1
|
Han P, Yue J, Kong K, Hu S, Cao P, Deng Y, Li F, Zhao B. Signature identification of relapse-related overall survival of early lung adenocarcinoma after radical surgery. PeerJ 2021; 9:e11923. [PMID: 34430085 PMCID: PMC8349519 DOI: 10.7717/peerj.11923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
Background The widespread use of low-dose chest CT screening has improved the detection of early lung adenocarcinoma. Radical surgery is the best treatment strategy for patients with early lung adenocarcinoma; however, some patients present with postoperative recurrence and poor prognosis. Through this study, we hope to establish a model that can identify patients that are prone to recurrence and have poor prognosis after surgery for early lung adenocarcinoma. Materials and Methods We screened prognostic and relapse-related genes using The Cancer Genome Atlas (TCGA) database and the GSE50081 dataset from the Gene Expression Omnibus (GEO) database. The GSE30219 dataset was used to further screen target genes and construct a risk prognosis signature. Time-dependent ROC analysis, calibration degree analysis, and DCA were used to evaluate the reliability of the model. We validated the TCGA dataset, GSE50081, and GSE30219 internally. External validation was conducted in the GSE31210 dataset. Results A novel four-gene signature (INPP5B, FOSL2, CDCA3, RASAL2) was established to predict relapse-related survival outcomes in patients with early lung adenocarcinoma after surgery. The discovery of these genes may reveal the molecular mechanism of recurrence and poor prognosis of early lung adenocarcinoma. In addition, ROC analysis, calibration analysis and DCA were used to verify the genetic signature internally and externally. Our results showed that our gene signature had a good predictive ability for recurrence and prognosis. Conclusions We established a four-gene signature and predictive model to predict the recurrence and corresponding survival rates in patients with early lung adenocarcinoma after surgery. These may be helpful for reforumulating post-operative consolidation treatment strategies.
Collapse
Affiliation(s)
- Peng Han
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaqi Yue
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kangle Kong
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shan Hu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Cao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fan Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Zhao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Ramos AR, Elong Edimo W, Erneux C. Phosphoinositide 5-phosphatase activities control cell motility in glioblastoma: Two phosphoinositides PI(4,5)P2 and PI(3,4)P2 are involved. Adv Biol Regul 2018; 67:40-48. [PMID: 28916189 DOI: 10.1016/j.jbior.2017.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 05/15/2023]
Abstract
Inositol polyphosphate 5-phosphatases or phosphoinositide 5-phosphatases (PI 5-phosphatases) are enzymes that can act on soluble inositol phosphates and/or phosphoinositides (PIs). Several PI 5-phosphatases have been linked to human genetic diseases, in particular the Lowe protein or OCRL which is mutated in the Lowe syndrome. There are 10 different members of this family and 9 of them can use PIs as substrate. One of these substrates, PI(3,4,5)P3 binds to specific PH domains and recruits as effectors specific proteins to signaling complexes. Protein kinase B is one target protein and activation of the kinase will have a major impact on cell proliferation, survival and cell metabolism. Two other PIs, PI(4,5)P2 and PI(3,4)P2, are produced or used as substrates of PI 5-phosphatases (OCRL, INPP5B, SHIP1/2, SYNJ1/2, INPP5K, INPP5J, INPP5E). The inositol lipids may influence many aspects of cytoskeletal organization, lamellipodia formation and F-actin polymerization. PI 5-phosphatases have been reported to control cell migration, adhesion, polarity and cell invasion particularly in cancer cells. In glioblastoma, reducing SHIP2 expression can positively or negatively affect the speed of cell migration depending on the glioblastoma cell type. The two PI 5-phosphatases SHIP2 or SKIP could be localized at the plasma membrane and can reduce either PI(3,4,5)P3 or PI(4,5)P2 abundance. In the glioblastoma 1321 N1 cells, SHIP2 controls plasma membrane PI(4,5)P2 thereby participating in the control of cell migration.
Collapse
Affiliation(s)
- Ana Raquel Ramos
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
| | - William's Elong Edimo
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Christophe Erneux
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium.
| |
Collapse
|
3
|
Malbec O, Cassard L, Albanesi M, Jönsson F, Mancardi D, Chicanne G, Payrastre B, Dubreuil P, Vivier E, Daëron M. Trans-inhibition of activation and proliferation signals by Fc receptors in mast cells and basophils. Sci Signal 2016; 9:ra126. [PMID: 27999175 DOI: 10.1126/scisignal.aag1401] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allergic and autoimmune inflammation are associated with the activation of mast cells and basophils by antibodies against allergens or auto-antigens, respectively. Both cell types express several receptors for the Fc portion of antibodies, the engagement of which by antigen-antibody complexes controls their responses. When aggregated on the plasma membrane, high-affinity immunoglobulin E (IgE) receptors (FcεRI) and low-affinity IgG receptors (FcγRIIIA in mice, FcγRIIA in humans) induce these cells to release and secrete proinflammatory mediators, chemokines, and cytokines that account for clinical symptoms. When coaggregated with activating receptors on the same cells, other low-affinity IgG receptors (FcγRIIB in both species) inhibit mast cell and basophil activation. We found that FcγRIIB inhibited not only signals triggered by activating receptors with which they were coengaged (cis-inhibition), but also signals triggered by receptors engaged independently (trans-inhibition). Trans-inhibition acted upon the FcεRI-dependent activation of mouse mast cells, mouse basophils, and human basophils, and upon growth factor receptor (Kit)-dependent normal mouse mast cell proliferation, as well as the constitutive in vitro proliferation and the in vivo growth of oncogene (v-Abl)-transformed mastocytoma cells. Trans-inhibition was induced by receptors, whether inhibitory (FcγRIIB) or activating (FcεRI), which recruited the lipid phosphatase SHIP1. By hydrolyzing PI(3,4,5)P3, SHIP1 induced a global unresponsiveness that affected biological responses triggered by receptors that use phosphoinositide 3-kinase to signal. These data suggest that trans-inhibition controls numerous physiological and pathological processes, and that it may be used as a therapeutic tool in inflammation, especially but not exclusively, in allergy and autoimmunity.
Collapse
Affiliation(s)
- Odile Malbec
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.,Inserm, Unité 760, Paris, France
| | - Lydie Cassard
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.,Inserm, Unité 760, Paris, France
| | - Marcello Albanesi
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.,Inserm, Unité 760, Paris, France
| | - Friederike Jönsson
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.,Inserm, Unité 760, Paris, France
| | - David Mancardi
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.,Inserm, Unité 760, Paris, France
| | - Gaëtan Chicanne
- Inserm, Unité 1048, Toulouse, France.,Université Toulouse 3, Toulouse, France.,Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Bernard Payrastre
- Inserm, Unité 1048, Toulouse, France.,Université Toulouse 3, Toulouse, France.,Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Patrice Dubreuil
- Inserm, Unité 1068, Centre de Recherche en Cancérologie de Marseille, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix Marseille Université, Marseille, France.,CNRS, UMR 7258, Marseille, France
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France.,Hôpital de la Conception, Marseille, France
| | - Marc Daëron
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France. .,Inserm, Unité 760, Paris, France.,Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| |
Collapse
|
4
|
Li H, Wu X, Hou S, Malek M, Kielkowska A, Noh E, Makondo KJ, Du Q, Wilkins JA, Johnston JB, Gibson SB, Lin F, Marshall AJ. Phosphatidylinositol-3,4-Bisphosphate and Its Binding Protein Lamellipodin Regulate Chemotaxis of Malignant B Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2015; 196:586-95. [DOI: 10.4049/jimmunol.1500630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/16/2015] [Indexed: 01/14/2023]
|
5
|
Barbieri F, Thellung S, Würth R, Gatto F, Corsaro A, Villa V, Nizzari M, Albertelli M, Ferone D, Florio T. Emerging Targets in Pituitary Adenomas: Role of the CXCL12/CXCR4-R7 System. Int J Endocrinol 2014; 2014:753524. [PMID: 25484899 PMCID: PMC4248486 DOI: 10.1155/2014/753524] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/21/2014] [Indexed: 12/15/2022] Open
Abstract
Chemokines are chemotactic regulators of immune surveillance in physiological and pathological conditions such as inflammation, infection, and cancer. Several chemokines and cognate receptors are constitutively expressed in the central nervous system, not only in glial and endothelial cells but also in neurons, controlling neurogenesis, neurite outgrowth, and axonal guidance during development. In particular, the chemokine CXCL12 and its receptors, CXCR4 and CXCR7, form a functional network that controls plasticity in different brain areas, influencing neurotransmission, neuromodulation, and cell migration, and the dysregulation of this chemokinergic axis is involved in several neurodegenerative, neuroinflammatory, and malignant diseases. CXCR4 primarily mediates the transduction of proliferative signals, while CXCR7 seems to be mainly responsible for scavenging CXCL12. Importantly, the multiple intracellular signalling generated by CXCL12 interaction with its receptors influences hypothalamic modulation of neuroendocrine functions, although a direct modulation of pituitary functioning via autocrine/paracrine mechanisms was also reported. Both CXCL12 and CXCR4 are constitutively overexpressed in pituitary adenomas and their signalling induces cell survival and proliferation, as well as hormonal hypersecretion. In this review we focus on the physiological and pathological functions of immune-related cyto- and chemokines, mainly focusing on the CXCL12/CXCR4-7 axis, and their role in pituitary tumorigenesis. Accordingly, we discuss the potential targeting of CXCR4 as novel pharmacological approach for pituitary adenomas.
Collapse
Affiliation(s)
- Federica Barbieri
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
- *Federica Barbieri:
| | - Stefano Thellung
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Roberto Würth
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Federico Gatto
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Alessandro Corsaro
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Valentina Villa
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Mario Nizzari
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Manuela Albertelli
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Diego Ferone
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| |
Collapse
|
6
|
Srivastava N, Sudan R, Kerr WG. Role of inositol poly-phosphatases and their targets in T cell biology. Front Immunol 2013; 4:288. [PMID: 24069021 PMCID: PMC3779868 DOI: 10.3389/fimmu.2013.00288] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/03/2013] [Indexed: 11/13/2022] Open
Abstract
T lymphocytes play a critical role in host defense in all anatomical sites including mucosal surfaces. This not only includes the effector arm of the immune system, but also regulation of immune responses in order to prevent autoimmunity. Genetic targeting of PI3K isoforms suggests that generation of PI(3,4,5)P3 by PI3K plays a critical role in promoting effector T cell responses. Consequently, the 5'- and 3'-inositol poly-phosphatases SHIP1, SHIP2, and phosphatase and tensin homolog capable of targeting PI(3,4,5)P3 are potential genetic determinants of T cell effector functions in vivo. In addition, the 5'-inositol poly-phosphatases SHIP1 and 2 can shunt PI(3,4,5)P3 to the rare but potent signaling phosphoinositide species PI(3,4)P2 and thus these SHIP1/2, and the INPP4A/B enzymes that deplete PI(3,4)P2 may have precise roles in T cell biology to amplify or inhibit effectors of PI3K signaling that are selectively recruited to and activated by PI(3,4)P2. Here we summarize recent genetic and chemical evidence that indicates the inositol poly-phosphatases have important roles in both the effector and regulatory functions of the T cell compartment. In addition, we will discuss future genetic studies that might be undertaken to further elaborate the role of these enzymes in T cell biology as well as potential pharmaceutical manipulation of these enzymes for therapeutic purposes in disease settings where T cell function is a key in vivo target.
Collapse
Affiliation(s)
- Neetu Srivastava
- Department of Microbiology and Immunology, SUNY Upstate Medical University , Syracuse, NY , USA
| | | | | |
Collapse
|
7
|
Stenton GR, Mackenzie LF, Tam P, Cross JL, Harwig C, Raymond J, Toews J, Wu J, Ogden N, MacRury T, Szabo C. Characterization of AQX-1125, a small-molecule SHIP1 activator: Part 1. Effects on inflammatory cell activation and chemotaxis in vitro and pharmacokinetic characterization in vivo. Br J Pharmacol 2013; 168:1506-18. [PMID: 23121445 DOI: 10.1111/bph.12039] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 09/14/2012] [Accepted: 10/16/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The SH2-containing inositol-5'-phosphatase 1 (SHIP1) metabolizes PI(3,4,5)P3 to PI(3,4)P2. SHIP1-deficient mice exhibit progressive inflammation. Pharmacological activation of SHIP1 is emerging as a potential therapy for pulmonary inflammatory diseases. Here we characterize the efficacy of AQX-1125, a small-molecule SHIP1 activator currently in clinical development. EXPERIMENTAL APPROACH The effects of AQX-1125 were tested in several in vitro assays: on enzyme catalytic activity utilizing recombinant human SHIP1, on Akt phosphorylation in SHIP1-proficient and SHIP1-deficient cell lines, on cytokine release in murine splenocytes, on human leukocyte chemotaxis using modified Boyden chambers and on β-hexosaminidase release from murine mast cells. In addition, pharmacokinetic and drug distribution studies were performed in rats and dogs. RESULTS AQX-1125 increased the catalytic activity of human recombinant SHIP1, an effect, which was absent after deletion of the C2 region. AQX-1125 inhibited Akt phosphorylation in SHIP1-proficient but not in SHIP1-deficient cells, reduced cytokine production in splenocytes, inhibited the activation of mast cells and inhibited human leukocyte chemotaxis. In vivo, AQX-1125 exhibited >80% oral bioavailability and >5 h terminal half-life. CONCLUSIONS Consistent with the role of SHIP1 in cell activation and chemotaxis, the SHIP1 activator AQX-1125 inhibits Akt phosphorylation, inflammatory mediator production and leukocyte chemotaxis in vitro. The in vitro effects and the pharmacokinetic properties of the compound make it a suitable candidate for in vivo testing in various models of inflammation.
Collapse
|
8
|
Stenton GR, Mackenzie LF, Tam P, Cross JL, Harwig C, Raymond J, Toews J, Chernoff D, MacRury T, Szabo C. Characterization of AQX-1125, a small-molecule SHIP1 activator: Part 2. Efficacy studies in allergic and pulmonary inflammation models in vivo. Br J Pharmacol 2013; 168:1519-29. [PMID: 23121409 DOI: 10.1111/bph.12038] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 09/14/2012] [Accepted: 10/16/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The efficacy of AQX-1125, a small-molecule SH2-containing inositol-5'-phosphatase 1 (SHIP1) activator and clinical development candidate, is investigated in rodent models of inflammation. EXPERIMENTAL APPROACH AQX-1125 was administered orally in a mouse model of passive cutaneous anaphylaxis (PCA) and a number of rodent models of respiratory inflammation including: cigarette smoke, LPS and ovalbumin (OVA)-mediated airway inflammation. SHIP1 dependency of the AQX-1125 mechanism of action was investigated by comparing the efficacy in wild-type and SHIP1-deficient mice subjected to an intrapulmonary LPS challenge. RESULTS AQX-1125 exerted anti-inflammatory effects in all of the models studied. AQX-1125 decreased the PCA response at all doses tested. Using bronchoalveolar lavage (BAL) cell counts as an end point, oral or aerosolized AQX-1125 dose dependently decreased the LPS-mediated pulmonary neutrophilic infiltration at 3-30 mg kg⁻¹ and 0.15-15 μg kg⁻¹ respectively. AQX-1125 suppressed the OVA-mediated airway inflammation at 0.1-10 mg kg⁻¹. In the smoke-induced airway inflammation model, AQX-1125 was tested at 30 mg kg⁻¹ and significantly reduced the neutrophil infiltration of the BAL fluid. AQX-1125 (10 mg kg⁻¹) decreased LPS-induced pulmonary neutrophilia in wild-type mice but not in SHIP1-deficient mice. CONCLUSIONS The SHIP1 activator, AQX-1125, suppresses leukocyte accumulation and inflammatory mediator release in rodent models of pulmonary inflammation and allergy. As shown in the mouse model of LPS-induced lung inflammation, the efficacy of the compound is dependent on the presence of SHIP1. Pharmacological SHIP1 activation may have clinical potential for the treatment of pulmonary inflammatory diseases.
Collapse
|
9
|
Blunt MD, Ward SG. Pharmacological targeting of phosphoinositide lipid kinases and phosphatases in the immune system: success, disappointment, and new opportunities. Front Immunol 2012; 3:226. [PMID: 22876243 PMCID: PMC3410520 DOI: 10.3389/fimmu.2012.00226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/12/2012] [Indexed: 12/24/2022] Open
Abstract
The predominant expression of the γ and δ isoforms of PI3K in cells of hematopoietic lineage prompted speculation that inhibitors of these isoforms could offer opportunities for selective targeting of PI3K in the immune system in a range of immune-related pathologies. While there has been some success in developing PI3Kδ inhibitors, progress in developing selective inhibitors of PI3Kγ has been rather disappointing. This has prompted the search for alternative targets with which to modulate PI3K signaling specifically in the immune system. One such target is the SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1) which de-phosphorylates PI(3,4,5)P3 at the D5 position of the inositol ring to create PI(3,4)P2. In this article, we first describe the current state of PI3K isoform-selective inhibitor development. We then focus on the structure of SHIP-1 and its function in the immune system. Finally, we consider the current state of development of small molecule compounds that potently and selectively modulate SHIP activity and which offer novel opportunities to manipulate PI3K mediated signaling in the immune system.
Collapse
Affiliation(s)
- Matthew D Blunt
- Inflammatory Cell Biology Laboratory, Department of Pharmacy and Pharmacology, University of Bath Bath, UK
| | | |
Collapse
|
10
|
Harris SJ, Parry RV, Foster JG, Blunt MD, Wang A, Marelli-Berg F, Westwick J, Ward SG. Evidence That the Lipid Phosphatase SHIP-1 Regulates T Lymphocyte Morphology and Motility. THE JOURNAL OF IMMUNOLOGY 2011; 186:4936-45. [DOI: 10.4049/jimmunol.1002350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Parry RV, Harris SJ, Ward SG. Fine tuning T lymphocytes: A role for the lipid phosphatase SHIP-1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:592-7. [DOI: 10.1016/j.bbapap.2009.09.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/11/2009] [Accepted: 09/15/2009] [Indexed: 11/30/2022]
|
12
|
Wong CHY, Heit B, Kubes P. Molecular regulators of leucocyte chemotaxis during inflammation. Cardiovasc Res 2010; 86:183-91. [PMID: 20124403 DOI: 10.1093/cvr/cvq040] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A fundamental feature of any immune response is the movement of leucocytes from one site in the body to another to provide effector functions. Therefore, elucidating the molecular mechanisms underlying the migration of leucocytes from the blood to tissues is critical to our understanding of immune function during inflammation. The classic steps of leucocyte trafficking involve leucocyte tethering and rolling on vessel walls of the vasculature, followed by firm adhesion to the endothelium. Recent evidence suggests that upon adhering, leucocytes crawl within the vessels before transmigrating across vessel walls and crawling into targeted tissues. The directed nature of the crawling events is orchestrated by a complex array of soluble factors and molecular regulators in combination with the local intravascular and extracellular environment. In fact, this process is known as chemotaxis and orientates cell movement in relation to the ligand gradient. Several signalling pathways have been proposed to be involved in this gradient-sensing and amplification process, but the best studied, discussed in detail here, is the phosphatidylinositol 3-kinase pathway. Substantial progress has been made in understanding how cells roll and adhere in blood vessels; however, how cells crawl in blood vessels, emigrate, and then crawl in tissues has received much less attention. Therefore, the focus of this review is to provide recent insights into molecular mechanisms and cellular processes that mediate leucocyte crawling in blood vessels and tissues during the inflammatory response.
Collapse
Affiliation(s)
- Connie H Y Wong
- Department of Physiology and Biophysics, Calvin, Phoebe and Joan Snyder Institute for Infection, Immunity and Inflammation, University of Calgary, HRIC 4A26A, 3280 Hospital Drive NW, Alberta, Canada T2N 4N1.
| | | | | |
Collapse
|
13
|
Abstract
T-lymphocyte trafficking is targeted to specific organs by selective molecular interactions depending on their differentiation and functional properties. Specific chemokine receptors have been associated with organ-specific trafficking of memory and effector T-cells, as well as the recirculation of naïve T-cells to secondary lymphoid organs. In addition to the acquisition of tissue-selective integrins and chemokine receptors, an additional level of specificity for T-cell trafficking into the tissue is provided by specific recognition of antigen displayed by the endothelium involving the TCRs (T-cell antigen receptors) and co-stimulatory receptors. Activation of PI3K (phosphoinositide 3-kinase) is a robust signalling event shared by most chemokine receptors as well as the TCR and co-stimulatory receptors, contributing to several aspects of T-lymphocyte homing as well as actin reorganization and other components of the general migratory machinery. Accordingly, inhibition of PI3K has been considered seriously as a potential therapeutic strategy by which to combat various T-lymphocyte-dependent pathologies, including autoimmune and inflammatory diseases, as well as to prevent transplant rejection. However, there is substantial evidence for PI3K-independent mechanisms that facilitate T-lymphocyte migration. In this regard, several other signalling-pathway components, including small GTPases, PLC (phospholipase C) and PKC (protein kinase C) isoforms, have also been implicated in T-lymphocyte migration in response to chemokine stimulation. The present review will therefore examine the PI3K-dependent and -independent signal-transduction pathways involved in T-cell migration during distinct modes of T-cell trafficking in response to either chemokines or the TCR and co-stimulatory molecules.
Collapse
|
14
|
Heit B, Liu L, Colarusso P, Puri KD, Kubes P. PI3K accelerates, but is not required for, neutrophil chemotaxis to fMLP. J Cell Sci 2008; 121:205-14. [PMID: 18187452 DOI: 10.1242/jcs.020412] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PI3K activity, resulting in the accumulation of PIP(3) along the leading edge of a chemotaxing cell, has been proposed to be an indispensable signaling event that is required for cells to undergo chemotaxis to endogenous and exogenous chemoattractants. Some studies have suggested that this might be the case for chemoattractants such as IL8, whereas chemotaxis to other stimuli, such as the bacterial peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP), might occur normally in the absence of PI3K activity. Herein, we systematically analyze the role of PI3K in mediating chemotaxis to fMLP, both in vitro and in vivo. Using short- and long-term in vitro assays, as well as an in vivo chemotaxis assay, we investigated the importance of PI3K in response to the prototypic chemoattractant fMLP. Exposure of neutrophils to fMLP induced an immediate polarization, which resulted in directional migration towards fMLP within 2-3 minutes. PI3K-inhibited cells also polarized and migrated in a directional fashion towards fMLP; however, this process was delayed by approximately 15 minutes, demonstrating that PI3K accelerates the initial response to fMLP, but an alternative pathway replaces PI3K over time. By contrast, p38-MAPK-inhibited cells, or cells lacking MK2, were unable to polarize in response to fMLP. Long-term chemotaxis assays using a pan-PI3K inhibitor, a PI3Kdelta-specific inhibitor or PI3Kgamma-knockout neutrophils, demonstrated no role for PI3K in mediating chemotaxis to fMLP, regardless of the steepness of the fMLP gradient. Similar results were observed in vivo, with PI3Kgamma(-/-) cells displaying a delayed, but otherwise normal, chemotactic response to gradients of fMLP. Together, these data demonstrate that, although PI3K can enhance early responses to the bacterial chemoattractant fMLP, it is not required for migration towards this chemoattractant.
Collapse
Affiliation(s)
- Bryan Heit
- Immunology Research Group, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
15
|
Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 2008; 88:581-609. [PMID: 18391174 PMCID: PMC3199571 DOI: 10.1152/physrev.00024.2007] [Citation(s) in RCA: 1106] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mitochondria play an important role in cell death and cardioprotection. During ischemia, when ATP is progressively depleted, ion pumps cannot function resulting in a rise in calcium (Ca(2+)), which further accelerates ATP depletion. The rise in Ca(2+) during ischemia and reperfusion leads to mitochondrial Ca(2+) accumulation, particularly during reperfusion when oxygen is reintroduced. Reintroduction of oxygen allows generation of ATP; however, damage to the electron transport chain results in increased mitochondrial generation of reactive oxygen species (ROS). Mitochondrial Ca(2+) overload and increased ROS can result in opening of the mitochondrial permeability transition pore, which further compromises cellular energetics. The resultant low ATP and altered ion homeostasis result in rupture of the plasma membrane and cell death. Mitochondria have long been proposed as central players in cell death, since the mitochondria are central to synthesis of both ATP and ROS and since mitochondrial and cytosolic Ca(2+) overload are key components of cell death. Many cardioprotective mechanisms converge on the mitochondria to reduce cell death. Reducing Ca(2+) overload and reducing ROS have both been reported to reduce ischemic injury. Preconditioning activates a number of signaling pathways that reduce Ca(2+) overload and reduce activation of the mitochondrial permeability transition pore. The mitochondrial targets of cardioprotective signals are discussed in detail.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA.
| | | |
Collapse
|
16
|
PIP3 pathway in regulatory T cells and autoimmunity. Immunol Res 2008; 39:194-224. [PMID: 17917066 DOI: 10.1007/s12026-007-0075-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/07/2023]
Abstract
Regulatory T cells (Tregs) play an important role in preventing both autoimmune and inflammatory diseases. Many recent studies have focused on defining the signal transduction pathways essential for the development and the function of Tregs. Increasing evidence suggest that T-cell receptor (TCR), interleukin-2 (IL-2) receptor (IL-2R), and co-stimulatory receptor signaling are important in the early development, peripheral homeostasis, and function of Tregs. The phosphoinositide-3 kinase (PI3K)-regulated pathway (PIP3 pathway) is one of the major signaling pathways activated upon TCR, IL-2R, and CD28 stimulation, leading to T-cell activation, proliferation, and cell survival. Activation of the PIP3 pathway is also negatively regulated by two phosphatidylinositol phosphatases SHIP and PTEN. Several mouse models deficient for the molecules involved in PIP3 pathway suggest that impairment of PIP3 signaling leads to dysregulation of immune responses and, in some cases, autoimmunity. This review will summarize the current understanding of the importance of the PIP3 pathway in T-cell signaling and the possible roles this pathway performs in the development and the function of Tregs.
Collapse
|
17
|
Harris SJ, Parry RV, Westwick J, Ward SG. Phosphoinositide lipid phosphatases: natural regulators of phosphoinositide 3-kinase signaling in T lymphocytes. J Biol Chem 2007; 283:2465-9. [PMID: 18073217 DOI: 10.1074/jbc.r700044200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The phosphoinositide 3-kinase signaling pathway has been implicated in a range of T lymphocyte cellular functions, particularly growth, proliferation, cytokine secretion, and survival. Dysregulation of phosphoinositide 3-kinase-dependent signaling and function in leukocytes, including B and T lymphocytes, has been implicated in many inflammatory and autoimmune diseases. As befits a pivotal signaling cascade, several mechanisms exist to ensure that the pathway is tightly regulated. This minireview focuses on two lipid phosphatases, viz. the 3'-phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SHIP (Src homology 2 domain-containing inositol-5-phosphatase). We discuss their role in regulating T lymphocyte signaling as well their potential as future therapeutic targets.
Collapse
Affiliation(s)
- Stephanie J Harris
- Inflammatory Cell Biology Laboratory, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | | | | | | |
Collapse
|
18
|
Patrussi L, Baldari CT. Intracellular mediators of CXCR4-dependent signaling in T cells. Immunol Lett 2007; 115:75-82. [PMID: 18054087 DOI: 10.1016/j.imlet.2007.10.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 10/10/2007] [Accepted: 10/12/2007] [Indexed: 01/03/2023]
Abstract
The signaling pathways induced in T lymphocytes by CXCR4-CXCL12 interaction, which lead to the cytoskeletal macro-rearrangements observable in migrating cells, are as yet largely uncharacterized. The aim of this review is to briefly summarize the current knowledge of the signaling machinery which controls the process of chemotaxis in CXCL12-stimulated T lymphocytes.
Collapse
Affiliation(s)
- Laura Patrussi
- Department of Evolutionary Biology, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | | |
Collapse
|
19
|
Avota E, Harms H, Schneider-Schaulies S. Measles virus induces expression of SIP110, a constitutively membrane clustered lipid phosphatase, which inhibits T cell proliferation. Cell Microbiol 2006; 8:1826-39. [PMID: 16824039 DOI: 10.1111/j.1462-5822.2006.00752.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Interference of measles virus (MV) with phosphatidyl-inositol-3-kinase (PI3K) activation in response to T cell receptor ligation was identified as important for the induction of T cell paralysis. We now show that MV exposure of unstimulated T cells induces expression of SIP110, an isoform of the lipid phosphatase SHIP145, which is translated from an intron-derived sequences containing mRNA. We found that MV contact can regulate stimulated exon inclusion into pre-mRNAs by targeting PI3K or MAPK-dependent nuclear translocation and activation of splicing regulatory serine-arginine rich (SR) and Sam68 proteins. Induction of SIP110 in resting T cells relied on MV-dependent interference with basal activity of the PI3K. SIP110 was cloned from MV-exposed T cells, and, when transiently expressed in primary or Jurkat T cells, localized into membrane clusters independently of T cell activation. Confirming that SIP110 is a catalytically active lipid phosphatase, its transgenic expression abolished basal and impaired PMA/ionomycin-stimulated phosphorylation of the Akt kinase which is important for T cell proliferation. Thus MV causes induction of SIP110 expression, which constitutively depletes the cellular phosphoinositol-3,4,5-phosphate pool suggesting that thereby the threshold for activation signals necessary for the induction of T cell proliferation is raised.
Collapse
Affiliation(s)
- Elita Avota
- Institute for Virology and Immunobiology, University of Wuerzburg, Versbacher Str. 7, D-97078 Wuerzburg, Germany
| | | | | |
Collapse
|