1
|
Yang M, Dijst M, Faber J, Helbich M. Effect of pre- and post-migration neighborhood environment on migrants' mental health: the case of Shenzhen, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-15. [PMID: 39470036 DOI: 10.1080/09603123.2024.2421827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024]
Abstract
Existing mental health studies usually disregard people's neighborhood experiences in the past, which may have long-lasting mental health effects. This may particularly be true for migrants. To assess how the perceived pre- and post-migration neighborhood environment shapes migrants' mental health later on in life, a quasi-longitudinal survey (N = 591) among migrants was conducted in Shenzhen, China. The risk of poor mental health was screened with the General Health Questionnaire (GHQ). Perceptions of the pre- and post-migration neighborhood environment were measured retrospectively and assessed with structural equation models. The results show that the direct pathways linking the perceived post-migration neighborhood physical (NPE) and social environment (NSE) to migrants' mental health are significant. No direct association is found between the pre-migration neighborhood environments and mental health. The indirect path between the pre-migration NPE/NSE and mental health is significantly mediated by the post-migration NPE and NSE. Migrants' SES development and their neighborhood attainment interplay overtime which have long-term impacts on their mental health. Our findings suggest that the pre-migration neighborhood plays a crucial role in migrants' mental health. This confirms a path dependency of migrants' neighborhood environment throughout their migrations. Future mental health studies are advised to incorporate neighborhood characteristics along migrants' residential histories.
Collapse
Affiliation(s)
- Min Yang
- Department of Applied Social Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| | - Martin Dijst
- Department of Urban Development and Mobility, Luxembourg Institute of Socio-Economic Research, Esch-sur-Alzette, Luxembourg
- University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jan Faber
- Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| | - Marco Helbich
- Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
Tsai YG, Liao PF, Hsiao KH, Wu HM, Lin CY, Yang KD. Pathogenesis and novel therapeutics of regulatory T cell subsets and interleukin-2 therapy in systemic lupus erythematosus. Front Immunol 2023; 14:1230264. [PMID: 37771588 PMCID: PMC10522836 DOI: 10.3389/fimmu.2023.1230264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous multisystem inflammatory disease with wide variability in clinical manifestations. Natural arising CD4+ regulatory T cells (Tregs) play a critical role in maintaining peripheral tolerance by suppressing inflammation and preventing autoimmune responses in SLE. Additionally, CD8+ regulatory T cells, type 1 regulatory T cells (Tr1), and B regulatory cells also have a less well-defined role in the pathogenesis of SLE. Elucidation of the roles of various Treg subsets dedicated to immune homeostasis will provide a novel therapeutic approach that governs immune tolerance for the remission of active lupus. Diminished interleukin (IL)-2 production is associated with a depleted Treg cell population, and its reversibility by IL-2 therapy provides important reasons for the treatment of lupus. This review focuses on the pathogenesis and new therapeutics of human Treg subsets and low-dose IL-2 therapy in clinical benefits with SLE.
Collapse
Affiliation(s)
- Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Children’s Hospital, Changhua, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Pei-Fen Liao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kai-Hung Hsiao
- Department of Allergy, Immunology and Rheumatology, Changhua Christian Hospital, Changhua, Taiwan
| | - Hung-Ming Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Yuang Lin
- Division of Pediatric Nephrology, Children’s Hospital, China Medical University Hospital, Taichung, Taiwan
| | - Kuender D. Yang
- Department of Pediatrics, Mackay Memorial Hospital, New Taipei City, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
3
|
Pretini V, Koenen MH, Kaestner L, Fens MHAM, Schiffelers RM, Bartels M, Van Wijk R. Red Blood Cells: Chasing Interactions. Front Physiol 2019; 10:945. [PMID: 31417415 PMCID: PMC6684843 DOI: 10.3389/fphys.2019.00945] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Human red blood cells (RBC) are highly differentiated cells that have lost all organelles and most intracellular machineries during their maturation process. RBC are fundamental for the nearly all basic physiologic dynamics and they are key cells in the body's respiratory system by being responsible for the oxygen transport to all cells and tissues, and delivery of carbon dioxide to the lungs. With their flexible structure RBC are capable to deform in order to travel through all blood vessels including very small capillaries. Throughout their in average 120 days lifespan, human RBC travel in the bloodstream and come in contact with a broad range of different cell types. In fact, RBC are able to interact and communicate with endothelial cells (ECs), platelets, macrophages, and bacteria. Additionally, they are involved in the maintenance of thrombosis and hemostasis and play an important role in the immune response against pathogens. To clarify the mechanisms of interaction of RBC and these other cells both in health and disease as well as to highlight the role of important key players, we focused our interest on RBC membrane components such as ion channels, proteins, and phospholipids.
Collapse
Affiliation(s)
- Virginia Pretini
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Mischa H. Koenen
- Department of Laboratory of Translational Immunology and Department of Pediatric Immunology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Marcel H. A. M. Fens
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marije Bartels
- Paediatric Haematology Department, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Richard Van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Haspula D, Vallejos AK, Moore TM, Tomar N, Dash RK, Hoffmann BR. Influence of a Hyperglycemic Microenvironment on a Diabetic Versus Healthy Rat Vascular Endothelium Reveals Distinguishable Mechanistic and Phenotypic Responses. Front Physiol 2019; 10:558. [PMID: 31133884 PMCID: PMC6524400 DOI: 10.3389/fphys.2019.00558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Hyperglycemia is a critical factor in the development of endothelial dysfunction in type 2 diabetes mellitus (T2DM). Whether hyperglycemic states result in a disruption of similar molecular mechanisms in endothelial cells under both diabetic and non-diabetic states, remains largely unknown. This study aimed to address this gap in knowledge through molecular and functional characterization of primary rat cardiac microvascular endothelial cells (RCMVECs) derived from the T2DM Goto-Kakizaki (GK) rat model in comparison to control Wistar-Kyoto (WKY) in response to a normal (NG) and hyperglycemic (HG) microenvironment. GK and WKY RCMVECs were cultured under NG (4.5 mM) and HG (25 mM) conditions for 3 weeks, followed by tandem mass spectrometry (MS/MS), qPCR, tube formation assay, microplate based fluorimetry, and mitochondrial respiration analyses. Following database matching and filtering (false discovery rate ≤ 5%, scan count ≥ 10), we identified a greater percentage of significantly altered proteins in GK (7.1%, HG versus NG), when compared to WKY (3.5%, HG versus NG) RCMVECs. Further stringent filters (log2ratio of > 2 or < -2, p < 0.05) followed by enrichment and pathway analyses of the MS/MS and quantitative PCR datasets (84 total genes screened), resulted in the identification of several molecular targets involved in angiogenic, redox and metabolic functions that were distinctively altered in GK as compared to WKY RCMVECs following HG exposure. While the expression of thirteen inflammatory and apoptotic genes were significantly increased in GK RCMVECs under HG conditions (p < 0.05), only 2 were significantly elevated in WKY RCMVECs under HG conditions. Several glycolytic enzymes were markedly reduced and pyruvate kinase activity was elevated in GK HG RCMVECs, while in mitochondrial respiratory chain activity was altered. Supporting this, TNFα and phorbol ester (PMA)-induced Reactive Oxygen Species (ROS) production were significantly enhanced in GK HG RCMVECs when compared to baseline levels (p < 0.05). Additionally, PMA mediated increase was the greatest in GK HG RCMVECs (p < 0.05). While HG caused reduction in tube formation assay parameters for WKY RCMVECs, GK RCMVECs exhibited impaired phenotypes under baseline conditions regardless of the glycemic microenvironment. We conclude that hyperglycemic microenvironment caused distinctive changes in the bioenergetics and REDOX pathways in the diabetic endothelium as compared to those observed in a healthy endothelium.
Collapse
Affiliation(s)
- Dhanush Haspula
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States.,Max McGee National Research Center, Children's Research Institute, Milwaukee, WI, United States
| | - Andrew K Vallejos
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States.,Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Timothy M Moore
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States
| | - Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian R Hoffmann
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States.,Max McGee National Research Center, Children's Research Institute, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Center for Advancing Population Science, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
5
|
The role of complement activation in rhabdomyolysis-induced acute kidney injury. PLoS One 2018; 13:e0192361. [PMID: 29466390 PMCID: PMC5821337 DOI: 10.1371/journal.pone.0192361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/20/2018] [Indexed: 12/25/2022] Open
Abstract
Rhabdomyolysis (RM) may cause kidney damage and results primarily in acute kidney injury (AKI). Complement is implicated in the pathogenesis of renal diseases and ischemia-reperfusion injury (IRI), but the role of complement, especially its activation pathway(s) and its effect in RM-induced AKI, is not clear. This study established a rat model of AKI induced by RM via intramuscular treatment with glycerol. Cobra venom factor (CVF) was administered via tail vein injection to deplete complement 12 h prior to intramuscular injection of glycerol. We found that the complement components, including complement 3 (C3), C1q, MBL-A, factor B(fB), C5a, C5b-9, and CD59, were significantly increased in rat kidneys after intramuscular glycerol administration. However, the levels of serum BUN and Cr, renal tubular injury scores, and the number of TUNEL-positive cells decreased significantly in the CVF+AKI group. These results suggest that complement plays an important role in RM-induced AKI and that complement depletion may improve renal function and decrease renal tissue damage by reducing the inflammatory response and apoptosis.
Collapse
|
6
|
Boshra H, Zelek WM, Hughes TR, Rodriguez de Cordoba S, Morgan BP. Absence of CD59 in Guinea Pigs: Analysis of the Cavia porcellus Genome Suggests the Evolution of a CD59 Pseudogene. THE JOURNAL OF IMMUNOLOGY 2017; 200:327-335. [PMID: 29167230 DOI: 10.4049/jimmunol.1701238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/24/2017] [Indexed: 01/10/2023]
Abstract
CD59 is a membrane-bound regulatory protein that inhibits the assembly of the terminal membrane attack complex (C5b-9) of complement. From its original discovery in humans almost 30 years ago, CD59 has been characterized in a variety of species, from primates to early vertebrates, such as teleost fish. CD59 is ubiquitous in mammals; however, we have described circumstantial evidence suggesting that guinea pigs (Cavia porcellus) lack CD59, at least on erythrocytes. In this study, we have used a combination of phylogenetic analyses with syntenic alignment of mammalian CD59 genes to identify the only span of genomic DNA in C. porcellus that is homologous to a portion of mammalian CD59 and show that this segment of DNA is not transcribed. We describe a pseudogene sharing homology to exons 2 through 5 of human CD59 present in the C. porcellus genome. This pseudogene was flanked by C. porcellus homologs of two genes, FBXO3 and ORF91, a relationship and orientation that were consistent with other known mammalian CD59 genes. Analysis using RNA sequencing confirmed that this segment of chromosomal DNA was not transcribed. We conclude that guinea pigs lack an intact gene encoding CD59; to our knowledge, this is the first report of a mammalian species that does not express a functional CD59. The pseudogene we describe is likely the product of a genomic deletion event during its evolutionary divergence from other members of the rodent order.
Collapse
Affiliation(s)
- Hani Boshra
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; and
| | - Wioleta M Zelek
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; and
| | - Timothy R Hughes
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; and
| | - Santiago Rodriguez de Cordoba
- Department of Cellular and Molecular Medicine, Center for Biological Research, and Center for Biomedical Network Research on Rare Diseases, 28040 Madrid, Spain
| | - B Paul Morgan
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; and
| |
Collapse
|
7
|
Qiao P, Dang EL, Fang H, Zhang JY, Li B, Shen SX, Luo YX, Lei J, Shao S, Qiao HJ, Wang G. Decreased expression levels of complement regulator CD55 contribute to the development of bullous pemphigoid. Oncotarget 2017; 9:35517-35527. [PMID: 30473747 PMCID: PMC6238980 DOI: 10.18632/oncotarget.21216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/27/2017] [Indexed: 11/25/2022] Open
Abstract
Bullous pemphigoid is a common autoimmune blistering disease of the elderly associated with autoantibody-mediated complement activation, and complement dysregulation is critical for its pathogenesis. As a crucial regulator of the complement system, CD55 has been widely studied in autoimmune diseases. Here, we investigated the involvement of CD55 in bullous pemphigoid, as little is known regarding its role in this disease. We found that CD55 levels were significantly lower in the lesions of patients with bullous pemphigoid (n = 8) compared to those in skin samples from healthy controls (n = 6). Interestingly, CD55 depletion in HaCaT human keratinocytes enhanced autoantibody-mediated complement activation. Moreover, complement activation was blocked by exogenous recombinant CD55 protein in both skin sections and keratinocytes exposed to pathogenic antibodies from patients with bullous pemphigoid. Notably, a significant increase in the expression of TNF-α and IFN-γ, administration of which downregulated CD55 levels in HaCaT cells, was observed in the sera of patients with bullous pemphigoid (n = 38) compared to that in healthy controls (n = 19). We found that ERK1/2 is involved in both TNF-α- and IFN-γ-induced CD55 downregulation. Thus, CD55 deficiency is a crucial factor in bullous pemphigoid pathogenesis, suggesting that increasing CD55 levels may exert a therapeutic effect.
Collapse
Affiliation(s)
- Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Er-Le Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jie-Yu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Bing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Sheng-Xian Shen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yi-Xin Luo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jie Lei
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Hong-Jiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
8
|
Lubbers R, van Essen MF, van Kooten C, Trouw LA. Production of complement components by cells of the immune system. Clin Exp Immunol 2017; 188:183-194. [PMID: 28249350 DOI: 10.1111/cei.12952] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2017] [Indexed: 12/14/2022] Open
Abstract
The complement system is an important part of the innate immune defence. It contributes not only to local inflammation, removal and killing of pathogens, but it also assists in shaping of the adaptive immune response. Besides a role in inflammation, complement is also involved in physiological processes such as waste disposal and developmental programmes. The complement system comprises several soluble and membrane-bound proteins. The bulk of the soluble proteins is produced mainly by the liver. While several complement proteins are produced by a wide variety of cell types, other complement proteins are produced by only a few related cell types. As these data suggest that local production by specific cell types may have specific functions, more detailed studies have been employed recently analysing the local and even intracellular role of these complement proteins. Here we review the current knowledge about extrahepatic production and/or secretion of complement components. More specifically, we address what is known about complement synthesis by cells of the human immune system.
Collapse
Affiliation(s)
- R Lubbers
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - M F van Essen
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - C van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - L A Trouw
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
9
|
Qiao P, Dang E, Cao T, Fang H, Zhang J, Qiao H, Wang G. Dysregulation of mCD46 and sCD46 contribute to the pathogenesis of bullous pemphigoid. Sci Rep 2017; 7:145. [PMID: 28273946 PMCID: PMC5428046 DOI: 10.1038/s41598-017-00235-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/15/2017] [Indexed: 01/30/2023] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune bullous disease caused by autoantibodies against BP180 in the epidermal basement membrane. Autoantibody-mediated complement activation is an important process in BP pathogenesis. CD46, a crucial complement regulatory protein in the complement activation, has been reported to be involved in several autoimmune diseases. In the present study, we investigated whether CD46 plays a role in BP development. We found that sCD46 expression was significantly increased in the serum and blister fluids of BP patients and correlated with the levels of anti-BP180 NC16A antibody and C3a. Otherwise, the level of mCD46 was decreased in lesions of BP patients, whereas the complement activation was enhanced. We also found that CD46 knockdown in HaCaT human keratinocytes enhanced autoantibody-mediated complement activation. Importantly, exogenous CD46 blocked complement activation in both healthy skin sections and keratinocytes induced by exposure to pathogenic antibodies from BP patients. These data suggest that CD46 deficiency is an important factor in BP pathogenesis and that increasing CD46 levels might be an effective treatment for BP.
Collapse
Affiliation(s)
- Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tianyu Cao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jieyu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
10
|
Qiao Q, Teng X, Wang N, Lu R, Guo L, Zhang X, Du Y, Wang W, Chen S, Wu Q, He G, Wang Y, Hu W. A novel CRIg-targeted complement inhibitor protects cells from complement damage. FASEB J 2014; 28:4986-99. [PMID: 25114177 DOI: 10.1096/fj.14-258046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The inappropriate activation of complement may contribute to various immune diseases. The alternative pathway (AP) predominates during complement activation regardless of the initiating pathways. Hence, the main AP regulator factor H (FH) holds great potential as an attractive therapeutic intervention. In addition, complement receptor of the immunoglobulin superfamily (CRIg) has been demonstrated to inhibit AP and, more notably, still specifically binds to C3b/iC3b. We thus developed novel CRIg-targeted complement inhibitors by connecting the functional domains of CRIg and FH, which we termed CRIg-FH and CRIg-L-FH. CRIg-L-FH, slightly more potent than CRIg-FH, considerably inhibited both AP- and also classical pathway (CP)-mediated hemolysis and successfully eliminated the deposition of C3b/iC3b. Kinetic analysis further revealed that the binding affinity constant (KD) of CRIg/FH was in the micromolar range, consistent with its long-lasting binding to complement-attacked cells. CRIg-L-FH efficiently protected aberrant erythrocytes of patients with paroxysmal nocturnal hemoglobinuria (PNH) from AP- and CP-mediated complement damage (IC50 was 22.43 and 64.69 nM, respectively). Moreover, CRIg-L-FH was found to inhibit complement activation induced by the anti-Thy1 antibody in a mesangioproliferative glomerulonephritis (MPGN) rat model. Hence, CRIg-L-FH protects glomerular mesangial cells (GMCs) from complement-mediated injury and proliferative lesions. These findings strongly suggest that CRIg/FH is a potential therapeutic drug candidate for a range of complement-mediated diseases.
Collapse
Affiliation(s)
- Qian Qiao
- Shanghai Cancer Center, Institutes of Biomedical Sciences, Department of Oncology, and
| | - Xiaoyan Teng
- Shanghai Cancer Center, Institutes of Biomedical Sciences, Department of Oncology, and
| | - Na Wang
- Shanghai Cancer Center, Institutes of Biomedical Sciences, Department of Oncology, and
| | - Renquan Lu
- Shanghai Cancer Center, Institutes of Biomedical Sciences, Department of Oncology, and
| | - Lin Guo
- Shanghai Cancer Center, Institutes of Biomedical Sciences, Department of Oncology, and
| | - Xin Zhang
- Shanghai Cancer Center, Institutes of Biomedical Sciences, Department of Oncology, and
| | - Yiqun Du
- Shanghai Cancer Center, Institutes of Biomedical Sciences, Department of Oncology, and
| | - Wenjuan Wang
- Ministry of Health Key Laboratory of Thrombosis and Hematostasis, Jiangsu Institute of Hematology, Department of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China; and
| | - Suning Chen
- Ministry of Health Key Laboratory of Thrombosis and Hematostasis, Jiangsu Institute of Hematology, Department of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China; and
| | - Qian Wu
- Ministry of Health Key Laboratory of Thrombosis and Hematostasis, Jiangsu Institute of Hematology, Department of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China; and
| | - Guangsheng He
- Ministry of Health Key Laboratory of Thrombosis and Hematostasis, Jiangsu Institute of Hematology, Department of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China; and
| | - Yingwei Wang
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Weiguo Hu
- Shanghai Cancer Center, Institutes of Biomedical Sciences, Department of Oncology, and Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, China;
| |
Collapse
|
11
|
Masiello F, Tirelli V, Sanchez M, van den Akker E, Girelli G, Marconi M, Villa MA, Rebulla P, Hashmi G, Whitsett C, Migliaccio AR. Mononuclear cells from a rare blood donor, after freezing under good manufacturing practice conditions, generate red blood cells that recapitulate the rare blood phenotype. Transfusion 2014; 54:1059-70. [PMID: 24004289 PMCID: PMC3942379 DOI: 10.1111/trf.12391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/30/2013] [Accepted: 07/05/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cultured red blood cells (cRBCs) from cord blood (CB) have been proposed as transfusion products. Whether buffy coats discarded from blood donations (adult blood [AB]) may be used to generate cRBCs for transfusion has not been investigated. STUDY DESIGN AND METHODS Erythroid progenitor cell content and numbers and blood group antigen profiles of erythroblasts (ERYs) and cRBCs generated in human erythroid massive amplification (HEMA) culture by CB (n = 7) and AB (n = 33, three females, three males, one AB with rare blood antigens cryopreserved using CB protocols) were compared. RESULTS Variability was observed both in progenitor cell content (twofold) and number of ERYs generated (1 log) by CB and AB in HEMA. The average progenitor cell contents of the subset of AB and CB analyzed were similar. AB generated numbers of ERYs three times lower (p < 0.01) than CB in HEMA containing fetal bovine serum but similar to CB in HEMA containing human proteins. Female AB contained two times fewer (p < 0.05) erythroid progenitor cells but generated numbers of ERYs similar to those generated by male AB. Cryopreserved AB with a rare blood group phenotype and shipped to another laboratory generated great numbers of ERYs, 90% of which matured into cRBCs. Blood group antigen expression was consistent with the donor genotype for ERYs generated both by CB and AB but concordant with that of native RBCs only for cells derived from AB. CONCLUSION Buffy coats from regular donors, including a donor with rare phenotypes stored under conditions established for CB, are not inferior to CB for the generation of cRBCs.
Collapse
Affiliation(s)
- Francesca Masiello
- Hematology/Oncology and Molecular Medicine, Istituto Superiore di Sanita', Rome, Italy
| | - Valentina Tirelli
- Hematology/Oncology and Molecular Medicine, Istituto Superiore di Sanita', Rome, Italy
| | - Massimo Sanchez
- Cell Biology and Neuroscience, Istituto Superiore di Sanita', Rome, Italy
| | | | | | - Maurizio Marconi
- Centro Trasfusionale e di Immunoematologia, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Antonietta Villa
- Centro Trasfusionale e di Immunoematologia, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Rebulla
- Centro Trasfusionale e di Immunoematologia, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Carolyn Whitsett
- Kings County Hospital and Downstate Medical Center, Brooklyn, NY, USA
| | - Anna Rita Migliaccio
- Hematology/Oncology and Molecular Medicine, Istituto Superiore di Sanita', Rome, Italy
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
12
|
Westwood JP, Langley K, Heelas E, Machin SJ, Scully M. Complement and cytokine response in acute Thrombotic Thrombocytopenic Purpura. Br J Haematol 2013; 164:858-66. [PMID: 24372446 PMCID: PMC4155869 DOI: 10.1111/bjh.12707] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/25/2013] [Indexed: 01/30/2023]
Abstract
Complement dysregulation is key in the pathogenesis of atypical Haemolytic Uraemic Syndrome (aHUS), but no clear role for complement has been identified in Thrombotic Thrombocytopenic Purpura (TTP). We aimed to assess complement activation and cytokine response in acute antibody-mediated TTP. Complement C3a and C5a and cytokines (interleukin (IL)-2, IL-4, IL-6, IL-10, tumour necrosis factor, interferon-γ and IL-17a) were measured in 20 acute TTP patients and 49 remission cases. Anti-ADAMTS13 immunoglobulin G (IgG) subtypes were measured in acute patients in order to study the association with complement activation. In acute TTP, median C3a and C5a were significantly elevated compared to remission, C3a 63·9 ng/ml vs. 38·2 ng/ml (P < 0·001) and C5a 16·4 ng/ml vs. 9·29 ng/ml (P < 0·001), respectively. Median IL-6 and IL-10 levels were significantly higher in the acute vs. remission groups, IL-6: 8 pg/ml vs. 2 pg/ml (P = 0·003), IL-10: 6 pg/ml vs. 2 pg/ml (P < 0·001). C3a levels correlated with both anti-ADAMTS13 IgG (rs = 0·604, P = 0·017) and IL-10 (rs = 0·692, P = 0·006). No anti-ADAMTS13 IgG subtype was associated with higher complement activation, but patients with the highest C3a levels had 3 or 4 IgG subtypes present. These results suggest complement anaphylatoxin levels are higher in acute TTP cases than in remission, and the complement response seen acutely may relate to anti-ADAMTS13 IgG antibody and IL-10 levels.
Collapse
|