1
|
Lockyer JL, Reading A, Vicenzi S, Zbela A, Viswanathan S, Delandre C, Newland JW, McMullen JPD, Marshall OJ, Gasperini R, Foa L, Lin JY. Selective optogenetic inhibition of Gα q or Gα i signaling by minimal RGS domains disrupts circuit functionality and circuit formation. Proc Natl Acad Sci U S A 2024; 121:e2411846121. [PMID: 39190348 PMCID: PMC11388284 DOI: 10.1073/pnas.2411846121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 08/28/2024] Open
Abstract
Optogenetic techniques provide genetically targeted, spatially and temporally precise approaches to correlate cellular activities and physiological outcomes. In the nervous system, G protein-coupled receptors (GPCRs) have essential neuromodulatory functions through binding extracellular ligands to induce intracellular signaling cascades. In this work, we develop and validate an optogenetic tool that disrupts Gαq signaling through membrane recruitment of a minimal regulator of G protein signaling (RGS) domain. This approach, Photo-induced Gα Modulator-Inhibition of Gαq (PiGM-Iq), exhibited potent and selective inhibition of Gαq signaling. Using PiGM-Iq we alter the behavior of Caenorhabditis elegans and Drosophila with outcomes consistent with GPCR-Gαq disruption. PiGM-Iq changes axon guidance in cultured dorsal root ganglia neurons in response to serotonin. PiGM-Iq activation leads to developmental deficits in zebrafish embryos and larvae resulting in altered neuronal wiring and behavior. Furthermore, by altering the minimal RGS domain, we show that this approach is amenable to Gαi signaling. Our unique and robust optogenetic Gα inhibiting approaches complement existing neurobiological tools and can be used to investigate the functional effects neuromodulators that signal through GPCR and trimeric G proteins.
Collapse
Affiliation(s)
- Jayde L Lockyer
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Andrew Reading
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Silvia Vicenzi
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Agnieszka Zbela
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Saranya Viswanathan
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Caroline Delandre
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jake W Newland
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - John P D McMullen
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Owen J Marshall
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Robert Gasperini
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Lisa Foa
- School of Psychological Sciences, University of Tasmania, Sandy Bay, TAS 7005, Australia
| | - John Y Lin
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
2
|
McNeill SM, Zhao P. The roles of RGS proteins in cardiometabolic disease. Br J Pharmacol 2024; 181:2319-2337. [PMID: 36964984 DOI: 10.1111/bph.16076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the most prominent receptors on the surface of the cell and play a central role in the regulation of cardiac and metabolic functions. GPCRs transmit extracellular stimuli to the interior of the cells by activating one or more heterotrimeric G proteins. The duration and intensity of G protein-mediated signalling are tightly controlled by a large array of intracellular mediators, including the regulator of G protein signalling (RGS) proteins. RGS proteins selectively promote the GTPase activity of a subset of Gα subunits, thus serving as negative regulators in a pathway-dependent manner. In the current review, we summarise the involvement of RGS proteins in cardiometabolic function with a focus on their tissue distribution, mechanisms of action and dysregulation under various disease conditions. We also discuss the potential therapeutic applications for targeting RGS proteins in treating cardiometabolic conditions and current progress in developing RGS modulators. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Samantha M McNeill
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Peishen Zhao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (CCeMMP), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Wu D, Casey PJ. GPCR-Gα13 Involvement in Mitochondrial Function, Oxidative Stress, and Prostate Cancer. Int J Mol Sci 2024; 25:7162. [PMID: 39000269 PMCID: PMC11241654 DOI: 10.3390/ijms25137162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Gα13 and Gα12, encoded by the GNA13 and GNA12 genes, respectively, are members of the G12 family of Gα proteins that, along with their associated Gβγ subunits, mediate signaling from specific G protein-coupled receptors (GPCRs). Advanced prostate cancers have increased expression of GPCRs such as CXC Motif Chemokine Receptor 4 (CXCR4), lysophosphatidic acid receptor (LPAR), and protease activated receptor 1 (PAR-1). These GPCRs signal through either the G12 family, or through Gα13 exclusively, often in addition to other G proteins. The effect of Gα13 can be distinct from that of Gα12, and the role of Gα13 in prostate cancer initiation and progression is largely unexplored. The oncogenic effect of Gα13 on cell migration and invasion in prostate cancer has been characterized, but little is known about other biological processes such as mitochondrial function and oxidative stress. Current knowledge on the link between Gα13 and oxidative stress is based on animal studies in which GPCR-Gα13 signaling decreased superoxide levels, and the overexpression of constitutively active Gα13 promoted antioxidant gene activation. In human samples, mitochondrial superoxide dismutase 2 (SOD2) correlates with prostate cancer risk and prognostic Gleason grade. However, overexpression of SOD2 in prostate cancer cells yielded conflicting results on cell growth and survival under basal versus oxidative stress conditions. Hence, it is necessary to explore the effect of Gα13 on prostate cancer tumorigenesis, as well as the effect of Gα13 on SOD2 in prostate cancer cell growth under oxidative stress conditions.
Collapse
Affiliation(s)
- Di Wu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
| | - Patrick J. Casey
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, 308 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
4
|
Lockyer J, Reading A, Vicenzi S, Delandre C, Marshall O, Gasperini R, Foa L, Lin JY. Optogenetic inhibition of Gα signalling alters and regulates circuit functionality and early circuit formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539674. [PMID: 37214843 PMCID: PMC10197587 DOI: 10.1101/2023.05.06.539674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Optogenetic techniques provide genetically targeted, spatially and temporally precise approaches to correlate cellular activities and physiological outcomes. In the nervous system, G-protein-coupled receptors (GPCRs) have essential neuromodulatory functions through binding extracellular ligands to induce intracellular signaling cascades. In this work, we develop and validate a new optogenetic tool that disrupt Gαq signaling through membrane recruitment of a minimal Regulator of G-protein signaling (RGS) domain. This approach, Photo-induced Modulation of Gα protein - Inhibition of Gαq (PiGM-Iq), exhibited potent and selective inhibition of Gαq signaling. We alter the behavior of C. elegans and Drosophila with outcomes consistent with GPCR-Gαq disruption. PiGM-Iq also changes axon guidance in culture dorsal root ganglia neurons in response to serotonin. PiGM-Iq activation leads to developmental deficits in zebrafish embryos and larvae resulting in altered neuronal wiring and behavior. By altering the choice of minimal RGS domain, we also show that this approach is amenable to Gαi signaling.
Collapse
Affiliation(s)
- Jayde Lockyer
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
| | - Andrew Reading
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
| | - Silvia Vicenzi
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
- Current affiliation, Moores Cancer Center, School of Medicine, Division of Regenerative Medicine, University of California, San Diego, California, USA
| | - Caroline Delandre
- Menzies Institute of Medical Research, University of Tasmania, Tasmania, Australia
| | - Owen Marshall
- Menzies Institute of Medical Research, University of Tasmania, Tasmania, Australia
| | - Robert Gasperini
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
| | - Lisa Foa
- School of Psychological Sciences, University of Tasmania, Tasmania, Australia
| | - John Y. Lin
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
| |
Collapse
|
5
|
Li L, Xu Q, Tang C. RGS proteins and their roles in cancer: friend or foe? Cancer Cell Int 2023; 23:81. [PMID: 37118788 PMCID: PMC10148553 DOI: 10.1186/s12935-023-02932-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
As negative modulators of G-protein-coupled receptors (GPCRs) signaling, regulators of G protein signaling (RGS) proteins facilitate various downstream cellular signalings through regulating kinds of heterotrimeric G proteins by stimulating the guanosine triphosphatase (GTPase) activity of G-protein α (Gα) subunits. The expression of RGS proteins is dynamically and precisely mediated by several different mechanisms including epigenetic regulation, transcriptional regulation -and post-translational regulation. Emerging evidence has shown that RGS proteins act as important mediators in controlling essential cellular processes including cell proliferation, survival -and death via regulating downstream cellular signaling activities, indicating that RGS proteins are fundamentally involved in sustaining normal physiological functions and dysregulation of RGS proteins (such as aberrant expression of RGS proteins) is closely associated with pathologies of many diseases such as cancer. In this review, we summarize the molecular mechanisms governing the expression of RGS proteins, and further discuss the relationship of RGS proteins and cancer.
Collapse
Affiliation(s)
- Lin Li
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Qiang Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China.
| |
Collapse
|
6
|
Montañez-Miranda C, Perszyk RE, Harbin NH, Okalova J, Ramineni S, Traynelis SF, Hepler JR. Functional Assessment of Cancer-Linked Mutations in Sensitive Regions of Regulators of G Protein Signaling Predicted by Three-Dimensional Missense Tolerance Ratio Analysis. Mol Pharmacol 2023; 103:21-37. [PMID: 36384958 PMCID: PMC10955721 DOI: 10.1124/molpharm.122.000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins modulate G protein-coupled receptor (GPCR) signaling by acting as negative regulators of G proteins. Genetic variants in RGS proteins are associated with many diseases, including cancers, although the impact of these mutations on protein function is uncertain. Here we analyze the RGS domains of 15 RGS protein family members using a novel bioinformatic tool that measures the missense tolerance ratio (MTR) using a three-dimensional (3D) structure (3DMTR). Subsequent permutation analysis can define the protein regions that are most significantly intolerant (P < 0.05) in each dataset. We further focused on RGS14, RGS10, and RGS4. RGS14 exhibited seven significantly tolerant and seven significantly intolerant residues, RGS10 had six intolerant residues, and RGS4 had eight tolerant and six intolerant residues. Intolerant and tolerant-control residues that overlap with pathogenic cancer mutations reported in the COSMIC cancer database were selected to define the functional phenotype. Using complimentary cellular and biochemical approaches, proteins were tested for effects on GPCR-Gα activation, Gα binding properties, and downstream cAMP levels. Identified intolerant residues with reported cancer-linked mutations RGS14-R173C/H and RGS4-K125Q/E126K, and tolerant RGS14-S127P and RGS10-S64T resulted in a loss-of-function phenotype in GPCR-G protein signaling activity. In downstream cAMP measurement, tolerant RGS14-D137Y and RGS10-S64T and intolerant RGS10-K89M resulted in change of function phenotypes. These findings show that 3DMTR identified intolerant residues that overlap with cancer-linked mutations cause phenotypic changes that negatively impact GPCR-G protein signaling and suggests that 3DMTR is a potentially useful bioinformatics tool for predicting functionally important protein residues. SIGNIFICANCE STATEMENT: Human genetic variant/mutation information has expanded rapidly in recent years, including cancer-linked mutations in regulator of G protein signaling (RGS) proteins. However, experimental testing of the impact of this vast catalogue of mutations on protein function is not feasible. We used the novel bioinformatics tool three-dimensional missense tolerance ratio (3DMTR) to define regions of genetic intolerance in RGS proteins and prioritize which cancer-linked mutants to test. We found that 3DMTR more accurately classifies loss-of-function mutations in RGS proteins than other databases thereby offering a valuable new research tool.
Collapse
Affiliation(s)
- Carolina Montañez-Miranda
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Nicholas H Harbin
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Jennifer Okalova
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Suneela Ramineni
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - John R Hepler
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
7
|
Deng Y, Dickey JE, Saito K, Deng G, Singh U, Jiang J, Toth BA, Zhu Z, Zingman LV, Resch JM, Grobe JL, Cui H. Elucidating the role of Rgs2 expression in the PVN for metabolic homeostasis in mice. Mol Metab 2022; 66:101622. [PMID: 36307046 PMCID: PMC9638802 DOI: 10.1016/j.molmet.2022.101622] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE RGS2 is a GTPase activating protein that modulates GPCR-Gα signaling and mice lacking RGS2 globally exhibit metabolic alterations. While RGS2 is known to be broadly expressed throughout the body including the brain, the relative contribution of brain RGS2 to metabolic homeostasis remains unknown. The purpose of this study was to characterize RGS2 expression in the paraventricular nucleus of hypothalamus (PVN) and test its role in metabolic homeostasis. METHODS We used a combination of RNAscope in situ hybridization (ISH), immunohistochemistry, and bioinformatic analyses to characterize the pattern of Rgs2 expression in the PVN. We then created mice lacking Rgs2 either prenatally or postnatally in the PVN and evaluated their metabolic consequences. RESULTS RNAscope ISH analysis revealed a broad but regionally enriched Rgs2 mRNA expression throughout the mouse brain, with the highest expression being observed in the PVN along with several other brain regions, such as the arcuate nucleus of hypothalamus and the dorsal raphe nucleus. Within the PVN, we found that Rgs2 is specifically enriched in CRH+ endocrine neurons and is further increased by calorie restriction. Functionally, although Sim1-Cre-mediated prenatal deletion of Rgs2 in PVN neurons had no major effects on metabolic homeostasis, AAV-mediated adult deletion of Rgs2 in the PVN led to significantly increased food intake, body weight (both fat and fat-free masses), body length, and blood glucose levels in both male and female mice. Strikingly, we found that prolonged postnatal loss of Rgs2 leads to neuronal cell death in the PVN, while rapid body weight gain in the early phase of viral-mediated PVN Rgs2 deletion is independent of PVN neuronal loss. CONCLUSIONS Our results provide the first evidence to show that PVN Rgs2 expression is not only sensitive to metabolic challenge but also critically required for PVN endocrine neurons to function and maintain metabolic homeostasis.
Collapse
Affiliation(s)
- Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jacob E Dickey
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Kenji Saito
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Uday Singh
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jingwei Jiang
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Brandon A Toth
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Zhiyong Zhu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Leonid V Zingman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jon M Resch
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States; F.O.E. Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States; F.O.E. Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
8
|
Chimeric GPCRs mimic distinct signaling pathways and modulate microglia responses. Nat Commun 2022; 13:4728. [PMID: 35970889 PMCID: PMC9378622 DOI: 10.1038/s41467-022-32390-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate processes ranging from immune responses to neuronal signaling. However, ligands for many GPCRs remain unknown, suffer from off-target effects or have poor bioavailability. Additionally, dissecting cell type-specific responses is challenging when the same GPCR is expressed on different cells within a tissue. Here, we overcome these limitations by engineering DREADD-based GPCR chimeras that bind clozapine-N-oxide and mimic a GPCR-of-interest. We show that chimeric DREADD-β2AR triggers responses comparable to β2AR on second messenger and kinase activity, post-translational modifications, and protein-protein interactions. Moreover, we successfully recapitulate β2AR-mediated filopodia formation in microglia, an immune cell capable of driving central nervous system inflammation. When dissecting microglial inflammation, we included two additional DREADD-based chimeras mimicking microglia-enriched GPR65 and GPR109A. DREADD-β2AR and DREADD-GPR65 modulate the inflammatory response with high similarity to endogenous β2AR, while DREADD-GPR109A shows no impact. Our DREADD-based approach allows investigation of cell type-dependent pathways without known endogenous ligands. Understanding the function of GPCRs requires stimulation with their specific ligands. Here, the authors design chemogenetic G-protein coupled receptors that allows for the study of receptors without knowing the immediate ligand, and demonstrate its use for the β2-adrenergic receptor in microglia.
Collapse
|
9
|
Dahlen SA, Bernadyn TF, Dixon AJ, Sun B, Xia J, Owens EA, Osei-Owusu P. Dual loss of regulator of G protein signaling 2 and 5 exacerbates ventricular myocyte arrhythmias and disrupts the fine-tuning of G i/o signaling. J Mol Cell Cardiol 2022; 170:34-46. [PMID: 35661621 DOI: 10.1016/j.yjmcc.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/22/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
AIMS Cardiac contractility, essential to maintaining proper cardiac output and circulation, is regulated by G protein-coupled receptor (GPCR) signaling. Previously, the absence of regulator of G protein signaling (RGS) 2 and 5, separately, was shown to cause G protein dysregulation, contributing to modest blood pressure elevation and exaggerated cardiac hypertrophic response to pressure-overload. Whether RGS2 and 5 redundantly control G protein signaling to maintain cardiovascular homeostasis is unknown. Here we examined how the dual absence of RGS2 and 5 (Rgs2/5 dbKO) affects blood pressure and cardiac structure and function. METHODS AND RESULTS We found that Rgs2/5 dbKO mice showed left ventricular dilatation at baseline by echocardiography. Cardiac contractile response to dobutamine stress test was sex-dependently reduced in male Rgs2/5 dbKO relative to WT mice. When subjected to surgery-induced stress, male Rgs2/5 dbKO mice had 75% mortality within 72-96 h after surgery, accompanied by elevated baseline blood pressure and decreased cardiac contractile function. At the cellular level, cardiomyocytes (CM) from Rgs2/5 dbKO mice showed augmented Ca2+ transients and increased incidence of arrhythmia without augmented contractile response to electrical field stimulation (EFS) and activation of β-adrenergic receptors (βAR) with isoproterenol. Dual loss of Rgs2 and 5 suppressed forskolin-induced cAMP production, which was restored by Gi/o inactivation with pertussis toxin that also reduced arrhythmogenesis during EFS or βAR stimulation. Cardiomyocyte NCX and PMCA mRNA expression was unaffected in Rgs2/5 dbKO male mice. However, there was an exaggerated elevation of EFS-induced cytoplasmic Ca2+ in the presence of SERCA blockade with thapsigargin. CONCLUSIONS We conclude that RGS2 and 5 promote normal ventricular rhythm by coordinating their regulatory activity towards Gi/o signaling and facilitating cardiomyocyte calcium handling.
Collapse
Affiliation(s)
- Shelby A Dahlen
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States of America
| | - Tyler F Bernadyn
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America
| | - Alethia J Dixon
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States of America
| | - Bo Sun
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States of America
| | - Jingsheng Xia
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States of America
| | - Elizabeth A Owens
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America
| | - Patrick Osei-Owusu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States of America; Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America.
| |
Collapse
|
10
|
McNabb HJ, Zhang Q, Sjögren B. Emerging Roles for Regulator of G Protein Signaling 2 in (Patho)physiology. Mol Pharmacol 2020; 98:751-760. [PMID: 32973086 DOI: 10.1124/molpharm.120.000111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Since their discovery in the mid-1990s, regulator of G protein signaling (RGS) proteins have emerged as key regulators of signaling through G protein-coupled receptors. Among the over 20 known RGS proteins, RGS2 has received increasing interest as a potential therapeutic drug target with broad clinical implications. RGS2 is a member of the R4 subfamily of RGS proteins and is unique in that it is selective for Gα q Despite only having an RGS domain, responsible for the canonical GTPase activating protein activity, RGS2 can regulate additional processes, such as protein synthesis and adenylate cyclase activity, through protein-protein interactions. Here we provide an update of the current knowledge of RGS2 function as it relates to molecular mechanisms of regulation as well as its potential role in regulating a number of physiologic systems and pathologies, including cardiovascular disease and central nervous system disorders, as well as various forms of cancer. SIGNIFICANCE STATEMENT: Regulator of G protein signaling (RGS) proteins represent an exciting class of novel drug targets. RGS2, in particular, could have broad clinical importance. As more details are emerging on the regulation of RGS2 in various physiological systems, the potential utility of this small protein in therapeutic development is increasing.
Collapse
Affiliation(s)
- Harrison J McNabb
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Qian Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Benita Sjögren
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| |
Collapse
|
11
|
Almutairi F, Lee JK, Rada B. Regulator of G protein signaling 10: Structure, expression and functions in cellular physiology and diseases. Cell Signal 2020; 75:109765. [PMID: 32882407 PMCID: PMC7579743 DOI: 10.1016/j.cellsig.2020.109765] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/22/2023]
Abstract
Regulator of G protein signaling 10 (RGS10) belongs to the superfamily of RGS proteins, defined by the presence of a conserved RGS domain that canonically binds and deactivates heterotrimeric G-proteins. RGS proteins act as GTPase activating proteins (GAPs), which accelerate GTP hydrolysis on the G-protein α subunits and result in termination of signaling pathways downstream of G protein-coupled receptors. RGS10 is the smallest protein of the D/R12 subfamily and selectively interacts with Gαi proteins. It is widely expressed in many cells and tissues, with the highest expression found in the brain and immune cells. RGS10 expression is transcriptionally regulated via epigenetic mechanisms. Although RGS10 lacks multiple of the defined regulatory domains found in other RGS proteins, RGS10 contains post-translational modification sites regulating its expression, localization, and function. Additionally, RGS10 is a critical protein in the regulation of physiological processes in multiple cells, where dysregulation of its expression has been implicated in various diseases including Parkinson's disease, multiple sclerosis, osteopetrosis, chemoresistant ovarian cancer and cardiac hypertrophy. This review summarizes RGS10 features and its regulatory mechanisms, and discusses the known functions of RGS10 in cellular physiology and pathogenesis of several diseases.
Collapse
Affiliation(s)
- Faris Almutairi
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
12
|
Kim Y, Ghil S. Regulators of G-protein signaling, RGS2 and RGS4, inhibit protease-activated receptor 4-mediated signaling by forming a complex with the receptor and Gα in live cells. Cell Commun Signal 2020; 18:86. [PMID: 32517689 PMCID: PMC7285472 DOI: 10.1186/s12964-020-00552-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Protease-activated receptor 4 (PAR4) is a seven transmembrane G-protein coupled receptor (GPCR) activated by endogenous proteases, such as thrombin. PAR4 is involved in various pathophysiologies including cancer, inflammation, pain, and thrombosis. Although regulators of G-protein signaling (RGS) are known to modulate GPCR/Gα-mediated pathways, their specific effects on PAR4 are not fully understood at present. We previously reported that RGS proteins attenuate PAR1- and PAR2-mediated signaling through interactions with these receptors in conjunction with distinct Gα subunits. METHODS We employed a bioluminescence resonance energy transfer technique and confocal microscopy to examine potential interactions among PAR4, RGS, and Gα subunits. The inhibitory effects of RGS proteins on PAR4-mediated downstream signaling and cancer progression were additionally investigated by using several assays including ERK phosphorylation, calcium mobilization, RhoA activity, cancer cell proliferation, and related gene expression. RESULTS In live cells, RGS2 interacts with PAR4 in the presence of Gαq while RGS4 binding to PAR4 occurs in the presence of Gαq and Gα12/13. Co-expression of PAR4 and Gαq induced a shift in the subcellular localization of RGS2 and RGS4 from the cytoplasm to plasma membrane. Combined PAR4 and Gα12/13 expression additionally promoted translocation of RGS4 from the cytoplasm to the membrane. Both RGS2 and RGS4 abolished PAR4-activated ERK phosphorylation, calcium mobilization and RhoA activity, as well as PAR4-mediated colon cancer cell proliferation and related gene expression. CONCLUSIONS RGS2 and RGS4 forms ternary complex with PAR4 in Gα-dependent manner and inhibits its downstream signaling. Our findings support a novel physiological function of RGS2 and RGS4 as inhibitors of PAR4-mediated signaling through selective PAR4/RGS/Gα coupling. Video Abstract.
Collapse
Affiliation(s)
- Yukeyoung Kim
- Department of Life Science, Kyonggi University, Suwon, 16227, South Korea
| | - Sungho Ghil
- Department of Life Science, Kyonggi University, Suwon, 16227, South Korea.
| |
Collapse
|
13
|
O'Brien JB, Wilkinson JC, Roman DL. Regulator of G-protein signaling (RGS) proteins as drug targets: Progress and future potentials. J Biol Chem 2019; 294:18571-18585. [PMID: 31636120 DOI: 10.1074/jbc.rev119.007060] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) play critical roles in regulating processes such as cellular homeostasis, responses to stimuli, and cell signaling. Accordingly, GPCRs have long served as extraordinarily successful drug targets. It is therefore not surprising that the discovery in the mid-1990s of a family of proteins that regulate processes downstream of GPCRs generated great excitement in the field. This finding enhanced the understanding of these critical signaling pathways and provided potentially new targets for pharmacological intervention. These regulators of G-protein signaling (RGS) proteins were viewed by many as nodes downstream of GPCRs that could be targeted with small molecules to tune signaling processes. In this review, we provide a brief overview of the discovery of RGS proteins and of the gradual and continuing discovery of their roles in disease states, focusing particularly on cancer and neurological disorders. We also discuss high-throughput screening efforts that have led to the discovery first of peptide-based and then of small-molecule inhibitors targeting a subset of the RGS proteins. We explore the unique mechanisms of RGS inhibition these chemical tools have revealed and highlight the most up-to-date studies using these tools in animal experiments. Finally, we discuss the future opportunities in the field, as there are clearly more avenues left to be explored and potentials to be realized.
Collapse
Affiliation(s)
- Joseph B O'Brien
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242
| | - Joshua C Wilkinson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242
| | - David L Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242; Iowa Neuroscience Institute, Iowa City, Iowa 52242; Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242.
| |
Collapse
|
14
|
Klepac K, Yang J, Hildebrand S, Pfeifer A. RGS2: A multifunctional signaling hub that balances brown adipose tissue function and differentiation. Mol Metab 2019; 30:173-183. [PMID: 31767169 PMCID: PMC6807268 DOI: 10.1016/j.molmet.2019.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/28/2019] [Indexed: 12/28/2022] Open
Abstract
Objective Recruitment of brown adipose tissue (BAT) is a potential new strategy for increasing energy expenditure (EE) to treat obesity. G protein–coupled receptors (GPCRs) represent promising targets to activate BAT, as they are the major regulators of BAT biological function. To identify new regulators of GPCR signaling in BAT, we studied the role of Regulator of G protein Signaling 2 (RGS2) in brown adipocytes and BAT. Methods We combined pharmacological and genetic tools to investigate the role of RGS2 in BAT in vitro and in vivo. Adipocyte progenitors were isolated from wild-type (WT) and RGS2 knockout (RGS2−/−) BAT and differentiated to brown adipocytes. This approach was complemented with knockdown of RGS2 using lentiviral shRNAs (shRGS2). Adipogenesis was analyzed by Oil Red O staining and by determining the expression of adipogenic and thermogenic markers. Pharmacological modulators and fluorescence staining of F-acting stress fibers were employed to identify the underlying signaling pathways. In vivo, the activity of BAT was assessed by ex vivo lipolysis and by measuring whole-body EE by indirect calorimetry in metabolic cages. Results RGS2 is highly expressed in BAT, and treatment with cGMP—an important enhancer of brown adipocyte differentiation—further increased RGS2 expression. Loss of RGS2 strongly suppressed adipogenesis and the expression of thermogenic genes in brown adipocytes. Mechanistically, we found increased Gq/Rho/Rho kinase (ROCK) signaling in the absence of RGS2. Surprisingly, in vivo analysis revealed elevated BAT activity in RGS2-deficient mice that was caused by enhanced Gs/cAMP signaling. Conclusion Overall, RGS2 regulates two major signaling pathways in BAT: Gq and Gs. On the one hand, RGS2 promotes brown adipogenesis by counteracting the inhibitory action of Gq/Rho/ROCK signaling. On the other hand, RGS2 decreases the activity of BAT through the inhibition of Gs signaling and cAMP production. Thus, RGS2 might represent a stress modulator that protects BAT from overstimulation. RGS2 regulates brown adipose tissue (BAT) by inhibiting two major G protein-coupled receptor (GPCR) pathways – Gq and Gs. Deletion of RGS2 impairs the differentiation of murine brown adipocytes due to elevated Gq/Rho/ROCK signaling. In vivo, RGS2 knock-out mice show an increase in BAT lipolysis and whole-body energy expenditure.
Collapse
Affiliation(s)
- Katarina Klepac
- Institute of Pharmacology and Toxicology, University of Bonn, 53127 Bonn, Germany; Research Training Group 1873, University of Bonn, 53127 Bonn, Germany.
| | - JuHee Yang
- Institute of Pharmacology and Toxicology, University of Bonn, 53127 Bonn, Germany; Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Staffan Hildebrand
- Institute of Pharmacology and Toxicology, University of Bonn, 53127 Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, 53127 Bonn, Germany; Research Training Group 1873, University of Bonn, 53127 Bonn, Germany; PharmaCenter, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
15
|
Mustafá ER, Cordisco Gonzalez S, Raingo J. Ghrelin Selectively Inhibits CaV3.3 Subtype of Low-Voltage-Gated Calcium Channels. Mol Neurobiol 2019; 57:722-735. [DOI: 10.1007/s12035-019-01738-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/16/2019] [Indexed: 01/01/2023]
|
16
|
Jiang M, Hu L, Wang B, Chen D, Li Y, Zhang Z, Zhu Y. Uterine RGS2 expression is regulated by exogenous estrogen and progesterone in ovariectomized mice, and downregulation of RGS2 expression in artificial decidualized ESCs inhibits trophoblast spreading in vitro. Mol Reprod Dev 2018; 86:88-99. [PMID: 30412338 DOI: 10.1002/mrd.23087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Manxi Jiang
- The Reproductive Medical Center, Guangdong Second Provincial General Hospital; Guangzhou China
| | - Liangshan Hu
- Department of Laboratory Medicine and Central Laboratories; Guangdong Second Provincial General Hospital; Guangzhou China
| | - Baoping Wang
- The Reproductive Medical Center, Guangdong Second Provincial General Hospital; Guangzhou China
| | - Danxia Chen
- Department of Laboratory Medicine and Central Laboratories; Guangdong Second Provincial General Hospital; Guangzhou China
| | - Yahong Li
- Department of Laboratory Medicine and Central Laboratories; Guangdong Second Provincial General Hospital; Guangzhou China
| | - Zhen Zhang
- Department of Laboratory Medicine and Central Laboratories; Guangdong Second Provincial General Hospital; Guangzhou China
| | - Yan Zhu
- Department of Laboratory Medicine and Central Laboratories; Guangdong Second Provincial General Hospital; Guangzhou China
| |
Collapse
|
17
|
Yeh HY, Sun D, Peng YC, Wu YL. Regulation of the regulator of G protein signaling 2 expression and cellular localization by PKA and PKC pathways in mouse granulosa cells. Biochem Biophys Res Commun 2018; 503:950-955. [PMID: 29932914 DOI: 10.1016/j.bbrc.2018.06.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022]
Abstract
G protein-coupled receptor (GPCR) activation-mediated PKA and PKC pathways have been recognized to be important in ovarian physiology. Expression of regulator of G-protein signaling 2 (RGS2) has been reported in ovarian granulosa cells. The detailed mechanisms in PKA- and PKC-regulated RGS2 expression and cellular translocation in granulosa cells remain mostly unclear. PKA activator 8-bromo-cAMP and PKC activator phorbol-12, 13-didecanoate appeared to rapidly elevate both protein and mRNA levels and promoter activation of RGS2 gene. Two consensus Sp1 elements within the shortest 78 bp fragment of RGS2 promoter sequence were essential for the full responsiveness to PKA and PKC. PKC activation appeared to increase the RGS2 translocation from nucleus to cytosol. PKA- and PKC-mediated RGS2 transcription in a Sp-1-dependent manner and a PKC-mediated RGS2 intracellular translocation were noted in granulosa cells.
Collapse
Affiliation(s)
- Hsiao-Yu Yeh
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - David Sun
- Department of Obstetrics and Gynecology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Yen-Chun Peng
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yuh-Lin Wu
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
18
|
Kim K, Lee J, Ghil S. The regulators of G protein signaling
RGS
16 and
RGS
18 inhibit protease‐activated receptor 2/Gi/o signaling through distinct interactions with Gα in live cells. FEBS Lett 2018; 592:3126-3138. [DOI: 10.1002/1873-3468.13220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Kiman Kim
- Department of Life Science Kyonggi University Suwon Korea
| | - Jinyong Lee
- Department of Life Science Kyonggi University Suwon Korea
| | - Sungho Ghil
- Department of Life Science Kyonggi University Suwon Korea
| |
Collapse
|
19
|
Phan HTN, Sjögren B, Neubig RR. Human Missense Mutations in Regulator of G Protein Signaling 2 Affect the Protein Function Through Multiple Mechanisms. Mol Pharmacol 2017; 92:451-458. [PMID: 28784619 DOI: 10.1124/mol.117.109215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/02/2017] [Indexed: 01/11/2023] Open
Abstract
Regulator of G protein signaling 2 (RGS2) plays a significant role in alleviating vascular contraction and promoting vascular relaxation due to its GTPase accelerating protein activity toward Gαq. Mice lacking RGS2 display a hypertensive phenotype, and several RGS2 missense mutations have been found predominantly in hypertensive human subjects. However, the mechanisms whereby these mutations could impact blood pressure is unknown. Here, we selected 16 rare, missense mutations in RGS2 identified in various human exome sequencing projects and evaluated their ability to inhibit intracellular calcium release mediated by angiotensin II receptor type 1 (AT1R). Four of them had reduced function and were further investigated to elucidate underlying mechanisms. Low protein expression, protein mislocalization, and reduced G protein binding were identified as likely mechanisms of the malfunctioning mutants. The Q2L mutant had 50% lower RGS2 than wild-type (WT) protein detected by Western blot. Confocal microscopy demonstrated that R44H and D40Y had impaired plasma membrane targeting; only 46% and 35% of those proteins translocated to the plasma membrane when coexpressed with Gαq Q209L compared with 67% for WT RGS2. The R188H mutant had a significant reduction in Gαq binding affinity (10-fold increase in Ki compared with WT RGS2 in a flow cytometry competition binding assay). This study provides functional data for 16 human RGS2 missense variants on their effects on AT1R-mediated calcium mobilization and provides molecular understanding of those variants with functional loss in vitro. These molecular behaviors can provide insight to inform antihypertensive therapeutics in individuals with variants having reduced function.
Collapse
Affiliation(s)
- Hoa T N Phan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Benita Sjögren
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
20
|
Lee KN, Lu X, Nguyen C, Feng Q, Chidiac P. Cardiomyocyte specific overexpression of a 37 amino acid domain of regulator of G protein signalling 2 inhibits cardiac hypertrophy and improves function in response to pressure overload in mice. J Mol Cell Cardiol 2017. [PMID: 28641980 DOI: 10.1016/j.yjmcc.2017.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Regulator of G protein signalling 2 (RGS2) is known to play a protective role in maladaptive cardiac hypertrophy and heart failure via its ability to inhibit Gq- and Gs- mediated GPCR signalling. We previously demonstrated that RGS2 can also inhibit protein translation and can thereby attenuate cell growth. This G protein-independent inhibitory effect has been mapped to a 37 amino acid domain (RGS2eb) within RGS2 that binds to eukaryotic initiation factor 2B (eIF2B). When expressed in neonatal rat cardiomyocytes, RGS2eb attenuates both protein synthesis and hypertrophy induced by Gq- and Gs- activating agents. In the current study, we investigated the potential cardioprotective role of RGS2eb by determining whether RGS2eb transgenic (RGS2eb TG) mice with cardiomyocyte specific overexpression of RGS2eb show resistance to the development of hypertrophy in comparison to wild-type (WT) controls. Using transverse aortic constriction (TAC) in a pressure-overload hypertrophy model, we demonstrated that cardiac hypertrophy was inhibited in RGS2eb TG mice compared to WT controls following four weeks of TAC. Expression of the hypertrophic markers atrial natriuretic peptide (ANP) and β-myosin heavy chain (MHC-β) was also reduced in RGS2eb TG compared to WT TAC animals. Furthermore, cardiac function in RGS2eb TG TAC mice was significantly improved compared to WT TAC mice. Notably, cardiomyocyte cell size was significantly decreased in TG compared to WT TAC mice. These results suggest that RGS2 may limit pathological cardiac hypertrophy at least in part via the function of its eIF2B-binding domain.
Collapse
Affiliation(s)
- Katherine N Lee
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A5C1, Canada
| | - Xiangru Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A5C1, Canada
| | - Chau Nguyen
- School of Pharmacy, D'Youville College, Buffalo, New York 14201, USA
| | - Qingping Feng
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A5C1, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A5C1, Canada.
| |
Collapse
|
21
|
Sjögren B. The evolution of regulators of G protein signalling proteins as drug targets - 20 years in the making: IUPHAR Review 21. Br J Pharmacol 2017; 174:427-437. [PMID: 28098342 DOI: 10.1111/bph.13716] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/11/2016] [Accepted: 01/08/2017] [Indexed: 12/11/2022] Open
Abstract
Regulators of G protein signalling (RGS) proteins are celebrating the 20th anniversary of their discovery. The unveiling of this new family of negative regulators of G protein signalling in the mid-1990s solved a persistent conundrum in the G protein signalling field, in which the rate of deactivation of signalling cascades in vivo could not be replicated in exogenous systems. Since then, there has been tremendous advancement in the knowledge of RGS protein structure, function, regulation and their role as novel drug targets. RGS proteins play an important modulatory role through their GTPase-activating protein (GAP) activity at active, GTP-bound Gα subunits of heterotrimeric G proteins. They also possess many non-canonical functions not related to G protein signalling. Here, an update on the status of RGS proteins as drug targets is provided, highlighting advances that have led to the inclusion of RGS proteins in the IUPHAR/BPS Guide to PHARMACOLOGY database of drug targets.
Collapse
Affiliation(s)
- B Sjögren
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
22
|
Tong R, Wade RC, Bruce NJ. Comparative electrostatic analysis of adenylyl cyclase for isoform dependent regulation properties. Proteins 2016; 84:1844-1858. [PMID: 27667304 DOI: 10.1002/prot.25167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/29/2016] [Accepted: 09/06/2016] [Indexed: 01/26/2023]
Abstract
The enzyme adenylyl cyclase (AC) plays a pivotal role in a variety of signal transduction pathways inside the cell, where it catalyzes the cyclization of adenosine triphosphate (ATP) into the second-messenger cyclic adenosine monophosphate (cAMP). Among other roles, AC regulates processes involved in neural plasticity, innervation of smooth muscles of the heart and the endocrine system of the pancreas. The functional diversity of AC is manifested in its different isoforms, each having a specific regulation pattern. There is an increasing amount of data available concerning the regulatory properties of AC isoforms, however little is known about the interactions on a structural level. Here, we conducted a comparative electrostatic analysis of the catalytic domains of all nine transmembrane AC isoforms with the aim of detecting, verifying and predicting the binding sites of molecular regulators on AC. The results provide support for the positioning of the binding site of the inhibitory protein Gi α at a pseudo-symmetric position to the stimulatory Gs α binding site. They also provide a structural interpretation of the Gβγ interaction with ACs 2, 4, and 7 and suggest a new binding site for RGS2. Comparison of the small molecule binding sites on AC shows that overall they have high electrostatic similarity, but regions of electrostatic differences are identified. These could provide a basis for the development of novel compounds with isoform-specific modulatory effects on AC. Proteins 2016; 84:1844-1858. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rudi Tong
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany.,Institute of Pharmacy and Molecular Biotechnology (IPMB) Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University, Im Neuenheimer Feld 368, 69120, Heidelberg, Germany
| | - Neil J Bruce
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
| |
Collapse
|
23
|
Vivot K, Moullé VS, Zarrouki B, Tremblay C, Mancini AD, Maachi H, Ghislain J, Poitout V. The regulator of G-protein signaling RGS16 promotes insulin secretion and β-cell proliferation in rodent and human islets. Mol Metab 2016; 5:988-996. [PMID: 27689011 PMCID: PMC5034687 DOI: 10.1016/j.molmet.2016.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 01/04/2023] Open
Abstract
Objective G protein-coupled receptor (GPCR) signaling regulates insulin secretion and pancreatic β cell-proliferation. While much knowledge has been gained regarding how GPCRs are activated in β cells, less is known about the mechanisms controlling their deactivation. In many cell types, termination of GPCR signaling is controlled by the family of Regulators of G-protein Signaling (RGS). RGS proteins are expressed in most eukaryotic cells and ensure a timely return to the GPCR inactive state upon removal of the stimulus. The aims of this study were i) to determine if RGS16, the most highly enriched RGS protein in β cells, regulates insulin secretion and β-cell proliferation and, if so, ii) to elucidate the mechanisms underlying such effects. Methods Mouse and human islets were infected with recombinant adenoviruses expressing shRNA or cDNA sequences to knock-down or overexpress RGS16, respectively. 60 h post-infection, insulin secretion and cAMP levels were measured in static incubations in the presence of glucose and various secretagogues. β-cell proliferation was measured in infected islets after 72 h in the presence of 16.7 mM glucose ± somatostatin and various inhibitors. Results RGS16 mRNA levels are strongly up-regulated in islets of Langerhans under hyperglycemic conditions in vivo and ex vivo. RGS16 overexpression stimulated glucose-induced insulin secretion in isolated mouse and human islets while, conversely, insulin secretion was impaired following RGS16 knock-down. Insulin secretion was no longer affected by RGS16 knock-down when islets were pre-treated with pertussis toxin to inactivate Gαi/o proteins, or in the presence of a somatostatin receptor antagonist. RGS16 overexpression increased intracellular cAMP levels, and its effects were blocked by an adenylyl cyclase inhibitor. Finally, RGS16 overexpression prevented the inhibitory effect of somatostatin on insulin secretion and β-cell proliferation. Conclusions Our results identify RGS16 as a novel regulator of β-cell function that coordinately controls insulin secretion and proliferation by limiting the tonic inhibitory signal exerted by δ-cell-derived somatostatin in islets. RGS16 is up-regulated under hyperglycemic conditions in islets. RGS16 is a key regulator of insulin secretion and β-cell proliferation. RGS16 attenuates Gαi/o protein activity downstream of δ-cell derived SST.
Collapse
Affiliation(s)
- Kevin Vivot
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, H2X 0A9, Canada
| | - Valentine S Moullé
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, H2X 0A9, Canada
| | - Bader Zarrouki
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, H2X 0A9, Canada
| | - Caroline Tremblay
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, H2X 0A9, Canada
| | - Arturo D Mancini
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, H2X 0A9, Canada
| | - Hasna Maachi
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, H2X 0A9, Canada; Department of Pharmacology, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Julien Ghislain
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, H2X 0A9, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, H2X 0A9, Canada; Department of Pharmacology, Université de Montréal, Montréal, QC, H3T 1J4, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada; Department of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
24
|
Narla C, Scidmore T, Jeong J, Everest M, Chidiac P, Poulter MO. A switch in G protein coupling for type 1 corticotropin-releasing factor receptors promotes excitability in epileptic brains. Sci Signal 2016; 9:ra60. [PMID: 27303056 DOI: 10.1126/scisignal.aad8676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Anxiety and stress increase the frequency of epileptic seizures. These behavioral states induce the secretion of corticotropin-releasing factor (CRF), a 40-amino acid neuropeptide neurotransmitter that coordinates many behavioral responses to stress in the central nervous system. In the piriform cortex, which is one of the most seizurogenic regions of the brain, CRF normally dampens excitability. By contrast, CRF increased the excitability of the piriform cortex in rats subjected to kindling, a model of temporal lobe epilepsy. In nonkindled rats, CRF activates its receptor, a G protein (heterotrimeric guanosine triphosphate-binding protein)-coupled receptor, and signals through a Gαq/11-mediated pathway. After seizure induction, CRF signaling occurred through a pathway involving Gαs This change in signaling was associated with reduced abundance of regulator of G protein signaling protein type 2 (RGS2), which has been reported to inhibit Gαs-dependent signaling. RGS2 knockout mice responded to CRF in a similar manner as epileptic rats. These observations indicate that seizures produce changes in neuronal signaling that can increase seizure occurrence by converting a beneficial stress response into an epileptic trigger.
Collapse
Affiliation(s)
- Chakravarthi Narla
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada. Department of Physiology and Pharmacology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Tanner Scidmore
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada. Department of Physiology and Pharmacology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Jaymin Jeong
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada. Graduate Program in Neuroscience, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Michelle Everest
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada. Department of Biology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Michael O Poulter
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada. Department of Physiology and Pharmacology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada. Graduate Program in Neuroscience, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada.
| |
Collapse
|
25
|
Lynch JR, Wang JY. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer. Int J Mol Sci 2016; 17:ijms17050707. [PMID: 27187360 PMCID: PMC4881529 DOI: 10.3390/ijms17050707] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/28/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies.
Collapse
Affiliation(s)
- Jennifer R Lynch
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Jenny Yingzi Wang
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
- Centre for Childhood Cancer Research, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
26
|
Sjögren B, Parra S, Atkins KB, Karaj B, Neubig RR. Digoxin-Mediated Upregulation of RGS2 Protein Protects against Cardiac Injury. J Pharmacol Exp Ther 2016; 357:311-9. [PMID: 26941169 PMCID: PMC4851323 DOI: 10.1124/jpet.115.231571] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/01/2016] [Indexed: 12/31/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins have emerged as novel drug targets since their discovery almost two decades ago. RGS2 has received particular interest in cardiovascular research due to its role in regulating Gqsignaling in the heart and vascular smooth muscle. RGS2(-/-)mice are hypertensive, prone to heart failure, and display accelerated kidney fibrosis. RGS2 is rapidly degraded through the proteasome, and human mutations leading to accelerated RGS2 protein degradation correlate with hypertension. Hence, stabilizing RGS2 protein expression could be a novel route in treating cardiovascular disease. We previously identified cardiotonic steroids, including digoxin, as selective stabilizers of RGS2 protein in vitro. In the current study we investigated the functional effects of digoxin-mediated RGS2 protein stabilization in vivo. Using freshly isolated myocytes from wild-type and RGS2(-/-)mice treated with vehicle or low-dose digoxin (2µg/kg/day for 7 days) we demonstrated that agonist-induced cAMP levels and cardiomyocyte contractility was inhibited by digoxin in wild-type but not in RGS2(-/-)mice. This inhibition was accompanied by an increase in RGS2 protein levels in cardiomyocytes as well as in whole heart tissue. Furthermore, digoxin had protective effects in a model of cardiac injury in wild-type mice and this protection was lost in RGS2(-/-)mice. Digoxin is the oldest known therapy for heart failure; however, beyond its activity at the Na(+)/K(+)-ATPase, the exact mechanism of action is not known. The current study adds a novel mechanism, whereby through stabilizing RGS2 protein levels digoxin could exert its protective effects in the failing heart.
Collapse
Affiliation(s)
- Benita Sjögren
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (B.S., B.K., R.R.N.); and Department of Pharmacology (S.P.) and Department of Internal Medicine (K.B.A.), University of Michigan, Ann Arbor, Michigan
| | - Sergio Parra
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (B.S., B.K., R.R.N.); and Department of Pharmacology (S.P.) and Department of Internal Medicine (K.B.A.), University of Michigan, Ann Arbor, Michigan
| | - Kevin B Atkins
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (B.S., B.K., R.R.N.); and Department of Pharmacology (S.P.) and Department of Internal Medicine (K.B.A.), University of Michigan, Ann Arbor, Michigan
| | - Behirda Karaj
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (B.S., B.K., R.R.N.); and Department of Pharmacology (S.P.) and Department of Internal Medicine (K.B.A.), University of Michigan, Ann Arbor, Michigan
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (B.S., B.K., R.R.N.); and Department of Pharmacology (S.P.) and Department of Internal Medicine (K.B.A.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
27
|
Park F. Accessory proteins for heterotrimeric G-proteins in the kidney. Front Physiol 2015; 6:219. [PMID: 26300785 PMCID: PMC4528294 DOI: 10.3389/fphys.2015.00219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/20/2015] [Indexed: 11/17/2022] Open
Abstract
Heterotrimeric G-proteins play a fundamentally important role in regulating signal transduction pathways in the kidney. Accessory proteins are being identified as direct binding partners for heterotrimeric G-protein α or βγ subunits to promote more diverse mechanisms by which G-protein signaling is controlled. In some instances, accessory proteins can modulate the signaling magnitude, localization, and duration following the activation of cell membrane-associated receptors. Alternatively, accessory proteins complexed with their G-protein α or βγ subunits can promote non-canonical models of signaling activity within the cell. In this review, we will highlight the expression profile, localization and functional importance of these newly identified accessory proteins to control the function of select G-protein subunits under normal and various disease conditions observed in the kidney.
Collapse
Affiliation(s)
- Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center Memphis, TN, USA
| |
Collapse
|
28
|
Bernhardt ML, Lowther KM, Padilla-Banks E, McDonough CE, Lee KN, Evsikov AV, Uliasz TF, Chidiac P, Williams CJ, Mehlmann LM. Regulator of G-protein signaling 2 (RGS2) suppresses premature calcium release in mouse eggs. Development 2015; 142:2633-40. [PMID: 26160904 DOI: 10.1242/dev.121707] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/25/2015] [Indexed: 11/20/2022]
Abstract
During oocyte maturation, capacity and sensitivity of Ca(2+) signaling machinery increases dramatically, preparing the metaphase II (MII)-arrested egg for fertilization. Upon sperm-egg fusion, Ca(2+) release from IP3-sensitive endoplasmic reticulum stores results in cytoplasmic Ca(2+) oscillations that drive egg activation and initiate early embryo development. Premature Ca(2+) release can cause parthenogenetic activation prior to fertilization; thus, preventing inappropriate Ca(2+) signaling is crucial for ensuring robust MII arrest. Here, we show that regulator of G-protein signaling 2 (RGS2) suppresses Ca(2+) release in MII eggs. Rgs2 mRNA was recruited for translation during oocyte maturation, resulting in ∼ 20-fold more RGS2 protein in MII eggs than in fully grown immature oocytes. Rgs2-siRNA-injected oocytes matured to MII; however, they had increased sensitivity to low pH and acetylcholine (ACh), which caused inappropriate Ca(2+) release and premature egg activation. When matured in vitro, RGS2-depleted eggs underwent spontaneous Ca(2+) increases that were sufficient to cause premature zona pellucida conversion. Rgs2(-/-) females had reduced litter sizes, and their eggs had increased sensitivity to low pH and ACh. Rgs2(-/-) eggs also underwent premature zona pellucida conversion in vivo. These findings indicate that RGS2 functions as a brake to suppress premature Ca(2+) release in eggs that are poised on the brink of development.
Collapse
Affiliation(s)
- Miranda L Bernhardt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Katie M Lowther
- Department of Cell Biology, UConn Health, Farmington, CT 06030, USA
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Caitlin E McDonough
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Katherine N Lee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Alexei V Evsikov
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Tracy F Uliasz
- Department of Cell Biology, UConn Health, Farmington, CT 06030, USA
| | - Peter Chidiac
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lisa M Mehlmann
- Department of Cell Biology, UConn Health, Farmington, CT 06030, USA
| |
Collapse
|
29
|
Brust TF, Conley JM, Watts VJ. Gα(i/o)-coupled receptor-mediated sensitization of adenylyl cyclase: 40 years later. Eur J Pharmacol 2015; 763:223-32. [PMID: 25981304 DOI: 10.1016/j.ejphar.2015.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/02/2015] [Accepted: 05/11/2015] [Indexed: 12/20/2022]
Abstract
Heterologous sensitization of adenylyl cyclase (also referred to as superactivation, sensitization, or supersensitization of adenylyl cyclase) is a cellular adaptive response first described 40 years ago in the laboratory of Dr. Marshall Nirenberg. This apparently paradoxical cellular response occurs following persistent activation of Gαi/o-coupled receptors and causes marked enhancement in the activity of adenylyl cyclases, thereby increasing cAMP production. Since our last review in 2005, significant progress in the field has led to a better understanding of the relevance of, and the cellular biochemical processes that occur during the development and expression of heterologous sensitization. In this review we will discuss the recent advancements in the field and the mechanistic hypotheses on heterologous sensitization.
Collapse
Affiliation(s)
- Tarsis F Brust
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jason M Conley
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
30
|
Osei-Owusu P, Blumer KJ. Regulator of G Protein Signaling 2: A Versatile Regulator of Vascular Function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:77-92. [PMID: 26123303 DOI: 10.1016/bs.pmbts.2015.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Regulators of G protein signaling (RGS) proteins of the B/R4 family are widely expressed in the cardiovascular system where their role in fine-tuning G protein signaling is critical to maintaining homeostasis. Among members of this family, RGS2 and RGS5 have been shown to play key roles in cardiac and smooth muscle function by tightly regulating signaling pathways that are activated through Gq/11 and Gi/o classes of heterotrimeric G proteins. This chapter reviews accumulating evidence supporting a key role for RGS2 in vascular function and the implication of changes in RGS2 function and/or expression in the pathogenesis of blood pressure disorders, particularly hypertension. With such understanding, RGS2 and the signaling pathways it controls may emerge as novel targets for developing next-generation antihypertensive drugs/agents.
Collapse
Affiliation(s)
- Patrick Osei-Owusu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| | - Kendall J Blumer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
31
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
32
|
Bellono NW, Najera JA, Oancea E. UV light activates a Gαq/11-coupled phototransduction pathway in human melanocytes. ACTA ACUST UNITED AC 2014; 143:203-14. [PMID: 24470488 PMCID: PMC4001771 DOI: 10.1085/jgp.201311094] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UV light stimulates a phosphoinositide signaling pathway in human melanocytes similar to those elicited by light in the eye. While short exposure to solar ultraviolet radiation (UVR) can elicit increased skin pigmentation, a protective response mediated by epidermal melanocytes, chronic exposure can lead to skin cancer and photoaging. However, the molecular mechanisms that allow human skin to detect and respond to UVR remain incompletely understood. UVR stimulates a retinal-dependent signaling cascade in human melanocytes that requires GTP hydrolysis and phospholipase C β (PLCβ) activity. This pathway involves the activation of transient receptor potential A1 (TRPA1) ion channels, an increase in intracellular Ca2+, and an increase in cellular melanin content. Here, we investigated the identity of the G protein and downstream elements of the signaling cascade and found that UVR phototransduction is Gαq/11 dependent. Activation of Gαq/11/PLCβ signaling leads to hydrolysis of phosphatidylinositol (4,5)-bisphosphate (PIP2) to generate diacylglycerol (DAG) and inositol 1, 4, 5-trisphosphate (IP3). We found that PIP2 regulated TRPA1-mediated photocurrents, and IP3 stimulated intracellular Ca2+ release. The UVR-elicited Ca2+ response appears to involve both IP3-mediated release from intracellular stores and Ca2+ influx through TRPA1 channels, showing the fast rising phase of the former and the slow decay of the latter. We propose that melanocytes use a UVR phototransduction mechanism that involves the activation of a Gαq/11-dependent phosphoinositide cascade, and resembles light phototransduction cascades of the eye.
Collapse
Affiliation(s)
- Nicholas W Bellono
- Department of Molecular Pharmacology, Physiology, and Biotechnology, and 2 Department of Neuroscience, Brown University, Providence, RI 02192
| | | | | |
Collapse
|
33
|
Papakonstantinou MP, Karoussiotis C, Georgoussi Z. RGS2 and RGS4 proteins: New modulators of the κ-opioid receptor signaling. Cell Signal 2014; 27:104-14. [PMID: 25289860 DOI: 10.1016/j.cellsig.2014.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/10/2014] [Accepted: 09/23/2014] [Indexed: 01/22/2023]
Abstract
Previous studies have shown that RGS4 associates with the C-termini of μ- and δ-opioid receptors in living cells and plays a key role in Gi/Go protein coupling selectivity and signalling of these receptors [12,20]. To deduce whether similar effects also occur for the κ-opioid receptor (κ-ΟR) and define the ability of members of the Regulators of G protein Signaling (RGS) of the B/R4 subfamily to interact with κ-ΟR subdomains we generated glutathione S-transferase fusion peptides encompassing the carboxyl-termini of κ-OR (κ-CT). Results from pull down experiments indicated that RGS2 and RGS4 directly interact within different domains of the κ-CT. Co-precipitation studies in living cells indicated that RGS2 and RGS4 associate with κ-ΟR constitutively and upon receptor activation and confer selectivity for coupling with a specific subset of G proteins. Expression of both members, RGS2 and/or RGS4, in 293F cells attenuated κ-agonist mediated-adenylyl cyclase inhibition and extracellular signal regulated kinase (ERK1,2) phosphorylation with a different amplitude in their modulatory effect in κ-ΟR signaling. Our findings demonstrate that RGS2 and RGS4 are new interacting partners that play key roles in G protein coupling to negatively regulate κ-ΟR signaling.
Collapse
Affiliation(s)
- Maria-Pagona Papakonstantinou
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Christos Karoussiotis
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece.
| |
Collapse
|
34
|
Raveh A, Schultz PJ, Aschermann L, Carpenter C, Tamayo-Castillo G, Cao S, Clardy J, Neubig RR, Sherman DH, Sjögren B. Identification of protein kinase C activation as a novel mechanism for RGS2 protein upregulation through phenotypic screening of natural product extracts. Mol Pharmacol 2014; 86:406-16. [PMID: 25086086 DOI: 10.1124/mol.114.092403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Biochemical high-throughput screening is widely used in drug discovery, using a variety of small molecule libraries. However, broader screening strategies may be more beneficial to identify novel biologic mechanisms. In the current study we used a β-galactosidase complementation method to screen a selection of microbial-derived pre-fractionated natural product extracts for those that increase regulator of G protein signaling 2 (RGS2) protein levels. RGS2 is a member of a large family of proteins that all regulate signaling through G protein-coupled receptors (GPCRs) by accelerating GTPase activity on active Gα as well as through other mechanisms. RGS2(-/-) mice are hypertensive, show increased anxiety, and are prone to heart failure. RGS2 has a very short protein half-life due to rapid proteasomal degradation, and we propose that enhancement of RGS2 protein levels could be a beneficial therapeutic strategy. Bioassay-guided fractionation of one of the hit strains yielded a pure compound, Indolactam V, a known protein kinase C (PKC) activator, which selectively increased RGS2 protein levels in a time- and concentration-dependent manner. Similar results were obtained with phorbol 12-myristate 13-acetate as well as activation of the Gq-coupled muscarinic M3 receptor. The effect on RGS2 protein levels was blocked by the nonselective PKC inhibitor Gö6983 (3-[1-[3-(dimethylamino)propyl]-5-methoxy-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione), the PKCβ-selective inhibitor Ruboxastaurin, as well as small interfering RNA-mediated knockdown of PKCβ. Indolactam V-mediated increases in RGS2 protein levels also had functional effects on GPCR signaling. This study provides important proof-of-concept for our screening strategy and could define a negative feedback mechanism in Gq/Phospholipase C signaling through RGS2 protein upregulation.
Collapse
Affiliation(s)
- Avi Raveh
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (A.R., P.J.S., D.H.S.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (L.A., R.R.N., B.S.); Department of Pharmacology (C.C.), Department of Medicinal Chemistry (D.H.S.), Department of Microbiology and Immunology (D.H.S.), Department of Chemistry (D.H.S.), Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (D.H.S.); Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica & CIPRONA, Escuela de Química, Universidad de Costa Rica, San Pedro, Costa Rica (G.T-C.); Harvard Medical School, Boston, Massachusetts (S.C., J.C.); and University of Hawaii Cancer Center, Honolulu, Hawaii (S.C.)
| | - Pamela J Schultz
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (A.R., P.J.S., D.H.S.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (L.A., R.R.N., B.S.); Department of Pharmacology (C.C.), Department of Medicinal Chemistry (D.H.S.), Department of Microbiology and Immunology (D.H.S.), Department of Chemistry (D.H.S.), Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (D.H.S.); Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica & CIPRONA, Escuela de Química, Universidad de Costa Rica, San Pedro, Costa Rica (G.T-C.); Harvard Medical School, Boston, Massachusetts (S.C., J.C.); and University of Hawaii Cancer Center, Honolulu, Hawaii (S.C.)
| | - Lauren Aschermann
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (A.R., P.J.S., D.H.S.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (L.A., R.R.N., B.S.); Department of Pharmacology (C.C.), Department of Medicinal Chemistry (D.H.S.), Department of Microbiology and Immunology (D.H.S.), Department of Chemistry (D.H.S.), Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (D.H.S.); Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica & CIPRONA, Escuela de Química, Universidad de Costa Rica, San Pedro, Costa Rica (G.T-C.); Harvard Medical School, Boston, Massachusetts (S.C., J.C.); and University of Hawaii Cancer Center, Honolulu, Hawaii (S.C.)
| | - Colleen Carpenter
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (A.R., P.J.S., D.H.S.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (L.A., R.R.N., B.S.); Department of Pharmacology (C.C.), Department of Medicinal Chemistry (D.H.S.), Department of Microbiology and Immunology (D.H.S.), Department of Chemistry (D.H.S.), Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (D.H.S.); Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica & CIPRONA, Escuela de Química, Universidad de Costa Rica, San Pedro, Costa Rica (G.T-C.); Harvard Medical School, Boston, Massachusetts (S.C., J.C.); and University of Hawaii Cancer Center, Honolulu, Hawaii (S.C.)
| | - Giselle Tamayo-Castillo
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (A.R., P.J.S., D.H.S.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (L.A., R.R.N., B.S.); Department of Pharmacology (C.C.), Department of Medicinal Chemistry (D.H.S.), Department of Microbiology and Immunology (D.H.S.), Department of Chemistry (D.H.S.), Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (D.H.S.); Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica & CIPRONA, Escuela de Química, Universidad de Costa Rica, San Pedro, Costa Rica (G.T-C.); Harvard Medical School, Boston, Massachusetts (S.C., J.C.); and University of Hawaii Cancer Center, Honolulu, Hawaii (S.C.)
| | - Shugeng Cao
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (A.R., P.J.S., D.H.S.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (L.A., R.R.N., B.S.); Department of Pharmacology (C.C.), Department of Medicinal Chemistry (D.H.S.), Department of Microbiology and Immunology (D.H.S.), Department of Chemistry (D.H.S.), Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (D.H.S.); Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica & CIPRONA, Escuela de Química, Universidad de Costa Rica, San Pedro, Costa Rica (G.T-C.); Harvard Medical School, Boston, Massachusetts (S.C., J.C.); and University of Hawaii Cancer Center, Honolulu, Hawaii (S.C.)
| | - Jon Clardy
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (A.R., P.J.S., D.H.S.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (L.A., R.R.N., B.S.); Department of Pharmacology (C.C.), Department of Medicinal Chemistry (D.H.S.), Department of Microbiology and Immunology (D.H.S.), Department of Chemistry (D.H.S.), Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (D.H.S.); Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica & CIPRONA, Escuela de Química, Universidad de Costa Rica, San Pedro, Costa Rica (G.T-C.); Harvard Medical School, Boston, Massachusetts (S.C., J.C.); and University of Hawaii Cancer Center, Honolulu, Hawaii (S.C.)
| | - Richard R Neubig
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (A.R., P.J.S., D.H.S.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (L.A., R.R.N., B.S.); Department of Pharmacology (C.C.), Department of Medicinal Chemistry (D.H.S.), Department of Microbiology and Immunology (D.H.S.), Department of Chemistry (D.H.S.), Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (D.H.S.); Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica & CIPRONA, Escuela de Química, Universidad de Costa Rica, San Pedro, Costa Rica (G.T-C.); Harvard Medical School, Boston, Massachusetts (S.C., J.C.); and University of Hawaii Cancer Center, Honolulu, Hawaii (S.C.)
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (A.R., P.J.S., D.H.S.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (L.A., R.R.N., B.S.); Department of Pharmacology (C.C.), Department of Medicinal Chemistry (D.H.S.), Department of Microbiology and Immunology (D.H.S.), Department of Chemistry (D.H.S.), Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (D.H.S.); Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica & CIPRONA, Escuela de Química, Universidad de Costa Rica, San Pedro, Costa Rica (G.T-C.); Harvard Medical School, Boston, Massachusetts (S.C., J.C.); and University of Hawaii Cancer Center, Honolulu, Hawaii (S.C.)
| | - Benita Sjögren
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (A.R., P.J.S., D.H.S.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (L.A., R.R.N., B.S.); Department of Pharmacology (C.C.), Department of Medicinal Chemistry (D.H.S.), Department of Microbiology and Immunology (D.H.S.), Department of Chemistry (D.H.S.), Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (D.H.S.); Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica & CIPRONA, Escuela de Química, Universidad de Costa Rica, San Pedro, Costa Rica (G.T-C.); Harvard Medical School, Boston, Massachusetts (S.C., J.C.); and University of Hawaii Cancer Center, Honolulu, Hawaii (S.C.)
| |
Collapse
|
35
|
Agosti F, López Soto EJ, Cabral A, Castrogiovanni D, Schioth HB, Perelló M, Raingo J. Melanocortin 4 receptor activation inhibits presynaptic N-type calcium channels in amygdaloid complex neurons. Eur J Neurosci 2014; 40:2755-65. [PMID: 24943127 DOI: 10.1111/ejn.12650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor involved in food intake and energy expenditure regulation. MC4R activation modifies neuronal activity but the molecular mechanisms by which this regulation occurs remain unclear. Here, we tested the hypothesis that MC4R activation regulates the activity of voltage-gated calcium channels and, as a consequence, synaptic activity. We also tested whether the proposed effect occurs in the amygdala, a brain area known to mediate the anorexigenic actions of MC4R signaling. Using the patch-clamp technique, we found that the activation of MC4R with its agonist melanotan II specifically inhibited 34.5 ± 1.5% of N-type calcium currents in transiently transfected HEK293 cells. This inhibition was concentration-dependent, voltage-independent and occluded by the Gαs pathway inhibitor cholera toxin. Moreover, we found that melanotan II specifically inhibited 25.9 ± 2.0% of native N-type calcium currents and 55.4 ± 14.4% of evoked inhibitory postsynaptic currents in mouse cultured amygdala neurons. In vivo, we found that the MC4R agonist RO27-3225 increased the marker of cellular activity c-Fos in several components of the amygdala, whereas the N-type channel blocker ω conotoxin GVIA increased c-Fos expression exclusively in the central subdivision of the amygdala. Thus, MC4R specifically inhibited the presynaptic N-type channel subtype, and this inhibition may be important for the effects of melanocortin in the central subdivision of the amygdala.
Collapse
Affiliation(s)
- Francina Agosti
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology (IMBICE), Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhang L, Loh HH, Law PY. A novel noncanonical signaling pathway for the μ-opioid receptor. Mol Pharmacol 2013; 84:844-53. [PMID: 24061856 DOI: 10.1124/mol.113.088278] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The µ-opioid receptor (OPRM1) signals as a classic G protein-coupled receptor by activating heterotrimeric Gi/Go proteins resulting in adenylyl cyclase (AC) inhibition. Such AC inhibition is desensitized after prolonged agonist treatment. However, after receptor desensitization, the intracellular cAMP level remains regulated by OPRM1, as demonstrated by the intracellular cAMP level increase or AC superactivation upon removal of an agonist or addition of an antagonist. We now demonstrate that such intracellular cAMP regulation is mediated by a novel noncanonical signaling pathway resulting from OPRM1 being converted to a receptor tyrosine kinase (RTK)-like entity. This noncanonical OPRM1 signaling is initiated by the receptor recruiting and activating Src kinase within the receptor complex, leading to phosphorylation of the OPRM1 Tyr(336) residue. Phospho-Tyr(336) serves as the docking site for growth factor receptor-bound protein/son of sevenless, leading to the recruitment and activation of the Ras/Raf-1 and subsequent phosphorylation and activation of AC5/6 by Raf-1. Such sequence of events was established by the absence of Ras/Raf1 recruitment and activation by the OPRM1-Y336F mutant, by the presence of Src kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) or the absence of Src activity, by the presence of specific Raf-1 inhibitor GW5074 (5-iodo-3-[(3,5-dibromo-4-hydroxyphenyl) methylene]-2-indolinone) or the absence of Raf-1, or by the dominant negative RasN17 mutant. Src together with Ras activates Raf1 which was established by the inability of the Raf1-Tyr(340/341) mutant to activate AC. Hence, the phosphorylation of OPRM1 at Tyr(336) by Src serves as the trigger for the conversion of a classic Gi/Go-coupled receptor into an RTK-like entity, resulting in a noncanonical pathway even after the original Gi/Go signals are blunted.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | | | | |
Collapse
|
37
|
Barradas AMC, Monticone V, Hulsman M, Danoux C, Fernandes H, Tahmasebi Birgani Z, Barrère-de Groot F, Yuan H, Reinders M, Habibovic P, van Blitterswijk C, de Boer J. Molecular mechanisms of biomaterial-driven osteogenic differentiation in human mesenchymal stromal cells. Integr Biol (Camb) 2013; 5:920-31. [PMID: 23752904 DOI: 10.1039/c3ib40027a] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Calcium phosphate (CaP) based ceramics are used as bone graft substitutes in the treatment of bone defects. The physico-chemical properties of these materials determine their bioactivity, meaning that molecular and cellular responses in the body will be tuned accordingly. In a previous study, we compared two porous CaP ceramics, hydroxyapatite (HA) and β-tricalcium phosphate (TCP), which, among other properties, differ in their degradation behaviour in vitro and in vivo, and we demonstrated that the more degradable β-TCP induced more bone formation in a heterotopic model in sheep. This is correlated to in vitro data, where human bone marrow derived mesenchymal stromal cells (MSC) exhibited higher expression of osteogenic differentiation markers, such as osteopontin, osteocalcin and bone sialoprotein, when cultured in β-TCP than in HA. More recently, we also showed that this effect could be mimicked in vitro by exposure of MSC to high concentrations of calcium ions (Ca(2+)). To further correlate surface physico-chemical dynamics of HA and β-TCP ceramics with the molecular response of MSC, we followed Ca(2+) release and surface changes in time as well as cell attachment and osteogenic differentiation of MSC on these ceramics. Within 24 hours, we observed differences in cell morphology, with MSC cultured in β-TCP displaying more pronounced attachment and spreading than cells cultured in HA. In the same time frame, β-TCP induced expression of G-protein coupled receptor (GPCR) 5A and regulator of G-protein signaling 2, revealed by DNA microarray analysis. These genes, associated with the protein kinase A and GPCR signaling pathways, may herald the earliest response of MSC to bone-inducing ceramics.
Collapse
Affiliation(s)
- Ana M C Barradas
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Louwette S, Van Geet C, Freson K. Regulators of G protein signaling: role in hematopoiesis, megakaryopoiesis and platelet function. J Thromb Haemost 2012; 10:2215-22. [PMID: 22908964 DOI: 10.1111/j.1538-7836.2012.04903.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Regulators of G protein signaling (RGS) are intracellular signaling regulators that bind activated G protein α subunits (Gα) and increase their intrinsic GTPase activity via their common RGS homology domain. In addition to their GTPase accelerating activity (GAP), RGS proteins also contain other domains that regulate their receptor selectivity, their interaction with other proteins such as adenylyl cyclase or their subcellular localization via interaction with scaffold proteins such as tubulin, 14-3-3 or spinophilin. There are at least 37 different RGS family members in humans and numerous physiological functions have been assigned to these proteins, which have rather a tissue-specific expression pattern. The role of some RGS proteins was shown to be important for hematopoiesis. More recent studies also focused on their expression in platelets, and for R4 RGS subfamily members RGS2, RGS16 and RGS18, it could be demonstrated that they regulate megakaryopoiesis and/or platelet function. These functional studies mostly comprised in vitro experiments and in vivo studies using small animal models. Their role in human pathology related to platelet dysfunction remains still largely unknown, except for a case report with a RGS2 gain of function mutation. In addition to an introduction on RGS signaling and different effectors with a special focus on the R4 subfamily members, we here will give an overview of the studies related to the role of RGS proteins in hematopoiesis, megakaryopoiesis and platelet function.
Collapse
Affiliation(s)
- S Louwette
- Center for Molecular and Vascular Biology Departement of Pediatrics, University of Leuven, Leuven, Belgium
| | | | | |
Collapse
|
39
|
Jones DL, Tuomi JM, Chidiac P. Role of Cholinergic Innervation and RGS2 in Atrial Arrhythmia. Front Physiol 2012; 3:239. [PMID: 22754542 PMCID: PMC3386567 DOI: 10.3389/fphys.2012.00239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 06/12/2012] [Indexed: 01/25/2023] Open
Abstract
The heart receives sympathetic and parasympathetic efferent innervation as well as the ability to process information internally via an intrinsic cardiac autonomic nervous system (ICANS). For over a century, the role of the parasympathetics via vagal acetylcholine release was related to controlling primarily heart rate. Although in the late 1800s shown to play a role in atrial arrhythmia, the myocardium took precedence from the mid-1950s until in the last decade a resurgence of interest in the autonomics along with signaling cascades, regulators, and ion channels. Originally ignored as being benign and thus untreated, recent emphasis has focused on atrial arrhythmia as atrial fibrillation (AF) is the most common arrhythmia seen by the general practitioner. It is now recognized to have significant mortality and morbidity due to resultant stroke and heart failure. With the aging population, there will be an unprecedented increased burden on health care resources. Although it has been known for more than half a century that cholinergic stimulation can initiate AF, the classical concept focused on the M2 receptor and its signaling cascade including RGS4, as these had been shown to have predominant effects on nodal function (heart rate and conduction block) as well as contractility. However, recent evidence suggests that the M3 receptor may also playa role in initiation and perpetuation of AF and thus RGS2, a putative regulator of the M3 receptor, may be a target for therapeutic intervention. Mice lacking RGS2 (RGS2−/−), were found to have significantly altered electrophysiological atrial responses and were more susceptible to electrically induced AF. Vagally induced or programmed stimulation-induced AF could be blocked by the selective M3R antagonist, darifenacin. These results suggest a potential surgical target (ICANS) and pharmacological targets (M3R, RGS2) for the management of AF.
Collapse
Affiliation(s)
- Douglas L Jones
- Department of Physiology and Pharmacology, The University of Western Ontario London, ON, Canada
| | | | | |
Collapse
|
40
|
Kach J, Sethakorn N, Dulin NO. A finer tuning of G-protein signaling through regulated control of RGS proteins. Am J Physiol Heart Circ Physiol 2012; 303:H19-35. [PMID: 22542620 DOI: 10.1152/ajpheart.00764.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulators of G-protein signaling (RGS) proteins are GTPase-activating proteins (GAP) for various Gα subunits of heterotrimeric G proteins. Through this mechanism, RGS proteins regulate the magnitude and duration of G-protein-coupled receptor signaling and are often referred to as fine tuners of G-protein signaling. Increasing evidence suggests that RGS proteins themselves are regulated through multiple mechanisms, which may provide an even finer tuning of G-protein signaling and crosstalk between G-protein-coupled receptors and other signaling pathways. This review summarizes the current data on the control of RGS function through regulated expression, intracellular localization, and covalent modification of RGS proteins, as related to cell function and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Jacob Kach
- Department of Medicine, University of Chicago, Illinois, 60637, USA
| | | | | |
Collapse
|
41
|
Chakir K, Depry C, Dimaano VL, Zhu WZ, Vanderheyden M, Bartunek J, Abraham TP, Tomaselli GF, Liu SB, Xiang YK, Zhang M, Takimoto E, Dulin N, Xiao RP, Zhang J, Kass DA. Galphas-biased beta2-adrenergic receptor signaling from restoring synchronous contraction in the failing heart. Sci Transl Med 2012; 3:100ra88. [PMID: 21918105 DOI: 10.1126/scitranslmed.3001909] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiac resynchronization therapy (CRT), in which both ventricles are paced to recoordinate contraction in hearts that are dyssynchronous from conduction delay, is the only heart failure (HF) therapy to date to clinically improve acute and chronic function while also lowering mortality. CRT acutely enhances chamber mechanical efficiency but chronically alters myocyte signaling, including improving β-adrenergic receptor reserve. We speculated that the latter would identify unique CRT effects that might themselves be effective for HF more generally. HF was induced in dogs by 6 weeks of atrial rapid pacing with (HFdys, left bundle ablated) or without (HFsyn) dyssynchrony. We used dyssynchronous followed by resynchronized tachypacing (each 3 weeks) for CRT. Both HFdys and HFsyn myocytes had similarly depressed rest and β-adrenergic receptor sarcomere and calcium responses, particularly the β2-adrenergic response, whereas cells subjected to CRT behaved similarly to those from healthy controls. CRT myocytes exhibited suppressed Gαi signaling linked to increased regulator of G protein (heterotrimeric guanine nucleotide-binding protein) signaling (RGS2, RGS3), yielding Gαs-biased β2-adrenergic responses. This included increased adenosine cyclic AMP responsiveness and activation of sarcoplasmic reticulum-localized protein kinase A. Human CRT responders also showed up-regulated myocardial RGS2 and RGS3. Inhibition of Gαi (with pertussis toxin, RGS3, or RGS2 transfection), stimulation with a Gαs-biased β2 agonist (fenoterol), or transient (2-week) exposure to dyssynchrony restored β-adrenergic receptor responses in HFsyn to the values obtained after CRT. These results identify a key pathway that is triggered by restoring contractile synchrony and that may represent a new therapeutic approach for a broad population of HF patients.
Collapse
Affiliation(s)
- Khalid Chakir
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Banno F, Nojiri T, Matsumoto S, Kamide K, Miyata T. RGS2 deficiency in mice does not affect platelet thrombus formation at sites of vascular injury. J Thromb Haemost 2012; 10:309-11. [PMID: 22136563 DOI: 10.1111/j.1538-7836.2011.04575.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Kim DH, Lim JJ, Lee JJ, Kim DG, Lee HJ, Min W, Kim KD, Chang HH, Endale M, Rhee MH, Watarai M, Kim S. RGS2-Mediated Intracellular Ca2+ Level Plays a Key Role in the Intracellular Replication of Brucella abortus Within Phagocytes. J Infect Dis 2011; 205:445-52. [DOI: 10.1093/infdis/jir765] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
44
|
Abstract
Signal transduction through G-protein-coupled receptors (GPCRs) is central for the regulation of virtually all cellular functions and has been widely implicated in human disease. Regulators of G-protein signaling (RGS proteins) belong to a diverse protein family that was originally discovered for their ability to accelerate signal termination in response to GPCR stimulation, thereby reducing the amplitude and duration of GPCR effects. All RGS proteins share a common RGS domain that interacts with G protein α subunits and mediates their biological regulation of GPCR signaling. However, RGS proteins differ widely in size and the organization of their sequences flanking the RGS domain, which contain several additional functional domains that facilitate protein-protein (or protein-lipid) interactions. RGS proteins are subject to posttranslational modifications, and, in addition, their expression, activity, and subcellular localization can be dynamically regulated. Thus, there exists a wide array of mechanisms that facilitate their proper function as modulators and integrators of G-protein signaling. Several RGS proteins have been implicated in the cardiac remodeling response and heart rate regulation, and changes in RGS protein expression and/or function are believed to participate in the pathophysiology of cardiac hypertrophy, failure and arrhythmias as well as hypertension. This review is based on recent advances in our understanding of the expression pattern, regulation, and functional role of canonical RGS proteins, with a special focus on the healthy heart and the diseased heart. In addition, we discuss their potential and promise as therapeutic targets as well as strategies to modulate their expression and function.
Collapse
Affiliation(s)
- Peng Zhang
- Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, 1 Hoppin St, Providence, RI 02903, USA
| | | |
Collapse
|
45
|
Dupré SM, Dardente H, Birnie MJ, Loudon ASI, Lincoln GA, Hazlerigg DG. Evidence for RGS4 modulation of melatonin and thyrotrophin signalling pathways in the pars tuberalis. J Neuroendocrinol 2011; 23:725-32. [PMID: 21623959 DOI: 10.1111/j.1365-2826.2011.02168.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In mammals, the pineal hormone melatonin is secreted nocturnally and acts in the pars tuberalis (PT) of the anterior pituitary to control seasonal neuroendocrine function. Melatonin signals through the type 1 Gi-protein coupled melatonin receptor (MT1), inhibiting adenylate cyclase (AC) activity and thereby reducing intracellular concentrations of the second messenger, cAMP. Because melatonin action ceases by the end of the night, this allows a daily rise in cAMP levels, which plays a key part in the photoperiodic response mechanism in the PT. In addition, melatonin receptor desensitisation and sensitisation of AC by melatonin itself appear to fine-tune this process. Opposing the actions of melatonin, thyroid-stimulating hormone (TSH), produced by PT cells, signals through its cognate Gs-protein coupled receptor (TSH-R), leading to increased cAMP production. This effect may contribute to increased TSH production by the PT during spring and summer, and is of considerable interest because TSH plays a pivotal role in seasonal neuroendocrine function. Because cAMP stands at the crossroads between melatonin and TSH signalling pathways, any protein modulating cAMP production has the potential to impact on photoperiodic readout. In the present study, we show that the regulator of G-protein signalling RGS4 is a melatonin-responsive gene, whose expression in the PT increases some 2.5-fold after melatonin treatment. Correspondingly, RGS4 expression is acutely sensitive to changing day length. In sheep acclimated to short days (SP, 8 h light/day), RGS4 expression increases sharply following dark onset, peaking in the middle of the night before declining to basal levels by dawn. Extending the day length to 16 h (LP) by an acute 8-h delay in lights off causes a corresponding delay in the evening rise of RGS4 expression, and the return to basal levels is delayed some 4 h into the next morning. To test the hypothesis that RGS4 expression modulates interactions between melatonin- and TSH-dependent cAMP signalling pathways, we used transient transfections of MT1, TSH-R and RGS4 in COS7 cells along with a cAMP-response element luciferase reporter (CRE-luc). RGS4 attenuated MT1-mediated inhibition of TSH-stimulated CRE-luc activation. We propose that RGS4 contributes to photoperiodic sensitivity in the morning induction of cAMP-dependent gene expression in the PT.
Collapse
Affiliation(s)
- S M Dupré
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
46
|
Fernandez N, Gottardo FL, Alonso MN, Monczor F, Shayo C, Davio C. Roles of phosphorylation-dependent and -independent mechanisms in the regulation of histamine H2 receptor by G protein-coupled receptor kinase 2. J Biol Chem 2011; 286:28697-28706. [PMID: 21705320 DOI: 10.1074/jbc.m111.269613] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
It is widely assumed that G protein-coupled receptor kinase 2 (GRK2)-mediated specific inhibition of G protein-coupled receptors (GPCRs) response involves GRK-mediated receptor phosphorylation followed by β-arrestin binding and subsequent uncoupling from the heterotrimeric G protein. It has recently become evident that GRK2-mediated GPCRs regulation also involves phosphorylation-independent mechanisms. In the present study we investigated whether the histamine H2 receptor (H2R), a Gα(s)-coupled GPCR known to be desensitized by GRK2, needs to be phosphorylated for its desensitization and/or internalization and resensitization. For this purpose we evaluated the effect of the phosphorylating-deficient GRK2K220R mutant on H2R signaling in U937, COS7, and HEK293T cells. We found that although this mutant functioned as dominant negative concerning receptor internalization and resensitization, it desensitized H2R signaling in the same degree as the GRK2 wild type. To identify the domains responsible for the kinase-independent receptor desensitization, we co-transfected the receptor with constructions encoding the GRK2 RGS-homology domain (RH) and the RH or the kinase domain fused to the pleckstrin-homology domain. Results demonstrated that the RH domain of GRK2 was sufficient to desensitize the H2R. Moreover, disruption of RGS functions by the use of GRK2D110A/K220R double mutant, although coimmunoprecipitating with the H2R, reversed GRK2K220R-mediated H2R desensitization. Overall, these results indicate that GRK2 induces desensitization of H2R through a phosphorylation-independent and RGS-dependent mechanism and extends the GRK2 RH domain-mediated regulation of GPCRs beyond Gα(q)-coupled receptors. On the other hand, GRK2 kinase activity proved to be necessary for receptor internalization and the resulting resensitization.
Collapse
Affiliation(s)
- Natalia Fernandez
- Laboratorio de Farmacología de Receptores, Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina,; Consejo Nacional de Investigaciones Científicas y Técnicas, 1033 Buenos Aires, Argentina.
| | - Federico L Gottardo
- Laboratorio de Farmacología de Receptores, Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | - Maria N Alonso
- Consejo Nacional de Investigaciones Científicas y Técnicas, 1033 Buenos Aires, Argentina; Laboratorio de Farmacología y Patología Molecular, Instituto de Biología y Medicina Experimental, 1426 Buenos Aires, Argentina, and
| | - Federico Monczor
- Laboratorio de Farmacología de Receptores, Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina,; Consejo Nacional de Investigaciones Científicas y Técnicas, 1033 Buenos Aires, Argentina
| | - Carina Shayo
- Consejo Nacional de Investigaciones Científicas y Técnicas, 1033 Buenos Aires, Argentina; Laboratorio de Farmacología y Patología Molecular, Instituto de Biología y Medicina Experimental, 1426 Buenos Aires, Argentina, and
| | - Carlos Davio
- Laboratorio de Farmacología de Receptores, Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina,; Consejo Nacional de Investigaciones Científicas y Técnicas, 1033 Buenos Aires, Argentina
| |
Collapse
|
47
|
Nunn C, Zhao P, Zou MX, Summers K, Guglielmo CG, Chidiac P. Resistance to age-related, normal body weight gain in RGS2 deficient mice. Cell Signal 2011; 23:1375-86. [PMID: 21447383 DOI: 10.1016/j.cellsig.2011.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 03/01/2011] [Accepted: 03/21/2011] [Indexed: 01/09/2023]
Abstract
RGS2 (regulator of G protein signaling 2) is known to limit signals mediated via Gq- and Gs-coupled GPCRs (G protein coupled receptors), and it has been implicated in the differentiation of several cells types. The physiology of RGS2 knockout mice (rgs2(-/-)) has been studied in some detail, however, a metabolic phenotype has not previously been reported. We observed that old (21-24month) rgs2(-/-) mice weigh much less than wild-type C57BL/6 controls, and exhibit greatly reduced fat deposits, decreased serum lipids, and low leptin levels. Lower weight was evident as early as four weeks and continued throughout life. Younger adult male rgs2(-/-) mice (4-8months) were found to show similar strain-related differences as the aged animals, as well improved glucose clearance and insulin sensitivity, and enhanced beta-adrenergic and glucagon signaling in isolated hepatocytes. In addition, rgs2(-/-) pre-adipocytes had reduced levels of differentiation markers (Peroxisome proliferator-activated receptor γ (PPARγ); lipoprotein lipase (Lpl); CCAAT/enhancer binding protein α (CEBPα)) and also rgs2(-/-) white adipocytes were small relative to controls, suggesting altered adipogenesis. In wild-type animals, RGS2 mRNA was decreased in brown adipose tissue after cold exposure (7 h at 4 °C) but increased in white adipose tissue in response to a high fat diet, also suggesting a role in lipid storage. No differences between strains were detected with respect to food intake, energy expenditure, GPCR-stimulated lipolysis, or adaptive thermogenesis. In conclusion this study points to RGS2 as being an important regulatory factor in controlling body weight and adipose function.
Collapse
Affiliation(s)
- Caroline Nunn
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Gao MH, Hammond HK. Unanticipated signaling events associated with cardiac adenylyl cyclase gene transfer. J Mol Cell Cardiol 2011; 50:751-8. [PMID: 21354173 DOI: 10.1016/j.yjmcc.2011.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 12/31/2022]
Abstract
The published papers on the effects of increased cardiac expression of adenylyl cyclase type 6 (AC6) are reviewed. These include the effects of AC on normal and failing left ventricle in several pathophysiological models in mice and pigs. In addition, the effects of increased expression of AC6 in cultured neonatal and adult rat cardiac myocytes are discussed in the context of attempting to establish mechanisms for the unanticipated beneficial effects of AC6 on the failing heart. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy".
Collapse
Affiliation(s)
- Mei Hua Gao
- VA San Diego Healtcare System and University of California San Diego, San Diego, CA, USA
| | | |
Collapse
|
49
|
CRTC3 links catecholamine signalling to energy balance. Nature 2011; 468:933-9. [PMID: 21164481 DOI: 10.1038/nature09564] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 10/11/2010] [Indexed: 01/05/2023]
Abstract
The adipose-derived hormone leptin maintains energy balance in part through central nervous system-mediated increases in sympathetic outflow that enhance fat burning. Triggering of β-adrenergic receptors in adipocytes stimulates energy expenditure by cyclic AMP (cAMP)-dependent increases in lipolysis and fatty-acid oxidation. Although the mechanism is unclear, catecholamine signalling is thought to be disrupted in obesity, leading to the development of insulin resistance. Here we show that the cAMP response element binding (CREB) coactivator Crtc3 promotes obesity by attenuating β-adrenergic receptor signalling in adipose tissue. Crtc3 was activated in response to catecholamine signals, when it reduced adenyl cyclase activity by upregulating the expression of Rgs2, a GTPase-activating protein that also inhibits adenyl cyclase activity. As a common human CRTC3 variant with increased transcriptional activity is associated with adiposity in two distinct Mexican-American cohorts, these results suggest that adipocyte CRTC3 may play a role in the development of obesity in humans.
Collapse
|
50
|
Sjögren B. Regulator of G protein signaling proteins as drug targets: current state and future possibilities. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 62:315-47. [PMID: 21907914 DOI: 10.1016/b978-0-12-385952-5.00002-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulators of G protein signaling (RGS) proteins have emerged in the past two decades as novel drug targets in many areas of research. Their importance in regulating signaling via G protein-coupled receptors has become evident as numerous studies have been published on the structure and function of RGS proteins. A number of genetic models have also been developed, demonstrating the potential clinical importance of RGS proteins in various disease states, including central nervous system disorders, cardiovascular disease, diabetes, and several types of cancer. Apart from their classical mechanism of action as GTPase-activating proteins (GAPs), RGS proteins can also serve other noncanonical functions. This opens up a new approach to targeting RGS proteins in drug discovery as the view on the function of these proteins is constantly evolving. This chapter summarizes the latest development in RGS protein drug discovery with special emphasis on noncanonical functions and regulatory mechanisms of RGS protein expression. As more reports are being published on this group of proteins, it is becoming clear that modulation of GAP activity might not be the only way to therapeutically target RGS proteins.
Collapse
Affiliation(s)
- Benita Sjögren
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|