1
|
Zhang J, Huang J, Qi T, Huang Y, Lu Y, Zhan T, Gong H, Zhu Z, Shi Y, Zhou J, Yu L, Zhang X, Cheng H, Ke Y. SHP2 protects endothelial cell barrier through suppressing VE-cadherin internalization regulated by MET-ARF1. FASEB J 2018; 33:1124-1137. [PMID: 30102570 DOI: 10.1096/fj.201800284r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vascular endothelial (VE)-cadherin junctional localization is known to play a central role in vascular development, endothelial barrier integrity, and homeostasis. The sarcoma homology domain containing protein tyrosine phosphatase (SHP)2 has been shown to be involved in regulating endothelial barrier function; however, the mechanisms remain largely unknown. In this work SHP2 knockdown in an HUVEC monolayer increased VE-cadherin internalization and endothelial barrier permeability. Loss of SHP2 specifically augmented the GTPase activity of ADP-ribosylation factor (ARF)-1. ARF1 knockdown or inhibition of its guanine nucleotide exchange factors (GEFs) markedly attenuated VE-cadherin internalization and barrier hyperpermeability induced by SHP2 deficiency. SHP2 knockdown increased the total and phosphorylated levels of MET, whose activity was necessary for ARF1 activation and VE-cadherin internalization. Furthermore, constitutive endothelium-specific deletion of Shp2 in mice led to disrupted endothelial cell junctions, massive hemorrhage, and lethality in embryos. Induced and endothelium-specific deletion of Shp2 in adult mice resulted in lung hyperpermeability. Inhibitors for ARF1-GEF or MET used in pregnant mice prevented the vascular leakage in endothelial Shp2-deleted embryos. Together, our findings define a novel role of SHP2 in stabilizing junctional VE-cadherin in the resting endothelial barrier through suppressing MET and ARF1 activation.-Zhang, J., Huang, J., Qi, T., Huang, Y., Lu, Y., Zhan, T., Gong, H., Zhu, Z., Shi, Y., Zhou, J., Yu, L., Zhang, X., Cheng, H., Ke, Y. SHP2 protects endothelial cell barrier through suppressing VE-cadherin internalization regulated by MET-ARF1.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Huang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tongyun Qi
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yizhou Huang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuting Lu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianwei Zhan
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Gong
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengyi Zhu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueli Shi
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhong Zhou
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luyang Yu
- Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, China; and
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
2
|
Wang LS, Wang H, Zhang QL, Yang ZJ, Kong FX, Wu CT. Hepatocyte Growth Factor Gene Therapy for Ischemic Diseases. Hum Gene Ther 2018; 29:413-423. [DOI: 10.1089/hum.2017.217] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Li-Sheng Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
- School of Nursing, Jilin University, Jilin, P.R. China
| | - Hua Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Qing-Lin Zhang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Zhi-Jian Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Fan-Xuan Kong
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Chu-Tse Wu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| |
Collapse
|
3
|
D'Souza DM, Trajcevski KE, Al-Sajee D, Wang DC, Thomas M, Anderson JE, Hawke TJ. Diet-induced obesity impairs muscle satellite cell activation and muscle repair through alterations in hepatocyte growth factor signaling. Physiol Rep 2015; 3:3/8/e12506. [PMID: 26296771 PMCID: PMC4562589 DOI: 10.14814/phy2.12506] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A healthy skeletal muscle mass is essential in attenuating the complications of obesity. Importantly, healthy muscle function is maintained through adequate repair following overuse and injury. The purpose of this study was to investigate the impact of diet-induced obesity (DIO) on skeletal muscle repair and the functionality of the muscle satellite cell (SC) population. Male C57BL/6J mice were fed a standard chow or high-fat diet (60% kcal fat; DIO) for 8 weeks. Muscles from DIO mice subjected to cardiotoxin injury displayed attenuated muscle regeneration, as indicated by prolonged necrosis, delayed expression of MyoD and Myogenin, elevated collagen content, and persistent embryonic myosin heavy chain expression. While no significant differences in SC content were observed, SCs from DIO muscles did not activate normally nor did they respond to exogenous hepatocyte growth factor (HGF) despite similar receptor (cMet) density. Furthermore, HGF release from crushed muscle was significantly less than that from muscles of chow fed mice. This study demonstrates that deficits in muscle repair are present in DIO, and the impairments in the functionality of the muscle SC population as a result of altered HGF/c-met signaling are contributors to the delayed regeneration.
Collapse
Affiliation(s)
- Donna M D'Souza
- Departments of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Karin E Trajcevski
- Departments of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dhuha Al-Sajee
- Departments of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - David C Wang
- Departments of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Melissa Thomas
- Departments of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas J Hawke
- Departments of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Alshaker H, Sauer L, Monteil D, Ottaviani S, Srivats S, Böhler T, Pchejetski D. Therapeutic potential of targeting SK1 in human cancers. Adv Cancer Res 2013; 117:143-200. [PMID: 23290780 DOI: 10.1016/b978-0-12-394274-6.00006-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sphingosine kinase 1 (SK1) is a lipid enzyme with oncogenic properties that converts the proapoptotic lipids ceramide and sphingosine into the antiapoptotic lipid sphingosine-1-phosphate and activates the signal transduction pathways that lead to cell proliferation, migration, the activation of the inflammatory response, and the impairment of apoptosis. There is compelling evidence that SK1 activation contributes to cancer progression leading to increased oncogenic transformation, tumor growth, resistance to therapies, tumor neovascularization, and metastatic spread. High levels of SK1 expression or activity have been associated with a poor prognosis in several human cancers. Recent studies using cancer cell and mouse models demonstrate a significant potential for SK1-targeting therapies to synergize with the effects of chemotherapy and radiotherapy; however, until recently the absence of clinically applicable SK1 inhibitors has limited the translation of these findings into patients. With the recent discovery of SK1 inhibiting properties of a clinically approved drug FTY720 (Fingolimod), SK1 has gained significant attention from both clinicians and the pharmaceutical industry and it is hoped that trials of newly developed SK1 inhibitors may follow soon. This review provides an overview of the SK1 signaling, its relevance to cancer progression, and the potential clinical significance of targeting SK1 for improved local or systemic control of human cancers.
Collapse
Affiliation(s)
- Heba Alshaker
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Sphingosine kinase 1 (SK1) is a lipid enzyme with oncogenic properties that converts the proapoptotic lipid sphingosine into the antiapoptotic lipid sphingosine-1-phosphate, which activates the signal transduction pathways that lead to cell proliferation, migration, activation of the inflammatory response and impairment of apoptosis. Compelling evidence suggests that SK1 activation contributes to cancer progression leading to increased oncogenic transformation, tumor growth, resistance to therapies, tumor neovascularization and metastatic spread. High levels of SK1 expression or activity have been associated with poor prognosis in several cancers, including those of the prostate. Recent studies using prostate cancer cell and mouse models demonstrate a significant potential for SK1-targeting therapies to synergize with the effects of docetaxel chemotherapy and radiotherapy. However, until recently the absence of clinically applicable SK1 inhibitors has limited the translation of these findings into patients. With the recent discovery that clinically approved drug fingolimod has SK1-inhibiting properties, SK1 has gained significant attention from both clinicians and the pharmaceutical industry and it is hoped that trials of newly developed SK1 inhibitors might follow soon.
Collapse
|
6
|
Abstract
BACKGROUND KAI1/CD82 has been reported to attenuate the process of metastases in a variety of tumors; however, its mechanism of action in invasion has not been fully elucidated. The present study aimed to investigate the importance of KAI1 in invasion and its correlation with activation of sphingosine kinase (SPK) in human pancreatic cancer PANC1 and Miapaca-2 cell lines. METHODS The expression of KAI1 in PANC1 and Miapaca-2 cells, which was mediated by recombinant adenovirus (Ad-KAI1), was assessed by a flow cytometer and Western blotting. After successful infection was established, in vitro growth curve and invasive ability in Boyden Chamber assay were studied. The presence of KAI1 correlating with c-Met and SPK was detected by co-immunoprecipitation and [gamma-32P] ATP incorporation. RESULTS KAI1 genes had no significant effects on the curve representing cell growth. After infection with the KAI1 gene, decreased invasive ability in the Boyden Chamber assay was observed in PANC1 and Miapaca-2 cells that were induced by hepatocyte growth factor. Over-expression of KAI1 in the cells led to the deactivation of SPK and a decreased level of intracellular sphingosine-1-phosphate. No correlation was observed between c-Met and KAI1 during co-immunoprecipitation. CONCLUSION The results of this study for the first time demonstrated a regulatory role for KAI1 in SPK activation, which leads to decreased invasive ability in disease progression of human pancreatic cancer.
Collapse
|
7
|
The effect of high-fat diet on the sphingolipid pathway of signal transduction in regenerating rat liver. Prostaglandins Other Lipid Mediat 2010; 93:75-83. [PMID: 20599517 DOI: 10.1016/j.prostaglandins.2010.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/10/2010] [Accepted: 06/24/2010] [Indexed: 01/19/2023]
Abstract
Liver regeneration after partial hepatectomy (PH) is achieved by intense cells proliferation. Sphingosine-1-phosphate stimulates proliferation but ceramide and sphingosine induce apoptosis. The aim of the study was to investigate the influence of high-fat diet (HFD) on the sphingolipid metabolism during the first 24h of liver regeneration in rats. Rats were fed HFD or standard diet for 7 days prior to the PH. The content of sphingolipids and the activity of sphingomyelinases (n and aSMase), ceramidases (n and aCDase) and sphingosine kinase (SPHK) were measured. It has been found that HFD increased the activity of aSMase and nCDase at 4th hour after PH. The content of ceramide and sphingosine decreased in HFD group at each time point. This was accompanied by elevated content of sphingosine-1-phosphate and sphinganine-1-phosphate. Decrease in SPHK activity in cytosol after partial hepatectomy was inversely correlated (r=-0.7538) with increase in S1P, which suggest translocation of SPHK to plasma membrane. Shingosine-1-phosphate to ceramide ratio was higher in rats fed HFD. It is concluded that HFD stimulates the pro-mitotic action of the sphingolipid signaling in regenerating rat liver.
Collapse
|
8
|
Meng E, Guo Z, Wang H, Jin J, Wang J, Wang H, Wu C, Wang L. High mobility group box 1 protein inhibits the proliferation of human mesenchymal stem cells and promotes their migration and differentiation along osteoblastic pathway. Stem Cells Dev 2008; 17:805-13. [PMID: 18715162 DOI: 10.1089/scd.2007.0276] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Extracellular high mobility group box 1 (HMGB1) is a novel cytokine that takes part in the processes of inflammation, tissue damage and regeneration. Mesenchymal stem cells (MSCs) are adult stem cells characterized by their inherently suppressive activities on inflammative and allo-immune reactions. In the present study, we have addressed whether HMGB1 could affect the biological properties of human bone marrow MSCs. Transwell experiments showed that HMGB1 induced MSC migration and this effect could not be hampered by a blocking antibody against the receptor for advanced glycation end products (RAGE). MSCs exposed to HMGB1 were negative for CD31, CD45, CD80, and HLA-DR, and displayed equal levels of CD73, CD166, and HLA-ABC compared with their counterparts, but HMGB1 profoundly suppressed MSC proliferation in a dose-dependent manner as evaluated by carboxyfluorescein diacetate succinmidyl ester dye dilution assay. Furthermore, HMGB1 triggered the differentiation of MSCs into osteoblasts as identified by histochemical staining, traditional RT-PCR and real-time RT-PCR analysis on mRNA expression of lineage-specific molecular markers. The differentiation-inductive activity could neither be inhibited by RAGE neutralizing antibody. Moreover, HMGB1-treated MSCs displayed unchanged suppressive activity on in vitro lymphocyte cell proliferation elicited by ConA. Collectively, the data suggest that MSCs are a target of HMGB1.
Collapse
Affiliation(s)
- Erhong Meng
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Stuart HC, Jia Z, Messenberg A, Joshi B, Underhill TM, Moukhles H, Nabi IR. Localized Rho GTPase activation regulates RNA dynamics and compartmentalization in tumor cell protrusions. J Biol Chem 2008; 283:34785-95. [PMID: 18845542 DOI: 10.1074/jbc.m804014200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
mRNA trafficking and local protein translation are associated with protrusive cellular domains, such as neuronal growth cones, and deregulated control of protein translation is associated with tumor malignancy. We show here that activated RhoA, but not Rac1, is enriched in pseudopodia of MSV-MDCK-INV tumor cells and that Rho, Rho kinase (ROCK), and myosin II regulate the microtubule-independent targeting of RNA to these tumor cell domains. ROCK inhibition does not affect pseudopodial actin turnover but significantly reduces the dynamics of pseudopodial RNA turnover. Gene array analysis shows that 7.3% of the total genes analyzed exhibited a greater than 1.6-fold difference between the pseudopod and cell body fractions. Of these, only 13.2% (261 genes) are enriched in pseudopodia, suggesting that only a limited number of total cellular mRNAs are enriched in tumor cell protrusions. Comparison of the tumor pseudopod mRNA cohort and a cohort of mRNAs enriched in neuronal processes identified tumor pseudopod-specific signaling networks that were defined by expression of M-Ras and the Shp2 protein phosphatase. Pseudopod expression of M-Ras and Shp2 mRNA were diminished by ROCK inhibition linking pseudopodial Rho/ROCK activation to the localized expression of specific mRNAs. Pseudopodial enrichment for mRNAs involved in protein translation and signaling suggests that local mRNA translation regulates pseudopodial expression of less stable signaling molecules as well as the cellular machinery to translate these mRNAs. Pseudopodial Rho/ROCK activation may impact on tumor cell migration and metastasis by stimulating the pseudopodial translocation of mRNAs and thereby regulating the expression of local signaling cascades.
Collapse
Affiliation(s)
- Heather C Stuart
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Li QF, Wu CT, Duan HF, Sun HY, Wang H, Lu ZZ, Zhang QW, Liu HJ, Wang LS. Activation of sphingosine kinase mediates suppressive effect of interleukin-6 on human multiple myeloma cell apoptosis. Br J Haematol 2007; 138:632-9. [PMID: 17686057 DOI: 10.1111/j.1365-2141.2007.06711.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interleukin 6 (IL-6) influences the growth and survival of multiple myeloma (MM) cells via the activation of multiple signalling cascades. Although sphingosine kinase (SPHK) signalling is known to play important roles in the regulation of cell proliferation and apoptosis, the role of SPHK activation in IL-6 signalling and in the pathology of MM remains unclear. This study found that IL-6 activated SPHK in MM cells, which mediates the suppressive effects of IL-6 on MM cell apoptosis. Both MM cell lines and primary MM cells constitutively expressed SPHK, and treatment of MM cells with IL-6 resulted in activation of SPHK in a concentration-dependent manner. Specific inhibitors of the phosphatidylinositol-3 kinase and extracellular signal-regulated kinase/mitogen-activated protein kinase pathways blocked the IL-6-induced activation of SPHK. It was further demonstrated that IL-6-induced activation of SPHK inhibited dexamethasone-induced apoptosis of MM cells. IL-6 stimulation or retroviral-mediated overexpression of SPHK1 in MM cells resulted in increased intracellular SPHK activity and upregulation of myeloid cell leukaemia-1 (Mcl-1), leading to increased cell proliferation and survival. Conversely, inhibition of SPHK1 by small interfering RNA reduced IL-6-induced upregulation of Mcl-1 and blocked the suppressive effect of IL-6 on MM cell apoptosis. Taken together, these results delineate a key role for SPHK activation in IL-6-induced proliferation and survival of MM cells, and suggest that SPHK may be a potential new therapeutic target in MM.
Collapse
Affiliation(s)
- Qing-Fang Li
- Department of Experimental Haematology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ma MM, Chen JL, Wang GG, Wang H, Lu Y, Li JF, Yi J, Yuan YJ, Zhang QW, Mi J, Wang LS, Duan HF, Wu CT. Sphingosine kinase 1 participates in insulin signalling and regulates glucose metabolism and homeostasis in KK/Ay diabetic mice. Diabetologia 2007; 50:891-900. [PMID: 17265031 DOI: 10.1007/s00125-006-0589-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2006] [Accepted: 12/15/2006] [Indexed: 12/27/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to determine the potential role of sphingosine kinase 1 (SPHK1), a key sphingolipid metabolic enzyme, in glucose metabolism and homeostasis. METHODS SMMC-7721 hepatoma cells and C2C12 myotube cells were used to explore the role of SPHK1 in glucose uptake in vitro. KK/Ay type 2 diabetic mice, which were transfected with adenovirus harbouring the human SPHK1 gene by i.v. injection, were used to investigate the glucose-lowering effects of SPHK1 in vivo. RESULTS The basal glucose uptake and the insulin-stimulated glucose uptake in both 7721 cells and C2C12 cells were markedly enhanced when SPHK1 was overexpressed by adenovirus-mediated gene transfer, whereas they were substantially reduced when the expression of SPHK1 was inhibited or the activity of SPHK1 was blocked. Insulin could activate SPHK1 of both cell lines in a dose-dependent manner. SPHK1 gene delivery significantly reduced the blood glucose level of KK/Ay diabetic mice, but had no effect on that of normal animals. It also attenuated elevated levels of plasma insulin, NEFA, triacylglycerol, cholesterol and LDL, significantly ameliorated hyperglycaemia-induced injury of liver, heart and kidney, and enhanced phosphorylation of insulin-signalling kinases such as Akt and glycogen synthase kinase 3beta in livers of the diabetic animals. CONCLUSIONS/INTERPRETATION SPHK1 is involved in insulin signalling and plays an important role in the regulation of glucose and fat metabolism; adenovirus-mediated SPHK1 gene transfer might provide a novel strategy in the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- M M Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Alemany R, van Koppen CJ, Danneberg K, Ter Braak M, Meyer Zu Heringdorf D. Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch Pharmacol 2007; 374:413-28. [PMID: 17242884 DOI: 10.1007/s00210-007-0132-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 12/22/2006] [Indexed: 01/13/2023]
Abstract
Sphingosine kinases (SphKs) catalyze the phosphorylation of sphingosine to sphingosine-1-phosphate (S1P). Together with other sphingolipid metabolizing enzymes, SphKs regulate the balance of the lipid mediators, ceramide, sphingosine, and S1P. The ubiquitous mediator S1P regulates cellular functions such as proliferation and survival, cytoskeleton architecture and Ca(2+) homoeostasis, migration, and adhesion by activating specific high-affinity G-protein-coupled receptors or by acting intracellularly. In mammals, two isoforms of SphK have been identified. They are activated by G-protein-coupled receptors, receptor tyrosine kinases, immunoglobulin receptors, cytokines, and other stimuli. The molecular mechanisms by which SphK1 and SphK2 are specifically regulated are complex and only partially understood. Although SphK1 and SphK2 appear to have opposing roles, promoting cell growth and apoptosis, respectively, they can obviously also substitute for each other, as mice deficient in either SphK1 or SphK2 had no obvious abnormalities, whereas double-knockout animals were embryonic lethal. In this review, our understanding of structure, regulation, and functional roles of SphKs is updated and discussed with regard to their implication in pathophysiological and disease states.
Collapse
Affiliation(s)
- Regina Alemany
- Institut für Pharmakologie, Universität Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | | | |
Collapse
|