Korea
| | - Il-Joo Jo
- Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, South Korea
| | - Sung-Joo Park
- Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, South Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Oriental Medical Collage of Daejeon University, Jung-gu, Daejeon, Republic of Korea.
| |
Collapse
|
15
|
Alcohol consumption and antitumor immunity: dynamic changes from activation to accelerated deterioration of the immune system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 815:313-31. [PMID: 25427915 DOI: 10.1007/978-3-319-09614-8_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The molecular mechanisms of how alcohol and its metabolites induce cancer have been studied extensively. However, the mechanisms whereby chronic alcohol consumption affects antitumor immunity and host survival have largely been unexplored. We studied the effects of chronic alcohol consumption on the immune system and antitumor immunity in mice inoculated with B16BL6 melanoma and found that alcohol consumption activates the immune system leading to an increase in the proportion of IFN-γ-producing NK, NKT, and T cells in mice not injected with tumors. One outcome associated with enhanced IFN-γ activation is inhibition of melanoma lung metastasis. However, the anti-metastatic effects do not translate into increased survival of mice bearing subcutaneous tumors. Continued growth of the subcutaneous tumors and alcohol consumption accelerates the deterioration of the immune system, which is reflected in the following: (1) inhibition in the expansion of memory CD8+ T cells, (2) accelerated decay of Th1 cytokine-producing cells, (3) increased myeloid-derived suppressor cells, (4) compromised circulation of B cells and T cells, and (5) increased NKT cells that exhibit an IL-4 dominant cytokine profile, which is inhibitory to antitumor immunity. Taken together, the dynamic effects of alcohol consumption on antitumor immunity are in two opposing phases: the first phase associated with immune stimulation is tumor inhibitory and the second phase resulting from the interaction between the effects of alcohol and the tumor leads to immune inhibition and resultant tumor progression.
Collapse
|
16
|
Effects of Alcohol on Tumor Growth, Metastasis, Immune Response, and Host Survival. Alcohol Res 2015; 37:311-22. [PMID: 26695753 PMCID: PMC4590626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Most research involving alcohol and cancer concerns the relationship between alcohol consumption and cancer risk and the mechanisms of carcinogenesis. This review relates the amount and duration of alcohol intake in humans and in animal models of cancer to tumor growth, angiogenesis, invasion, metastasis, immune response, and host survival in specific types and subtypes of cancer. Research on the influence of alcohol drinking on human cancer patients is limited. Although there is more information in animal models of cancer, many aspects still are ill defined. More research is needed to define the mechanisms that underlie the role of alcohol on cancer progression in both animals and humans. Activation of the immune system can play a positive role in keeping cancer under control, but this also can facilitate cancer progression. Additionally, a functional immune system is required for cancer patients to achieve an optimal response to conventional chemotherapy. Insight into the underlying mechanisms of these interactions could lead to effective immunotherapeutic approaches to treat alcoholics with cancer. Defining the epigenetic mechanisms that modulate cancer progression also has great potential for the development of new treatment options not only for treating alcoholics with cancer but also for treating other alcohol-induced diseases.
Collapse
|
17
|
Murzaku EC, Bronsnick T, Rao BK. Diet in dermatology: Part II. Melanoma, chronic urticaria, and psoriasis. J Am Acad Dermatol 2014; 71:1053.e1-1053.e16. [PMID: 25454037 DOI: 10.1016/j.jaad.2014.06.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/04/2014] [Accepted: 06/09/2014] [Indexed: 02/07/2023]
Abstract
The roles of dietary factors in aggravating, preventing, or treating skin diseases are common questions encountered in dermatology practice. Part II of this two-part series reviews dietary modifications that can potentially be utilized in the management of melanoma, chronic urticaria, and psoriasis patients. Specifically, we examine the effect of alcohol consumption and supplementation with vitamins D and E, polyunsaturated fatty acids, selenium, green tea, resveratrol, and lycopene on melanoma risk. The relationships between chronic urticaria symptoms and dietary pseudoallergens, gluten, and vitamin D are analyzed. We explore weight loss, reduced alcohol consumption, and gluten avoidance as means of reducing psoriasis-associated morbidity, as well as the possible utility of supplementation with polyunsaturated fatty acids, folic acid, vitamin D, and antioxidants. With proper knowledge of the role of diet in these cutaneous disease processes, dermatologists can better answer patient inquiries and consider implementation of dietary modifications as adjuncts to other treatments and preventative measures.
Collapse
Affiliation(s)
- Era Caterina Murzaku
- Department of Dermatology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Tara Bronsnick
- Department of Dermatology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey.
| | - Babar K Rao
- Department of Dermatology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
18
|
Shu K, Kuang N, Zhang Z, Hu Z, Zhang Y, Fu Y, Min W. Therapeutic effect of daphnetin on the autoimmune arthritis through demethylation of proapoptotic genes in synovial cells. J Transl Med 2014; 12:287. [PMID: 25311560 PMCID: PMC4207889 DOI: 10.1186/s12967-014-0287-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/01/2014] [Indexed: 03/06/2023] Open
Abstract
Background We have previously reported that dephnetin is therapeutically effective in the treatment of rheumatoid arthritis (RA) in collagen-induced arthritis (CIA) rat model. However, the molecular mechanism and the effect of daphnetin on demethylating proapoptotic genes in the synovial cells remains further clarified. This study may provide a deeper insight into the medicinal application of daphnetin as a treatment for RA. Methods (1) The proliferation inhibition of CIA rat synovial cells was determined by an MTT (3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenyterazoliumromide) assay; (2) Methylation specific PCR (MSP) was used to measure the methylation of the proapoptotic genes DR3 (death receptor 3), PDCD5 (programmed cell death 5), FasL and p53; (3) Real time-PCR was performed to determine the mRNA expression of DR3, PDCD5, FasL, p53 and DNA methyltransferases (DNMTs) DNMT1, DNMT3a and DNMT3b; (4) Flow cytometry was applied to detect the protein expression of the DR3, PDCD5, FasL and p53; (5) The apoptotic rate of synovial cells was assessed by flow cytometry with Annexin V and propidium iodide (PI); (6) Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the changes of CIA rat synovial cell structure. Results (1) In the range of 1.25 μg/mL to 40 μg/mL, daphnetin and 5-aza-dc had a dose-dependent and time-dependent degree of inhibition to the CIA rat synovial cells. (2) Daphnetin and 5-aza-dc had a demethylating role on the proapoptotic genes DR3, PDCD5, FasL and p53 of CIA rat synovial cells. (3) Daphnetin and 5-aza-dc decreased the gene expression of methyltransferases DNMT1, DNMT3a and DNMT3b, and increased expression of proapoptotic genes DR3, PDCD5, FasL and p53, which translated into an increased protein expression of DR3, PDCD5, FasL and p53. (4) Daphnetin and 5-aza-dc changed the structure of CIA rat synovial cells to show apoptotic changes and increased the rate of apoptosis. Conclusions Daphnetin can reduce the expression of DNMT1, DNMT3a and DNMT3b, which could result in the proapoptotic genes DR3, PDCD5, FasL and p53 being demethylated. Therefore, daphnetin can increase proapoptotic gene and protein expression resulting in structural apoptotic changes and an increase in early and late CIA rat synovial cell apoptosis.
Collapse
Affiliation(s)
- Kuanyong Shu
- Department of Immunology, Medical College of Nanchang University; Institute of Immunology and Immunotherapy, Nanchang University and Jiangxi Academy of Medical Sciences, Nanchang, China. .,Department of Gynecological Oncology, Jiangxi Maternity and Child Healthcare Hospital, Nanchang, China.
| | - Nanzhen Kuang
- Department of Immunology, Medical College of Nanchang University; Institute of Immunology and Immunotherapy, Nanchang University and Jiangxi Academy of Medical Sciences, Nanchang, China.
| | - Zhiqin Zhang
- Reproductive Center, Jiangxi Maternal and Child Health Care Hospital, Nanchang, China.
| | - Ziling Hu
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, China.
| | - Yujuan Zhang
- Department of Immunology, Medical College of Nanchang University; Institute of Immunology and Immunotherapy, Nanchang University and Jiangxi Academy of Medical Sciences, Nanchang, China.
| | - Yingyuan Fu
- Department of Immunology, Medical College of Nanchang University; Institute of Immunology and Immunotherapy, Nanchang University and Jiangxi Academy of Medical Sciences, Nanchang, China.
| | - Weiping Min
- Department of Immunology, Medical College of Nanchang University; Institute of Immunology and Immunotherapy, Nanchang University and Jiangxi Academy of Medical Sciences, Nanchang, China.
| |
Collapse
|
19
|
Parlet CP, Waldschmidt TJ, Schlueter AJ. Chronic ethanol feeding induces subset loss and hyporesponsiveness in skin T cells. Alcohol Clin Exp Res 2014; 38:1356-64. [PMID: 24512045 DOI: 10.1111/acer.12358] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/27/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chronic alcoholism is associated with increased incidence and severity of cutaneous infection. Skin-resident T cells orchestrate numerous immunological functions that are critically involved in both tissue homeostasis and cutaneous immunity. The impact of chronic ethanol (EtOH) exposure on skin T cells has not previously been examined; given their important role in maintaining the immune barrier function of the skin further study is warranted. METHODS Mice were administered EtOH in the drinking water for 12 to 16 weeks. Flow cytometry was used to evaluate impact of EtOH feeding on skin T cell numbers, rates of proliferation, and apoptosis as well as activation marker expression and cytokine production after ex vivo stimulation. RESULTS Chronic EtOH feeding caused a baseline reduction in dendritic epidermal T cell (DETC) numbers that corresponded with reduced expression of the activation marker JAML following phorbol 12-myristate 13-acetate (PMA)/ionomycin stimulation. Chronic EtOH feeding did not alter total numbers of dermal T cells, but specific subset loss was observed in Foxp3(+) regulatory T cells (Tregs) as well as CD3hi, Vγ3(+) and CD3int, Vγ3(-) dermal γδ T cells. EtOH-induced dysfunction in the latter population, which represents prototypical interleukin-17 (IL-17)-producing dermal γδT17s, was made evident by diminished IL-17 production following anti-CD3 stimulation. Additionally, the capacity of lymph node γδ T cells to produce IL-17 following anti-CD3 and PMA/ionomycin stimulation was impaired by chronic EtOH feeding. CONCLUSIONS Chronic EtOH feeding induced defects in both numbers and function of multiple skin T cell subsets. The decreased density and poor responsiveness of DETCs and γδT17 cells in particular would be expected to compromise immune effector mechanisms necessary to maintain a protective barrier and restrict pathogen invasion. These findings demonstrate the sensitivity of skin T cells to EtOH and provide new mechanisms to help explain the propensity of alcoholics to suffer skin infection.
Collapse
Affiliation(s)
- Corey P Parlet
- Department of Pathology and Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | | | |
Collapse
|
20
|
Moyses RA, López RVM, Cury PM, Siqueira SAC, Curioni OA, Gois Filho JFD, Figueiredo DLA, Tajara EH, Michaluart P. Significant differences in demographic, clinical, and pathological features in relation to smoking and alcohol consumption among 1,633 head and neck cancer patients. Clinics (Sao Paulo) 2013; 68:738-44. [PMID: 23778492 PMCID: PMC3674275 DOI: 10.6061/clinics/2013(06)03] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/01/2013] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE As a lifestyle-related disease, social and cultural disparities may influence the features of squamous cell carcinoma of the head and neck in different geographic regions. We describe demographic, clinical, and pathological aspects of squamous cell carcinoma of the head and neck according to the smoking and alcohol consumption habits of patients in a Brazilian cohort. METHODS We prospectively analyzed the smoking and alcohol consumption habits of 1,633 patients enrolled in five São Paulo hospitals that participated in the Brazilian Head and Neck Genome Project - Gencapo. RESULTS The patients who smoked and drank were younger, and those who smoked were leaner than the other patients, regardless of alcohol consumption. The non-smokers/non-drinkers were typically elderly white females who had more differentiated oral cavity cancers and fewer first-degree relatives who smoked. The patients who drank presented significantly more frequent nodal metastasis, and those who smoked presented less-differentiated tumors. CONCLUSIONS The patients with squamous cell carcinoma of the head and neck demonstrated demographic, clinical, and pathological features that were markedly different according to their smoking and drinking habits. A subset of elderly females who had oral cavity cancer and had never smoked or consumed alcohol was notable. Alcohol consumption seemed to be related to nodal metastasis, whereas smoking correlated with the degree of differentiation.
Collapse
Affiliation(s)
- Raquel Ajub Moyses
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Disciplina de Cirurgia de Cabeça e Pescoço (LIM28), São Paulo/SP, Brasil.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang H, Zhu Z, Meadows GG. Chronic alcohol consumption impairs distribution and compromises circulation of B cells in B16BL6 melanoma-bearing mice. THE JOURNAL OF IMMUNOLOGY 2012; 189:1340-8. [PMID: 22753935 DOI: 10.4049/jimmunol.1200442] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Accumulating research indicates that B cells are involved in anti-tumor immunity. Chronic alcohol consumption is associated with decreased survival of cancer patients. The effect of alcohol consumption on B cells in tumor-bearing hosts is unknown. Results in melanoma-bearing mice showed that chronic alcohol consumption did not alter the percentage and number of B cells in bone marrow, spleen, and lymph nodes but dramatically decreased B cells in the peripheral blood. Alcohol consumption did not alter the development of B cells in the bone marrow and did not affect follicular B cells in the spleen; however, it increased T1 B cells and decreased marginal zone B cells in the spleen. Alcohol consumption also decreased mature B cells in the blood. It did not alter the chemotactic capacity of plasma to facilitate migration of splenocytes or the chemotactic response of splenocytes to CXCL13 and CCL21. However, the response of splenocytes to sphingosine-1-phosphate was impaired in alcohol-consuming, melanoma-bearing mice. The expression of sphingosine-1-phosphate receptor-1 (S1PR1) and sphingosine-1-phosphate lyase-1 (SPL1) in splenocytes was downregulated. Taken together, these results indicate that chronic alcohol consumption decreases peripheral blood B cells by compromising B cell egress from the spleen. The downregulation of S1PR1 and SPL1 expression in alcohol-consuming, melanoma-bearing mice could be associated with compromised egress of B cells from the spleen.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
22
|
Selmi C, Leung PSC, Sherr DH, Diaz M, Nyland JF, Monestier M, Rose NR, Gershwin ME. Mechanisms of environmental influence on human autoimmunity: a National Institute of Environmental Health Sciences expert panel workshop. J Autoimmun 2012; 39:272-84. [PMID: 22749494 DOI: 10.1016/j.jaut.2012.05.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/20/2012] [Indexed: 01/22/2023]
Abstract
The mechanisms leading to autoimmune diseases remain largely unknown despite numerous lines of experimental inquiry and epidemiological evidence. The growing number of genome-wide association studies and the largely incomplete concordance for autoimmune diseases in monozygotic twins support the role of the environment (including infectious agents and chemicals) in the breakdown of tolerance leading to autoimmunity via numerous mechanisms. The present article reviews the major theories on the mechanisms of the environmental influence on autoimmunity by addressing the different degrees of confidence that characterize our knowledge. The theories discussed herein include (i) the role of innate immunity mediated by toll-like receptors in triggering the autoimmune adaptive response characterizing the observed pathology; (ii) changes in spleen marginal zone B cells in autoantibody production with particular focus on the B10 subpopulation; (iii) Th17 cell differentiation and T regulatory cells in the aryl hydrocarbon receptor model; (iv) self antigen changes induced by chemical and infectious agents which could break tolerance by post-translational modifications and molecular mimicry; and finally (v) epigenetic changes, particularly DNA methylation, that are induced by environmental stimuli and may contribute to autoimmunity initiation. We are convinced that these working hypotheses, in most cases supported by solid evidence, should be viewed in parallel with animal models and epidemiological observations to provide a comprehensive picture of the environmental causes of autoimmune diseases.
Collapse
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The etiology of autoimmune diseases remains largely unknown. Concordance rates in monozygotic twins are lower than 50% while genome-wide association studies propose numerous significant associations representing only a minority of patients. These lines of evidence strongly support other complementary mechanisms involved in the regulation of genes expression ultimately causing overt autoimmunity. Alterations in the post-translational modification of histones and DNA methylation are the two major epigenetic mechanisms that may potentially cause a breakdown of immune tolerance and the perpetuation of autoimmune diseases. In recent years, several studies both in clinical settings and experimental models proposed that the epigenome may hold the key to a better understanding of autoimmunity initiation and perpetuation. More specifically, data support the impact of epigenetic changes in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and other autoimmune diseases, in some cases based on mechanistical observations. We herein discuss what we currently know and what we expect will come in the next future. Ultimately, epigenetic treatments already being used in oncology may soon prove beneficial also in autoimmune diseases.
Collapse
Affiliation(s)
- Francesca Meda
- Department of Medicine and Hepatobiliary Immunopathology Unit, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | | | | | | |
Collapse
|
24
|
Decoding melanoma metastasis. Cancers (Basel) 2010; 3:126-63. [PMID: 24212610 PMCID: PMC3756353 DOI: 10.3390/cancers3010126] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 12/18/2022] Open
Abstract
Metastasis accounts for the vast majority of morbidity and mortality associated with melanoma. Evidence suggests melanoma has a predilection for metastasis to particular organs. Experimental analyses have begun to shed light on the mechanisms regulating melanoma metastasis and organ specificity, but these analyses are complicated by observations of metastatic dormancy and dissemination of melanocytes that are not yet fully malignant. Additionally, tumor extrinsic factors in the microenvironment, both at the site of the primary tumor and the site of metastasis, play important roles in mediating the metastatic process. As metastasis research moves forward, paradigms explaining melanoma metastasis as a step-wise process must also reflect the temporal complexity and heterogeneity in progression of this disease. Genetic drivers of melanoma as well as extrinsic regulators of disease spread, particularly those that mediate metastasis to specific organs, must also be incorporated into newer models of melanoma metastasis.
Collapse
|