1
|
Anvar MT, Rashidan K, Arsam N, Rasouli-Saravani A, Yadegari H, Ahmadi A, Asgari Z, Vanan AG, Ghorbaninezhad F, Tahmasebi S. Th17 cell function in cancers: immunosuppressive agents or anti-tumor allies? Cancer Cell Int 2024; 24:355. [PMID: 39465401 PMCID: PMC11514949 DOI: 10.1186/s12935-024-03525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
T helper (Th) 17 cells, a distinct subset of Th lymphocytes, are known for their prominent interleukin (IL)-17 production and other pro-inflammatory cytokines. These cells exhibit remarkable plasticity, allowing them to exhibit different phenotypes in the cancer microenvironment. This adaptability enables Th17 cells to promote tumor progression by immunosuppressive activities and angiogenesis, but also mediate anti-tumor immune responses through employing immune cells in tumor setting or even by directly converting toward Th1 phenotype and producing interferon-gamma (IFN-γ). This dual role of Th17 cells in cancer makes it a double-edged sword in encountering cancer. In this review, we aim to elucidate the complexities of Th17 cell function in cancer by summarizing recent studies and, ultimately, to design novel therapeutic strategies, especially targeting Th17 cells in the tumor milieu, which could pave the way for more effective cancer treatments.
Collapse
Affiliation(s)
- Milad Taghizadeh Anvar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimiya Rashidan
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Arsam
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Yadegari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Asgari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghorbani Vanan
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farid Ghorbaninezhad
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Montauti E, Oh DY, Fong L. CD4 + T cells in antitumor immunity. Trends Cancer 2024; 10:969-985. [PMID: 39242276 PMCID: PMC11464182 DOI: 10.1016/j.trecan.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024]
Abstract
Advances in cancer immunotherapy have transformed cancer care and realized unprecedented responses in many patients. The growing arsenal of novel therapeutics - including immune checkpoint inhibition (ICI), adoptive T cell therapies (ACTs), and cancer vaccines - reflects the success of cancer immunotherapy. The therapeutic benefits of these treatment modalities are generally attributed to the enhanced quantity and quality of antitumor CD8+ T cell responses. Nevertheless, CD4+ T cells are now recognized to play key roles in both the priming and effector phases of the antitumor immune response. In addition to providing T cell help through co-stimulation and cytokine production, CD4+ T cells can also possess cytotoxicity either directly on MHC class II-expressing tumor cells or to other cells within the tumor microenvironment (TME). The presence of specific populations of CD4+ T cells, and their intrinsic plasticity, within the TME can represent an important determinant of clinical response to immune checkpoint inhibitors, vaccines, and chimeric antigen receptor (CAR) T cell therapies. Understanding how the antitumor functions of specific CD4+ T cell types are induced while limiting their protumorigenic attributes will enable more successful immunotherapies.
Collapse
Affiliation(s)
- Elena Montauti
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - David Y Oh
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Immunotherapy Integrated Research Center, Fred Hutchison Cancer Center, Seattle, WA, USA.
| |
Collapse
|
3
|
Pohlers M, Gies S, Taenzer T, Stroeder R, Theobald L, Ludwig N, Kim Y, Bohle RM, Solomayer EF, Meese E, Hart M, Walch‐Rückheim B. Th17 cells target the metabolic miR-142-5p-succinate dehydrogenase subunit C/D (SDHC/SDHD) axis, promoting invasiveness and progression of cervical cancers. Mol Oncol 2024; 18:2157-2178. [PMID: 37899663 PMCID: PMC11467798 DOI: 10.1002/1878-0261.13546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
During cervical carcinogenesis, T-helper (Th)-17 cells accumulate in the peripheral blood and tumor tissues of cancer patients. We previously demonstrated that Th17 cells are associated with therapy resistance as well as cervical cancer metastases and relapse; however, the underlying Th17-driven mechanisms are not fully understood. Here, using microarrays, we found that Th17 cells induced an epithelial-to-mesenchymal transition (EMT) phenotype of cervical cancer cells and promoted migration and invasion of 2D cultures and 3D spheroids via induction of microRNA miR-142-5p. As the responsible mechanism, we identified the subunits C and D of the succinate dehydrogenase (SDH) complex as new targets of miR-142-5p and provided evidence that Th17-miR-142-5p-dependent reduced expression of SDHC and SDHD mediated enhanced migration and invasion of cancer cells using small interfering RNAs (siRNAs) for SDHC and SDHD, and miR-142-5p inhibitors. Consistently, patients exhibited high levels of succinate in their serum associated with lymph node metastases and diminished expression of SDHD in patient biopsies correlated with increased numbers of Th17 cells. Correspondingly, a combination of weak or negative SDHD expression and a ratio of Th17/CD4+ T cells > 43.90% in situ was associated with reduced recurrence-free survival. In summary, we unraveled a previously unknown molecular mechanism by which Th17 cells promote cervical cancer progression and suggest evaluation of Th17 cells as a potential target for immunotherapy in cervical cancer.
Collapse
Affiliation(s)
- Maike Pohlers
- Center of Human and Molecular Biology (ZHMB), Institute of VirologySaarland UniversityHomburg/SaarGermany
| | - Selina Gies
- Center of Human and Molecular Biology (ZHMB), Institute of VirologySaarland UniversityHomburg/SaarGermany
| | - Tanja Taenzer
- Center of Human and Molecular Biology (ZHMB), Institute of VirologySaarland UniversityHomburg/SaarGermany
| | - Russalina Stroeder
- Department of Obstetrics and GynecologySaarland University Medical CenterHomburg/SaarGermany
| | - Laura Theobald
- Center of Human and Molecular Biology (ZHMB), Institute of VirologySaarland UniversityHomburg/SaarGermany
| | - Nicole Ludwig
- Institute of Human GeneticsSaarland UniversityHomburg/SaarGermany
| | - Yoo‐Jin Kim
- Institute of PathologySaarland University Medical CenterHomburg/SaarGermany
| | - Rainer Maria Bohle
- Institute of PathologySaarland University Medical CenterHomburg/SaarGermany
| | - Erich Franz Solomayer
- Department of Obstetrics and GynecologySaarland University Medical CenterHomburg/SaarGermany
| | - Eckart Meese
- Institute of Human GeneticsSaarland UniversityHomburg/SaarGermany
| | - Martin Hart
- Institute of Human GeneticsSaarland UniversityHomburg/SaarGermany
| | - Barbara Walch‐Rückheim
- Center of Human and Molecular Biology (ZHMB), Institute of VirologySaarland UniversityHomburg/SaarGermany
| |
Collapse
|
4
|
Wongpattaraworakul W, Choi A, Buchakjian MR, Lanzel EA, Kd AR, Simons AL. Prognostic Role of Tumor-Infiltrating Lymphocytes in Oral Squamous Cell Carcinoma. BMC Cancer 2024; 24:766. [PMID: 38926643 PMCID: PMC11201865 DOI: 10.1186/s12885-024-12539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND In oral squamous cell carcinoma (OSCC), the tumor-node-metastasis (TNM) staging system is a significant factor that influences prognosis and treatment decisions for OSCC patients. Unfortunately, TNM staging does not consistently predict patient prognosis and patients with identical clinicopathological characteristics may have vastly different survival outcomes. Host immunity plays an important role in tumor progression but is not included in the TNM staging system. Tumor-infiltrating lymphocytes (TILs) are part of the host immune response that recognizes tumor cells; and the presence of TILs has emerged as potential candidates for prognostic markers for many types of cancers. The present study aims to determine the association of T cell-specific markers (CD3, CD4, CD8, and FOXP3) with clinicopathological characteristics and survival outcomes in OSCC patients. The prognostic value of CD3, CD4, and CD8 will also be evaluated based on tumor stage. METHODS Tissue microarrays were constructed containing 231 OSCC cases and analyzed by immunohistochemical staining for the expression of CD3, CD4, CD8, and FOXP3. The expression scores for each marker were correlated with clinicopathological parameters and survival outcomes. The prognostic impact of CD3, CD4 and CD8 were further analyzed based on tumor stage (early or advanced). RESULTS CD3, CD4, and CD8 were found to be significantly associated with both overall survival and progression-free survival using univariate analysis. However, none of these markers were found to independently predict the survival outcomes of OSCC using multivariate analysis. Only conventional factors such as nodal status, tumor differentiation and perineural invasion (PNI) were independent predictors of survival outcomes, with nodal status being the strongest independent predictor. Additionally, low CD4 (but not CD3 or CD8) expression was found to identify early-stage OSCC patients with exceptionally poor prognosis which was similar to that of advanced staged OSCC patients. CONCLUSIONS TIL markers such as CD3, CD4, CD8, and FOXP3 can predict the survival outcomes of OSCC patients, but do not serve as independent prognostic markers as found with conventional factors (i.e. nodal status, tumor differentiation and PNI). CD4 expression may assist with risk stratification in early-stage OSCC patients which may influence treatment planning and decision making for early-stage OSCC patients.
Collapse
Affiliation(s)
- Wattawan Wongpattaraworakul
- Department of Oral Pathology, Radiology, and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, United States
- Department of Pathology, College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Allen Choi
- Department of Pathology, College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Marisa R Buchakjian
- Department of Otolaryngology - Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Emily A Lanzel
- Department of Oral Pathology, Radiology, and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Anand Rajan Kd
- Department of Pathology, College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Andrean L Simons
- Department of Oral Pathology, Radiology, and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, United States.
- Department of Pathology, College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States.
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, United States.
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, B180K Medical Laboratories Iowa City, IA, 52242, Iowa City, United States.
| |
Collapse
|
5
|
Ruocco MR, Gisonna A, Acampora V, D’Agostino A, Carrese B, Santoro J, Venuta A, Nasso R, Rocco N, Russo D, Cavaliere A, Altobelli GG, Masone S, Avagliano A, Arcucci A, Fiume G. Guardians and Mediators of Metastasis: Exploring T Lymphocytes, Myeloid-Derived Suppressor Cells, and Tumor-Associated Macrophages in the Breast Cancer Microenvironment. Int J Mol Sci 2024; 25:6224. [PMID: 38892411 PMCID: PMC11172575 DOI: 10.3390/ijms25116224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Breast cancers (BCs) are solid tumors composed of heterogeneous tissues consisting of cancer cells and an ever-changing tumor microenvironment (TME). The TME includes, among other non-cancer cell types, immune cells influencing the immune context of cancer tissues. In particular, the cross talk of immune cells and their interactions with cancer cells dramatically influence BC dissemination, immunoediting, and the outcomes of cancer therapies. Tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) represent prominent immune cell populations of breast TMEs, and they have important roles in cancer immunoescape and dissemination. Therefore, in this article we review the features of TILs, TAMs, and MDSCs in BCs. Moreover, we highlight the mechanisms by which these immune cells remodel the immune TME and lead to breast cancer metastasis.
Collapse
Affiliation(s)
- Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (A.G.)
| | - Armando Gisonna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (A.G.)
| | - Vittoria Acampora
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Anna D’Agostino
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Barbara Carrese
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Jessie Santoro
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Alessandro Venuta
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Rosarita Nasso
- Department of Movement Sciences and Wellness, University of Naples “Parthenope”, 80133 Naples, Italy;
| | - Nicola Rocco
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | - Daniela Russo
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | | | - Giovanna Giuseppina Altobelli
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy;
| |
Collapse
|
6
|
Cunha D, Neves M, Silva D, Silvestre AR, Nunes PB, Arrobas F, Ribot JC, Ferreira F, Moita LF, Soares-de-Almeida L, Silva JM, Filipe P, Ferreira J. Tumor-Infiltrating T Cells in Skin Basal Cell Carcinomas and Squamous Cell Carcinomas: Global Th1 Preponderance with Th17 Enrichment-A Cross-Sectional Study. Cells 2024; 13:964. [PMID: 38891095 PMCID: PMC11172364 DOI: 10.3390/cells13110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Basal cell carcinomas (BCCs) and squamous cell carcinomas (SCCs) are high-incidence, non-melanoma skin cancers (NMSCs). The success of immune-targeted therapies in advanced NMSCs led us to anticipate that NMSCs harbored significant populations of tumor-infiltrating lymphocytes with potential anti-tumor activity. The main aim of this study was to characterize T cells infiltrating NMSCs. Flow cytometry and immunohistochemistry were used to assess, respectively, the proportions and densities of T cell subpopulations in BCCs (n = 118), SCCs (n = 33), and normal skin (NS, n = 30). CD8+ T cells, CD4+ T cell subsets, namely, Th1, Th2, Th17, Th9, and regulatory T cells (Tregs), CD8+ and CD4+ memory T cells, and γδ T cells were compared between NMSCs and NS samples. Remarkably, both BCCs and SCCs featured a significantly higher Th1/Th2 ratio (~four-fold) and an enrichment for Th17 cells. NMSCs also showed a significant enrichment for IFN-γ-producing CD8+T cells, and a depletion of γδ T cells. Using immunohistochemistry, NMSCs featured denser T cell infiltrates (CD4+, CD8+, and Tregs) than NS. Overall, these data favor a Th1-predominant response in BCCs and SCCs, providing support for immune-based treatments in NMSCs. Th17-mediated inflammation may play a role in the progression of NMSCs and thus become a potential therapeutic target in NMSCs.
Collapse
Affiliation(s)
- Daniela Cunha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
- Centro de Dermatologia, Hospital CUF Descobertas, 1998-018 Lisbon, Portugal
- Dermatology Unit, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Marco Neves
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
| | - Daniela Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
| | - Ana Rita Silvestre
- Serviço de Anatomia Patológica, Hospital CUF Descobertas, 1998-018 Lisbon, Portugal (P.B.N.)
| | - Paula Borralho Nunes
- Serviço de Anatomia Patológica, Hospital CUF Descobertas, 1998-018 Lisbon, Portugal (P.B.N.)
- Instituto de Anatomia Patológica, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Fernando Arrobas
- Datamedica, Biostatistics Services and Consulting, 2610-008 Amadora, Portugal
| | - Julie C. Ribot
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
| | - Fernando Ferreira
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Luís F. Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Luís Soares-de-Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
- Serviço de Dermatologia, Centro Hospitalar Universitário Lisboa Norte EPE, 1649-028 Lisbon, Portugal
- Clínica Dermatológica Universitária, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - João Maia Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
- Centro de Dermatologia, Hospital CUF Descobertas, 1998-018 Lisbon, Portugal
- Serviço de Dermatologia, Centro Hospitalar Universitário Lisboa Norte EPE, 1649-028 Lisbon, Portugal
- Clínica Dermatológica Universitária, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Paulo Filipe
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
- Serviço de Dermatologia, Centro Hospitalar Universitário Lisboa Norte EPE, 1649-028 Lisbon, Portugal
- Clínica Dermatológica Universitária, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - João Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
- Clínica Dermatológica Universitária, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| |
Collapse
|
7
|
Wang J, Lou Y, Wang S, Zhang Z, You J, Zhu Y, Yao Y, Hao Y, Liu P, Xu LX. IFNγ at the early stage induced after cryo-thermal therapy maintains CD4 + Th1-prone differentiation, leading to long-term antitumor immunity. Front Immunol 2024; 15:1345046. [PMID: 38827732 PMCID: PMC11140566 DOI: 10.3389/fimmu.2024.1345046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Recently, more and more research illustrated the importance of inducing CD4+ T helper type (Th)-1 dominant immunity for the success of tumor immunotherapy. Our prior studies revealed the crucial role of CD4+ Th1 cells in orchestrating systemic and durable antitumor immunity, which contributes to the satisfactory outcomes of the novel cryo-thermal therapy in the B16F10 tumor model. However, the mechanism for maintaining the cryo-thermal therapy-mediated durable CD4+ Th1-dominant response remains uncovered. Additionally, cryo-thermal-induced early-stage CD4+ Th1-dominant T cell response showed a correlation with the favorable prognosis in patients with colorectal cancer liver metastasis (CRCLM). We hypothesized that CD4+ Th1-dominant differentiation induced during the early stage post cryo-thermal therapy would affect the balance of CD4+ subsets at the late phase. Methods To understand the role of interferon (IFN)-γ, the major effector of Th1 subsets, in maintaining long-term CD4+ Th1-prone polarization, B16F10 melanoma model was established in this study and a monoclonal antibody was used at the early stage post cryo-thermal therapy for interferon (IFN)-γ signaling blockade, and the influence on the phenotypic and functional change of immune cells was evaluated. Results IFNγ at the early stage after cryo-thermal therapy maintained long-lasting CD4+ Th1-prone immunity by directly controlling Th17, Tfh, and Tregs polarization, leading to the hyperactivation of Myeloid-derived suppressor cells (MDSCs) represented by abundant interleukin (IL)-1β generation, and thereby further amplifying Th1 response. Discussion Our finding emphasized the key role of early-phase IFNγ abundance post cryo-thermal therapy, which could be a biomarker for better prognosis after cryo-thermal therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ping Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lisa X. Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Corradi G, Forte D, Cristiano G, Polimeno A, Ciciarello M, Salvestrini V, Bandini L, Robustelli V, Ottaviani E, Cavo M, Ocadlikova D, Curti A. Ex vivo characterization of acute myeloid leukemia patients undergoing hypomethylating agents and venetoclax regimen reveals a venetoclax-specific effect on non-suppressive regulatory T cells and bona fide PD-1 +TIM3 + exhausted CD8 + T cells. Front Immunol 2024; 15:1386517. [PMID: 38812504 PMCID: PMC11133521 DOI: 10.3389/fimmu.2024.1386517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive heterogeneous disease characterized by several alterations of the immune system prompting disease progression and treatment response. The therapies available for AML can affect lymphocyte function, limiting the efficacy of immunotherapy while hindering leukemia-specific immune reactions. Recently, the treatment based on Venetoclax (VEN), a specific B-cell lymphoma 2 (BCL-2) inhibitor, in combination with hypomethylating agents (HMAs) or low-dose cytarabine, has emerged as a promising clinical strategy in AML. To better understand the immunological effect of VEN treatment, we characterized the phenotype and immune checkpoint (IC) receptors' expression on CD4+ and CD8+ T cells from AML patients after the first and second cycle of HMA in combination with VEN. HMA and VEN treatment significantly increased the percentage of naïve CD8+ T cells and TIM-3+ CD4+ and CD8+ T cells and reduced cytokine-secreting non-suppressive T regulatory cells (Tregs). Of note, a comparison between AML patients treated with HMA only and HMA in combination with VEN revealed the specific contribution of VEN in modulating the immune cell repertoire. Indeed, the reduction of cytokine-secreting non-suppressive Tregs, the increased TIM-3 expression on CD8+ T cells, and the reduced co-expression of PD-1 and TIM-3 on both CD4+ and CD8+ T cells are all VEN-specific. Collectively, our study shed light on immune modulation induced by VEN treatment, providing the rationale for a novel therapeutic combination of VEN and IC inhibitors in AML patients.
Collapse
Affiliation(s)
- Giulia Corradi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Dorian Forte
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Gianluca Cristiano
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Andrea Polimeno
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Marilena Ciciarello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Consiglio Nazionale delle Ricerche (CNR) Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Valentina Salvestrini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Lorenza Bandini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Valentina Robustelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Emanuela Ottaviani
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Michele Cavo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Darina Ocadlikova
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Antonio Curti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| |
Collapse
|
9
|
Wu Y, Han W, Dong H, Liu X, Su X. The rising roles of exosomes in the tumor microenvironment reprogramming and cancer immunotherapy. MedComm (Beijing) 2024; 5:e541. [PMID: 38585234 PMCID: PMC10999178 DOI: 10.1002/mco2.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Exosomes are indispensable for intercellular communications. Tumor microenvironment (TME) is the living environment of tumor cells, which is composed of various components, including immune cells. Based on TME, immunotherapy has been recently developed for eradicating cancer cells by reactivating antitumor effect of immune cells. The communications between tumor cells and TME are crucial for tumor development, metastasis, and drug resistance. Exosomes play an important role in mediating these communications and regulating the reprogramming of TME, which affects the sensitivity of immunotherapy. Therefore, it is imperative to investigate the role of exosomes in TME reprogramming and the impact of exosomes on immunotherapy. Here, we review the communication role of exosomes in regulating TME remodeling and the efficacy of immunotherapy, as well as summarize the underlying mechanisms. Furthermore, we also introduce the potential application of the artificially modified exosomes as the delivery systems of antitumor drugs. Further efforts in this field will provide new insights on the roles of exosomes in intercellular communications of TME and cancer progression, thus helping us to uncover effective strategies for cancer treatment.
Collapse
Affiliation(s)
- Yu Wu
- Clinical Medical Research Center of the Affiliated HospitalInner Mongolia Medical UniversityHohhotChina
| | - Wenyan Han
- Clinical Laboratorythe Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Hairong Dong
- Clinical LaboratoryHohhot first hospitalHohhotChina
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department IKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital and InstituteBeijingChina
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated HospitalInner Mongolia Medical UniversityHohhotChina
| |
Collapse
|
10
|
Rezaie J, Chodari L, Mohammadpour-Asl S, Jafari A, Niknam Z. Cell-mediated barriers in cancer immunosurveillance. Life Sci 2024; 342:122528. [PMID: 38408406 DOI: 10.1016/j.lfs.2024.122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The immune cells within the tumor microenvironment (TME) exert multifaceted functions ranging from tumor-antagonizing or tumor-promoting activities. During the initial phases of tumor development, the tumor-antagonizing immune cells in the TME combat cancer cells in an immune surveillance process. However, with time, cancer cells can evade detection and impede the immune cells' effectiveness through diverse mechanisms, such as decreasing immunogenic antigen presentation on their surfaces and/or secreting anti-immune factors that cause tolerance in TME. Moreover, some immune cells cause immunosuppressive situations and inhibit antitumoral immune responses. Physical and cellular-mediated barriers in the TME, such as cancer-associated fibroblasts, tumor endothelium, the altered lipid composition of tumor cells, and exosomes secreted from cancer cells, also mediate immunosuppression and prevent extravasation of immune cells. Due to successful clinical outcomes of cancer treatment strategies the potential barriers must be identified and addressed. We need to figure out how to optimize cancer immunotherapy strategies, and how to combine therapeutic approaches for maximum clinical benefit. This review provides a detailed overview of various cells and molecules in the TME, their association with escaping from immune surveillance, therapeutic targets, and future perspectives for improving cancer immunotherapy.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shadi Mohammadpour-Asl
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
11
|
Radhakrishnan V, Golla U, Kudva AK. Role of Immune Cells and Immunotherapy in Multiple Myeloma. Life (Basel) 2024; 14:461. [PMID: 38672732 PMCID: PMC11050867 DOI: 10.3390/life14040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
The clinical signs of multiple myeloma, a plasma cell (PC) dyscrasia, include bone loss, renal damage, and paraproteinemia. It can be defined as the uncontrolled growth of malignant PCs within the bone marrow. The distinctive bone marrow milieu that regulates the progression of myeloma disease involves interactions between plasma and stromal cells, and myeloid and lymphoid cells. These cells affect the immune system independently or because of a complicated web of interconnections, which promotes disease development and immune evasion. Due to the importance of these factors in the onset of disease, various therapeutic strategies have been created that either target or improve the immunological processes that influence disease progression. The immune system has a role in the mechanism of action of multiple myeloma treatments. The main contributions of immune cells to the bone marrow microenvironment, as well as how they interact and how immune regulation might lead to therapeutic effects, are covered in this study.
Collapse
Affiliation(s)
- Vijay Radhakrishnan
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA;
| | - Upendarrao Golla
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangothri, Mangaluru 574199, India
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
12
|
Wilfahrt D, Delgoffe GM. Metabolic waypoints during T cell differentiation. Nat Immunol 2024; 25:206-217. [PMID: 38238609 DOI: 10.1038/s41590-023-01733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024]
Abstract
This Review explores the interplay between T cell activation and cell metabolism and highlights how metabolites serve two pivotal functions in shaping the immune response. Traditionally, T cell activation has been characterized by T cell antigen receptor-major histocompatibility complex interaction (signal 1), co-stimulation (signal 2) and cytokine signaling (signal 3). However, recent research has unveiled the critical role of metabolites in this process. Firstly, metabolites act as signal propagators that aid in the transmission of core activation signals, such as specific lipid species that are crucial at the immune synapse. Secondly, metabolites also function as unique signals that influence immune differentiation pathways, such as amino acid-induced mTORC1 signaling. Metabolites also play a substantial role in epigenetic remodeling, by directly modifying histones, altering gene expression and influencing T cell behavior. This Review discusses how T cells integrate nutrient sensing with activating stimuli to shape their differentiation and sensitivity to metabolites. We underscore the integration of immunological and metabolic inputs in T cell function and suggest that metabolite availability is a fundamental determinant of adaptive immune responses.
Collapse
Affiliation(s)
- Drew Wilfahrt
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumor Microenvironment Center and Department of Immunology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Zhang H, Liu Y, Liu J, Chen J, Wang J, Hua H, Jiang Y. cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment. J Hematol Oncol 2024; 17:5. [PMID: 38233872 PMCID: PMC10792844 DOI: 10.1186/s13045-024-01524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex disease resulting from abnormal cell growth that is induced by a number of genetic and environmental factors. The tumor microenvironment (TME), which involves extracellular matrix, cancer-associated fibroblasts (CAF), tumor-infiltrating immune cells and angiogenesis, plays a critical role in tumor progression. Cyclic adenosine monophosphate (cAMP) is a second messenger that has pleiotropic effects on the TME. The downstream effectors of cAMP include cAMP-dependent protein kinase (PKA), exchange protein activated by cAMP (EPAC) and ion channels. While cAMP can activate PKA or EPAC and promote cancer cell growth, it can also inhibit cell proliferation and survival in context- and cancer type-dependent manner. Tumor-associated stromal cells, such as CAF and immune cells, can release cytokines and growth factors that either stimulate or inhibit cAMP production within the TME. Recent studies have shown that targeting cAMP signaling in the TME has therapeutic benefits in cancer. Small-molecule agents that inhibit adenylate cyclase and PKA have been shown to inhibit tumor growth. In addition, cAMP-elevating agents, such as forskolin, can not only induce cancer cell death, but also directly inhibit cell proliferation in some cancer types. In this review, we summarize current understanding of cAMP signaling in cancer biology and immunology and discuss the basis for its context-dependent dual role in oncogenesis. Understanding the precise mechanisms by which cAMP and the TME interact in cancer will be critical for the development of effective therapies. Future studies aimed at investigating the cAMP-cancer axis and its regulation in the TME may provide new insights into the underlying mechanisms of tumorigenesis and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hongying Zhang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jieya Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinzhu Chen
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yangfu Jiang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Gies S, Melchior P, Stroeder R, Tänzer T, Theobald L, Pohlers M, Glombitza B, Sester M, Solomayer EF, Walch-Rückheim B. Immune landscape of vulvar cancer patients treated with surgery and adjuvant radiotherapy revealed restricted T cell functionality and increased IL-17 expression associated with cancer relapse. Int J Cancer 2024; 154:343-358. [PMID: 37786948 DOI: 10.1002/ijc.34745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
For vulvar cancers, radiotherapy is targeting cancer cells, but also affects the host immune system. As this may affect treatment outcome, in this prospective study, we characterized the individual T cell immune milieu induced by surgery and adjuvant radio +/- chemotherapy (aRT) systemically in the blood of vulvar cancer patients and found increased frequencies of Interleukin (IL)-17-producing CD4+ and CD8+ T cells after aRT while frequencies of Th1 and perforin-producing CD8+ killer cells were strongly diminished. Phenotypic characterization revealed enhanced expression of the ectonucleotidase CD39 on Th17 and Tc17 cells as well as CD8+ perforin+ cells after aRT. Furthermore, the aRT cohort exhibited increased proportions of Programmed Cell Death Protein (PD-1) expressing cells among Th1 and CD8+ perforin+ cells, but not among Th17 and Tc17 cells. High post-therapeutic levels of Th17 and Tc17 cells and low proportions of Th1 and CD8+ perforin+ cells expressing PD-1 was associated with reduced recurrence free survival on follow-up. In conclusion, our study defines individual therapy-induced changes in the cellular immune milieu of patients and their association with cancer relapse. Our results may help to explain differences in the individual courses of disease of vulvar cancer patients and suggest PD-1 and IL-17 as targets for immunotherapy in vulvar cancer.
Collapse
Affiliation(s)
- Selina Gies
- Center of Human and Molecular Biology (ZHMB), Institute of Virology, Saarland University, Homburg, Saar, Germany
| | - Patrick Melchior
- Department of Radiation Oncology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Russalina Stroeder
- Department of Obstetrics and Gynecology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Tanja Tänzer
- Center of Human and Molecular Biology (ZHMB), Institute of Virology, Saarland University, Homburg, Saar, Germany
| | - Laura Theobald
- Center of Human and Molecular Biology (ZHMB), Institute of Virology, Saarland University, Homburg, Saar, Germany
| | - Maike Pohlers
- Center of Human and Molecular Biology (ZHMB), Institute of Virology, Saarland University, Homburg, Saar, Germany
| | - Birgit Glombitza
- Center of Human and Molecular Biology (ZHMB), Institute of Virology, Saarland University, Homburg, Saar, Germany
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Saar, Germany
| | - Erich-Franz Solomayer
- Department of Obstetrics and Gynecology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Barbara Walch-Rückheim
- Center of Human and Molecular Biology (ZHMB), Institute of Virology, Saarland University, Homburg, Saar, Germany
| |
Collapse
|
15
|
Gupta J, Jalil AT, Abd Alzahraa ZH, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Najafi M. The Metformin Immunoregulatory Actions in Tumor Suppression and Normal Tissues Protection. Curr Med Chem 2024; 31:5370-5396. [PMID: 37403391 DOI: 10.2174/0929867331666230703143907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
The immune system is the key player in a wide range of responses in normal tissues and tumors to anticancer therapy. Inflammatory and fibrotic responses in normal tissues are the main limitations of chemotherapy, radiotherapy, and also some newer anticancer drugs such as immune checkpoint inhibitors (ICIs). Immune system responses within solid tumors including anti-tumor and tumor-promoting responses can suppress or help tumor growth. Thus, modulation of immune cells and their secretions such as cytokines, growth factors and epigenetic modulators, pro-apoptosis molecules, and some other molecules can be suggested to alleviate side effects in normal tissues and drug-resistance mechanisms in the tumor. Metformin as an anti-diabetes drug has shown intriguing properties such as anti-inflammation, anti-fibrosis, and anticancer effects. Some investigations have uncovered that metformin can ameliorate radiation/chemotherapy toxicity in normal cells and tissues through the modulation of several targets in cells and tissues. These effects of metformin may ameliorate severe inflammatory responses and fibrosis after exposure to ionizing radiation or following treatment with highly toxic chemotherapy drugs. Metformin can suppress the activity of immunosuppressive cells in the tumor through the phosphorylation of AMP-activated protein kinase (AMPK). In addition, metformin may stimulate antigen presentation and maturation of anticancer immune cells, which lead to the induction of anticancer immunity in the tumor. This review aims to explain the detailed mechanisms of normal tissue sparing and tumor suppression during cancer therapy using adjuvant metformin with an emphasis on immune system responses.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellin, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | | | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
16
|
Wang H, Yu L, Cheng L, Guo Z. The roles of lncRNAs in Th17-associated diseases, with special focus on JAK/STAT signaling pathway. Clin Exp Med 2023; 23:3349-3359. [PMID: 37743424 DOI: 10.1007/s10238-023-01181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
One of the most crucial T cell subsets in a variety of autoimmune and chronic inflammatory illnesses is T helper (Th) 17 cells. Th17 cells appear to have an essential role in the clearance of extracellular pathogens during infections. However, Th17 cells are also involved in inflammation and have been implicated in the pathogenesis of several autoimmune diseases and human inflammatory conditions. Due to the involvement of Th17 cells in the onset of Th17-associated diseases, understanding molecular mechanisms of Th17 cell functions may open the door to developing tailored therapies to address these difficult disorders. However, the molecular mechanisms governing Th17 differentiation in various diseases are still not well understood. The JAK/STAT signaling pathway plays a critical role in immune responses and has been linked to various aspects of Th17 cell differentiation and function. In this article, we conducted a comprehensive review of various molecular mechanisms (JAK/STAT, microRNAs, etc.), that can affect the differentiation of Th17 cells in various Th17-associated diseases.
Collapse
Affiliation(s)
- Han Wang
- Department of Clinical Laboratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Lanlan Yu
- Department of Clinical Laboratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Li Cheng
- Department of Clinical Laboratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Zhigang Guo
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130031, China.
| |
Collapse
|
17
|
Saadh MJ, Arellano MTC, Saini RS, Amin AH, Sharma N, Arias-Gonzáles JL, Alsandook T, Cotrina-Aliaga JC, Akhavan-Sigari R. Molecular mechanisms of long non-coding RNAs in differentiation of T Helper17 cells. Int Immunopharmacol 2023; 123:110728. [PMID: 37572506 DOI: 10.1016/j.intimp.2023.110728] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
T helper (Th) 17 cells are one of the most important T cell subsets in a number of autoimmune and chronic inflammatory diseases. During infections, Th17 cells appear to play an important role in the clearance of extracellular pathogens. Th17 cells, on the other hand, are engaged in inflammation and have been linked to the pathophysiology of a number of autoimmune illnesses and human inflammatory disorders. A diverse group of RNA molecules known as lncRNAs serve critical functions in gene expression regulation. They may interact with a wide range of molecules, including DNA, RNA, and proteins, and have a complex structure. LncRNAs, which have restricted or no protein-coding activity, are implicated in a number of illnesses due to their regulatory impact on a variety of biological processes such as cell proliferation, apoptosis, and differentiation. Several lncRNAs have been associated with Th7 cell development in the context of immune cell differentiation. In this article, we cover new studies on the involvement of lncRNAs in Th17 cell differentiation in a variety of disorders, including auto-immune diseases, malignancies, asthma, heart disease, and infections.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan.
| | | | | | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Nidhi Sharma
- Department of Computer Engineering & Application, GLA University, Mathura, India.
| | | | - Tahani Alsandook
- Dentistry Department, Al-Turath University College, Baghdad, Iraq.
| | | | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland.
| |
Collapse
|
18
|
Viúdez-Pareja C, Kreft E, García-Caballero M. Immunomodulatory properties of the lymphatic endothelium in the tumor microenvironment. Front Immunol 2023; 14:1235812. [PMID: 37744339 PMCID: PMC10512957 DOI: 10.3389/fimmu.2023.1235812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
The tumor microenvironment (TME) is an intricate complex and dynamic structure composed of various cell types, including tumor, stromal and immune cells. Within this complex network, lymphatic endothelial cells (LECs) play a crucial role in regulating immune responses and influencing tumor progression and metastatic dissemination to lymph node and distant organs. Interestingly, LECs possess unique immunomodulatory properties that can either promote or inhibit anti-tumor immune responses. In fact, tumor-associated lymphangiogenesis can facilitate tumor cell dissemination and metastasis supporting immunoevasion, but also, different molecular mechanisms involved in LEC-mediated anti-tumor immunity have been already described. In this context, the crosstalk between cancer cells, LECs and immune cells and how this communication can shape the immune landscape in the TME is gaining increased interest in recent years. In this review, we present a comprehensive and updated report about the immunomodulatory properties of the lymphatic endothelium within the TME, with special focus on primary tumors and tumor-draining lymph nodes. Furthermore, we outline emerging research investigating the potential therapeutic strategies targeting the lymphatic endothelium to enhance anti-tumor immune responses. Understanding the intricate mechanisms involved in LEC-mediated immune modulation in the TME opens up new possibilities for the development of innovative approaches to fight cancer.
Collapse
Affiliation(s)
- Cristina Viúdez-Pareja
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| | - Ewa Kreft
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
19
|
Ma Y, Liu X, Zhang X, Yu Y, Li Y, Song M, Wang J. Efficient Mining of Anticancer Peptides from Gut Metagenome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300107. [PMID: 37382183 PMCID: PMC10477861 DOI: 10.1002/advs.202300107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/03/2023] [Indexed: 06/30/2023]
Abstract
The gut microbiome plays a crucial role in modulating host health and disease. It serves as a vast reservoir of functional molecules that hold great potential for clinical applications. One specific area of interest is identifying anticancer peptides (ACPs) for innovative cancer therapies. However, ACPs discovery is hindered by a heavy reliance on experimental methodologies. To overcome this limitation, we here employed a novel approach by leveraging the overlap between ACPs and antimicrobial peptides (AMPs). By combining well-established AMP prediction methods with mining techniques in metagenomic cohorts, a total of 40 potential ACPs is identified. Out of the identified ACPs, 39 demonstrated inhibitory effects against at least one cancer cell line, exhibiting significant differences from known ACPs. Moreover, the therapeutic potential of the two most promising peptides in a mouse xenograft cancer model is evaluated. Encouragingly, the peptides exhibit effective tumor inhibition without any detectable toxic effects. Interestingly, both peptides display uncommon secondary structures, highlighting its distinctive characteristics. This findings highlight the efficacy of the multi-center mining approach, which effectively uncovers novel ACPs from the gut microbiome. This approach has significant implications for expanding treatment options not only for CRC, but also for other cancer types.
Collapse
Affiliation(s)
- Yue Ma
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of Sciences100101BeijingP. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
- Max Planck Institute for Evolutionary Biology24306PlönGermany
| | - Xiaolin Liu
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of Sciences100101BeijingP. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
- Max Planck Institute for Evolutionary Biology24306PlönGermany
| | - Xuan Zhang
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of Sciences100101BeijingP. R. China
| | - Ying Yu
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of Sciences100101BeijingP. R. China
| | - Yujing Li
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of Sciences100101BeijingP. R. China
- Institute for Stem Cell and RegenerationChinese Academy of Sciences100101BeijingP. R. China
- Beijing Institute for Stem Cell and Regenerative Medicine100101BeijingP. R. China
| | - Moshi Song
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of Sciences100101BeijingP. R. China
- Institute for Stem Cell and RegenerationChinese Academy of Sciences100101BeijingP. R. China
- Beijing Institute for Stem Cell and Regenerative Medicine100101BeijingP. R. China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of Sciences100101BeijingP. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
20
|
Kauser S, Mughees M, Mangangcha IR, Swami S, Wajid S. Secretome profiling of Artemisia absinthium extract-loaded polymeric nanoparticle-treated MCF-7 and MDA-MB-231 revealed perturbation in microtubule assembly and cell migration. Front Oncol 2023; 13:1209168. [PMID: 37719007 PMCID: PMC10502211 DOI: 10.3389/fonc.2023.1209168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/04/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Artemisia absinthium (wormwood) exhibits anticancer properties by inhibiting proliferation and causing cell death in breast cancer. Targeted drug delivery of A. absinthium nanoformulation using N-isopropyl acrylamide, N-vinyl pyrrolidone, and acrylic acid-based polymeric nanoparticles (NVA-AA NPs) was ensured by utilizing features of the tumor microenvironment, although their mechanism of action involved in cytotoxicity remains unknown. Methods The present study employed nano LC-MS/MS to identify differences in secretory protein expression associated with the treatment of breast cancer cell lines (MCF-7; MDA-MB-231) by NVA-AA NPs for the determination of affected pathways and easily accessible therapeutic targets. Different bioinformatics tools were used to identify signature differentially expressed proteins (DEPs) using survival analysis by GENT2 and correlation analysis between their mRNA expressions and sensitivity toward small-molecule drugs as well as immune cell infiltration by GSCA. Results Analysis by GENT2 revealed 22 signature DEPs with the most significant change in their expression regulation, namely, gelsolin, alpha-fetoprotein, complement component C3, C7, histone H2B type 1-K, histone H2A.Z, H2AX, heat shock cognate 71 kDa protein, heat shock 70 kDa protein 1-like, cytochrome c somatic, GTP-binding nuclear protein Ran, tubulin beta chain, tubulin alpha-1B chain, tubulin alpha-1C chain, phosphoglycerate mutase 1, kininogen 1, carboxypeptidase N catalytic chain, fibulin-1, peroxiredoxins 4, lactate dehydrogenase C, SPARC, and SPARC-like protein 1. Correlation analysis between their mRNA expressions versus immune cell infiltrates showed a positive correlation with antitumor immune response elicited by these NPs as well as a correlation with drug response shown by the GDSC and CTRP drugs in different cancer cells. Discussion Our results suggest that NVA-AA NPs were able to invade the tumor microenvironment; transformed the communication network between the cancer cells; affected potential drivers of microtubular integrity, nucleosome assembly, and cell cycle; and eventually caused cell death.
Collapse
Affiliation(s)
- Sana Kauser
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohd Mughees
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | | | - Sanskriti Swami
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
21
|
Xing J, Man C, Liu Y, Zhang Z, Peng H. Factors impacting the benefits and pathogenicity of Th17 cells in the tumor microenvironment. Front Immunol 2023; 14:1224269. [PMID: 37680632 PMCID: PMC10481871 DOI: 10.3389/fimmu.2023.1224269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Tumor development is closely associated with a complex tumor microenvironment, which is composed of tumor cells, blood vessels, tumor stromal cells, infiltrating immune cells, and associated effector molecules. T helper type 17 (Th17) cells, which are a subset of CD4+ T cells and are renowned for their ability to combat bacterial and fungal infections and mediate inflammatory responses, exhibit context-dependent effector functions. Within the tumor microenvironment, different molecular signals regulate the proliferation, differentiation, metabolic reprogramming, and phenotypic conversion of Th17 cells. Consequently, Th17 cells exert dual effects on tumor progression and can promote or inhibit tumor growth. This review aimed to investigate the impact of various alterations in the tumor microenvironment on the antitumor and protumor effects of Th17 cells to provide valuable clues for the exploration of additional tumor immunotherapy strategies.
Collapse
Affiliation(s)
- Jie Xing
- Department of Laboratory Medicine, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Changfeng Man
- Department of Oncology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Yingzhao Liu
- Department of Endocrinology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
23
|
Erber J, Herndler-Brandstetter D. Regulation of T cell differentiation and function by long noncoding RNAs in homeostasis and cancer. Front Immunol 2023; 14:1181499. [PMID: 37346034 PMCID: PMC10281531 DOI: 10.3389/fimmu.2023.1181499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) increase in genomes of complex organisms and represent the largest group of RNA genes transcribed in mammalian cells. Previously considered only transcriptional noise, lncRNAs comprise a heterogeneous class of transcripts that are emerging as critical regulators of T cell-mediated immunity. Here we summarize the lncRNA expression landscape of different T cell subsets and highlight recent advances in the role of lncRNAs in regulating T cell differentiation, function and exhaustion during homeostasis and cancer. We discuss the different molecular mechanisms of lncRNAs and highlight lncRNAs that can serve as novel targets to modulate T cell function or to improve the response to cancer immunotherapies by modulating the immunosuppressive tumor microenvironment.
Collapse
|
24
|
Hinshaw DC, Benavides GA, Metge BJ, Swain CA, Kammerud SC, Alsheikh HA, Elhamamsy A, Chen D, Darley-Usmar V, Rathmell JC, Welner RS, Samant RS, Shevde LA. Hedgehog Signaling Regulates Treg to Th17 Conversion Through Metabolic Rewiring in Breast Cancer. Cancer Immunol Res 2023; 11:687-702. [PMID: 37058110 PMCID: PMC10159910 DOI: 10.1158/2326-6066.cir-22-0426] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/18/2022] [Accepted: 02/28/2023] [Indexed: 04/15/2023]
Abstract
The tumor immune microenvironment dynamically evolves to support tumor growth and progression. Immunosuppressive regulatory T cells (Treg) promote tumor growth and metastatic seeding in patients with breast cancer. Deregulation of plasticity between Treg and Th17 cells creates an immune regulatory framework that enables tumor progression. Here, we discovered a functional role for Hedgehog (Hh) signaling in promoting Treg differentiation and immunosuppressive activity, and when Hh activity was inhibited, Tregs adopted a Th17-like phenotype complemented by an enhanced inflammatory profile. Mechanistically, Hh signaling promoted O-GlcNAc modifications of critical Treg and Th17 transcription factors, Foxp3 and STAT3, respectively, that orchestrated this transition. Blocking Hh reprogramed Tregs metabolically, dampened their immunosuppressive activity, and supported their transdifferentiation into inflammatory Th17 cells that enhanced the recruitment of cytotoxic CD8+ T cells into tumors. Our results demonstrate a previously unknown role for Hh signaling in the regulation of Treg differentiation and activity and the switch between Tregs and Th17 cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Dominique C. Hinshaw
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gloria A. Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon J. Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Courtney A. Swain
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah C. Kammerud
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Heba A. Alsheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amr Elhamamsy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongquan Chen
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, VUMC, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert S. Welner
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S. Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Birmingham VA Medical Center, Birmingham, AL, USA
| | - Lalita A. Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Senior author
| |
Collapse
|
25
|
Yi Q, Wang J, Liu T, Yao Y, Loveless I, Subedi K, Toor J, Adrianto I, Xiao H, Chen B, Crawford HC, Fang D, Zhou L, Mi QS. scRNA-Seq and imaging mass cytometry analyses unveil iNKT cells-mediated anti-tumor immunity in pancreatic cancer liver metastasis. Cancer Lett 2023; 561:216149. [PMID: 36990268 DOI: 10.1016/j.canlet.2023.216149] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Invariant natural killer T (iNKT) cells are innate-like T cells that are abundant in liver sinusoids and play a critical role in tumor immunity. However, the role of iNKT cells in pancreatic cancer liver metastasis (PCLM) has not been fully explored. In this study, we employed a hemi-spleen pancreatic tumor cell injection mouse model of PCLM, a model that closely mimics clinical conditions in humans, to explore the role of iNKT cells in PCLM. Activation of iNKT cells with α-galactosylceramide (αGC) markedly increased immune cell infiltration and suppressed PCLM progression. Via single cell RNA sequencing (scRNA-seq) we profiled over 30,000 immune cells from normal liver and PCLM with or without αGC treatment and were able to characterize the global changes of the immune cells in the tumor microenvironment upon αGC treatment, identifying a total of 12 subpopulations. Upon treatment with αGC, scRNA-Seq and flow cytometry analyses revealed increased cytotoxic activity of iNKT/NK cells and skewing CD4 T cells towards a cytotoxic Th1 profile and CD8 T cells towards a cytotoxic profile, characterized by higher proliferation and reduced exhaustion marker PD1 expression. Moreover, αGC treatment excluded tumor associated macrophages. Lastly, imaging mass cytometry analysis uncovered the reduced epithelial to mesenchymal transition related markers and increased active CD4 and CD8 T cells in PCLM with αGC treatment. Overall, our findings uncover the protective function of activated iNKT cells in pancreatic cancer liver metastasis through increased NK and T cell immunity and decreased tumor associated macrophages.
Collapse
Affiliation(s)
- Qijun Yi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI, 48202, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA
| | - Jie Wang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI, 48202, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA
| | - Tingting Liu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI, 48202, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA
| | - Yi Yao
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI, 48202, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA
| | - Ian Loveless
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI, 48202, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA; Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, MI, 48202, USA
| | - Kalpana Subedi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI, 48202, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA
| | - Jugmohit Toor
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI, 48202, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA
| | - Indra Adrianto
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI, 48202, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA; Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, MI, 48202, USA; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Hua Xiao
- Department of Physiology, College of Natural Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Bin Chen
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, USA
| | - Howard C Crawford
- Henry Ford Pancreatic Cancer Center, Department of Surgery, Henry Ford Health, Detroit, MI, 48202, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI, 48202, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA; Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, MI, 48202, USA; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA; Department of Internal Medicine, Henry Ford Health, Detroit, MI, 48202, USA.
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI, 48202, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA; Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, MI, 48202, USA; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA; Department of Internal Medicine, Henry Ford Health, Detroit, MI, 48202, USA.
| |
Collapse
|
26
|
Avila JP, Carvalho BM, Coimbra EC. A Comprehensive View of the Cancer-Immunity Cycle (CIC) in HPV-Mediated Cervical Cancer and Prospects for Emerging Therapeutic Opportunities. Cancers (Basel) 2023; 15:1333. [PMID: 36831674 PMCID: PMC9954575 DOI: 10.3390/cancers15041333] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Cervical cancer (CC) is the fourth most common cancer in women worldwide, with more than 500,000 new cases each year and a mortality rate of around 55%. Over 80% of these deaths occur in developing countries. The most important risk factor for CC is persistent infection by a sexually transmitted virus, the human papillomavirus (HPV). Conventional treatments to eradicate this type of cancer are accompanied by high rates of resistance and a large number of side effects. Hence, it is crucial to devise novel effective therapeutic strategies. In recent years, an increasing number of studies have aimed to develop immunotherapeutic methods for treating cancer. However, these strategies have not proven to be effective enough to combat CC. This means there is a need to investigate immune molecular targets. An adaptive immune response against cancer has been described in seven key stages or steps defined as the cancer-immunity cycle (CIC). The CIC begins with the release of antigens by tumor cells and ends with their destruction by cytotoxic T-cells. In this paper, we discuss several molecular alterations found in each stage of the CIC of CC. In addition, we analyze the evidence discovered, the molecular mechanisms and their relationship with variables such as histological subtype and HPV infection, as well as their potential impact for adopting novel immunotherapeutic approaches.
Collapse
Affiliation(s)
| | | | - Eliane Campos Coimbra
- Institute of Biological Sciences, University of Pernambuco (ICB/UPE), Rua Arnóbio Marques, 310, Santo Amaro, Recife 50100-130, PE, Brazil
| |
Collapse
|
27
|
Arias C, Sepúlveda P, Castillo RL, Salazar LA. Relationship between Hypoxic and Immune Pathways Activation in the Progression of Neuroinflammation: Role of HIF-1α and Th17 Cells. Int J Mol Sci 2023; 24:ijms24043073. [PMID: 36834484 PMCID: PMC9964721 DOI: 10.3390/ijms24043073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 02/09/2023] Open
Abstract
Neuroinflammation is a common event in degenerative diseases of the central and peripheral nervous system, triggered by alterations in the immune system or inflammatory cascade. The pathophysiology of these disorders is multifactorial, whereby the therapy available has low clinical efficacy. This review propounds the relationship between the deregulation of T helper cells and hypoxia, mainly Th17 and HIF-1α molecular pathways, events that are involved in the occurrence of the neuroinflammation. The clinical expression of neuroinflammation is included in prevalent pathologies such as multiple sclerosis, Guillain-Barré syndrome, and Alzheimer's disease, among others. In addition, therapeutic targets are analyzed in relation to the pathways that induced neuroinflammation.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago 7500922, Chile
| | - Paulina Sepúlveda
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Rodrigo L. Castillo
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence:
| |
Collapse
|
28
|
Jin R, Hao J, Yu J, Wang P, Sauter ER, Li B. Role of FABP5 in T Cell Lipid Metabolism and Function in the Tumor Microenvironment. Cancers (Basel) 2023; 15:657. [PMID: 36765614 PMCID: PMC9913835 DOI: 10.3390/cancers15030657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
To evade immune surveillance, tumors develop a hostile microenvironment that inhibits anti-tumor immunity. Recent immunotherapy breakthroughs that target the reinvigoration of tumor-infiltrating T lymphocytes (TIL) have led to unprecedented success in treating some cancers that are resistant to conventional therapy, suggesting that T cells play a pivotal role in anti-tumor immunity. In the hostile tumor microenvironment (TME), activated T cells are known to mainly rely on aerobic glycolysis to facilitate their proliferation and anti-tumor function. However, TILs usually exhibit an exhausted phenotype and impaired anti-tumor activity due to the limited availability of key nutrients (e.g., glucose) in the TME. Given that different T cell subsets have unique metabolic pathways which determine their effector function, this review introduces our current understanding of T cell development, activation signals and metabolic pathways. Moreover, emerging evidence suggests that fatty acid binding protein 5 (FABP5) expression in T cells regulates T cell lipid metabolism and function. We highlight how FABP5 regulates fatty acid uptake and oxidation, thus shaping the survival and function of different T cell subsets in the TME.
Collapse
Affiliation(s)
- Rong Jin
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
- NHC Key Laboratory of Medical Immunology, Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jiaqing Hao
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Jianyu Yu
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Pingzhang Wang
- NHC Key Laboratory of Medical Immunology, Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Edward R. Sauter
- Division of Cancer Prevention, National Institutes of Health/National Cancer Institute, Bethesda, MD 20892, USA
| | - Bing Li
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
29
|
Numasaki M, Ito K, Takagi K, Nagashima K, Notsuda H, Ogino H, Ando R, Tomioka Y, Suzuki T, Okada Y, Nishioka Y, Unno M. Diverse and divergent functions of IL-32β and IL-32γ isoforms in the regulation of malignant pleural mesothelioma cell growth and the production of VEGF-A and CXCL8. Cell Immunol 2023; 383:104652. [PMID: 36516653 DOI: 10.1016/j.cellimm.2022.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
In this study, we sought to elucidate the roles of the interleukin (IL)-32β and IL-32γ in mesothelioma cell growth, and vascular endothelial growth factor (VEGF)-A and C-X-C motif chemokine ligand 8 (CXCL8) expression. IL-32 elicited a growth-promoting effect against one of the six mesotheliomas lines and exerted diverse regulatory functions in VEGF-A and CXCL8 secretion from mesotheliomas stimulated with or without IL-17A. Retroviral-mediated transduction of mesothelioma lines with IL-32γ resulted in enhanced IL-32β expression, which facilitated or suppressed the in vitro growth, and VEGF-A and CXCL8 expression. Overexpressed IL-32β-augmented growth and VEGF-A and CXCL8 production were mainly mediated through the phosphatidylinositol-3 kinase (PI3K) signaling pathway. On the other hand, overexpressed IL-32β-deceased growth was mediated through mitogen-activated protein kinase (MAPK) pathway. NCI-H2373IL-32γ tumors grew faster than NCI-H2373Neo tumors in a xenograft model, which was associated with increased vascularity. These findings indicate that IL-32 are involved in the regulation of growth and angiogenic factor production in mesotheliomas.
Collapse
Affiliation(s)
- Muneo Numasaki
- Laboratory of Clinical Science and Biomedicine, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan; Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; Department of Nursing, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, Sendai, Miyagi, Japan; Laboratory of Clinical Science and Biomedicine, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Koyu Ito
- Department of Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Tokyo, Japan
| | - Hirotsugu Notsuda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Hirokazu Ogino
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima, Japan
| | - Rika Ando
- Department of Nursing, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, Sendai, Miyagi, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
30
|
Kim BS. Critical role of TLR activation in viral replication, persistence, and pathogenicity of Theiler's virus. Front Immunol 2023; 14:1167972. [PMID: 37153539 PMCID: PMC10157096 DOI: 10.3389/fimmu.2023.1167972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) establishes persistent viral infections in the central nervous system and induces chronic inflammatory demyelinating disease in susceptible mice. TMEV infects dendritic cells, macrophages, B cells, and glial cells. The state of TLR activation in the host plays a critical role in initial viral replication and persistence. The further activation of TLRs enhances viral replication and persistence, leading to the pathogenicity of TMEV-induced demyelinating disease. Various cytokines are produced via TLRs, and MDA-5 signals linked with NF-κB activation following TMEV infection. In turn, these signals further amplify TMEV replication and the persistence of virus-infected cells. The signals further elevate cytokine production, promoting the development of Th17 responses and preventing cellular apoptosis, which enables viral persistence. Excessive levels of cytokines, particularly IL-6 and IL-1β, facilitate the generation of pathogenic Th17 immune responses to viral antigens and autoantigens, leading to TMEV-induced demyelinating disease. These cytokines, together with TLR2 may prematurely generate functionally deficient CD25-FoxP3+ CD4+ T cells, which are subsequently converted to Th17 cells. Furthermore, IL-6 and IL-17 synergistically inhibit the apoptosis of virus-infected cells and the cytolytic function of CD8+ T lymphocytes, prolonging the survival of virus-infected cells. The inhibition of apoptosis leads to the persistent activation of NF-κB and TLRs, which continuously provides an environment of excessive cytokines and consequently promotes autoimmune responses. Persistent or repeated infections of other viruses such as COVID-19 may result in similar continuous TLR activation and cytokine production, leading to autoimmune diseases.
Collapse
|
31
|
Zhang B, Jia P, Wang J, Pei G, Wang C, Pei S, Li X, Zhao Z, Yi X, Guan XY, Huang Y. Integrated analysis of racial disparities in genomic architecture identifies a trans-ancestry prognostic subtype in bladder cancer. Mol Oncol 2022; 17:564-581. [PMID: 36495164 PMCID: PMC10061287 DOI: 10.1002/1878-0261.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The incidence of bladder cancer and patient survival vary greatly among different populations, but the influence of the associated molecular features and evolutionary processes on its clinical treatment and prognostication remains unknown. Here, we analyze the genomic architectures of 505 bladder cancer patients from Asian/Black/White populations. We identify a previously unknown association between AHNAK mutations and activity of the APOBEC-a mutational signature, the activity of which varied substantially across populations. All significantly mutated genes but only half of arm-level somatic copy number alterations (SCNAs) are enriched with clonal events, indicating large-scale SCNAs as rich sources of bladder cancer clonal diversities. The prevalence of TP53 and ATM clonal mutations as well as the associated burden of SCNAs is significantly higher in Whites/Blacks than in Asians. We identify a trans-ancestry prognostic subtype of bladder cancer characterized by enrichment of non-muscle-invasive patients and muscle-invasive patients with good prognosis, increased CREBBP/FGFR3/HRAS/NFE2L2 mutations, decreased intra-tumor heterogeneity and genome instability, and an activated tumor microenvironment.
Collapse
Affiliation(s)
- Baifeng Zhang
- Departments of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, China.,Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China.,Geneplus-Beijing, China
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, TX, USA
| | - Jiayin Wang
- Department of Computer Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, Shaanxi, China
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, TX, USA
| | | | | | - Xiangchun Li
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, China
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, TX, USA
| | | | - Xin-Yuan Guan
- Departments of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, China.,Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Yi Huang
- Geneplus-Beijing, China.,Department of Computer Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, Shaanxi, China.,Luohu people's hospital, Shenzhen, China
| |
Collapse
|
32
|
Plackoska V, Shaban D, Nijnik A. Hematologic dysfunction in cancer: Mechanisms, effects on antitumor immunity, and roles in disease progression. Front Immunol 2022; 13:1041010. [PMID: 36561751 PMCID: PMC9763314 DOI: 10.3389/fimmu.2022.1041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
With the major advances in cancer immunology and immunotherapy, it is critical to consider that most immune cells are short-lived and need to be continuously replenished from hematopoietic stem and progenitor cells. Hematologic abnormalities are prevalent in cancer patients, and many ground-breaking studies over the past decade provide insights into their underlying cellular and molecular mechanisms. Such studies demonstrate that the dysfunction of hematopoiesis is more than a side-effect of cancer pathology, but an important systemic feature of cancer disease. Here we review these many advances, covering the cancer-associated phenotypes of hematopoietic stem and progenitor cells, the dysfunction of myelopoiesis and erythropoiesis, the importance of extramedullary hematopoiesis in cancer disease, and the developmental origins of tumor associated macrophages. We address the roles of many secreted mediators, signaling pathways, and transcriptional and epigenetic mechanisms that mediate such hematopoietic dysfunction. Furthermore, we discuss the important contribution of the hematopoietic dysfunction to cancer immunosuppression, the possible avenues for therapeutic intervention, and highlight the unanswered questions and directions for future work. Overall, hematopoietic dysfunction is established as an active component of the cancer disease mechanisms and an important target for therapeutic intervention.
Collapse
Affiliation(s)
- Viktoria Plackoska
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Dania Shaban
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada,*Correspondence: Anastasia Nijnik,
| |
Collapse
|
33
|
Punekar SR, Weber JS. Intratumoral Therapy to Make a "Cold" Tumor "Hot": The Jury Is Still Out. Clin Cancer Res 2022; 28:5007-5009. [PMID: 36161479 DOI: 10.1158/1078-0432.ccr-22-2427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 01/24/2023]
Abstract
Tilsotolimod, an oligodeoxynucleotide TLR9 agonist, administered intratumorally, has been clinically evaluated. This compound has demonstrated the ability to induce changes within the tumor microenvironment, to convert noninflamed cold tumors into inflamed hot tumors, with the hope that these tumors will be more responsive to immune checkpoint blockade. See related article by Babiker et al., p. 5079.
Collapse
Affiliation(s)
- Salman R Punekar
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| | - Jeffrey S Weber
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
34
|
Zheng X, Jiang K, Xiao W, Zeng D, Peng W, Bai J, Chen X, Li P, Zhang L, Zheng X, Miao Q, Wang H, Wu S, Xu Y, Xu H, Li C, Li L, Gao X, Zheng S, Li J, Wang D, Zhou Z, Xia X, Yang S, Li Y, Cui Z, Zhang Q, Chen L, Lin X, Lin G. CD8 + T cell/cancer-associated fibroblast ratio stratifies prognostic and predictive responses to immunotherapy across multiple cancer types. Front Immunol 2022; 13:974265. [PMID: 36439099 PMCID: PMC9682254 DOI: 10.3389/fimmu.2022.974265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/17/2022] [Indexed: 09/21/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) within the tumor microenvironment (TME) are critical for immune suppression by restricting immune cell infiltration in the tumor stromal zones from penetrating tumor islands and changing their function status, particularly for CD8+ T cells. However, assessing and quantifying the impact of CAFs on immune cells and investigating how this impact is related to clinical outcomes, especially the efficacy of immunotherapy, remain unclear. Materials and methods The TME was characterized using immunohistochemical (IHC) analysis using a large-scale sample size of gene expression profiles. The CD8+ T cell/CAF ratio (CFR) association with survival was investigated in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) lung cancer cohorts. The correlation between CFR and immunotherapeutic efficacy was computed in five independent cohorts. The correlation between CFR and objective response rates (ORRs) following pembrolizumab monotherapy was investigated in 20 solid tumor types. To facilitate clinical translation, the IHC-detected CD8/α-SMA ratio was applied as an immunotherapeutic predictive biomarker in a real-world lung cancer cohort. Results Compared with normal tissue, CAFs were enriched in cancer tissue, and the amount of CAFs was overwhelmingly higher than that in other immune cells. CAFs are positively correlated with the extent of immune infiltration. A higher CFR was strongly associated with improved survival in lung cancer, melanoma, and urothelial cancer immunotherapy cohorts. Within most cohorts, there was no clear evidence for an association between CFR and programmed death-ligand 1 (PD-L1) or tumor mutational burden (TMB). Compared with TMB and PD-L1, a higher correlation coefficient was observed between CFR and the ORR following pembrolizumab monotherapy in 20 solid tumor types (Spearman's r = 0.69 vs. 0.44 and 0.21). In a real-world cohort, patients with a high CFR detected by IHC benefited considerably from immunotherapy as compared with those with a low CFR (hazard ratio, 0.37; 95% confidence interval, 0.19-0.75; p < 0.001). Conclusions CFR is a newly found and simple parameter that can be used for identifying patients unlikely to benefit from immunotherapy. Future studies are needed to confirm this finding.
Collapse
Affiliation(s)
- Xinlong Zheng
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Kan Jiang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Weijin Xiao
- Department of Pathology, College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou, China
| | - Dongqiang Zeng
- Department of Oncology, Southern Medical University, Guangzhou, China
| | - Wenying Peng
- The Second Department of Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| | - Jing Bai
- R&D Department, Geneplus-Beijing Institute, Beijing, China
| | - Xiaohui Chen
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Pansong Li
- R&D Department, Geneplus-Beijing Institute, Beijing, China
| | - Longfeng Zhang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Xiaobin Zheng
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Qian Miao
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Haibo Wang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Shiwen Wu
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Yiquan Xu
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Haipeng Xu
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Chao Li
- Department of Pathology, College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou, China
| | - Lifeng Li
- R&D Department, Geneplus-Beijing Institute, Beijing, China
| | - Xuan Gao
- R&D Department, Geneplus-Beijing Institute, Beijing, China
| | - Suya Zheng
- Chinese People’s Liberation Army 92403 Unit Support Department, Navy Fujian Base Hospital, Fuzhou, China
| | - Junhui Li
- Department of Medical Genetics and Genomics, National Protein Science Center, Beijing, China
| | - Deqiang Wang
- Department of Medical Oncology, Cancer Therapy Center, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhipeng Zhou
- R&D Department, Geneplus-Beijing Institute, Beijing, China
| | - Xuefeng Xia
- R&D Department, Geneplus-Beijing Institute, Beijing, China
| | - Shanshan Yang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Yujing Li
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Zhaolei Cui
- Laboratory of Biochemistry and Molecular Biology Research, Department of Clinical Laboratory, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Qiuyu Zhang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, China
| | - Ling Chen
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Gen Lin
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| |
Collapse
|
35
|
Anticancer peptides mechanisms, simple and complex. Chem Biol Interact 2022; 368:110194. [PMID: 36195187 DOI: 10.1016/j.cbi.2022.110194] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
Peptide therapy has started since 1920s with the advent of insulin application, and now it has emerged as a new approach in treatment of diseases including cancer. Using anti-cancer peptides (ACPs) is a promising way of cancer therapy as ACPs are continuing to be approved and arrived at major pharmaceutical markets. Traditional cancer treatments face different problems like intensive adverse effects to patient's body, cell resistance to conventional chemical drugs and in some worse cases the occurrence of cell multidrug resistance (MDR) of cancerous tissues against chemotherapy. On the other hand, there are some benefits conceived for peptides usage in treatment of diseases specifically cancer, as these compounds present favorable characteristics such as smaller size, high activity, low immunogenicity, good biocompatibility in vivo, convenient and rapid way of synthesis, amenable to sequence modification and revision and there is no limitation for the type of cargo they carry. It is possible to achieve an optimum molecular and functional structure of peptides based on previous experience and bank of peptide motif data which may result in novel peptide design. Bioactive peptides are able to form pores in cell membrane and induce necrosis or apoptosis of abnormal cells. Moreover, recent researches have focused on the tumor recognizing peptide motifs with the ability to permeate to cancerous cells with the aim of cancer treatment at earlier stages. In this strategy the most important factors for addressing cancer are choosing peptides with easy accessibility to tumor cell without cytotoxicity effect towards normal cells. The peptides must also meet acceptable pharmacokinetic requirements. In this review, the characteristics of peptides and cancer cells are discussed. The various mechanisms of peptides' action proposed against cancer cells make the next part of discussion. It will be followed by giving information on peptides application, various methods of peptide designing along with introducing various databases. Future aspects of peptides for employing in area of cancer treatment come as conclusion at the end.
Collapse
|
36
|
Huang M, Xiong D, Pan J, Zhang Q, Sei S, Shoemaker RH, Lubet RA, Montuenga LM, Wang Y, Slusher BS, You M. Targeting Glutamine Metabolism to Enhance Immunoprevention of EGFR-Driven Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105885. [PMID: 35861366 PMCID: PMC9475521 DOI: 10.1002/advs.202105885] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Lung cancer is the leading cause of cancer death worldwide. Vaccination against EGFR can be one of the venues to prevent lung cancer. Blocking glutamine metabolism has been shown to improve anticancer immunity. Here, the authors report that JHU083, an orally active glutamine antagonist prodrug designed to be preferentially activated in the tumor microenvironment, has potent anticancer effects on EGFR-driven mouse lung tumorigenesis. Lung tumor development is significantly suppressed when treatment with JHU083 is combined with an EGFR peptide vaccine (EVax) than either single treatment. Flow cytometry and single-cell RNA sequencing of the lung tumors reveal that JHU083 increases CD8+ T cell and CD4+ Th1 cell infiltration, while EVax elicits robust Th1 cell-mediated immune responses and protects mice against EGFRL858R mutation-driven lung tumorigenesis. JHU083 treatment decreases immune suppressive cells, including both monocytic- and granulocytic-myeloid-derived suppressor cells, regulatory T cells, and pro-tumor CD4+ Th17 cells in mouse models. Interestingly, Th1 cells are found to robustly upregulate oxidative metabolism and adopt a highly activated and memory-like phenotype upon glutamine inhibition. These results suggest that JHU083 is highly effective against EGFR-driven lung tumorigenesis and promotes an adaptive T cell-mediated tumor-specific immune response that enhances the efficacy of EVax.
Collapse
Affiliation(s)
- Mofei Huang
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| | - Donghai Xiong
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| | - Jing Pan
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| | - Qi Zhang
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| | - Shizuko Sei
- Chemopreventive Agent Development Research GroupDivision of Cancer PreventionNational Cancer InstituteBethesdaMD20850USA
| | - Robert H. Shoemaker
- Chemopreventive Agent Development Research GroupDivision of Cancer PreventionNational Cancer InstituteBethesdaMD20850USA
| | - Ronald A. Lubet
- Chemopreventive Agent Development Research GroupDivision of Cancer PreventionNational Cancer InstituteBethesdaMD20850USA
| | - Luis M. Montuenga
- Program in Solid Tumors and BiomarkersCenter for Applied Medical Research (CIMA)University of NavarraPamplona31009Spain
- Department of Histology and PathologyUniversity of NavarraPamplona31009Spain
- Respiratory Tract Tumors GroupIdisnaPamplona31000Spain
- Respiratory Tract Tumors ProgramCIBERONCMadrid28013Spain
| | - Yian Wang
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| | - Barbara S. Slusher
- Johns Hopkins Drug DiscoveryJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMD2128USA
| | - Ming You
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| |
Collapse
|
37
|
Characterization of peripheral T helper 17 (Th17) cells phenotype in postmenopausal women with estrogen insufficiency. Blood Cells Mol Dis 2022; 98:102702. [DOI: 10.1016/j.bcmd.2022.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022]
|
38
|
Bekić M, Vasiljević M, Stojanović D, Kokol V, Mihajlović D, Vučević D, Uskoković P, Čolić M, Tomić S. Phosphonate-Modified Cellulose Nanocrystals Potentiate the Th1 Polarising Capacity of Monocyte-Derived Dendritic Cells via GABA-B Receptor. Int J Nanomedicine 2022; 17:3191-3216. [PMID: 35909813 PMCID: PMC9329576 DOI: 10.2147/ijn.s362038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/26/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Phosphonates, like 3-AminoPropylphosphonic Acid (ApA), possess a great potential for the therapy of bone tumours, and their delivery via cellulose nanocrystals (CNCs) seems a promising approach for their increased efficacy in target tissues. However, the immunological effects of CNC-phosphonates have not been investigated thoroughly. The main aim was to examine how the modification of CNCs with phosphonate affects their immunomodulatory properties in human cells. Methods Wood-based native (n) CNCs were modified via oxidation (ox-CNCs) and subsequent conjugation with ApA (ApA-CNCs). CNCs were characterised by atomic force microscopy (AFM) and nanoindentation. Cytotoxicity and immunomodulatory potential of CNCs were investigated in cultures of human peripheral blood mononuclear cells (PBMCs) and monocyte-derived dendritic cells (MoDCs)/T cells co-cultures by monitoring phenotype, cytokines production, allostimulatory and Th/Treg polarisation capacity. Results AFM showed an increase in CNCs' thickens, elasticity modulus and hardness during the modification with ApA. When applied at non-toxic doses, nCNCs showed a tolerogenic potential upon internalisation by MoDCs, as judged by their increased capacity to up-regulate tolerogenic markers and induce regulatory T cells (Treg), especially when present during the differentiation of MoDCs. In contrast, ox- and ApA-CNCs induced oxidative stress and autophagy in MoDCs, which correlated with their stimulatory effect on the maturation of MoDCs, but also inhibition of MoDCs differentiation. ApA-CNC-treated MoDCs displayed the highest allostimulatory and Th1/CTL polarising activity in co-cultures with T cells. These effects of ApA-CNCs were mediated via GABA-B receptor-induced lowering of cAMP levels in MoDCs, and they could be blocked by GABA-B receptor inhibitor. Moreover, the Th1 polarising and allostimulatory capacity of MoDCs differentiated with ApA-CNC were largely preserved upon the maturation of MoDCs, whereas nCNC- and ox-CNC-differentiated MoDCs displayed an increased tolerogenic potential. Conclusion The delivery of ApA via CNCs induces potent DC-mediated Th1 polarisation, which could be beneficial in their potential application in tumour therapy.
Collapse
Affiliation(s)
- Marina Bekić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Miloš Vasiljević
- Center for Biomedical Sciences, Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Dušica Stojanović
- Department for Construction and Special Materials, Faculty for Technology and Metallurgy, University in Belgrade, Belgrade, Serbia
| | - Vanja Kokol
- Department of Textile Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Dušan Mihajlović
- Center for Biomedical Sciences, Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Dragana Vučević
- Center for Biomedical Sciences, Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Petar Uskoković
- Department for Construction and Special Materials, Faculty for Technology and Metallurgy, University in Belgrade, Belgrade, Serbia
| | - Miodrag Čolić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.,Center for Biomedical Sciences, Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
39
|
Boudin L, De Nonneville A, Finetti P, Guittard G, Nunes JA, Birnbaum D, Mamessier E, Bertucci F. CISH Expression Is Associated with Metastasis-Free Interval in Triple-Negative Breast Cancer and Refines the Prognostic Value of PDL1 Expression. Cancers (Basel) 2022; 14:3356. [PMID: 35884417 PMCID: PMC9316839 DOI: 10.3390/cancers14143356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Strategies are being explored to increase the efficiency of immune checkpoint inhibitors (ICIs) targeting PD1/PDL1 in triple-negative breast cancer (TNBC), including combination with therapies inhibiting intracellular immune checkpoints such as CISH (Cytokine-induced SH2 protein). Correlation between CISH expression and TNBC features is unknown. We retrospectively analyzed CISH expression in 1936 clinical TNBC samples and searched for correlations with clinical variables, including metastasis-free interval (MFI). Among TNBCs, 44% were identified as "CISH-up" and 56% "CISH-down". High expression was associated with pathological axillary lymph node involvement, more adjuvant chemotherapy, and Lehmann's immunomodulatory and luminal AR subtypes. The "CISH-up" class showed longer 5-year MFI (72%) than the "CISH-down" class (60%; p = 2.8 × 10-2). CISH upregulation was associated with activation of IFNα and IFNγ pathways, antitumor cytotoxic immune response, and signatures predictive for ICI response. When CISH and PDL1 were upregulated together, the 5-year MFI was 81% versus 52% when not upregulated (p = 6.21 × 10-6). The two-gene model provided more prognostic information than each gene alone and maintained its prognostic value in multivariate analysis. CISH expression is associated with longer MFI in TNBC and refines the prognostic value of PDL1 expression. Such observation might reinforce the therapeutic relevance of combining CISH inhibition with an anti-PD1/PDL1 ICI.
Collapse
Affiliation(s)
- Laurys Boudin
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Inserm UMR1068, CNRS UMR725, 13009 Marseille, France; (L.B.); (A.D.N.); (P.F.); (D.B.); (E.M.)
- Department of Medical Oncology, Hôpital d’Instruction des Armées Sainte-Anne, 83000 Toulon, France
| | - Alexandre De Nonneville
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Inserm UMR1068, CNRS UMR725, 13009 Marseille, France; (L.B.); (A.D.N.); (P.F.); (D.B.); (E.M.)
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Pascal Finetti
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Inserm UMR1068, CNRS UMR725, 13009 Marseille, France; (L.B.); (A.D.N.); (P.F.); (D.B.); (E.M.)
| | - Geoffrey Guittard
- Immunity and Cancer Team, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Inserm UMR1068, CNRS UMR725, 13009 Marseille, France; (G.G.); (J.A.N.)
| | - Jacques A. Nunes
- Immunity and Cancer Team, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Inserm UMR1068, CNRS UMR725, 13009 Marseille, France; (G.G.); (J.A.N.)
| | - Daniel Birnbaum
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Inserm UMR1068, CNRS UMR725, 13009 Marseille, France; (L.B.); (A.D.N.); (P.F.); (D.B.); (E.M.)
| | - Emilie Mamessier
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Inserm UMR1068, CNRS UMR725, 13009 Marseille, France; (L.B.); (A.D.N.); (P.F.); (D.B.); (E.M.)
| | - François Bertucci
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Inserm UMR1068, CNRS UMR725, 13009 Marseille, France; (L.B.); (A.D.N.); (P.F.); (D.B.); (E.M.)
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France
| |
Collapse
|
40
|
Hutchinson PE, Pringle JH. Consideration of possible effects of vitamin D on established cancer, with reference to malignant melanoma. Pigment Cell Melanoma Res 2022; 35:408-424. [PMID: 35445563 PMCID: PMC9322395 DOI: 10.1111/pcmr.13040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022]
Abstract
Epidemiological studies indicate that Vitamin D has a beneficial, inhibitory effect on cancer development and subsequent progression, including melanoma (MM), and favourable MM outcome has been reported as directly related to vitamin D3 status, assessed by serum 25-hydroxyvitamin D3 (25[OH]D3 ) levels taken at diagnosis. It has been recommended that MM patients with deficient levels of 25(OH)D3 be given vitamin D3 . We examine possible beneficial or detrimental effects of treating established cancer with vitamin D3 . We consider the likely biological determinants of cancer outcome, the reported effects of vitamin D3 on these in both cancerous and non-cancerous settings, and how the effect of vitamin D3 might change depending on the integrity of tumour vitamin D receptor (VDR) signalling. We would argue that the effect of defective tumour VDR signalling could result in loss of suppression of growth, reduction of anti-tumour immunity, with potential antagonism of the elimination phase and enhancement of the escape phase of tumour immunoediting, possibly increased angiogenesis but continued suppression of inflammation. In animal models, having defective VDR signalling, vitamin D3 administration decreased survival and increased metastases. Comparable studies in man are lacking but in advanced disease, a likely marker of defective VDR signalling, studies have shown modest or no improvement in outcome with some evidence of worsening. Work is needed in assessing the integrity of tumour VDR signalling and the safety of vitamin D3 supplementation when defective.
Collapse
Affiliation(s)
| | - James H. Pringle
- Leicester Cancer Research CentreUniversity of LeicesterLeicesterUK
| |
Collapse
|
41
|
Mutant RAS and the tumor microenvironment as dual therapeutic targets for advanced colorectal cancer. Cancer Treat Rev 2022; 109:102433. [PMID: 35905558 DOI: 10.1016/j.ctrv.2022.102433] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022]
Abstract
RAS genes are the most frequently mutated oncogenes in cancer. These mutations occur in roughly half of the patients with colorectal cancer (CRC). RAS mutant tumors are resistant to therapy with anti-EGFR monoclonal antibodies. Therefore, patients with RAS mutant CRC currently have few effective therapy options. RAS mutations lead to constitutively active RAS GTPases, involved in multiple downstream signaling pathways. These alterations are associated with a tumor microenvironment (TME) that drives immune evasion and disease progression by mechanisms that remain incompletely understood. In this review, we focus on the available evidence in the literature explaining the potential effects of RAS mutations on the CRC microenvironment. Ongoing efforts to influence the TME by targeting mutant RAS and thereby sensitizing these tumors to immunotherapy will be discussed as well.
Collapse
|
42
|
Hao Y, Dong H, Li W, Lv X, Shi B, Gao P. The Molecular Role of IL-35 in Non-Small Cell Lung Cancer. Front Oncol 2022; 12:874823. [PMID: 35719927 PMCID: PMC9204334 DOI: 10.3389/fonc.2022.874823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and a common cause of cancer-related death. Better understanding of the molecular mechanisms, pathogenesis, and treatment of NSCLC can help improve patient outcomes. Significant progress has been made in the treatment of NSCLC, and immunotherapy can prolong patient survival. However, the overall cure and survival rates are low, especially in patients with advanced metastases. Interleukin-35 (IL-35), an immunosuppressive factor, is associated with the onset and prognosis of various cancers. Studies have shown that IL-35 expression is elevated in NSCLC, and it is closely related to the progression and prognosis of NSCLC. However, there are few studies on the mechanism of IL-35 in NSCLC. This study discusses the role of IL-35 and its downstream signaling pathways in the pathogenesis of NSCLC and provides new insights into its therapeutic potential.
Collapse
Affiliation(s)
- Yuqiu Hao
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| | - Hongna Dong
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| | - Xuejiao Lv
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| | - Bingqing Shi
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| | - Peng Gao
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Lath A, Santal AR, Kaur N, Kumari P, Singh NP. Anti-cancer peptides: their current trends in the development of peptide-based therapy and anti-tumor drugs. Biotechnol Genet Eng Rev 2022; 39:45-84. [PMID: 35699384 DOI: 10.1080/02648725.2022.2082157] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human cancer remains a cause of high mortality throughout the world. The conventional methods and therapies currently employed for treatment are followed by moderate-to-severe side effects. They have not generated curative results due to the ineffectiveness of treatments. Besides, the associated high costs, technical requirements, and cytotoxicity further characterize their limitations. Due to relatively higher presidencies, bioactive peptides with anti-cancer attributes have recently become treatment choices within the therapeutic arsenal. The peptides act as potential anti-cancer agents explicitly targeting tumor cells while being less toxic to normal cells. The anti-cancer peptides are isolated from various natural sources, exhibit high selectivity and high penetration efficiency, and could be quickly restructured. The therapeutic benefits of compatible anti-cancer peptides have contributed to the significant expansion of cancer treatment; albeit, the mechanisms by which bioactive peptides inhibit the proliferation of tumor cells remain unclear. This review will provide a framework for assessing anti-cancer peptides' structural and functional aspects. It shall provide appropriate information on their mode of action to support and strengthen efforts to improve cancer prevention. The article will mention the therapeutic health benefits of anti-cancer peptides. Their importance in clinical studies is elaborated for reducing cancer incidences and developing sustainable treatment models.
Collapse
Affiliation(s)
- Amit Lath
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Nameet Kaur
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Poonam Kumari
- Sophisticated Analytical Instrumentation Facility, CIL and UCIM, Punjab University, Chandigarh, Inida
| | - Nater Pal Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
44
|
Huang J, Zhou Q. Gene Biomarkers Related to Th17 Cells in Macular Edema of Diabetic Retinopathy: Cutting-Edge Comprehensive Bioinformatics Analysis and In Vivo Validation. Front Immunol 2022; 13:858972. [PMID: 35651615 PMCID: PMC9149582 DOI: 10.3389/fimmu.2022.858972] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Previous studies have shown that T-helper 17 (Th17) cell-related cytokines are significantly increased in the vitreous of proliferative diabetic retinopathy (PDR), suggesting that Th17 cells play an important role in the inflammatory response of diabetic retinopathy (DR), but its cell infiltration and gene correlation in the retina of DR, especially in diabetic macular edema (DME), have not been studied. Methods The dataset GSE160306 was downloaded from the Gene Expression Omnibus (GEO) database, which contains 9 NPDR samples and 10 DME samples. ImmuCellAI algorithm was used to estimate the abundance of Th17 cells in 24 kinds of infiltrating immune cells. The differentially expressed Th17 related genes (DETh17RGs) between NPDR and DME were documented by difference analysis and correlation analysis. Through aggregate analyses such as gene ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analysis, a protein-protein interaction (PPI) network was constructed to analyze the potential function of DETh17RGs. CytoHubba plug-in algorithm, Lasso regression analysis and support vector machine recursive feature elimination (SVM-RFE) were implemented to comprehensively identify Hub DETh17RGs. The expression archetypes of Hub DETh17RGs were further verified in several other independent datasets related to DR. The Th17RG score was defined as the genetic characterization of six Hub DETh17RGs using the GSVA sample score method, which was used to distinguish early and advanced diabetic nephropathy (DN) as well as normal and diabetic nephropathy. Finally, real-time quantitative PCR (qPCR) was implemented to verify the transcription levels of Hub DETh17RGs in the STZ-induced DR model mice (C57BL/6J). Results 238 DETh17RGs were identified, of which 212 genes were positively correlated while only 26 genes were negatively correlated. Six genes (CD44, CDC42, TIMP1, BMP7, RHOC, FLT1) were identified as Hub DETh17RGs. Because DR and DN have a strong correlation in clinical practice, the verification of multiple independent datasets related to DR and DN proved that Hub DETh17RGs can not only distinguish PDR patients from normal people, but also distinguish DN patients from normal people. It can also identify the initial and advanced stages of the two diseases (NPDR vs DME, Early DN vs Advanced DN). Except for CDC42 and TIMP1, the qPCR transcription levels and trends of other Hub DETh17RGs in STZ-induced DR model mice were consistent with the human transcriptome level in this study. Conclusion This study will improve our understanding of Th17 cell-related molecular mechanisms in the progression of DME. At the same time, it also provides an updated basis for the molecular mechanism of Th17 cell crosstalk in the eye and kidney in diabetes.
Collapse
Affiliation(s)
- Jing Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Center of National Ocular Disease Clinical Research Center, Nanchang, China
| | - Qiong Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Center of National Ocular Disease Clinical Research Center, Nanchang, China
| |
Collapse
|
45
|
Development of Anticancer Peptides Using Artificial Intelligence and Combinational Therapy for Cancer Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14050997. [PMID: 35631583 PMCID: PMC9147327 DOI: 10.3390/pharmaceutics14050997] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer is a group of diseases causing abnormal cell growth, altering the genome, and invading or spreading to other parts of the body. Among therapeutic peptide drugs, anticancer peptides (ACPs) have been considered to target and kill cancer cells because cancer cells have unique characteristics such as a high negative charge and abundance of microvilli in the cell membrane when compared to a normal cell. ACPs have several advantages, such as high specificity, cost-effectiveness, low immunogenicity, minimal toxicity, and high tolerance under normal physiological conditions. However, the development and identification of ACPs are time-consuming and expensive in traditional wet-lab-based approaches. Thus, the application of artificial intelligence on the approaches can save time and reduce the cost to identify candidate ACPs. Recently, machine learning (ML), deep learning (DL), and hybrid learning (ML combined DL) have emerged into the development of ACPs without experimental analysis, owing to advances in computer power and big data from the power system. Additionally, we suggest that combination therapy with classical approaches and ACPs might be one of the impactful approaches to increase the efficiency of cancer therapy.
Collapse
|
46
|
Pretre V, Papadopoulos D, Regard J, Pelletier M, Woo J. Interleukin-1 (IL-1) and the inflammasome in cancer. Cytokine 2022; 153:155850. [PMID: 35279620 DOI: 10.1016/j.cyto.2022.155850] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/13/2022] [Accepted: 03/03/2022] [Indexed: 12/14/2022]
Abstract
Numerous preclinical and clinical studies have demonstrated the significant contribution of inflammation to the development and progression of various types of cancer. Inflammation in the tumor microenvironment mediates complex interactions between innate immunity, adaptive immunity, microbiomes and stroma, and ultimately alters the overall fitness of tumor cells at multiple stages of carcinogenesis. Malignancies are known to arise in areas of chronic inflammation and inflammation in the tumor microenvironment (often called tumor-promoting inflammation) is believed to allow cancer cells to evade immunosurveillance while promoting genetic instability, survival and progression. Among the strongest data suggesting a causal role for inflammation in cancer come from the recent CANTOS trial which demonstrated that interleukin-1β (IL-1β) inhibition with canakinumab leads to a significant, dose-dependent decrease in incident lung cancer. This observation has launched a series of additional clinical studies to understand the role of IL-1β and the inflammasome in cancer, and the clinical utility of IL-1β inhibition in different stages of lung cancer. In this article we will review recent data implicating IL-1β signaling and its upstream regulator NLRP3 in both solid tumor and hematologic malignancies. We will discuss the key preclinical observations and the current clinical landscape, and describe the pharmacologic tools which will be used to evaluate the effects of blocking tumor-promoting inflammation clinically.
Collapse
|
47
|
López-Cantillo G, Urueña C, Camacho BA, Ramírez-Segura C. CAR-T Cell Performance: How to Improve Their Persistence? Front Immunol 2022; 13:878209. [PMID: 35572525 PMCID: PMC9097681 DOI: 10.3389/fimmu.2022.878209] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 01/07/2023] Open
Abstract
Adoptive cell therapy with T cells reprogrammed to express chimeric antigen receptors (CAR-T cells) has been highly successful in patients with hematological neoplasms. However, its therapeutic benefits have been limited in solid tumor cases. Even those patients who respond to this immunotherapy remain at risk of relapse due to the short-term persistence or non-expansion of CAR-T cells; moreover, the hostile tumor microenvironment (TME) leads to the dysfunction of these cells after reinfusion. Some research has shown that, in adoptive T-cell therapies, the presence of less differentiated T-cell subsets within the infusion product is associated with better clinical outcomes. Naive and memory T cells persist longer and exhibit greater antitumor activity than effector T cells. Therefore, new methods are being studied to overcome the limitations of this therapy to generate CAR-T cells with these ideal phenotypes. In this paper, we review the characteristics of T-cell subsets and their implications in the clinical outcomes of adoptive therapy with CAR-T cells. In addition, we describe some strategies developed to overcome the reduced persistence of CAR T-cells and alternatives to improve this therapy by increasing the expansion ability and longevity of modified T cells. These methods include cell culture optimization, incorporating homeostatic cytokines during the expansion phase of manufacturing, modulation of CAR-T cell metabolism, manipulating signaling pathways involved in T-cell differentiation, and strategies related to CAR construct designs.
Collapse
Affiliation(s)
- Gina López-Cantillo
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Cesar Ramírez-Segura
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
- Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| |
Collapse
|
48
|
Chen SY, Mamai O, Akhurst RJ. TGFβ: Signaling Blockade for Cancer Immunotherapy. ANNUAL REVIEW OF CANCER BIOLOGY 2022; 6:123-146. [PMID: 36382146 PMCID: PMC9645596 DOI: 10.1146/annurev-cancerbio-070620-103554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Discovered over four decades ago, transforming growth factor β (TGFβ) is a potent pleiotropic cytokine that has context-dependent effects on most cell types. It acts as a tumor suppressor in some cancers and/or supports tumor progression and metastasis through its effects on the tumor stroma and immune microenvironment. In TGFβ-responsive tumors it can promote invasion and metastasis through epithelial-mesenchymal transformation, the appearance of cancer stem cell features, and resistance to many drug classes, including checkpoint blockade immunotherapies. Here we consider the biological activities of TGFβ action on different cells of relevance toward improving immunotherapy outcomes for patients, with a focus on the adaptive immune system. We discuss recent advances in the development of drugs that target the TGFβ signaling pathway in a tumor-specific or cell type–specific manner to improve the therapeutic window between response rates and adverse effects.
Collapse
Affiliation(s)
- Szu-Ying Chen
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Ons Mamai
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Rosemary J. Akhurst
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
- Department of Anatomy, University of California, San Francisco, California, USA
| |
Collapse
|
49
|
Clowers MJ, Moghaddam SJ. Cell Type-Specific Roles of STAT3 Signaling in the Pathogenesis and Progression of K-ras Mutant Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14071785. [PMID: 35406557 PMCID: PMC8997152 DOI: 10.3390/cancers14071785] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Lung adenocarcinomas with mutations in the K-ras gene are hard to target pharmacologically and highly lethal. As a result, there is a need to identify other therapeutic targets that influence K-ras oncogenesis. One contender is STAT3, a transcription factor that is associated with K-ras mutations and aids tumor development and progression through tumor cell intrinsic and extrinsic mechanisms. In this review, we summarize the lung epithelial and infiltrating immune cells that express STAT3, the roles of STAT3 in K-ras mutant lung adenocarcinoma, and therapies that may be able to target STAT3. Abstract Worldwide, lung cancer, particularly K-ras mutant lung adenocarcinoma (KM-LUAD), is the leading cause of cancer mortality because of its high incidence and low cure rate. To treat and prevent KM-LUAD, there is an urgent unmet need for alternative strategies targeting downstream effectors of K-ras and/or its cooperating pathways. Tumor-promoting inflammation, an enabling hallmark of cancer, strongly participates in the development and progression of KM-LUAD. However, our knowledge of the dynamic inflammatory mechanisms, immunomodulatory pathways, and cell-specific molecular signals mediating K-ras-induced lung tumorigenesis is substantially deficient. Nevertheless, within this signaling complexity, an inflammatory pathway is emerging as a druggable target: signal transducer and activator of transcription 3 (STAT3). Here, we review the cell type-specific functions of STAT3 in the pathogenesis and progression of KM-LUAD that could serve as a new target for personalized preventive and therapeutic intervention for this intractable form of lung cancer.
Collapse
Affiliation(s)
- Michael J. Clowers
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
50
|
Dobroch J, Bojczuk K, Kołakowski A, Baczewska M, Knapp P. The Exploration of Chemokines Importance in the Pathogenesis and Development of Endometrial Cancer. Molecules 2022; 27:2041. [PMID: 35408440 PMCID: PMC9000631 DOI: 10.3390/molecules27072041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023] Open
Abstract
Endometrial cancer (EC) is one of the most frequent female malignancies. Because of a characteristic symptom, vaginal bleeding, EC is often diagnosed in an early stage. Despite that, some EC cases present an atypical course with rapid progression and poor prognosis. There have been multiple studies conducted on molecular profiling of EC in order to improve diagnostics and introduce personalized treatment. Chemokines-a protein family that contributes to inflammatory processes that may promote carcinogenesis-constitute an area of interest. Some chemokines and their receptors present alterations in expression in tumor microenvironment. CXCL12, which binds the receptors CXCR4 and CXCR7, is known for its impact on neoplastic cell proliferation, neovascularization and promotion of epidermal-mesenchymal transition. The CCL2-CCR2 axis additionally plays a pivotal role in EC with mutations in the LKB1 gene and activates tumor-associated macrophages. CCL20 and CCR6 are influenced by the RANK/RANKL pathway and alter the function of lymphocytes and dendritic cells. Another axis, CXCL10-CXCR3, affects the function of NK-cells and, interestingly, presents different roles in various types of tumors. This review article consists of analysis of studies that included the roles of the aforementioned chemokines in EC pathogenesis. Alterations in chemokine expression are described, and possible applications of drugs targeting chemokines are reviewed.
Collapse
Affiliation(s)
- Jakub Dobroch
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
- University Oncology Center, University Clinical Hospital in Bialystok, 15-276 Bialystok, Poland
| | - Klaudia Bojczuk
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
| | - Adrian Kołakowski
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
| | - Marta Baczewska
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
- University Oncology Center, University Clinical Hospital in Bialystok, 15-276 Bialystok, Poland
| | - Paweł Knapp
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
- University Oncology Center, University Clinical Hospital in Bialystok, 15-276 Bialystok, Poland
| |
Collapse
|