1
|
Bravetti G, Falvo P, Talarico G, Orecchioni S, Bertolini F. Metronomic chemotherapy, dampening of immunosuppressive cells, antigen presenting cell activation, and T cells. A quartet against refractoriness and resistance to checkpoint inhibitors. Cancer Lett 2023; 577:216441. [PMID: 37806515 DOI: 10.1016/j.canlet.2023.216441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
Chemotherapeutic agents have profound effects on cancer, stroma and immune cells that - in most cases - depend upon the dosage and schedule of administration. Preclinical and clinical studies summarized and discussed in the present review have demonstrated that maximum tolerable dosage (MTD) vs low-dosage, continuous (metronomic) administration of most chemotherapeutics have polarized effects on immune cells. In particular, metronomic schedules might be associated - among others effects - with activation of antigen presenting cells and generation of new T cell clones to enhance the activity of several types of immunotherapies. Ongoing and planned clinical trials in different types of cancer will confirm or dismiss this hypothesis and provide candidate biomarker data for the selection of patients who are likely to benefit from these combinatorial strategies.
Collapse
Affiliation(s)
- Giulia Bravetti
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20137, Milan, Italy; Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Paolo Falvo
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20137, Milan, Italy; Medical University of Vienna, (MUW), Borschkegasse 8A 1090, Wien, Austria
| | - Giovanna Talarico
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20137, Milan, Italy; Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20137, Milan, Italy; Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20137, Milan, Italy; Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy.
| |
Collapse
|
2
|
Yang Y, Qin L, Wu Y, Liu S, He X, Mao W. A sulfated polysaccharide from Dictyosphaeria cavernosa: Structural characterization and effect on immunosuppressive recovery. Int J Biol Macromol 2023; 231:123311. [PMID: 36669632 DOI: 10.1016/j.ijbiomac.2023.123311] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
A homogeneous sulfated polysaccharide DCS1 was obtained from Dictyosphaeria cavernosa by alkali extraction and chromatography purification. On the basis of chemical and spectroscopic analyses, DCS1 was a novel mannan-type sulfated polysaccharide and had a molecular weight of 15.48 kDa. DCS1 consisted of a main chain of (1 → 4)-α-d-Manp units with partial sulfate substitution at C-2 and branches at C-2/C-6. DCS1 possessed a potent immune-enhancing effect in vitro evaluated by the assays of lymphocytes proliferation and macrophage phagocytosis. The immunomodulatory effect of DCS1 in vivo was further investigated using immunosuppressed mice induced by cyclophosphamide (Cy). The data showed that DCS1 markedly increased the spleen and thymus indexes, and ameliorated the Cy-induced damage to spleen and thymus. Moreover, DCS1 had a significant effect on hematopoietic function recovery, and promoted the secretion of the interleukin-2 and tumor necrosis factor-α. Notably, DCS1 reversed the reduction of CD4+ T cells, improved the disorder of CD4+/CD8+ T cells and enhanced the immune response. The investigation demonstrated that the sulfated polysaccharide DCS1 with novel structure could be a hopeful immunomodulatory agent.
Collapse
Affiliation(s)
- Yajing Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ling Qin
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yu Wu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shan Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiaoxi He
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Wenjun Mao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
3
|
Song Y, Shin H, Sianipar HGJ, Park JY, Lee M, Hah J, Park HS, Lee HJ, Lee S, Kang H. Oral administration of Euglena gracilis paramylon ameliorates chemotherapy-induced leukocytopenia and gut dysbiosis in mice. Int J Biol Macromol 2022; 211:47-56. [PMID: 35490767 DOI: 10.1016/j.ijbiomac.2022.04.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/05/2022]
Abstract
Euglena gracilis (EUG) is a food supplement rich in beta-glucans, which are stored in the form of granules called paramylon. We determined whether EUG improved chemotherapy-induced leukocytopenia and dysbiosis. Mice were orally administered EUG prior to gemcitabine treatment. Analyses of the blood cell count, leukocyte population in the spleen, granulocyte/macrophage-colony-stimulating factor (GM-CSF) production by splenocytes, and fecal microbiome were conducted. The recovery of total leukocytes, neutrophils, and monocytes was accelerated after a single gemcitabine treatment. A more rapid lymphocyte recovery rate was observed after four gemcitabine treatments. No difference was observed in the percentage of T, B, or myeloid cells or in the expression of Dectin-1 in the spleens of the gemcitabine and EUG/gemcitabine groups. The EUG/gemcitabine group showed an enhanced GM-CSF production by lipopolysaccharides-stimulated splenocytes. Next-generation sequencing revealed that gemcitabine-induced dysbiosis was alleviated. This study demonstrated that EUG-derived beta-glucans could act as a biological response modifier as well as prebiotics for ameliorating chemotherapy-induced adverse effects.
Collapse
Affiliation(s)
- Youngju Song
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hocheol Shin
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Ji Yun Park
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Migi Lee
- Bio-Center, Gyeonggido Business & Science Accelerator, Suwon 16229, Republic of Korea
| | - Jihye Hah
- Graduate School of East-West Medicine, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hong Shik Park
- Department of Physical Education, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyun Jeong Lee
- Department of Herbology, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Sukchan Lee
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Hee Kang
- Humanitas College, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
4
|
邹 琼, 伍 晓, 王 进, 夏 谍, 邓 萌, 丁 俞, 代 玉, 赵 嵩, 陈 彤. [Therapeutic effect of Panax notoginseng saponins combined with cyclophosphamide in mice bearing hepatocellular carcinoma H 22 cell xenograft]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:538-545. [PMID: 35527489 PMCID: PMC9085587 DOI: 10.12122/j.issn.1673-4254.2022.04.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the therapeutic effects of total saponins from Panax notognseng (PNS) combined with cyclophosphamide (CTX) in mice bearing hepatocellular carcinoma H22 cell xenograft. METHODS We examined the effects of treatment with different concentrations of PNS on H22 cell proliferation for 24 to 72 h in vitro using CCK8 colorimetric assay. Annexin V/PI double fluorescence staining was used to detect the effect of PNS on apoptosis of H22 cells. Mouse models bearing H22 cell xenograft were established and treated with CTX (25 mg/kg), PNS (120, 240 or 480 mg/kg), alone or in combinations. After treatments for consecutive 10 days, the mice were euthanized for examinations of carbon clearance ability of the monocytes and macrophages, splenic lymphocyte proliferation, tumor necrosis factor (TNF-α), interleukin-2 (IL-2), serum hemolysin antibody level, blood indicators, and the tumor inhibition rate. RESULTS Treatment with PNS concentration-dependently inhibited the proliferation and significantly promoted apoptosis of cultured H22 cells (P < 0.01). In the tumor-bearing mouse models, PNS alone and its combination with CTX both resulted in obvious enhancement of phagocytosis of the monocyte-macrophages, stimulated the proliferation of splenic lymphocytes, promoted the release of TNF-α and IL-2 and the production of serum hemolysin antibody, and increased the number of white blood cells, red blood cells and lymphocytes in the peripheral blood. Treatment with 480 mg/kg PNS combined with CTX resulted in a tumor inhibition rate of 83.28% (P < 0.01) and a life prolonging rate of 131.25% in the mouse models (P < 0.05). CONCLUSION PNS alone or in combination with CTX can improve the immunity and tumor inhibition rate and prolong the survival time of H22 tumor-bearing mice.
Collapse
Affiliation(s)
- 琼 邹
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 晓萍 伍
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 进吉 王
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 谍 夏
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 萌玥 邓
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 俞珍 丁
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 玉玲 代
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 嵩月 赵
- 云南省食品药品审核查验中 心,云南 昆明 650228Yunnan Food and Drug Inspection Center, Kunming 650228, China
| | - 彤 陈
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
5
|
Anti-Gr-1 Antibody Provides Short-Term Depletion of MDSC in Lymphodepleted Mice with Active-Specific Melanoma Therapy. Vaccines (Basel) 2022; 10:vaccines10040560. [PMID: 35455309 PMCID: PMC9032646 DOI: 10.3390/vaccines10040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022] Open
Abstract
Lymphodepletion, reconstitution and active-specific tumor cell vaccination (LRAST) enhances the induction of tumor-specific T cells in a murine melanoma model. Myeloid-derived suppressor cells (MDSC) may counteract the induction of tumor-reactive T cells and their therapeutic efficacy. Thus, the aim of the study was to evaluate a possible benefit of MDSC depletion using anti-Gr-1 antibodies (Ab) in combination with LRAST. Female C57BL/6 mice with 3 days established subcutaneous (s.c.) D5 melanoma were lymphodepleted with cyclophosphamide and reconstituted with naive splenocytes. Vaccination was performed with irradiated syngeneic mGM-CSF-secreting D5G6 melanoma cells. MDSC depletion was performed using anti-Gr-1 Ab (clone RB6-8C5). Induction of tumor-specific T cells derived from tumor vaccine draining lymph nodes (TVDLN) was evaluated by the amount of tumor-specific interferon (IFN)-γ release. LRAST combined with anti-Gr-1 mAb administration enhanced the induction of tumor-specific T cells in TVDLN capable of releasing IFN-γ in a tumor-specific manner. Additional anti-Gr-1 mAb administration in LRAST-treated mice delayed growth of D5 melanomas by two weeks. Furthermore, we elucidate the impact of anti-Gr-1-depleting antibodies on the memory T cell compartment. Our data indicate that standard of care treatment regimens against cancer can be improved by implementing agents, e.g., depleting antibodies, which target and eliminate MDSC.
Collapse
|
6
|
Parveen A, Zahiruddin S, Agarwal N, Akhtar Siddiqui M, Husain Ansari S, Ahmad S. Modulating effects of the synergistic combination of extracts of herbal drugs on cyclophosphamide-induced immunosuppressed mice. Saudi J Biol Sci 2021; 28:6178-6190. [PMID: 34764748 PMCID: PMC8568999 DOI: 10.1016/j.sjbs.2021.06.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Taking leads from the available research, we aimed to develop a synergy-based herbal combination of Tinospora cordifolia (TC), Phyllanthus emblica (PE), and Piper nigrum (PN). Also, evaluating their synergistic effect on CP-induced immunosuppression in mice model and exploring the possible mechanisms involved in reversing the damage. METHODOLOGY The immunomodulatory activity of combination, of TC stem, PE fruits, and PN dried fruits, was determined by in vitro assays (splenocyte proliferation and pinocytic activity of peritoneal macrophages of mice) and in vivo study using CP-induced immunosuppression model in Swiss Albino mice. The ratio was optimized for combining three by in vitro MTT assay. The combination was further evaluated for anti-oxidant activity by DPPH scavenging method and quantified for its bioactive metabolites by HPTLC. Serum collected on day 0, 4, 7 and 14 was employed for estimation of haematogram (haematocrit, TLC, DLC, and haemoglobin, etc) and immune parameters (IL-10, IL-6 and TNF-α) by ELISA. RESULTS The study demonstrated, that combination of herbal extracts at an intermediate dose could inhibit the proliferation of spleen cells and peritoneal macrophages (P ≤ 0.0001) and induce suppression of pro-inflammatory mediators, and also certified that combination exerts synergized effects. The results showed that the combination possess potential antioxidant activity by DPPH scavenging method (IC50-113.5 µg/ml). It was identified that combination significantly (P ≤ 0.0001) improved the immune markers, haematogram parameters, and histological parameters, with maximum protection offered by an intermediate dose. CONCLUSION The results suggested that present combination could be further explored clinically as potent synergy-based therapeutic approach for immune modulation.
Collapse
Affiliation(s)
- Abida Parveen
- Bioactive Natural Product Laboratory, Centre for Translational and Clinical Research, SIST, Jamia Hamdard, New Delhi 110062, India
| | - Sultan Zahiruddin
- Bioactive Natural Product Laboratory, Dept. of Pharmacognosy and Phytochemistry, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Nidhi Agarwal
- Centre for Translational and Clinical Research, SCLS, Jamia Hamdard, New Delhi 110062, India
| | | | - Shahid Husain Ansari
- Bioactive Natural Product Laboratory, Dept. of Pharmacognosy and Phytochemistry, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Dept. of Pharmacognosy and Phytochemistry, SPER, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
7
|
Wang S, Zhang Y, Meng W, Dong Y, Zhang S, Teng L, Liu Y, Li L, Wang D. The Involvement of Macrophage Colony Stimulating Factor on Protein Hydrolysate Injection Mediated Hematopoietic Function Improvement. Cells 2021; 10:2776. [PMID: 34685756 PMCID: PMC8534652 DOI: 10.3390/cells10102776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Protein hydrolysate injection (PH) is a sterile solution of hydrolyzed protein and sorbitol that contains 17 amino acids and has a molecular mass of 185.0-622.0 g/mol. This study investigated the effect of PH on hematopoietic function in K562 cells and mice with cyclophosphamide (CTX)-induced hematopoietic dysfunction. In these myelosuppressed mice, PH increased the number of hematopoietic cells in the bone marrow (BM) and regulated the concentration of several factors related to hematopoietic function. PH restored peripheral blood cell concentrations and increased the numbers of hematopoietic stem cells and progenitor cells (HSPCs), B lymphocytes, macrophages, and granulocytes in the BM of CTX-treated mice. Moreover, PH regulated the concentrations of macrophage colony stimulating factor (M-CSF), interleukin (IL)-2, and other hematopoiesis-related cytokines in the serum, spleen, femoral condyle, and sternum. In K562 cells, the PH-induced upregulation of hematopoiesis-related proteins was inhibited by transfection with M-CSF siRNA. Therefore, PH might benefit the BM hematopoietic system via the regulation of M-CSF expression, suggesting a potential role for PH in the treatment of hematopoietic dysfunction caused by cancer therapy.
Collapse
Affiliation(s)
- Shimiao Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.W.); (W.M.); (L.T.)
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| | - Yuchong Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| | - Weiqi Meng
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.W.); (W.M.); (L.T.)
| | - Yihao Dong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| | - Sujie Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.W.); (W.M.); (L.T.)
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| | - Lanzhou Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.W.); (W.M.); (L.T.)
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.W.); (W.M.); (L.T.)
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| |
Collapse
|
8
|
A combination of cyclophosphamide and interleukin-2 allows CD4+ T cells converted to Tregs to control scurfy syndrome. Blood 2021; 137:2326-2336. [PMID: 33545713 DOI: 10.1182/blood.2020009187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/31/2020] [Indexed: 01/12/2023] Open
Abstract
Immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is caused by mutations in forkhead box P3 (FOXP3), which lead to the loss of function of regulatory T cells (Tregs) and the development of autoimmune manifestations early in life. The selective induction of a Treg program in autologous CD4+ T cells by FOXP3 gene transfer is a promising approach for curing IPEX. We have established a novel in vivo assay of Treg functionality, based on adoptive transfer of these cells into scurfy mice (an animal model of IPEX) and a combination of cyclophosphamide (Cy) conditioning and interleukin-2 (IL-2) treatment. This model highlighted the possibility of rescuing scurfy disease after the latter's onset. By using this in vivo model and an optimized lentiviral vector expressing human Foxp3 and, as a reporter, a truncated form of the low-affinity nerve growth factor receptor (ΔLNGFR), we demonstrated that the adoptive transfer of FOXP3-transduced scurfy CD4+ T cells enabled the long-term rescue of scurfy autoimmune disease. The efficiency was similar to that seen with wild-type Tregs. After in vivo expansion, the converted CD4FOXP3 cells recapitulated the transcriptomic core signature for Tregs. These findings demonstrate that FOXP3 expression converts CD4+ T cells into functional Tregs capable of controlling severe autoimmune disease.
Collapse
|
9
|
Innamarato P, Pilon-Thomas S. Reactive myelopoiesis and the onset of myeloid-mediated immune suppression: Implications for adoptive cell therapy. Cell Immunol 2020; 361:104277. [PMID: 33476931 DOI: 10.1016/j.cellimm.2020.104277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023]
Abstract
Adoptive T cell therapy (ACT) in combination with lymphodepleting chemotherapy is an effective strategy to induce the eradication of cancer, providing long-term regressions in patients. However, only a minority of patients that receive ACT with tumor-specific T cells exhibit durable benefit. Thus, there is an urgent need to characterize mechanisms of resistance and define strategies to alleviate immunosuppression in the context of ACT in cancer. This article reviews the importance of lymphodepleting regimens in promoting the optimal engraftment and expansion of T cells in hosts after adoptive transfer. In addition, we discuss the role of concomitant immunosuppression and the accumulation of myeloid derived suppressor cells (MDSCs) during immune recovery after lymphodepleting regimens and mobilization regimens.
Collapse
Affiliation(s)
- Patrick Innamarato
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
10
|
Fang H, Xie X, Liu P, Rao Y, Cui Y, Yang S, Yu J, Luo Y, Feng Y. Ziyuglycoside II alleviates cyclophosphamide-induced leukopenia in mice via regulation of HSPC proliferation and differentiation. Biomed Pharmacother 2020; 132:110862. [PMID: 33069969 DOI: 10.1016/j.biopha.2020.110862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022] Open
Abstract
Ziyuglycoside II (ZGS II) is a major bioactive ingredient of Sanguisorbae officinalis L., which has been widely used for managing myelosuppression or leukopenia induced by chemotherapy or radiotherapy. In the current study, we investigated the pro-hematopoietic effects and underlying mechanisms of ZGS II in cyclophosphamide-induced leukopenia in mice. The results showed that ZGS II significantly increased the number of total white blood cells and neutrophils in the peripheral blood. Flow cytometry analysis also showed a significant increase in the number of nucleated cells and hematopoietic stem and progenitor cells (HSPCs) including ST-HSCs, MPPs, and GMPs, and enhanced HSPC proliferation in ZGS II treated mice. The RNA-sequencing analysis demonstrated that ZGS II effectively regulated cell differentiation, immune system processes, and hematopoietic system-related pathways related to extracellular matrix (ECM)-receptor interaction, focal adhesion, hematopoietic cell lineage, cytokine-cytokine receptor interaction, the NOD-like receptor signaling pathway, and the osteoclast differentiation pathway. Moreover, ZGS II treatment altered the differentially expressed genes (DEGs) with known functions in HSPC differentiation and mobilization (Cxcl12, Col1a2, and Sparc) and the surface markers of neutrophilic precursors or neutrophils (Ngp and CD177). Collectively, these data suggest that ZGS II protected against chemotherapy-induced leukopenia by regulating HSPC proliferation and differentiation.
Collapse
Affiliation(s)
- Haihong Fang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xinxu Xie
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Peng Liu
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Ying Rao
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Yaru Cui
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Shilin Yang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jun Yu
- Department of Physiology and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA19140, USA
| | - Yingying Luo
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Yulin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
11
|
Xue F, Yu M, Li L, Zhang W, Ma Y, Dong L, Shan W, Zheng Y, Wang T, Feng D, Lv J, Wang X. Elevated granulocytic myeloid-derived suppressor cells are closely related with elevation of Th17 cells in mice with experimental asthma. Int J Biol Sci 2020; 16:2072-2083. [PMID: 32549755 PMCID: PMC7294949 DOI: 10.7150/ijbs.43596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/02/2020] [Indexed: 02/03/2023] Open
Abstract
Asthma is a complex and heterogeneous inflammatory response characterized by various immune cells, including myeloid-derived suppressor cells (MDSCs) and CD4+ T-cell subsets. However, few studies on MDSC subsets and the association between MDSCs and CD4+ T-cell subsets in asthma are reported. In the present study, we detected CD4+ T cells and MDSC subsets and evaluated the relationship of these cells in mice with ovalbumin-induced asthma. We found that asthmatic mice showed severe airway inflammatory response and inflammatory cell infiltration in the lungs and bronchoalveolar lavage fluid. We also noted increased numbers of Th2, Th17, and MDSCs; decreased proportion of Th1 and Treg cells in the splenocytes and lungs; and increased expression of pro-inflammatory cytokines in splenocytes and lungs. Granulocytic MDSCs (G-MDSCs) and Th17 cells were closely related. Gemcitabine treatment reduced the G-MDSC level and the iNOS expression, alleviated the inflammatory response, and decreased the proportion and number of Th2 and Th17 cells in asthmatic mice. Besides the increase in Th2 and Th17 cells, the findings indicate that G-MDSC elevation plays a crucial role in asthmatic mice.
Collapse
Affiliation(s)
- Fei Xue
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Mengzhu Yu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Li Li
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Wenzhe Zhang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yongbin Ma
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.,Department of Neurology Laboratory, Jintan Hospital, Jiangsu University, Jintan 213200, China
| | - Liyang Dong
- Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Wenqi Shan
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yu Zheng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Ting Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Dingqi Feng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Jianping Lv
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| |
Collapse
|
12
|
L. Salem M, A. Abdul B E, A. Zidan AA, M. Elghara R. Stem Cell Mobilization with G-CSF and Cyclophosphamide Ameliorated Collagen-Induced Arthritis in Wistar Rats. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.223.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Salem ML, El-Naggar SA, Mobasher MA, Elgharabawy RM. The Toll-Like Receptor 3 Agonist Polyriboinosinic Polyribocytidylic Acid Increases the Numbers of NK Cells with Distinct Phenotype in the Liver of B6 Mice. J Immunol Res 2020; 2020:2489407. [PMID: 32211442 PMCID: PMC7077049 DOI: 10.1155/2020/2489407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023] Open
Abstract
One of the activating factors of the cells of the innate immune system is the agonists of toll-like receptors (TLRs). Our earlier publications detailed how poly(I:C), a TLR3 agonist, elevates the NK cell population and the associated antigen-specific CD8+ T cell responses. This study involved a single treatment of the B6 mice with poly(I:C) intraperitoneally. To perform a detailed phenotypic analysis, mononuclear cells were prepared from each of the liver, peripheral blood, and spleen. These cells were then examined for their NK cell population by flow cytometric analysis following cell staining with indicated antibodies. The findings of the study showed that the NK cell population of the liver with an NK1.1highCD11bhighCD11chigh B220+Ly6G- phenotype was elevated following the treatment with poly(I:C). In the absence of CD11b molecule (CR3-/- mice), poly(I:C) can still increase the remained numbers of NK cells with NK1.1+CD11b- and NK1.1+Ly6G- phenotypes in the liver while their numbers in the blood decrease. After the treatment with anti-AGM1 Ab, which induced depletion of NK1.1+CD11b+ cells and partial depletion of CD3+NK1.1+ and NK1.1+CD11b- cell populations, poly(I:C) normalized the partial decreases in the numbers of NK cells concomitant with increased numbers of NK1.1-CD11b+ cell population in both liver and blood. Regarding mice with a TLR3-/- phenotype, their injection with poly(I:C) resulted in the partial elevation in the NK cell population as compared to wild-type B6 mice. To summarise, the TLR3 agonist poly(I:C) results in the elevation of a subset of liver NK cells expressing the two myeloid markers CD11c and CD11b. The effect of poly(I:C) on NK cells is partially dependent on TLR3 and independent of the presence of CD11b.
Collapse
Affiliation(s)
- Mohamed L. Salem
- 1Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
- 2Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta University, Egypt
| | - Sabry A. El-Naggar
- 1Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
- 2Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta University, Egypt
| | - Maysa A. Mobasher
- 3Biochemistry Division, Department of Pathology, College of Medicine, Jouf University, Sakakah, Saudi Arabia
- 4Department of Clinical Pathology, El Ahrar Educational Hospital, Ministry of Health, Zagazig, Egypt
| | - Rehab M. Elgharabawy
- 5Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
- 6Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
14
|
Immunomodulatory Effects of the Meretrix Meretrix Oligopeptide (QLNWD) on Immune-Deficient Mice. Molecules 2019; 24:molecules24244452. [PMID: 31817348 PMCID: PMC6943722 DOI: 10.3390/molecules24244452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to explore the immunomodulatory effects of the Meretrix meretrix oligopeptide (MMO, QLNWD) in cyclophosphamide (CTX)-induced immune-deficient mice. Compared to untreated, CTX-induced immune-deficient mice, the spleen and thymus indexes of mice given moderate (100 mg/kg) and high (200 mg/kg) doses of MMO were significantly higher (p < 0.05), and body weight loss was alleviated. Hematoxylin-eosin (H&E) staining revealed that MMO reduced spleen injury, thymus injury, and liver injury induced by CTX in mice. Furthermore, MMO boosted the production of immunoglobulin G (IgG) and hemolysin in the serum and promoted the proliferation and differentiation of spleen T-lymphocytes. Taken together, our findings suggest that MMO plays a vital role in protection against immunosuppression in CTX-induced immune-deficient mice and could be a potential immunomodulatory candidate for use in functional foods or immunologic adjuvants.
Collapse
|
15
|
Yu WD, Sun G, Li J, Xu J, Wang X. Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett 2019; 452:66-70. [PMID: 30902563 DOI: 10.1016/j.canlet.2019.02.048] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
Immunotherapies based on T cells have gained significant success in the treatment of diverse cancers, however, several limitations also exist, including low response, acquired resistance and severe side effects, which lead to unfavorable outcomes. Recent studies found that traditional therapies, radiotherapy and/or chemotherapy may affect the immune condition in situ and cause abscopal effect, which may improve the response of immunotherapies, enhance the efficiency, and reduce the untoward effect. Here, we review the mechanisms uncovering the cancer immunotherapy and immunogenic effects of radiotherapy and chemotherapy, aiming to highlight the principles underlying the therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy and ultimately guide better designs for future synergistic cancer therapies.
Collapse
Affiliation(s)
- Wei-Di Yu
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Guan Sun
- Department of Neurosurgery, Yancheng City No.1 People's Hospital, The Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, PR China
| | - Jun Li
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, 168 Gushan Road, Nanjing, Jiangsu Province, PR China
| | - Jiang Xu
- Department of Rehabilitation, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China.
| | - Xiaochen Wang
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
16
|
Han J, Xia J, Zhang L, Cai E, Zhao Y, Fei X, Jia X, Yang H, Liu S. Studies of the effects and mechanisms of ginsenoside Re and Rk 3 on myelosuppression induced by cyclophosphamide. J Ginseng Res 2018; 43:618-624. [PMID: 31695568 PMCID: PMC6823735 DOI: 10.1016/j.jgr.2018.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/30/2018] [Indexed: 01/20/2023] Open
Abstract
Background Ginsenoside Re (Re) is one of the major components of Panax ginseng Meyer. Ginsenoside Rk3 (Rk3) is a secondary metabolite of Re. The aim of this study was to investigate and compare the effects and underlying mechanisms of Re and Rk3 on cyclophosphamide-induced myelosuppression. Methods The mice myelosuppression model was established by intraperitoneal (i.p.) injection of cyclophosphamide. Peripheral blood cells, bone marrow nucleated cells, and colony yield of hematopoietic progenitor cells in vitro were counted. The levels of erythropoietin, thrombopoietin, and granulocyte macrophage colony-stimulating factor in plasma were measured by enzyme-linked immunosorbent assay. Bone marrow cell cycle was performed by flow cytometry. The expression of apoptotic protein bcl-2, bax, and caspase-3 was detected by Western blotting. Results Both Re and Rk3 could improve peripheral blood cells, bone marrow nucleated cell counts, thymus index, and spleen index. Furthermore, they could enhance the yield of colonies cultured in vitro and make the levels of granulocyte macrophage colony-stimulating factor, erythropoietin, and thrombopoietin normal, reduce the ratio of G0/G1 phase cells, and increase the proliferation index. Finally, Re and Rk3 could upregulate the expression of bcl-2, whereas they could downregulate the expression of bax and caspase-3. Conclusion Re and Rk3 could improve the hematopoietic function of myelosuppressed mice. The effect of Rk3 was superior to that of Re at any dose. Regulating the levels of cytokines, promoting cells enter the normal cell cycle, regulating the balance of bcl-2/bax, and inhibiting the expression of caspase-3 may be the effects of Re and Rk3 on myelosuppression.
Collapse
Affiliation(s)
- Jiahong Han
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Jing Xia
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Lianxue Zhang
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Enbo Cai
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Xuan Fei
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Xiaohuan Jia
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - He Yang
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Shuangli Liu
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| |
Collapse
|
17
|
Han X, Lv Y, Li Y, Deng J, Qiu Q, Liu N, Zhao S, Liao C. Distribution characteristics of cells in splenomegaly due to hepatitis B-related cirrhotic portal hypertension and their clinical importance. J Int Med Res 2018; 46:2633-2640. [PMID: 29781346 PMCID: PMC6124259 DOI: 10.1177/0300060518767550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Objectives To investigate peripheral cytopenia in patients with splenomegaly due to hepatitis B-related cirrhotic portal hypertension (HBRCPH) by comparing blood cell counts from enlarged spleens with peripheral blood. Methods This prospective study involved patients undergoing splenectomy at the Nangfang Hospital from June 2013 to December 2015. Blood cell counts from peripheral blood were compared with those from splenic blood taken during splenectomies. Results Clinical data were available from 30 patients. White blood cell (WBC), red blood cell (RBC) and platelet counts were statistically significantly lower in peripheral blood compared with splenic blood. After splenectomy, peripheral blood cell counts increased significantly compared with pre-operative levels. Platelet and WBC counts in the lower spleen were significantly higher than those in the porta lienis (middle segment) and upper spleen. Conclusions In patients with splenomegaly due to HBRCPH, the counts of three blood cell lineages were significantly higher in the spleen than in peripheral blood. Splenectomy can aid the return of peripheral blood cell counts to normal levels. The most significant retention of platelets and WBCs occurred in the lower spleen which may be useful information for surgeons performing partial splenectomies.
Collapse
Affiliation(s)
- Xiaoyu Han
- 1 Department of Liver Vascular Surgery, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yunfu Lv
- 2 Department of General Surgery, Hainan Provincial People's Hospital, Haikou 570311, China
| | - Yejuan Li
- 3 Department of Reproductive, Maternal and Child Care of Hainan Province, Haikou 571000, China
| | - Jie Deng
- 2 Department of General Surgery, Hainan Provincial People's Hospital, Haikou 570311, China
| | - Qingan Qiu
- 2 Department of General Surgery, Hainan Provincial People's Hospital, Haikou 570311, China
| | - Ning Liu
- 1 Department of Liver Vascular Surgery, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shuya Zhao
- 2 Department of General Surgery, Hainan Provincial People's Hospital, Haikou 570311, China
| | - Caixian Liao
- 1 Department of Liver Vascular Surgery, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
18
|
Metronomic chemotherapy and immunotherapy in cancer treatment. Cancer Lett 2017; 400:282-292. [PMID: 28189534 DOI: 10.1016/j.canlet.2017.01.040] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022]
Abstract
Systemic chemotherapy given at maximum tolerated doses (MTD) has been the mainstay of cancer treatment for more than half a century. In some chemosensitive diseases such as hematologic malignancies and solid tumors, MTD has led to complete remission and even cure. The combination of maintenance therapy and standard MTD also can generate good disease control; however, resistance to chemotherapy and disease metastasis still remain major obstacles to successful cancer treatment in the majority of advanced tumors. Metronomic chemotherapy, defined as frequent administration of chemotherapeutic agents at a non-toxic dose without extended rest periods, was originally designed to overcome drug resistance by shifting the therapeutic target from tumor cells to tumor endothelial cells. Metronomic chemotherapy also exerts anti-tumor effects on the immune system (immunomodulation) and tumor cells. The goal of immunotherapy is to enhance host anti-tumor immunities. Adding immunomodulators such as metronomic chemotherapy to immunotherapy can improve the clinical outcomes in a synergistic manner. Here, we review the anti-tumor mechanisms of metronomic chemotherapy and the preliminary research addressing the combination of immunotherapy and metronomic chemotherapy for cancer treatment in animal models and in clinical setting.
Collapse
|
19
|
Activation of Nrf2-ARE signaling mitigates cyclophosphamide-induced myelosuppression. Toxicol Lett 2016; 262:17-26. [PMID: 27633142 DOI: 10.1016/j.toxlet.2016.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/06/2016] [Accepted: 09/11/2016] [Indexed: 11/21/2022]
Abstract
Myelosuppression is the most common dose-limiting adverse effect of chemotherapies. In the present study, we investigated the involvement of nuclear erythroid 2-related factor 2 (Nrf2) in cyclophosphamide-induced myelosuppression in mice, and evaluated the potential of activating Nrf2 signaling as a preventive strategy. The whole blood from Nrf2-/- mice exhibited decreased antioxidant capacities, while the bone marrow cells, peripheral blood mononuclear cells and granulocytes from Nrf2-/- mice were more susceptible to acrolein-induced cytotoxicity than those from wild type mice. Single dosage of cyclophosphamide induced significantly severer acute myelosuppression in Nrf2-/- mice than in wild type mice. Furthermore, Nrf2-/- mice exhibited greater loss of peripheral blood nucleated cells and recovered slower from myelosuppression nadir upon multiple consecutive dosages of cyclophosphamide than wild type mice did. This was accompanied with decreased antioxidant and detoxifying gene expressions and impaired colony formation ability of Nrf2-/- bone marrow cells. More importantly, activation of Nrf2 signaling by CDDO-Me significantly alleviated cyclophosphamide-induced myelosuppression, while this alleviation was diminished in Nrf2-/- mice. In conclusion, the present study shows that Nrf2 plays a protective role in cyclophosphamide-induced myelosuppression and activation of Nrf2 is a promising strategy to prevent or treat chemotherapy-induced myelosuppression.
Collapse
|
20
|
Alam A, Puri N, Saxena RK. Uptake of poly-dispersed single-walled carbon nanotubes and decline of functions in mouse NK cells undergoing activation. J Immunotoxicol 2016; 13:758-65. [PMID: 27416475 DOI: 10.1080/1547691x.2016.1191562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The interaction of poly-dispersed acid-functionalized single-walled carbon nanotubes (AF-SWCNT) with NK cells undergoing activation was examined. Exposure to AF-SWCNT during NK activation in vitro by interleukin (IL)-2, and in vivo by Poly(I:C) significantly lowered cytotoxic activity generated against YAC-1 tumor cells. Recoveries of spleen NK1.1(+) cells as well as the activated subset of NK cells (NK1.1(+)CD69(+) cells) were significantly reduced by the AF-SWCNT exposure. The proportion of apoptotic NK cells (NK1.1(+) phosphatidylserine(+)) in the spleen cell preparations activated in vitro was also significantly elevated. Expression levels of CD107a [for assessing NK cell degranulation] as well as of FasL marker [mediating non-secretory pathway of NK cell killing] were significantly lower in cells exposed to AF-SWCNT during the activation phase. Intracellular levels of interferon (IFN)-γ and tumor necrosis factor (TNF)-α in the cells were also significantly reduced. Fluorescent AF-SWCNT (FAF-SWCNT) were internalized by the NK cells and uptake was significantly greater in activated cells. Confocal microscopy indicated the internalized FAF-SWCNT were localized to the cytoplasm of the NK cells. These results indicated that AF-SWCNT were internalized by NK cells and caused a general down-regulation of a variety of parameters associated with NK cell cytotoxicity and other cellular functions.
Collapse
Affiliation(s)
- Anwar Alam
- a School of Life Sciences , Jawaharlal Nehru University , New Delhi , India ;,b Faculty of Life Sciences and Biotechnology , South Asian University , New Delhi , India
| | - Niti Puri
- a School of Life Sciences , Jawaharlal Nehru University , New Delhi , India
| | - Rajiv K Saxena
- b Faculty of Life Sciences and Biotechnology , South Asian University , New Delhi , India
| |
Collapse
|
21
|
Quita SM, Balbaid SO. The protective effect of lemon fruit extract on histopathological changes induced in small intestines and pancreas of male mice by cyclophosphamide. Electron Physician 2015; 7:1412-22. [PMID: 26516452 PMCID: PMC4623805 DOI: 10.14661/1412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/28/2015] [Indexed: 11/14/2022] Open
Abstract
Introduction Cyclophosphamide (CP) is alkylating agent and the most commonly used chemotherapeutic drug for various types of cancer; it causes severe toxicity. The aim of the research was to assess the protective effect of lemon fruit extract (LFE) against the side effects of the anti-cancer drug “cyclophosphamide” (CP). Methods This experimental study was conducted in 2015. Thirty male mice were divided into six groups: group A (control): intraperitoneal injection of saline, group B: oral LFE (10ml/kg), group C: intraperitoneal injection of CP (10 mg/kg), group D: intraperitoneal injection of CP (20 mg/kg), group E: intraperitoneal injection of CP (10 mg/kg) and oral LFE (10 ml/kg), and group F: intraperitoneal injection of CP (20 mg/kg) and oral LFE (10 ml/kg). All groups were treated daily for five consecutive days. Results The results of the group treated with the drug C and D was that, in their intestines, the effect was uneven between a severe to a sharp effect, and there was a lack of dense connective tissue and its collagen fibers and fat cells, the intestinal glands or crypt of Lieberkühn appeared few in number and distorted in composition when compared with control A, as the pancreas appeared divided into several lobes containing small numbers of pancreatic Acini, padded with secretory pyramid-shaped cells, although some of them appeared exaggerated. While treatment in group E and F resulted in the intestines and pancreas appearing to be semi-normal; regarding the pancreas, it showed an observed improvement more than the response of the intestines. Conclusion The results support the protective effect of lemon fruit extract against CP-induced intestinal and pancreatic injury.
Collapse
Affiliation(s)
- Salwa Mohammed Quita
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia (KSA)
| | - Samira Omar Balbaid
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia (KSA)
| |
Collapse
|
22
|
Ghareeb DA, Salem ML, El-Desouky N, Mohamed IH. Concomitant treatment with beta-glucan and G-CSF ameliorates altered biochemical indices after cyclophosphamide-induced leukopenia in mice. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1057524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
23
|
El-Naggar SA, Alm-Eldeen AA, Germoush MO, El-Boray KF, Elgebaly HA. Ameliorative effect of propolis against cyclophosphamide-induced toxicity in mice. PHARMACEUTICAL BIOLOGY 2015; 53:235-241. [PMID: 25289525 DOI: 10.3109/13880209.2014.914230] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Cyclophosphamide (CTX) is a common anticancer agent used for the treatment of several malignancies. However, upon treatment, it induces severe toxicity due to its oxidative stress capability. Propolis, a natural product collected by honey bees, has shown several biological activities, such as free radical scavenging and antioxidant agent. OBJECTIVE This study elucidates the protective effects of propolis against CTX-induced changes in mice. MATERIALS AND METHODS Forty-eight male Swiss albino mice were divided into four groups; group 1 was intraperitoneally (i.p.) injected with 200 µL of phosphate buffer saline (PBS), group 2 was injected with 100 mg/kg/d propolis, group 3 was injected with a single dose of CTX (200 mg/kg), and group 4 was injected with a single dose of CTX (200 mg/kg) followed by propolis (100 mg/kg) for 7 consecutive days. After 12 d, mice were bled and then sacrificed to analyze the hematological, biochemical, and histological parameters. RESULTS The results indicated that CTX-injected mice showed an increase in the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, and creatinine and a decrease in the total number of white blood cells (WBCs) and platelets. Moreover, dramatically changes in the histological architectures of the liver and kidney were observed. The mice that were injected with CTX/propolis showed an improvement in the levels of ALT, AST, urea, creatinine, WBCs, and platelets. Moreover, the histological picture of the liver and kidney was significantly improved. CONCLUSIONS In conclusion, propolis might be considered an effective agent in ameliorating the toxicity resulted from CTX treatment.
Collapse
Affiliation(s)
- Sabry A El-Naggar
- Department of Biology, College of Science, Aljouf Univesity , Sakakah , KSA
| | | | | | | | | |
Collapse
|
24
|
Wang J, McGuire TR, Britton HC, Schwarz JK, Loberiza FR, Meza JL, Talmadge JE. Lenalidomide and cyclophosphamide immunoregulation in patients with metastatic, castration-resistant prostate cancer. Clin Exp Metastasis 2015; 32:111-24. [DOI: 10.1007/s10585-015-9696-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/13/2015] [Indexed: 11/29/2022]
|
25
|
Lu X, Ding ZC, Cao Y, Liu C, Habtetsion T, Yu M, Lemos H, Salman H, Xu H, Mellor AL, Zhou G. Alkylating agent melphalan augments the efficacy of adoptive immunotherapy using tumor-specific CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:2011-21. [PMID: 25560408 DOI: 10.4049/jimmunol.1401894] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In recent years, the immune-potentiating effects of some widely used chemotherapeutic agents have been increasingly appreciated. This provides a rationale for combining conventional chemotherapy with immunotherapy strategies to achieve durable therapeutic benefits. Previous studies have implicated the immunomodulatory effects of melphalan, an alkylating agent commonly used to treat multiple myeloma, but the underlying mechanisms remain obscure. In the present study, we investigated the impact of melphalan on endogenous immune cells as well as adoptively transferred tumor-specific CD4(+) T cells in tumor-bearing mice. We showed that melphalan treatment resulted in a rapid burst of inflammatory cytokines and chemokines during the cellular recovery phase after melphalan-induced myelodepletion and leukodepletion. After melphalan treatment, tumor cells exhibited characteristics of immunogenic cell death, including membrane translocation of the endoplasmic reticulum-resident calreticulin and extracellular release of high-mobility group box 1. Additionally, there was enhanced tumor Ag uptake by dendritic cells in the tumor-draining lymph node. Consistent with these immunomodulatory effects, melphalan treatment of tumor-bearing mice led to the activation of the endogenous CD8(+) T cells and, more importantly, effectively drove the clonal expansion and effector differentiation of adoptively transferred tumor-specific CD4(+) T cells. Notably, the combination of melphalan and CD4(+) T cell adoptive cell therapy was more efficacious than either treatment alone in prolonging the survival of mice with advanced B cell lymphomas or colorectal tumors. These findings provide mechanistic insights into melphalan's immunostimulatory effects and demonstrate the therapeutic potential of combining melphalan with adoptive cell therapy utilizing antitumor CD4(+) T cells.
Collapse
Affiliation(s)
- Xiaoyun Lu
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Division of Digestive Endoscopy, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Zhi-Chun Ding
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Yang Cao
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chufeng Liu
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Department of Orthodontics, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tsadik Habtetsion
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Miao Yu
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Henrique Lemos
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Huda Salman
- Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; and
| | - Hongyan Xu
- Department of Biostatistics and Epidemiology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Andrew L Mellor
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; and
| | - Gang Zhou
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; and
| |
Collapse
|
26
|
Weir GM, Hrytsenko O, Stanford MM, Berinstein NL, Karkada M, Liwski RS, Mansour M. Metronomic cyclophosphamide enhances HPV16E7 peptide vaccine induced antigen-specific and cytotoxic T-cell mediated antitumor immune response. Oncoimmunology 2014; 3:e953407. [PMID: 25960932 PMCID: PMC4368141 DOI: 10.4161/21624011.2014.953407] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 06/24/2014] [Indexed: 12/22/2022] Open
Abstract
In clinical trials, metronomic cyclophosphamide (CPA) is increasingly being combined with vaccines to reduce tumor-induced immune suppression. Previous strategies to modulate the immune system during vaccination have involved continuous administration of low dose chemotherapy, studies that have posed unique considerations for clinical trial design. Here, we evaluated metronomic CPA in combination with a peptide vaccine targeting HPV16E7 in an HPV16-induced tumor model, focusing on the cytotoxic T-cell response and timing of low dose metronomic CPA (mCPA) treatment relative to vaccination. Mice bearing C3 tumors were given metronomic CPA on alternating weeks in combination with immunization with a DepoVax vaccine containing HPV16E749-57 peptide antigen every 3 weeks. Only the combination therapy provided significant long-term control of tumor growth. The efficacy of the vaccine was uncompromised if given at the beginning or end of a cycle of metronomic CPA. Metronomic CPA had a pronounced lymphodepletive effect on the vaccine draining lymph node, yet did not reduce the development of antigen-specific CD8+ T cells induced by vaccination. This enrichment correlated with increased cytotoxic activity in the spleen and increased expression of cytotoxic gene signatures in the tumor. Immunity could be passively transferred through CD8+ T cells isolated from tumor-bearing mice treated with the combinatorial treatment regimen. A comprehensive survey of splenocytes indicated that metronomic CPA, in the absence of vaccination, induced transient lymphodepletion marked by a selective expansion of myeloid-derived suppressor cells. These results provide important insights into the multiple mechanisms of metronomic CPA induced immune modulation in the context of a peptide cancer vaccine that may be translated into more effective clinical trial designs.
Collapse
Key Words
- CPA, cyclophosphamide
- CTL, cytotoxic T lymphocyte
- CTLA-4, cytotoxic T lymphocyte-associated protein 4
- DPX, DepoVax
- HPV, human papilloma virus
- HPV16
- IFNγ, interferon γ
- MDSC, myeloid-derived suppressor cells
- PD-1/PDCD1, programmed cell death 1
- PO, per os (oral)
- Treg, regulatory T cell
- cancer
- checkpoint inhibitors
- mCPA, metronomic low dose CPA
- metronomic cyclophosphamide
- sbCPA, single bolus low dose CPA
- translational
- vaccine
Collapse
Affiliation(s)
- Genevieve M Weir
- Immunovaccine Inc. ; Halifax; Nova Scotia, Canada ; Department of Microbiology & Immunology; Dalhousie University ; Halifax; Nova Scotia, Canada
| | - Olga Hrytsenko
- Immunovaccine Inc. ; Halifax; Nova Scotia, Canada ; Department of Biology; Dalhousie University ; Halifax; Nova Scotia, Cananda
| | - Marianne M Stanford
- Immunovaccine Inc. ; Halifax; Nova Scotia, Canada ; Department of Microbiology & Immunology; Dalhousie University ; Halifax; Nova Scotia, Canada
| | | | - Mohan Karkada
- Immunovaccine Inc. ; Halifax; Nova Scotia, Canada ; Department of Microbiology & Immunology; Dalhousie University ; Halifax; Nova Scotia, Canada
| | - Robert S Liwski
- Department of Microbiology & Immunology; Dalhousie University ; Halifax; Nova Scotia, Canada ; Division of Hematopathology; Queen Elizabeth II Health Sciences Centre ; Nova Scotia, Canada
| | - Marc Mansour
- Immunovaccine Inc. ; Halifax; Nova Scotia, Canada
| |
Collapse
|
27
|
Li J, Lin W, Lin W, Xu P, Zhang J, Yang H, Ling X. Metabolic profiling study on potential toxicity and immunotoxicity-biomarker discovery in rats treated with cyclophosphamide using HPLC-ESI-IT-TOF-MS. Biomed Chromatogr 2014; 29:768-76. [DOI: 10.1002/bmc.3355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/06/2014] [Accepted: 09/04/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Jing Li
- The State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis; School of Pharmaceutical Sciences and Peking University; Beijing 100191 People's Republic of China
| | - Wensi Lin
- The State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis; School of Pharmaceutical Sciences and Peking University; Beijing 100191 People's Republic of China
| | - Weiwei Lin
- The State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis; School of Pharmaceutical Sciences and Peking University; Beijing 100191 People's Republic of China
| | - Peng Xu
- The State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis; School of Pharmaceutical Sciences and Peking University; Beijing 100191 People's Republic of China
| | - Jianmei Zhang
- The State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis; School of Pharmaceutical Sciences and Peking University; Beijing 100191 People's Republic of China
| | - Haisong Yang
- The State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis; School of Pharmaceutical Sciences and Peking University; Beijing 100191 People's Republic of China
| | - Xiaomei Ling
- The State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis; School of Pharmaceutical Sciences and Peking University; Beijing 100191 People's Republic of China
| |
Collapse
|