1
|
Chandwaskar R, Dalal R, Gupta S, Sharma A, Parashar D, Kashyap VK, Sohal JS, Tripathi SK. Dysregulation of T cell response in the pathogenesis of inflammatory bowel disease. Scand J Immunol 2024; 100:e13412. [PMID: 39394898 DOI: 10.1111/sji.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Inflammatory bowel disease (IBD), comprised of Crohn's disease (CD) and ulcerative colitis (UC), are gut inflammatory diseases that were earlier prevalent in the Western Hemisphere but now are on the rise in the East, with India standing second highest in the incidence rate in the world. Inflammation in IBD is a cause of dysregulated immune response, wherein helper T (Th) cell subsets and their cytokines play a major role in the pathogenesis of IBD. In addition, gut microbiota, environmental factors such as dietary factors and host genetics influence the outcome and severity of IBD. Dysregulation between effector and regulatory T cells drives gut inflammation, as effector T cells like Th1, Th17 and Th9 subsets Th cell lineages were found to be increased in IBD patients. In this review, we attempted to discuss the role of different Th cell subsets together with other T cells like CD8+ T cells, NKT and γδT cells in the outcome of gut inflammation in IBD. We also highlighted the potential therapeutic candidates for IBD.
Collapse
Affiliation(s)
- Rucha Chandwaskar
- Amity Institute of Microbial Technology (AIMT), Amity University Jaipur, Rajasthan, India
| | - Rajdeep Dalal
- Infection and Immunology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Saurabh Gupta
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur, Karnataka, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Jagdip Singh Sohal
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Subhash K Tripathi
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
2
|
Chen YD, Lin XP, Ruan ZL, Li M, Yi XM, Zhang X, Li S, Shu HB. PLK2-mediated phosphorylation of SQSTM1 S349 promotes aggregation of polyubiquitinated proteins upon proteasomal dysfunction. Autophagy 2024; 20:2221-2237. [PMID: 39316746 PMCID: PMC11423667 DOI: 10.1080/15548627.2024.2361574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulation in protein homeostasis results in accumulation of protein aggregates, which are sequestered into dedicated insoluble compartments so-called inclusion bodies or aggresomes, where they are scavenged through different mechanisms to reduce proteotoxicity. The protein aggregates can be selectively scavenged by macroautophagy/autophagy called aggrephagy, which is mediated by the autophagic receptor SQSTM1. In this study, we have identified PLK2 as an important regulator of SQSTM1-mediated aggregation of polyubiquitinated proteins. PLK2 is upregulated following proteasome inhibition, and then associates with and phosphorylates SQSTM1 at S349. The phosphorylation of SQSTM1 S349 strengthens its binding to KEAP1, which is required for formation of large SQSTM1 aggregates/bodies upon proteasome inhibition. Our findings suggest that PLK2-mediated phosphorylation of SQSTM1 S349 represents a critical regulatory mechanism in SQSTM1-mediated aggregation of polyubiquitinated proteins.
Collapse
Affiliation(s)
- Yun-Da Chen
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiu-Ping Lin
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Zi-Lun Ruan
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Mi Li
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Xue-Mei Yi
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Xu Zhang
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Shu Li
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
3
|
Derrick SC, Yang A, Cowley S. Enhanced efficacy of BCG vaccine formulated in adjuvant is dependent on IL-17A expression. Tuberculosis (Edinb) 2024; 148:102540. [PMID: 39002310 DOI: 10.1016/j.tube.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
A new, more effective vaccine against tuberculosis (TB) is urgently needed to curtail the current TB problem. The only licensed vaccine, BCG, has been shown to have highly variable protective efficacy in several clinical trials ranging from zero to 80 % against TB disease. We have previously reported that BCG formulated in dimethyl dioctadecyl-ammonium bromide (DDA) with D-(+)-Trehalose 6,6'-Dibehenate (TDB) adjuvant (BCG + Adj) is significantly more protective than BCG alone following murine aerosol Mycobacterium tuberculosis infection. Here we investigate the immunological basis for this improved efficacy by examining expression of different immune markers and cytokines in the lungs of vaccinated mice after M. tuberculosis aerosol challenge. We found significantly greater numbers of pulmonary IL-17A-expressing CD4+ T cells in mice immunized with BCG+Adj as compared to nonvaccinated and BCG-immunized mice at one-month post-challenge and that the enhanced protection was abrogated in IL-17A-deficient mice. Furthermore, we found significantly higher levels of IL-17A, IL-12p40 and IL-33 expression in the lungs of BCG + Adj immunized animals relative to nonvaccinated mice after M. tuberculosis challenge. These results demonstrate that the DDA/TDB adjuvant increases expression of IL-17A in response to the BCG vaccine and that these augmented IL-17A levels enhance control of M. tuberculosis infection.
Collapse
Affiliation(s)
- Steven C Derrick
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA.
| | - Amy Yang
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Siobhan Cowley
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
4
|
Alarcón-Sánchez MA, Romero-Castro NS, Reyes-Fernández S, Sánchez-Tecolapa EU, Heboyan A. Expression of IL-33 in subjects with periodontitis: a systematic review and meta-analysis. Eur J Med Res 2024; 29:440. [PMID: 39210476 PMCID: PMC11363595 DOI: 10.1186/s40001-024-02039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Activation of the IL-33/ST2 axis leads to the production of proinflammatory cytokines and thus to the triggering of osteoclastogenesis, which is why it plays an important role in the immunopathogenesis of periodontitis. The aim of this study was to compare IL-33 levels in serum, plasma, saliva and gingival crevicular fluid (GCF) of subjects with chronic periodontitis (CP) in comparison with the control group (CG). METHODS This systematic review and meta-analysis followed the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) and was registered in the Open Science Framework (OSF): https://doi.org/10.17605/OSF.IO/YHUWA . Six electronic databases were used for study identification; PubMed, Google Scholar, ScienceDirect, Web of Science, Scopus and Dentistry & Oral Sciences Source from March 10, 2012 to April 30, 2024. The Joanna Briggs Institute (JBI) tool was used to assess the quality of the included cross-sectional articles and clinical trials. RESULTS Of the 949 articles identified, 14 were included according to the inclusion and exclusion criteria. The total number of individuals studied in the included investigations was 814 of whom 445 had CP and 369 were healthy. The reported age range was from 20 to 50 years, with a mean age ± standard deviation of 40.29 ± 7.83 years. Four hundred and twenty-six (52%) patients were men and 388 (48%) were women. Meta-analysis revealed that there is an increase in IL-33 levels in plasma, saliva and GCF of subjects with CP compared to CG (p = * < 0.05). CONCLUSIONS This study found a significant increase in IL-33 levels in different biological samples (plasma, saliva and GCF) of individuals with CP compared to CG, thus IL-33 has potential to be a biomarker in the diagnosis of periodontitis.
Collapse
Affiliation(s)
- Mario Alberto Alarcón-Sánchez
- Biomedical Science, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, 39090, Chilpancingoo, Guerrero, Mexico.
- Instituto Odontológico del Pacífico Sur, 39022, Chilpancingo Guerrero, Mexico.
| | - Norma Samanta Romero-Castro
- Department of Implantology and Oral Rehabilitation, Faculty of Dentistry, Autonomous University of Guerrero, 39610, Acapulco, Guerrero, Mexico
| | - Salvador Reyes-Fernández
- Department of Implantology and Oral Rehabilitation, Faculty of Dentistry, Autonomous University of Guerrero, 39610, Acapulco, Guerrero, Mexico
- Hospital General de Acapulco, Secretaria de Salud, 39910, Acapulco, Guerrero, Mexico
| | | | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, 0025, Yerevan, Armenia.
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, North Karegar St, Tehran, Iran.
| |
Collapse
|
5
|
Xu R, Pan Y, Zheng K, Chen M, Yin C, Hu Q, Wang J, Yu Q, Li P, Tai Y, Fang J, Liu B, Fang J, Tian G, Liu B. IL-33/ST2 induces macrophage-dependent ROS production and TRPA1 activation that mediate pain-like responses by skin incision in mice. Theranostics 2024; 14:5281-5302. [PMID: 39267790 PMCID: PMC11388077 DOI: 10.7150/thno.97856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Background: Insufficiently managed incisional (INC) pain severely affects patients' life quality and rehabilitation after a major operation. However, mechanisms underlying INC pain still remain poorly understood. Methods: A mouse model of INC pain was established by skin plus deep muscle incision. Biochemistry assay, in vivo reactive oxygen species (ROS) imaging, Ca2+ imaging combined with retrograde labelling, neuron tracing and nocifensive behavior test, etc. were utilized for mechanism investigation. Results: We found pro-nociceptive cytokine interleukin -33 (IL-33) ranked among top up-regulated cytokines in incised tissues of INC pain model mice. IL-33 was predominantly expressed in keratinocytes around the incisional area. Neutralization of IL-33 or its receptor suppression of tumorigenicity 2 protein (ST2) or genetic deletion of St2 gene (St2 -/-) remarkably ameliorated mechanical allodynia and improved gait impairments of model mice. IL-33 contributes to INC pain by recruiting macrophages, which subsequently release ROS in incised tissues via ST2-dependent mechanism. Transfer of excessive macrophages enhanced oxidative injury and reproduced mechanical allodynia in St2 -/- mice upon tissue incision. Overproduced ROS subsequently activated functionally up-regulated transient receptor potential ankyrin subtype-1 (TRPA1) channel innervating the incisional site to produce mechanical allodynia. Neither deleting St2 nor attenuating ROS affected wound healing of model mice. Conclusions: Our work uncovered a previously unrecognized contribution of IL-33/ST2 signaling in mediating mechanical allodynia and gait impairment of a mouse model of INC pain. Targeting IL-33/ST2 signaling could be a novel therapeutic approach for INC pain management.
Collapse
Affiliation(s)
- Ruoyao Xu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yushuang Pan
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kaige Zheng
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Muyan Chen
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengyu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qimiao Hu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Wang
- Department of Rehabilitation in Traditional Chinese Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Yu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peiyi Li
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Tai
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Boyu Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guihua Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Hassan RR, Mikhail MW, Badr AM, Hassan ME, Abdel-Wahhab MA. Impact of sub chronic administration of deltamethrin on autoimmune activity in rat. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106008. [PMID: 39084774 DOI: 10.1016/j.pestbp.2024.106008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 08/02/2024]
Abstract
Deltamethrin (DLM) is a newer kind of insecticide that is used on pets, livestock, and crops, as well as to combat malaria vectors and household pests. It belongs to the synthetic pyrethroid group and is being promoted as an alternative to organophosphate chemicals due to its persistent and destructive effects. The current study aimed to evaluate the impact of sub-chronic oral exposure to DLM on autoimmune activity in rats. Three groups of male albino rats (15 rats/group) including the control group, the ethanol-treated group (1 ml/rat), and the DLM-treated group (5 mg/kg b.w). Samples of blood were taken from all groups at 4-, 8- and 12-week intervals for the determination of hematological, cytokines, and immunological parameters. T lymphocyte subsets and Treg lymphocytes were determined in serum using flow cytometric acquisition. The results revealed that DLM significantly increased TNF-α, IL-33, IL-6, IL-17, IgG, IgM, WBCs, differential count, and platelets while decreasing Hb concentration and RBCs. Additionally, DLM decreased the number of T-cell subsets (CD3, CD4, CD5, and CD8) and Treg lymphocytes. All of these impacts became more severe over time. It is possible to conclude that the sub-chronic oral exposure to DLM disturbed autoimmune activity through the disturbances in immunological indices, CDs subset Treg lymphocytes.
Collapse
Affiliation(s)
- Rasha R Hassan
- Immunology Department, Research Institute of Medical Entomology, Giza, Egypt
| | - Micheal W Mikhail
- Toxicology Department, Research Institute of Medical Entomology, Giza, Egypt
| | - Abeer M Badr
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Marwa E Hassan
- Toxicology Department, Research Institute of Medical Entomology, Giza, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
7
|
Liu R, Li HF, Li S. PD-1-mediated inhibition of T cell activation: Mechanisms and strategies for cancer combination immunotherapy. CELL INSIGHT 2024; 3:100146. [PMID: 38425643 PMCID: PMC10901852 DOI: 10.1016/j.cellin.2024.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
The programmed cell death 1 (PD-1) immune checkpoint of co-inhibitory signaling plays crucial roles in controlling the magnitude and duration of T cell activation to limit tissue damage and maintain self-tolerance. Cancer cells hijack the co-inhibitory pathway and escape immune surveillance by overexpressing the PD-1 ligand PD-L1. Immune checkpoint inhibitors, such as PD-1 blocking antibody have been approved for tumor immunotherapy. However, not all patients can benefit from PD-1 monotherapy. Combination immunotherapy based on PD-1 axis blockade substantially improves clinical anti-tumor efficacy. In this review, we briefly summarize the current progress on the mechanisms of PD-1-mediated inhibition of T cell activation and strategies for cancer combination immunotherapy.
Collapse
Affiliation(s)
- Rui Liu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan, 430071, China
- Medical Research Institute, Wuhan, 430071, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, 430071, China
- Wuhan University, Wuhan, 430071, China
| | - Hui-Fang Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan, 430071, China
- Medical Research Institute, Wuhan, 430071, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, 430071, China
- Wuhan University, Wuhan, 430071, China
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan, 430071, China
- Medical Research Institute, Wuhan, 430071, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, 430071, China
- Wuhan University, Wuhan, 430071, China
| |
Collapse
|
8
|
Yang J, Wang Y, Hou Y, Sun M, Xia T, Wu X. Evasion of host defense by Brucella. CELL INSIGHT 2024; 3:100143. [PMID: 38250017 PMCID: PMC10797155 DOI: 10.1016/j.cellin.2023.100143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Brucella , an adept intracellular pathogen, causes brucellosis, a zoonotic disease leading to significant global impacts on animal welfare and the economy. Regrettably, there is currently no approved and effective vaccine for human use. The ability of Brucella to evade host defenses is essential for establishing chronic infection and ensuring stable intracellular growth. Brucella employs various mechanisms to evade and undermine the innate and adaptive immune responses of the host through modulating the activation of pattern recognition receptors (PRRs), inflammatory responses, or the activation of immune cells like dendritic cells (DCs) to inhibit antigen presentation. Moreover, it regulates multiple cellular processes such as apoptosis, pyroptosis, and autophagy to establish persistent infection within host cells. This review summarizes the recently discovered mechanisms employed by Brucella to subvert host immune responses and research progress on vaccines, with the aim of advancing our understanding of brucellosis and facilitating the development of more effective vaccines and therapeutic approaches against Brucella .
Collapse
Affiliation(s)
- Jinke Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yue Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yuanpan Hou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Mengyao Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Tian Xia
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xin Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| |
Collapse
|
9
|
Liu R, Zeng LW, Li HF, Shi JG, Zhong B, Shu HB, Li S. PD-1 signaling negatively regulates the common cytokine receptor γ chain via MARCH5-mediated ubiquitination and degradation to suppress anti-tumor immunity. Cell Res 2023; 33:923-939. [PMID: 37932447 PMCID: PMC10709454 DOI: 10.1038/s41422-023-00890-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
Combination therapy with PD-1 blockade and IL-2 substantially improves anti-tumor efficacy comparing to monotherapy. The underlying mechanisms responsible for the synergistic effects of the combination therapy remain enigmatic. Here we show that PD-1 ligation results in BATF-dependent transcriptional induction of the membrane-associated E3 ubiquitin ligase MARCH5, which mediates K27-linked polyubiquitination and lysosomal degradation of the common cytokine receptor γ chain (γc). PD-1 ligation also activates SHP2, which dephosphorylates γcY357, leading to impairment of γc family cytokine-triggered signaling. Conversely, PD-1 blockade restores γc level and activity, thereby sensitizing CD8+ T cells to IL-2. We also identified Pitavastatin Calcium as an inhibitor of MARCH5, which combined with PD-1 blockade and IL-2 significantly improves the efficacy of anti-tumor immunotherapy in mice. Our findings uncover the mechanisms by which PD-1 signaling antagonizes γc family cytokine-triggered immune activation and demonstrate that the underlying mechanisms can be exploited for increased efficacy of combination immunotherapy of cancer.
Collapse
Affiliation(s)
- Rui Liu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China
| | - Lin-Wen Zeng
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China
| | - Hui-Fang Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China
| | - Jun-Ge Shi
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China
| | - Bo Zhong
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China.
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Lin J, Lan Y, Xiang D, Ma R, Chen Q, Ding K, Lu J. IL-33 promotes pancreatic β-cell survival and insulin secretion under diabetogenic conditions through PPARγ. Eur J Pharmacol 2023; 959:176059. [PMID: 37758011 DOI: 10.1016/j.ejphar.2023.176059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Pancreatic β-cell dysfunction plays a vital role in the development of diabetes. IL-33 exerts anti-diabetic effects via its anti-inflammatory properties and has been demonstrated to increase insulin secretion in animal models. However, IL-33, as a pleiotropic cytokine, may also exert a deleterious effect on β-cells, which has not been rigorously studied. In the present study, we found that IL-33 promoted cell survival and insulin secretion in MIN6 (a mouse pancreatic β-cell line) cells under diabetogenic conditions. IL-33 increased the expression of its receptor ST2 and the transcription factor PPARγ, whereas PPARγ inhibition impaired IL-33-mediated β-cell survival and insulin release. IL-33 did not repress the expression of pro-inflammatory mediators, including Tf, Icam1, Cxcl10, and Il1b, whereas it significantly reduced the expression of Ccl2. IL-33 decreased TNF-α secretion and increased IL-10 secretion; these effects were completely reversed by PPARγ inhibition. IL-33 increased glucose uptake and expression of Glut2. It upregulated the expression of glycolytic enzyme genes, namely, Pkm2, Hk2, Gpi1, and Tpi, and downregulated the expression of Gck, Ldha, and Mct4. However, it did not alter hexokinase activity. Moreover, IL-33 increased the number and activity of mitochondria, accompanied by increased ATP production and reduced accumulation of ROS. IL-33 upregulated the expression of PGC-1α and cytochrome c, and mitochondrial fission- and fusion-associated genes, including Mfn1, Mfn2, and Dnm1l. IL-33-mediated mitochondrial homeostasis was partially reversed by PPARγ inhibition. Altogether, IL-33 protects β-cell survival and insulin secretion that could be partially driven via PPARγ, which regulates glucose uptake and promotes mitochondrial function and anti-inflammatory responses.
Collapse
Affiliation(s)
- Jian Lin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yan Lan
- Department of Pharmacy, Huangshi Central Hospital, Huangshi, China
| | - Daochun Xiang
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Ma
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Qianjiang Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Ke Ding
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
11
|
Kulumbegov B, Chikovani T, Gotua M, Kikodze N, Magen E. Interleukin-33, endothelin-1, and inflammatory parameters in chronic spontaneous urticaria. Allergy Asthma Proc 2023; 44:429-435. [PMID: 37919851 DOI: 10.2500/aap.2023.44.230051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Background: Endothelin-1 (ET-1) and interleukin-33 (IL-33) can modulate the activation of mast cells and basophils in the pathophysiology of allergic diseases, interplaying with other mediators of "low-grade inflammation." Objective: To compare ET-1, IL-33, the neutrophil-lymphocyte ratio (NLR), eosinophil-lymphocyte ratio (ELR), platelet-lymphocyte ratio (PLR), eosinophil-basophil ratio (EBR), systemic immune inflammation index (SII), and system inflammation response index (SIRI) in patients with chronic spontaneous urticaria (CSU) and are antihistamine sensitive (AHS), antihistamine resistant (AHR), omalizumab sensitive (OmS), and omalizumab resistant (OmR). Methods: A prospective observational study enrolled 68 consecutive patients with CSU diagnosed and managed according to the dermatology section of the European Academy of Allergology and Clinical Immunology (EAACI), the European Union funded network of excellence, the Global Allergy and Asthma European Network (GA2LEN), the European Dermatology Forum (EDF), and the World Allergy Organization guidelines. Patients with a urticaria control test score of >12 are considered treatment sensitive, and ≤ 12 are considered resistant. The control group consisted of 20 sex-matched subjects without urticarial diseases. Total immunoglobulin E (IgE), antinuclear antibodies (ANA), thyroid stimulating hormone, antithyroid peroxidase, mean platelet volume (MPV), NLR, ELR, PLR, EBR, SII, SIRI, ET-1, and IL-33 were measured at the study entry and compared between the study groups. Results: Thirty AHS group, 38 AHR group, and 20 control group patients were included. The AHS, AHR, and control groups did not differ in demographic parameters, but the CSU groups were characterized by higher indicators of inflammation. In comparison with the AHS group, the AHR group was characterized by higher levels of IL-33 (p = 0.007), ET-1 (p = 0.032), C-reactive protein (p = 0.016), MPV (p = 0.002), and higher rates of positive ANA (p = 0.019). Of the 38 patients from the AHR group, 30 (79%) were included in the OmS group and 8 (21%) were included in the OmR group. The OmR group was characterized by higher levels of C-reactive protein (p = 0.022), EBR (p < 0.001), higher rates of ANA (p = 0.004), and lower levels of ET-1 (p = 0.025) than the OmS group. Conclusion: Our study did not confirm NRL, PRL, SII, and SIRI, PLR as the biomarkers of treatment response to antihistamines and/or omalizumab in CSU. Higher blood levels of IL-33 and ET-1 characterize AHR CSU.
Collapse
Affiliation(s)
| | - Tinatin Chikovani
- Immunology Department, Tbilisi State Medical University, Tbilisi, Georgia, and
| | - Maia Gotua
- From the Center of Allergy and Immunology, Tbilisi, Georgia
| | - Nino Kikodze
- Immunology Department, Tbilisi State Medical University, Tbilisi, Georgia, and
| | - Eli Magen
- Assuta Ashdod University Medical Center, Ben Gurion University of the Negev, Ashdod, Israel
| |
Collapse
|
12
|
Stojanovic B, Gajovic N, Jurisevic M, Stojanovic MD, Jovanovic M, Jovanovic I, Stojanovic BS, Milosevic B. Decoding the IL-33/ST2 Axis: Its Impact on the Immune Landscape of Breast Cancer. Int J Mol Sci 2023; 24:14026. [PMID: 37762328 PMCID: PMC10531367 DOI: 10.3390/ijms241814026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Interleukin-33 (IL-33) has emerged as a critical cytokine in the regulation of the immune system, showing a pivotal role in the pathogenesis of various diseases including cancer. This review emphasizes the role of the IL-33/ST2 axis in breast cancer biology, its contribution to cancer progression and metastasis, its influence on the tumor microenvironment and cancer metabolism, and its potential as a therapeutic target. The IL-33/ST2 axis has been shown to have extensive pro-tumorigenic features in breast cancer, starting from tumor tissue proliferation and differentiation to modulating both cancer cells and anti-tumor immune response. It has also been linked to the resistance of cancer cells to conventional therapeutics. However, the role of IL-33 in cancer therapy remains controversial due to the conflicting effects of IL-33 in tumorigenesis and anti-tumor response. The possibility of targeting the IL-33/ST2 axis in tumor immunotherapy, or as an adjuvant in immune checkpoint blockade therapy, is discussed.
Collapse
Affiliation(s)
- Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| | - Nevena Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia (I.J.)
| | - Milena Jurisevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia (I.J.)
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marina Jovanovic
- Department of Otorinolaringology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia (I.J.)
| | - Bojana S. Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia (I.J.)
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Milosevic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| |
Collapse
|
13
|
Aguilar D, Lemonnier N, Melén E, Bustamante M, Gruzieva O, Guerra S, Keil T, Koppelman GH, Celedón JC, Antó JM, Bousquet J. Distinction between rhinitis alone and rhinitis with asthma using interactomics. Sci Rep 2023; 13:13125. [PMID: 37573373 PMCID: PMC10423213 DOI: 10.1038/s41598-023-39987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023] Open
Abstract
The concept of "one-airway-one-disease", coined over 20 years ago, may be an over-simplification of the links between allergic diseases. Genomic studies suggest that rhinitis alone and rhinitis with asthma are operated by distinct pathways. In this MeDALL (Mechanisms of the Development of Allergy) study, we leveraged the information of the human interactome to distinguish the molecular mechanisms associated with two phenotypes of allergic rhinitis: rhinitis alone and rhinitis in multimorbidity with asthma. We observed significant differences in the topology of the interactomes and in the pathways associated to each phenotype. In rhinitis alone, identified pathways included cell cycle, cytokine signalling, developmental biology, immune system, metabolism of proteins and signal transduction. In rhinitis and asthma multimorbidity, most pathways were related to signal transduction. The remaining few were related to cytokine signalling, immune system or developmental biology. Toll-like receptors and IL-17-mediated signalling were identified in rhinitis alone, while IL-33 was identified in rhinitis in multimorbidity. On the other hand, few pathways were associated with both phenotypes, most being associated with signal transduction pathways including estrogen-stimulated signalling. The only immune system pathway was FceRI-mediated MAPK activation. In conclusion, our findings suggest that rhinitis alone and rhinitis and asthma multimorbidity should be considered as two distinct diseases.
Collapse
Affiliation(s)
| | - Nathanaël Lemonnier
- Institute for Advanced Biosciences, UGA-INSERM U1209-CNRS UMR5309, Site Santé, Allée des Alpes, La Tronche, France
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sach's Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Mariona Bustamante
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Stefano Guerra
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Thomas Keil
- Institute for Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
- Institute of Social Medicine, Epidemiology and Health Economics, Charité-Universitätsmedizin Berlin, Berlin, Germany
- State Institute of Health, Bavarian Health and Food Safety Authority, Erlangen, Germany
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, GRIAC Research Institute, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josep M Antó
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jean Bousquet
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany.
- University Hospital of Montpellier, Montpellier, France.
- Inserm Equipe d'Epidémiologie Respiratoire Intégrative, CESP, Villejuif, France.
| |
Collapse
|
14
|
Kaur H, Kaur G, Ali SA. IL-33's role in the gut immune system: A comprehensive review of its crosstalk and regulation. Life Sci 2023; 327:121868. [PMID: 37330043 DOI: 10.1016/j.lfs.2023.121868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
The intestinal tract is the largest immune organ in the human body, comprising a complex network of immune cells and epithelial cells that perform a variety of functions such as nutrient absorption, digestion, and waste excretion. Maintenance of homeostasis and effective responses to injury in the colonic epithelium are crucial for maintaining homeostasis between these two cell types. The onset and perpetuation of gut inflammation, characterizing inflammatory bowel diseases (IBD), are triggered by constitutive dysregulation of cytokine production. IL-33 is a newly characterized cytokine that has emerged as a critical modulator of inflammatory disorders. IL-33 is constitutively expressed in the nuclei of different cell types such as endothelial, epithelial, and fibroblast-like cells. Upon tissue damage or pathogen encounter, IL-33 is released as an alarmin and signals through a heterodimer receptor that consists of serum Stimulation-2 (ST2) and IL-1 receptor accessory protein (IL-1RAcP). IL-33 has the ability to induce Th2 cytokine production and enhance both Th1 and Th2, as well as Th17 immune responses. Exogenous administration of IL-33 in mice caused pathological changes in most mucosal tissues such as the lung and the gastrointestinal (GI) tract associated with increased production of type 2 cytokines and chemokines. In vivo and in vitro, primary studies have exhibited that IL-33 can activate Th2 cells, mast cells, or basophils to produce type 2 cytokines such as IL-4, IL-5, and IL-13. Moreover, several novel cell populations, collectively referred to as "type 2 innate lymphoid cells," were identified as being IL-33 responsive and are thought to be important for initiating type 2 immunity. Nevertheless, the underlying mechanisms by which IL-33 promotes type 2 immunity in the GI tract remain to be fully understood. Recently, it has been discovered that IL-33 plays important roles in regulatory immune responses. Highly suppressive ST2 + FoxP3+ Tregs subsets regulated by IL-33 were identified in several tissues, including lymphoid organs, gut, lung, and adipose tissues. This review aims to comprehensively summarize the current knowledge on IL-33's role in the gut immune system, its crosstalk, and regulation. The article will provide insights into the potential applications of IL-33-based therapies in the treatment of gut inflammatory disorders.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia; Mark Wainwright Analytical Centre, Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW 2052, Australia
| | - Syed Azmal Ali
- Division Proteomics of Stem Cells and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|