1
|
Sarawi WS, Attia HA, Alzoubi A, Alanazi N, Mohammad R, Ali RA. Cardamom extract alleviates tamoxifen-induced liver damage by suppressing inflammation and pyroptosis pathway. Sci Rep 2025; 15:4744. [PMID: 39922887 PMCID: PMC11807216 DOI: 10.1038/s41598-025-89091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Tamoxifen (TAM) is extensively used to manage estrogen receptor-positive breast cancer. Despite its effectiveness, its administration can negatively impact various organs, including the liver. This research focused on the effects of TAM on the pyroptotic pathway in the liver and evaluated the potential of cardamom extract (CRDE) to lessen hepatic damage of TAM in female rats. Rats received 45 mg/kg of TAM injections for 10 days, while the groups treated with CRDE received 12 ml/kg of CRDE for 20 days, commencing 10 days before TAM administration. TAM exposure resulted in apparent degenerations in hepatic tissue with inflammatory cell infiltration and loss of architectures. Serum levels of liver enzymes including alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase were elevated, along with hepatic oxidative stress, as shown by increased lipid peroxidation with lower levels of reduced glutathione. TAM caused inflammation in the liver tissue as indicated by higher levels of tumor necrosis factor-α and interleukin-6 as well as increased expression of CD68; a phagocytic Kupffer's cells marker. Additionally, the protein expression analysis revealed a high expression of pyroptotic markers including NLRP3-inflammasome, caspase-1, and gasdermin D. Conversely, CRDE treatment effectively neutralized the biochemical, histological, and protein expression alterations induced by TAM. In conclusion, CRDE demonstrated the potential to protect the liver from TAM-induced damage by regulating mechanisms involving oxidative damage, inflammation, and pyroptosis.
Collapse
Affiliation(s)
- Wedad S Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| | - Hala A Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Afraa Alzoubi
- Department of Bioengineering, Imperial College London, London, UK
| | - Nour Alanazi
- College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Raeesa Mohammad
- Department of Histology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh, 11461, Saudi Arabia
| | - Rehab A Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
2
|
Lozon L, Ramadan WS, Kawaf RR, Al-Shihabi AM, El-Awady R. Decoding cell death signalling: Impact on the response of breast cancer cells to approved therapies. Life Sci 2024; 342:122525. [PMID: 38423171 DOI: 10.1016/j.lfs.2024.122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Breast cancer is a principal cause of cancer-related mortality in female worldwide. While many approved therapies have shown promising outcomes in treating breast cancer, understanding the intricate signalling pathways controlling cell death is crucial for optimizing the treatment outcome. A growing body of evidence has unveiled the aberrations in multiple cell death pathways across diverse cancer types, highlighting these pathways as appealing targets for therapeutic interventions. In this review, we provide a comprehensive overview of the current state of knowledge on the cell death signalling mechanisms with a particular focus on their impact on the response of breast cancer cells to approved therapies. Additionally, we discuss the potentials of combination therapies that exploit the synergy between approved drugs and therapeutic agents targeting modulators of cell death pathways.
Collapse
Affiliation(s)
- Lama Lozon
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Rawan R Kawaf
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Aya M Al-Shihabi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
3
|
Liu R, Miao J, Jia Y, Kong G, Hong F, Li F, Zhai M, Zhang R, Liu J, Xu X, Wang T, Liu H, Hu J, Yang Y, He A. N6-methyladenosine reader YTHDF2 promotes multiple myeloma cell proliferation through EGR1/p21 cip1/waf1/CDK2-Cyclin E1 axis-mediated cell cycle transition. Oncogene 2023; 42:1607-1619. [PMID: 37012388 PMCID: PMC10181929 DOI: 10.1038/s41388-023-02675-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy. N6-methyladenosine (m6A) is the most abundant RNA modification. YTH domain-containing family protein 2 (YTHDF2) recognizes m6A-cotaining RNAs and accelerates degradation to regulate cancer progression. However, the role of YTHDF2 in MM remains unclear. We investigated the expression levels and prognostic role of YTHDF2 in MM, and studied the effect of YTHDF2 on MM proliferation and cell cycle. The results showed that YTHDF2 was highly expressed in MM and was an independent prognostic factor for MM survival. Silencing YTHDF2 suppressed cell proliferation and caused the G1/S phase cell cycle arrest. RNA immunoprecipitation (RIP) and m6A-RIP (MeRIP) revealed that YTHDF2 accelerated EGR1 mRNA degradation in an m6A-dependent manner. Moreover, overexpression of YTHDF2 promoted MM growth via the m6A-dependent degradation of EGR1 both in vitro and in vivo. Furthermore, EGR1 suppressed cell proliferation and retarded cell cycle by activating p21cip1/waf1 transcription and inhibiting CDK2-cyclinE1. EGR1 knockdown could reverse the inhibited proliferation and cell cycle arrest upon YTHDF2 knockdown. In conclusion, the high expression of YTHDF2 promoted MM cell proliferation via EGR1/p21cip1/waf1/CDK2-cyclin E1 axis-mediated cell cycle transition, highlighting the potential of YTHDF2 as an effective prognostic biomarker and a promising therapeutic target for MM.
Collapse
Affiliation(s)
- Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, 710004, Xi'an, Shaanxi, China
| | - Jiyu Miao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, 710004, Xi'an, Shaanxi, China
| | - Yachun Jia
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, 710004, Xi'an, Shaanxi, China
| | - Guangyao Kong
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, 710004, Xi'an, Shaanxi, China
- National-Local Joint Engineering Research Center of Biodiagnostics & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
- Department of Tumor and Immunology in precision medical institute, Xi'an Jiaotong University, Xi'an, China
| | - Fei Hong
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, 710004, Xi'an, Shaanxi, China
| | - Fangmei Li
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, 710004, Xi'an, Shaanxi, China
| | - Meng Zhai
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, 710004, Xi'an, Shaanxi, China
| | - Ru Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, 710004, Xi'an, Shaanxi, China
| | - Jiaxi Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, 710004, Xi'an, Shaanxi, China
| | - Xuezhu Xu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, 710004, Xi'an, Shaanxi, China
| | - Ting Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, 710004, Xi'an, Shaanxi, China
| | - Hui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, 710004, Xi'an, Shaanxi, China
| | - Jinsong Hu
- Department of Cell Biology and Genetics, The Institute of Infection and Immunity, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| | - Yun Yang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, 710004, Xi'an, Shaanxi, China.
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, 710004, Xi'an, Shaanxi, China.
- National-Local Joint Engineering Research Center of Biodiagnostics & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
- Department of Tumor and Immunology in precision medical institute, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Zou J, Xu C, Zhao ZW, Yin SH, Wang G. Asprosin inhibits macrophage lipid accumulation and reduces atherosclerotic burden by up-regulating ABCA1 and ABCG1 expression via the p38/Elk-1 pathway. Lab Invest 2022; 20:337. [PMID: 35902881 PMCID: PMC9331044 DOI: 10.1186/s12967-022-03542-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/17/2022] [Indexed: 12/27/2022]
Abstract
Background Asprosin, a newly discovered adipokine, is a C-terminal cleavage product of profibrillin. Asprosin has been reported to participate in lipid metabolism and cardiovascular disease, but its role in atherogenesis remains elusive. Methods Asprosin was overexpressed in THP-1 macrophage-derived foam cells and apoE−/− mice using the lentiviral vector. The expression of relevant molecules was determined by qRT-PCR and/or western blot. The intracellular lipid accumulation was evaluated by high-performance liquid chromatography and Oil red O staining. HE and Oil red O staining was employed to assess plaque burden in vivo. Reverse cholesterol transport (RCT) efficiency was measured using [3H]-labeled cholesterol. Results Exposure of THP-1 macrophages to oxidized low-density lipoprotein down-regulated asprosin expression. Lentivirus-mediated overexpression of asprosin promoted cholesterol efflux and inhibited lipid accumulation in THP-1 macrophage-derived foam cells. Mechanistic analysis revealed that asprosin overexpression activated p38 and stimulated the phosphorylation of ETS-like transcription factor (Elk-1) at Ser383, leading to Elk-1 nuclear translocation and the transcriptional activation of ATP binding cassette transporters A1 (ABCA1) and ABCG1. Injection of lentiviral vector expressing asprosin diminished atherosclerotic lesion area, increased plaque stability, improved plasma lipid profiles and facilitated RCT in apoE−/− mice. Asprosin overexpression also increased the phosphorylation of p38 and Elk-1 as well as up-regulated the expression of ABCA1 and ABCG1 in the aortas. Conclusion Asprosin inhibits lipid accumulation in macrophages and decreases atherosclerotic burden in apoE−/− mice by up-regulating ABCA1 and ABCG1 expression via activation of the p38/Elk-1 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03542-0.
Collapse
Affiliation(s)
- Jin Zou
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Can Xu
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Shan-Hui Yin
- The First Affiliated Hospital, Department of Neonatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Gang Wang
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
5
|
Schmidt K, Carroll JS, Yee E, Thomas DD, Wert-Lamas L, Neier SC, Sheynkman G, Ritz J, Novina CD. The lncRNA SLNCR Recruits the Androgen Receptor to EGR1-Bound Genes in Melanoma and Inhibits Expression of Tumor Suppressor p21. Cell Rep 2020; 27:2493-2507.e4. [PMID: 31116991 PMCID: PMC6668037 DOI: 10.1016/j.celrep.2019.04.101] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/10/2018] [Accepted: 04/22/2019] [Indexed: 11/30/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer, affecting men more frequently and severely than women. Although recent studies suggest that differences in activity of the androgen receptor (AR) underlie the observed sex bias, little is known about AR activity in melanoma. Here we show that AR and EGR1 bind to the long non-coding RNA SLNCR and increase melanoma proliferation through coordinated transcriptional regulation of several growth-regulatory genes. ChIP-seq reveals that ligand-free AR is enriched on SLNCR-regulated melanoma genes and that AR genomic occupancy significantly overlaps with EGR1 at consensus EGR1 binding sites. We present a model in which SLNCR recruits AR to EGR1-bound genomic loci and switches EGR1-mediated transcriptional activation to repression of the tumor suppressor p21Waf1/Cip1. Our data implicate the regulatory triad of SLNCR, AR, and EGR1 in promoting oncogenesis and may help explain why men have a higher incidence of and more rapidly progressive melanomas compared with women.
Collapse
Affiliation(s)
- Karyn Schmidt
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Johanna S Carroll
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Elaine Yee
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Dolly D Thomas
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Leon Wert-Lamas
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Steven C Neier
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Gloria Sheynkman
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Justin Ritz
- Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Carl D Novina
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA.
| |
Collapse
|
6
|
Xiang QF, Zhan MX, Li Y, Liang H, Hu C, Huang YM, Xiao J, He X, Xin YJ, Chen MS, Lu LG. Activation of MET promotes resistance to sorafenib in hepatocellular carcinoma cells via the AKT/ERK1/2-EGR1 pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:83-89. [PMID: 30663411 DOI: 10.1080/21691401.2018.1543195] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sorafenib is an oral multikinase inhibitor that has become an established therapeutic approach in advanced hepatocellular carcinoma (HCC). However, the benefit of sorafenib in clinical therapy is often affected by drug resistance. Therefore, it is important to explore the mechanisms underlying sorafenib resistance and to develop individualized therapeutic strategies for coping with this problem. In this study, we found that addition of HGF to sorafenib-treated HCC cells activated MET and re-stimulated the downstream AKT and ERK1/2 pathways. Thereby, restored sorafenib-treated HCC cells proliferation, migration and invasion ability, and rescued cells from apoptosis. In addition, we found that HGF treatment of HCC cells induced early growth response protein (EGR1) expression, which is involved in sorafenib resistance. Importantly, the HGF rescued effect in sorafenib-treated HCC cells could be abrogated by inhibiting MET activation with PHA-665752 or by downregulating EGR1 expression with small interfering RNA (siRNA). Therefore, inhibition of the HGF/MET pathway may improve response to sorafenib in HCC, and combination therapy should be further investigated.
Collapse
Affiliation(s)
- Qing-Feng Xiang
- a Department of Hepatobiliary Surgery , Sun Yat-Sen University Cancer Center , Guangzhou , China.,b Department of General Surgery , Zhuhai People's Hospital, Zhuhai Hospital of Jinan University , Zhuhai , China
| | - Mei-Xiao Zhan
- c Zhuhai Interventional Medical Center, Zhuhai Precision Medicine Center , Zhuhai People's Hospital , Zhuhai Hospital of Jinan University , Zhuhai , China
| | - Yong Li
- c Zhuhai Interventional Medical Center, Zhuhai Precision Medicine Center , Zhuhai People's Hospital , Zhuhai Hospital of Jinan University , Zhuhai , China
| | - Hui Liang
- b Department of General Surgery , Zhuhai People's Hospital, Zhuhai Hospital of Jinan University , Zhuhai , China
| | - Cong Hu
- b Department of General Surgery , Zhuhai People's Hospital, Zhuhai Hospital of Jinan University , Zhuhai , China
| | - Yao-Ming Huang
- b Department of General Surgery , Zhuhai People's Hospital, Zhuhai Hospital of Jinan University , Zhuhai , China
| | - Jing Xiao
- c Zhuhai Interventional Medical Center, Zhuhai Precision Medicine Center , Zhuhai People's Hospital , Zhuhai Hospital of Jinan University , Zhuhai , China
| | - Xu He
- c Zhuhai Interventional Medical Center, Zhuhai Precision Medicine Center , Zhuhai People's Hospital , Zhuhai Hospital of Jinan University , Zhuhai , China
| | - Yong-Jie Xin
- c Zhuhai Interventional Medical Center, Zhuhai Precision Medicine Center , Zhuhai People's Hospital , Zhuhai Hospital of Jinan University , Zhuhai , China
| | - Min-Shan Chen
- a Department of Hepatobiliary Surgery , Sun Yat-Sen University Cancer Center , Guangzhou , China
| | - Li-Gong Lu
- c Zhuhai Interventional Medical Center, Zhuhai Precision Medicine Center , Zhuhai People's Hospital , Zhuhai Hospital of Jinan University , Zhuhai , China
| |
Collapse
|
7
|
Liu Z, Xia Y, Zhang X, Liu L, Tu S, Zhu W, Yu L, Wan H, Yu B, Wan F. Roles of the MST1-JNK signaling pathway in apoptosis of colorectal cancer cells induced by Taurine. Libyan J Med 2018; 13:1500346. [PMID: 30035680 PMCID: PMC6060381 DOI: 10.1080/19932820.2018.1500346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to observe the impact of the mammalian sterile 20-like kinase 1-c-Jun N-terminal kinase (MST1-JNK) signaling pathway on apoptosis in colorectal cancer (CRC) cells induced by Taurine (Tau). Caco-2 and SW620 cells transfected with p-enhanced green fluorescent protein (EGFP)-MST1 or short interfering RNA (siRNA)-MST1 were treated with Tau for 48 h. Apoptosis was detected by flow cytometry, and the levels of MST1 and JNK were detected by western blotting. Compared with the control group, 80 mM Tau could significantly induce apoptosis of CRC cells, and the apoptotic rate increased with increasing Tau concentration (P < 0.01). Meanwhile, the protein levels of MST1 and phosphorylated (p)-JNK in Caco-2 cells increased significantly (P < 0.01). The apoptotic rate of the p-EGFP-MST1 plasmid-transfected cancer cells was significantly higher than that of the control group (P < 0.05); however, the apoptotic rate of the p-EGFP-MST1+Tau group was increased further (P < 0.01). Silencing the MST1 gene could decrease the apoptotic rate of cancer cells, and Tau treatment could reverse this decrease. Blocking the JNK signaling pathway significantly reduced the Tau-induced apoptotic rate of CRC cells. Thus, the MST1-JNK pathway plays an important role in Tau-induced apoptosis of CRC cells.
Collapse
Affiliation(s)
- Zhuoqi Liu
- a Department of Biochemistry and Molecular Biology , School of Basic Medical Sciences, Nanchang University , Nanchang China
| | - Yanqin Xia
- a Department of Biochemistry and Molecular Biology , School of Basic Medical Sciences, Nanchang University , Nanchang China
| | - Xiali Zhang
- b Laboratory Animal Science Center , Nanchang University , Nanchang , China
| | - Liqiao Liu
- a Department of Biochemistry and Molecular Biology , School of Basic Medical Sciences, Nanchang University , Nanchang China
| | - Shuo Tu
- a Department of Biochemistry and Molecular Biology , School of Basic Medical Sciences, Nanchang University , Nanchang China
| | - Weifeng Zhu
- a Department of Biochemistry and Molecular Biology , School of Basic Medical Sciences, Nanchang University , Nanchang China
| | - Lehan Yu
- c Medical Experiment Teaching Center , Nanchang University , Nanchang , China
| | - Huifang Wan
- c Medical Experiment Teaching Center , Nanchang University , Nanchang , China
| | - Bo Yu
- a Department of Biochemistry and Molecular Biology , School of Basic Medical Sciences, Nanchang University , Nanchang China
| | - Fusheng Wan
- a Department of Biochemistry and Molecular Biology , School of Basic Medical Sciences, Nanchang University , Nanchang China
| |
Collapse
|
8
|
Ashenden M, van Weverwijk A, Murugaesu N, Fearns A, Campbell J, Gao Q, Iravani M, Isacke CM. An In Vivo Functional Screen Identifies JNK Signaling As a Modulator of Chemotherapeutic Response in Breast Cancer. Mol Cancer Ther 2017; 16:1967-1978. [PMID: 28611109 DOI: 10.1158/1535-7163.mct-16-0731] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/15/2017] [Accepted: 05/18/2017] [Indexed: 11/16/2022]
Abstract
Chemotherapy remains the mainstay of treatment for advanced breast cancer; however, resistance is an inevitable event for the majority of patients with metastatic disease. Moreover, there is little information available to guide stratification of first-line chemotherapy, crucial given the common development of multidrug resistance. Here, we describe an in vivo screen to interrogate the response to anthracycline-based chemotherapy in a syngeneic metastatic breast cancer model and identify JNK signaling as a key modulator of chemotherapy response. Combining in vitro and in vivo functional analyses, we demonstrate that JNK inhibition both promotes tumor cell cytostasis and blocks activation of the proapoptotic protein Bax, thereby antagonizing chemotherapy-mediated cytotoxicity. To investigate the clinical relevance of this dual role of JNK signaling, we developed a proliferation-independent JNK activity signature and demonstrate high JNK activity to be enriched in triple-negative and basal-like breast cancer subtypes. Consistent with the dual role of JNK signaling in vitro, high-level JNK pathway activation in triple-negative breast cancers is associated both with poor patient outcome in the absence of chemotherapy treatment and, in neoadjuvant clinical studies, is predictive of enhanced chemotherapy response. These data highlight the potential of monitoring JNK activity as early biomarker of response to chemotherapy and emphasize the importance of rational treatment regimes, particularly when combining cytostatic and chemotherapeutic agents. Mol Cancer Ther; 16(9); 1967-78. ©2017 AACR.
Collapse
Affiliation(s)
- Matthew Ashenden
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Antoinette van Weverwijk
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Nirupa Murugaesu
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Antony Fearns
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - James Campbell
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Qiong Gao
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Marjan Iravani
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Clare M Isacke
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
9
|
Binding and inhibition of the ternary complex factor Elk-4/Sap1 by the adapter protein Dok-4. Biochem J 2017; 474:1509-1528. [PMID: 28275114 DOI: 10.1042/bcj20160832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/17/2017] [Accepted: 03/08/2017] [Indexed: 01/25/2023]
Abstract
The adapter protein Dok-4 (downstream of kinase-4) has been reported as both an activator and inhibitor of Erk and Elk-1, but lack of knowledge about the identity of its partner molecules has precluded any mechanistic insight into these seemingly conflicting properties. We report that Dok-4 interacts with the transactivation domain of Elk-4 through an atypical phosphotyrosine-binding domain-mediated interaction. Dok-4 possesses a nuclear export signal and can relocalize Elk-4 from nucleus to cytosol, whereas Elk-4 possesses two nuclear localization signals that restrict interaction with Dok-4. The Elk-4 protein, unlike Elk-1, is highly unstable in the presence of Dok-4, through both an interaction-dependent mechanism and a pleckstrin homology domain-dependent but interaction-independent mechanism. This is reversed by proteasome inhibition, depletion of endogenous Dok-4 or lysine-to-arginine mutation of putative Elk-4 ubiquitination sites. Finally, Elk-4 transactivation is potently inhibited by Dok-4 overexpression but enhanced by Dok-4 knockdown in MDCK renal tubular cells, which correlates with increased basal and EGF-induced expression of Egr-1, Fos and cylcinD1 mRNA, and cell proliferation despite reduced Erk activation. Thus, Dok-4 can target Elk-4 activity through multiple mechanisms, including binding of the transactivation domain, nuclear exclusion and protein destabilization, without a requirement for inhibition of Erk.
Collapse
|
10
|
Phosphorylation of JNK Increases in the Cortex of Rat Subjected to Diabetic Cerebral Ischemia. Neurochem Res 2015; 41:787-94. [PMID: 26610380 DOI: 10.1007/s11064-015-1753-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 02/08/2023]
Abstract
Previous studies have demonstrated that the c-Jun N-terminal kinase (JNK) pathway plays an important role in inducing neuronal apoptosis following cerebral ischemic injury. JNK signaling pathway in activated during cerebral ischemic injury. It participates in ischemia-induced neuronal apoptosis. However, whether JNK signaling is involved in the process of neuronal apoptosis of diabetes-induced cerebral ischemia is largely unknown. This study was undertaken to evaluate the influence of cerebral ischemia-reperfusion injury on phosphorylation of JNK in diabetic rats. Twenty-four adult streptozotocin induced diabetic and 24 adult non-diabetic rats were randomly subjected to 15 min of forebrain ischemia followed by reperfusion for 0, 1, 3, and 6 h. Sixteen sham-operated diabetic and non-diabetic rats were used as controls. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL). Protein expression of phospho-JNK was examined by immunohistochemistry and Western blot. The numbers of TUNEL-positive cells and phospho-JNK protein expression in the cerebral cortices after 1, 3 and 6 h reperfusion was significantly higher in diabetic rats compared to non-diabetic animals subjected to ischemia and reperfusion (p < 0.05). Western blot analysis showed significantly higher phospho-JNK protein expression in the cerebral cortices of the diabetic rats after 1 and 3 h reperfusion than that was presented in non-diabetic animals subjected to ischemia and reperfusion (p < 0.05). These findings suggest that increased phosphorylation of JNK may be associated with diabetes-enhanced ischemic brain damage.
Collapse
|
11
|
Ko H, Kim JM, Kim SJ, Shim SH, Ha CH, Chang HI. Induction of apoptosis by genipin inhibits cell proliferation in AGS human gastric cancer cells via Egr1/p21 signaling pathway. Bioorg Med Chem Lett 2015; 25:4191-6. [PMID: 26283511 DOI: 10.1016/j.bmcl.2015.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023]
Abstract
Natural compounds are becoming important candidates in cancer therapy due to their cytotoxic effects on cancer cells by inducing various types of programmed cell deaths. In this study, we investigated whether genipin induces programmed cell deaths and mediates in Egr1/p21 signaling pathways in gastric cancer cells. Effects of genipin in AGS cancer cell lines were observed via evaluation of cell viability, ROS generation, cell cycle arrest, and protein and RNA levels of p21, Egr1, as well as apoptotic marker genes. The cell viability of AGS cells reduced by genipin treatment via induction of the caspase 3-dependent apoptosis. Cell cycle arrest was observed at the G2/M phase along with induction of p21 and p21-dependent cyclins. As an upstream mediator of p21, the transcription factor early growth response-1 (Egr1) upregulated p21 through nuclear translocation and binding to the p21 promoter site. Silencing Egr1 expression inhibited the expression of p21 and downstream molecules involved in apoptosis. We demonstrated that genipin treatment in AGS human gastric cancer cell line induces apoptosis via p53-independent Egr1/p21 signaling pathway in a dose-dependent manner.
Collapse
Affiliation(s)
- Hyeonseok Ko
- Laboratory of Molecular Oncology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Republic of Korea
| | - Jee Min Kim
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Sun-Joong Kim
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - So Hee Shim
- Department of Microbiology, College of Medicine, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Chang Hoon Ha
- Department of Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, 86 Asanbyeoungwon-gil, Songpa-gu, Seoul 138-736, Republic of Korea.
| | - Hyo Ihl Chang
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea.
| |
Collapse
|
12
|
Kim SJ, Kim JM, Shim SH, Chang HI. Shikonin induces cell cycle arrest in human gastric cancer (AGS) by early growth response 1 (Egr1)-mediated p21 gene expression. JOURNAL OF ETHNOPHARMACOLOGY 2014; 151:1064-1071. [PMID: 24384380 DOI: 10.1016/j.jep.2013.11.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/22/2013] [Accepted: 11/29/2013] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lithospermum erythrorhizon, a naphthoquinone compound derived from a shikonin, has long been used as traditional Chinese medicine for treatment of various diseases, including cancer. To evaluate the cytotoxic effects of shikonin on AGS gastric cancer cells via induction of cell cycle arrest. MATERIALS AND METHODS We observed the effects of 12.5-100 ng/mL dosage of shikonin treatment on AGS cancer cell line with the incubation time of 6h. Cytotoxic effects were assessed by measuring the changes in the intracellular ROS, appearance of senescence phenotype, cell cycle progression, CDK and cyclins expression levels upon shikonin treatment. We also examined upon the activation of Egr1-mediated p21 expression, by siRNA transfection, Luciferase assay, and ChIP assay. RESULTS In this study, we found that shikonin inhibits cell proliferation by arresting cell cycle progression at the G2/M phase via modulation of p21 in AGS cells. Also, our results revealed that the p21 gene was transactivated by early growth response1 (Egr1) in response to the shikonin treatment. Transient Egr1 expression enhanced shikonin-induced p21 promoter activity, whereas the suppression of Egr1 expression by small interfering RNA attenuated the ability of shikonin to induce p21 promoter activity. CONCLUSION Our results suggested that the anti-proliferative activity of shikonin was due to its ability to induce cell cycle arrest via Egr1-p21 signaling pathway. Thus, the work stated here validates the traditional use of shikonin in the treatment of cancer.
Collapse
Affiliation(s)
- Sun-Joong Kim
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea; Department of Molecular & Cellular Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd Unit 108, Houston, TX, USA
| | - Jee Min Kim
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - So Hee Shim
- Department of Microbiology, College of Medicine, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Hyo Ihl Chang
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea.
| |
Collapse
|
13
|
Egr1 regulates lithium-induced transcription of the Period 2 (PER2) gene. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1969-79. [DOI: 10.1016/j.bbadis.2013.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 05/22/2013] [Accepted: 06/19/2013] [Indexed: 11/19/2022]
|
14
|
Kanwal S, Fardini Y, Pagesy P, N’Tumba-Byn T, Pierre-Eugène C, Masson E, Hampe C, Issad T. O-GlcNAcylation-inducing treatments inhibit estrogen receptor α expression and confer resistance to 4-OH-tamoxifen in human breast cancer-derived MCF-7 cells. PLoS One 2013; 8:e69150. [PMID: 23935944 PMCID: PMC3730543 DOI: 10.1371/journal.pone.0069150] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 06/05/2013] [Indexed: 01/08/2023] Open
Abstract
O-GlcNAcylation (addition of N-acetyl-glucosamine on serine or threonine
residues) is a post-translational modification that regulates stability,
activity or localization of cytosolic and nuclear proteins. O-linked
N-acetylgluocosmaine transferase (OGT) uses UDP-GlcNAc, produced in the
hexosamine biosynthetic pathway to O-GlcNacylate proteins. Removal of O-GlcNAc
from proteins is catalyzed by the β-N-Acetylglucosaminidase (OGA). Recent
evidences suggest that O-GlcNAcylation may affect the growth of cancer cells.
However, the consequences of O-GlcNAcylation on anti-cancer therapy have not
been evaluated. In this work, we studied the effects of O-GlcNAcylation on
tamoxifen-induced cell death in the breast cancer-derived MCF-7 cells.
Treatments that increase O-GlcNAcylation (PUGNAc and/or glucosoamine) protected
MCF-7 cells from death induced by tamoxifen. In contrast, inhibition of OGT
expression by siRNA potentiated the effect of tamoxifen on cell death. Since the
PI-3 kinase/Akt pathway is a major regulator of cell survival, we used BRET to
evaluate the effect of PUGNAc+glucosamine on PIP3 production. We
observed that these treatments stimulated PIP3 production in MCF-7
cells. This effect was associated with an increase in Akt phosphorylation.
However, the PI-3 kinase inhibitor LY294002, which abolished the effect of
PUGNAc+glucosamine on Akt phosphorylation, did not impair the protective effects
of PUGNAc+glucosamine against tamoxifen-induced cell death. These results
suggest that the protective effects of O-GlcNAcylation are independent of the
PI-3 kinase/Akt pathway. As tamoxifen sensitivity depends on the estrogen
receptor (ERα) expression level, we evaluated the effect of PUGNAc+glucosamine
on the expression of this receptor. We observed that O-GlcNAcylation-inducing
treatment significantly reduced the expression of ERα mRNA and protein,
suggesting a potential mechanism for the decreased tamoxifen sensitivity induced
by these treatments. Therefore, our results suggest that inhibition of
O-GlcNAcylation may constitute an interesting approach to improve the
sensitivity of breast cancer to anti-estrogen therapy.
Collapse
Affiliation(s)
- Shahzina Kanwal
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Yann Fardini
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Patrick Pagesy
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Thierry N’Tumba-Byn
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Cécile Pierre-Eugène
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Elodie Masson
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Cornelia Hampe
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Tarik Issad
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
- * E-mail:
| |
Collapse
|
15
|
Lee JM, Shin SY, Yoon H, Lee MS, Lee YR, Koh D, Lee YH. Synthesis and biological evaluation of a novel pyrazolecarbothioamide derivative (DK115) inducing cell cycle arrest at the G1 phase in HCT116 human colon cancer cells. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13765-013-3065-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Di Leva G, Piovan C, Gasparini P, Ngankeu A, Taccioli C, Briskin D, Cheung DG, Bolon B, Anderlucci L, Alder H, Nuovo G, Li M, Iorio MV, Galasso M, Ramasamy S, Marcucci G, Perrotti D, Powell KA, Bratasz A, Garofalo M, Nephew KP, Croce CM. Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status. PLoS Genet 2013; 9:e1003311. [PMID: 23505378 PMCID: PMC3591271 DOI: 10.1371/journal.pgen.1003311] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 12/24/2012] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs), single-stranded non-coding RNAs, influence myriad biological processes that can contribute to cancer. Although tumor-suppressive and oncogenic functions have been characterized for some miRNAs, the majority of microRNAs have not been investigated for their ability to promote and modulate tumorigenesis. Here, we established that the miR-191/425 cluster is transcriptionally dependent on the host gene, DALRD3, and that the hormone 17β-estradiol (estrogen or E2) controls expression of both miR-191/425 and DALRD3. MiR-191/425 locus characterization revealed that the recruitment of estrogen receptor α (ERα) to the regulatory region of the miR-191/425-DALRD3 unit resulted in the accumulation of miR-191 and miR-425 and subsequent decrease in DALRD3 expression levels. We demonstrated that miR-191 protects ERα positive breast cancer cells from hormone starvation-induced apoptosis through the suppression of tumor-suppressor EGR1. Furthermore, enforced expression of the miR-191/425 cluster in aggressive breast cancer cells altered global gene expression profiles and enabled us to identify important tumor promoting genes, including SATB1, CCND2, and FSCN1, as targets of miR-191 and miR-425. Finally, in vitro and in vivo experiments demonstrated that miR-191 and miR-425 reduced proliferation, impaired tumorigenesis and metastasis, and increased expression of epithelial markers in aggressive breast cancer cells. Our data provide compelling evidence for the transcriptional regulation of the miR-191/425 cluster and for its context-specific biological determinants in breast cancers. Importantly, we demonstrated that the miR-191/425 cluster, by reducing the expression of an extensive network of genes, has a fundamental impact on cancer initiation and progression of breast cancer cells. MicroRNAs are small noncoding RNAs that act as posttranscriptional repressors of gene expression. A pivotal role for miRNAs in all the molecular processes driving initiation and progression of various malignancies, including breast cancer, has been described. Divergent miRNA expression between normal and neoplastic breast tissues has been demonstrated, as well as differential miRNA expression among the molecular subtypes of breast cancer. Over half of all breast cancers overexpress ERα, and several studies have shown that miRNA expression is controlled by ERα. We assessed the global change in microRNA expression after estrogen starvation and stimulation in breast cancer cells and identified that miR-191/425 and the host gene DALRD3 are positively associated to ERα-positive tumors. We demonstrated that ERα regulates the miR-191/425 cluster and verified the existence of a transcriptional network that allows a dual effect of estrogen on miR-191/425 and their host gene. We show that estrogen induction of miR-191/425 supports in vitro and in vivo the estrogen-dependent proliferation of ERα positive breast cancer cells. On the contrary, miR-191/425 cluster reprograms gene expression to impair tumorigenicity and metastatic potential of highly aggressive ERα negative breast cancer cells.
Collapse
Affiliation(s)
- Gianpiero Di Leva
- Department of Molecular Virology, Immunology, and Medical Genetics, School of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (CM Croce); (G Di Leva)
| | - Claudia Piovan
- Department of Molecular Virology, Immunology, and Medical Genetics, School of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Experimental Oncology, Start Up Unit, Istituto Nazionale Tumori, Fondazione IRCCS, Milano, Italy
| | - Pierluigi Gasparini
- Department of Molecular Virology, Immunology, and Medical Genetics, School of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Apollinaire Ngankeu
- Department of Molecular Virology, Immunology, and Medical Genetics, School of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Cristian Taccioli
- Department of Molecular Virology, Immunology, and Medical Genetics, School of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Cancer Biology, Cancer Institute “Paul O'Gorman,” University College of London, London, United Kingdom
| | - Daniel Briskin
- Department of Molecular Virology, Immunology, and Medical Genetics, School of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Douglas G. Cheung
- Department of Molecular Virology, Immunology, and Medical Genetics, School of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Brad Bolon
- Comparative Pathology and Mouse Phenotyping Shared Resource, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Laura Anderlucci
- Department of Cancer Biology, Cancer Institute “Paul O'Gorman,” University College of London, London, United Kingdom
- Dipartimento di Scienze Statistiche, Facoltà di Scienze Statistiche, Università di Bologna, Bologna, Italy
| | - Hansjuerg Alder
- Department of Molecular Virology, Immunology, and Medical Genetics, School of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Gerard Nuovo
- Department of Molecular Virology, Immunology, and Medical Genetics, School of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Meng Li
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, Indiana, United States of America
| | - Marilena V. Iorio
- Department of Experimental Oncology, Start Up Unit, Istituto Nazionale Tumori, Fondazione IRCCS, Milano, Italy
| | - Marco Galasso
- Dipartimento di Morfologia ed Embriologia and LTTA, University of Ferrara, Ferrara, Italy
| | - Santhanam Ramasamy
- Department of Molecular Virology, Immunology, and Medical Genetics, School of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Guido Marcucci
- Department of Molecular Virology, Immunology, and Medical Genetics, School of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Danilo Perrotti
- Department of Molecular Virology, Immunology, and Medical Genetics, School of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Kimerly A. Powell
- Department of Molecular Virology, Immunology, and Medical Genetics, School of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Anna Bratasz
- Department of Molecular Virology, Immunology, and Medical Genetics, School of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Michela Garofalo
- Department of Molecular Virology, Immunology, and Medical Genetics, School of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Kenneth P. Nephew
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, Indiana, United States of America
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, School of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (CM Croce); (G Di Leva)
| |
Collapse
|
17
|
Castro AF, Campos T, Babcock JT, Armijo ME, Martínez-Conde A, Pincheira R, Quilliam LA. M-Ras induces Ral and JNK activation to regulate MEK/ERK-independent gene expression in MCF-7 breast cancer cells. J Cell Biochem 2012; 113:1253-64. [PMID: 22121046 DOI: 10.1002/jcb.23458] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Constitutive activation of M-Ras has previously been reported to cause morphologic and growth transformation of murine cells, suggesting that M-Ras plays a role in tumorigenesis. Cell transformation by M-Ras correlated with weak activation of the Raf/MEK/ERK pathway, although contributions from other downstream effectors were suggested. Recent studies indicate that signaling events distinct from the Raf/MEK/ERK cascade are critical for human tumorigenesis. However, it is unknown what signaling events M-Ras triggers in human cells. Using constitutively active M-Ras (Q71L) containing additional mutations within its effector-binding loop, we found that M-Ras induces MEK/ERK-dependent and -independent Elk1 activation as well as phosphatidylinositol 3 kinase (PI3K)/Akt and JNK/cJun activation in human MCF-7 breast cancer cells. Among several human cell lines examined, M-Ras-induced MEK/ERK-independent Elk1 activation was only detected in MCF-7 cells, and correlated with Rlf/M-Ras interaction and Ral/JNK activation. Supporting a role for M-Ras signaling in breast cancer, EGF activated M-Ras and promoted its interaction with endogenous Rlf. In addition, constitutive activation of M-Ras induced estrogen-independent growth of MCF-7 cells that was dependent on PI3K/Akt, MEK/ERK, and JNK activation. Thus, our studies demonstrate that M-Ras signaling activity differs between human cells, highlighting the importance of defining Ras protein signaling within each cell type, especially when designing treatments for Ras-induced cancer. These findings also demonstrate that M-Ras activity may be important for progression of EGFR-dependent tumors.
Collapse
Affiliation(s)
- Ariel F Castro
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | | | | | | | | | | | | |
Collapse
|
18
|
Regulation of p130(Cas)/BCAR1 expression in tamoxifen-sensitive and tamoxifen-resistant breast cancer cells by EGR1 and NAB2. Neoplasia 2012; 14:108-20. [PMID: 22431919 DOI: 10.1593/neo.111760] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 01/19/2023] Open
Abstract
Elevated levels of p130(Cas)/BCAR1 (Crk-associated substrate/breast cancer antiestrogen resistance 1) are found in aggressive breast tumors and are associated with tamoxifen resistance of mammary cancers. p130(Cas) promotes the integration of protein complexes involved in multiple signaling pathways frequently deregulated in breast cancer. To elucidate mechanisms leading to p130(Cas) up-regulation in mammary carcinomas and during acquired tamoxifen resistance, the regulation of p130(Cas)/BCAR1 was studied. Because multiple putative binding motifs for the inducible transcription factor EGR1 were identified in the 5' region of BCAR1, the p130(Cas)/BCAR1 regulation by EGR1 and its coregulator NAB2 was investigated. Overexpression or short interfering RNA (siRNA)-mediated down-regulation of EGR1 or NAB2, and chromatin immunoprecipitations indicated that EGR1 and NAB2 act in concert to positively regulate p130(Cas)/BCAR1 expression in breast cancer cells. p130(Cas) depletion using siRNA showed that, in tamoxifen-sensitive MCF-7 cells, p130(Cas) regulates EGR1 and NAB2 expression, whereas in the derivative tamoxifen-resistant TAM-R cells, only NAB2 levels were influenced. BCAR1 messenger RNA and p130(Cas) protein were upregulated by phorbol esters following the kinetics of late response genes in MCF-7 but not in TAM-R cells. Thus, in MCF-7 cells, we identified a positive feedback loop where p130(Cas) positively regulates EGR1 and NAB2, which in turn induce p130(Cas) expression. Importantly, compared with MCF-7, enhanced NAB2 expression and increased EGR1 binding to the BCAR1 5' region observed in TAM-R may lead to the constitutively increased p130(Cas)/BCAR1 levels in TAM-R cells. The uncovered differences in this EGR1/NAB2/p130(Cas) network in MCF-7 versus TAM-R cells may also contribute to p130(Cas) up-regulation during acquired tamoxifen resistance.
Collapse
|
19
|
Cheng JC, Chang HM, Leung PCK. Egr-1 mediates epidermal growth factor-induced downregulation of E-cadherin expression via Slug in human ovarian cancer cells. Oncogene 2012; 32:1041-9. [PMID: 22508482 DOI: 10.1038/onc.2012.127] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Loss of the cell adhesion protein E-cadherin increases the invasive capability of ovarian cancer cells. We have previously shown that epidermal growth factor (EGF) downregulates E-cadherin and induces ovarian cancer cell invasion through the H(2)O(2)/p38 MAPK-mediated upregulation of the E-cadherin transcriptional repressor Snail. However, the molecular mechanisms underlying the EGF-induced downregulation of E-cadherin are not fully understood. In the current study, we demonstrated that treatment of two ovarian cancer cell lines, SKOV3 and OVCAR5, with EGF induced the expression of the transcription factor Egr-1, and this induction was abolished by small interfering RNA (siRNA)-mediated depletion of the EGF receptor. EGF-induced Egr-1 expression required the activation of the ERK1/2 and PI3K/Akt signaling pathways and was unrelated to EGF-induced H(2)O(2) production and activation of the p38 MAPK pathway. Moreover, depletion of Egr-1 with siRNA abolished the EGF-induced downregulation of E-cadherin and increased cell invasion. Interestingly, siRNA depletion of Egr-1 attenuated the EGF-induced expression of Slug, but not that of Snail. Moreover, chromatin immunoprecipitation (ChIP) analysis showed that Slug is a target gene of Egr-1. These results provide evidence that Egr-1 is a mediator that is involved in the EGF-induced downregulation of E-cadherin and increased cell invasion. Our results also demonstrate that EGF activates two independent signaling pathways, which are the H(2)O(2)/p38 MAPK-mediated upregulation of Snail expression and the Egr-1-mediated upregulation of Slug expression. These two signaling pathways contribute to the EGF-induced downregulation of E-cadherin, which subsequently increases the invasive capability of ovarian cancer cells.
Collapse
Affiliation(s)
- J-C Cheng
- Department of Obstetrics and Gynecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
20
|
Stangelberger A, Schally AV, Rick FG, Varga JL, Baker B, Zarandi M, Halmos G. Inhibitory effects of antagonists of growth hormone releasing hormone on experimental prostate cancers are associated with upregulation of wild-type p53 and decrease in p21 and mutant p53 proteins. Prostate 2012; 72:555-65. [PMID: 21796649 DOI: 10.1002/pros.21458] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/22/2011] [Indexed: 01/18/2023]
Abstract
BACKGROUND The tumor suppressor gene p53 is implicated in cell cycle control and apoptosis. Antagonists of growth hormone-releasing hormone (GHRH) have been shown to inhibit human experimental prostate cancers. METHODS We investigated the involvement of p53 apoptotic pathways in this effect. Nude mice bearing xenografted PC-3, DU-145, and MDA-PCa-2b human prostate cancer lines were treated with a new potent GHRH antagonist MZ-J-7-138. To determine whether tumor inhibition by MZ-J-7-138 involves apoptotic mechanisms such as p53 and p21, we evaluated by Western Blot the expression of mutant mt-p53 in PC-3 and DU-145 and of wild type (wt-p53) in MDA-PCa-2b prostate cancers as well as p21. RESULTS MZ-J-7-138 significantly inhibited the growth of PC-3, DU-145, and MDA-PCa-2b xenografts in nude mice. Androgen deprivation with the LHRH antagonist Cetrorelix enhanced the anti-proliferative effect of GHRH antagonist MZ-J-7-138 on MDA-PCa-2b tumors. The expression of mutant (mt-p53) and p21 protein in PC-3 and DU-145 tumors was significantly decreased by treatment with MZ-J-7-138, whereas wild type wt-p53 expression in MDA-PCA-2b tumors was up regulated by treatment with Cetrorelix. All three models investigated expressed specific, high affinity GHRH receptors. CONCLUSIONS Our findings indicate that the anti-proliferative effects of GHRH antagonist MZ-J-7-138 and LHRH antagonist Cetrorelix on prostate cancers involve p53 and p21 signaling.
Collapse
|
21
|
Kim JH, Jeong IY, Lim YH, Lee YH, Shin SY. Estrogen receptor β stimulates Egr-1 transcription via MEK1/Erk/Elk-1 cascade in C6 glioma cells. BMB Rep 2011; 44:452-7. [DOI: 10.5483/bmbrep.2011.44.7.452] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Shin SY, Kim CG, Lim Y, Lee YH. The ETS family transcription factor ELK-1 regulates induction of the cell cycle-regulatory gene p21(Waf1/Cip1) and the BAX gene in sodium arsenite-exposed human keratinocyte HaCaT cells. J Biol Chem 2011; 286:26860-72. [PMID: 21642427 DOI: 10.1074/jbc.m110.216721] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Cyclin-dependent kinase inhibitor (CDKN1A), often referred to as p21(Waf1/Cip1) (p21), is induced by a variety of environmental stresses. Transcription factor ELK-1 is a member of the ETS oncogene superfamily. Here, we show that ELK-1 directly trans-activates the p21 gene, independently of p53 and EGR-1, in sodium arsenite (NaASO(2))-exposed HaCaT cells. Promoter deletion analysis and site-directed mutagenesis identified the presence of an ELK-1-binding core motif between -190 and -170 bp of the p21 promoter that confers inducibility by NaASO(2). Chromatin immunoprecipitation and electrophoretic mobility shift analyses confirmed the specific binding of ELK-1 to its putative binding sequence within the p21 promoter. In addition, NaASO(2)-induced p21 promoter activity was enhanced by exogenous expression of ELK-1 and reduced by expression of siRNA targeted to ELK-1 mRNA. The importance of ELK-1 in response to NaASO(2) was further confirmed by the observation that stable expression of ELK-1 siRNA in HaCaT cells resulted in the attenuation of NaASO(2)-induced p21 expression. Although ELK-1 was activated by ERK, JNK, and p38 MAPK in response to NaASO(2), ELK-1-mediated activation of the p21 promoter was largely dependent on ERK. In addition, EGR-1 induced by ELK-1 seemed to be involved in NaASO(2)-induced expression of BAX. This supports the view that the ERK/ELK-1 cascade is involved in p53-independent induction of p21 and BAX gene expression.
Collapse
Affiliation(s)
- Soon Young Shin
- SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul 143-701, Korea.
| | | | | | | |
Collapse
|
23
|
Kuo PL, Chen YH, Chen TC, Shen KH, Hsu YL. CXCL5/ENA78 increased cell migration and epithelial-to-mesenchymal transition of hormone-independent prostate cancer by early growth response-1/snail signaling pathway. J Cell Physiol 2011; 226:1224-31. [DOI: 10.1002/jcp.22445] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Friedle SA, Brautigam VM, Nikodemova M, Wright ML, Watters JJ. The P2X7-Egr pathway regulates nucleotide-dependent inflammatory gene expression in microglia. Glia 2010; 59:1-13. [PMID: 20878769 DOI: 10.1002/glia.21071] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 08/09/2010] [Indexed: 01/14/2023]
Abstract
Microglial hyperactivity contributes to neuronal damage resulting from CNS injury and disease. Therefore, a better understanding of endogenous microglial receptor systems that can be exploited to modulate their inflammatory functions is important if better, neuroprotective therapeutics are to be designed. Previous studies from our lab and others have demonstrated that the P2X7 purinergic receptor agonist BzATP attenuates microglial inflammatory mediator production stimulated by lipopolysaccharide (LPS), suggesting that purinergic receptors may be one such receptor system that can be used for manipulating microglial activation. However, although P2X7 receptor activation is well recognized to regulate processing and release of cytokines, little is known concerning its role in regulating the transcription of inflammatory genes, nor the molecular mechanisms underlying these transcriptional effects. In the present studies, we identify that the transcription factors early growth response (Egr)-1, -2 and -3 are downstream signaling targets of P2X7 receptors in microglia, and that their activation is sensitive to MEK and p38 mitogen-activated protein kinase (MAPK) inhibitors. Moreover, using RNAi, we demonstrate that Egr factors and P2X7 receptors are necessary for BzATP-mediated attenuation of iNOS, and stimulation of TNF-α and IL-6 gene expression. BzATP also attenuates neuronal death induced by LPS conditioned medium, and P2X7 receptors are required for this effect. These studies are the first to identify Egr factors as regulators of inflammatory gene expression following P2X7 receptor activation, and suggest that P2X7 receptors may utilize the MAPK-Egr pathway to exert differential effects on microglial inflammatory activities which are beneficial to neuron survival.
Collapse
Affiliation(s)
- S A Friedle
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
25
|
Shin SY, Kim CG, Kim SH, Kim YS, Lim Y, Lee YH. Chlorpromazine activates p21Waf1/Cip1gene transcription via early growth response-1 (Egr-1) in C6 glioma cells. Exp Mol Med 2010; 42:395-405. [DOI: 10.3858/emm.2010.42.5.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Soon Young Shin
- Institute of Biomedical Science and Technology, Konkuk University Hospital, Seoul 143-729, Korea
- Department of Biomedical Science and Technology, Research Center for Transcription Control, Konkuk University, Seoul 143-701, Korea
| | - Chang Gun Kim
- Institute of Biomedical Science and Technology, Konkuk University Hospital, Seoul 143-729, Korea
- Department of Biomedical Science and Technology, Research Center for Transcription Control, Konkuk University, Seoul 143-701, Korea
| | - Se Hyun Kim
- Department of Psychiatry, Clinical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Yong Sik Kim
- Department of Psychiatry, Clinical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Korea
| | - Young Han Lee
- Institute of Biomedical Science and Technology, Konkuk University Hospital, Seoul 143-729, Korea
- Department of Biomedical Science and Technology, Research Center for Transcription Control, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
26
|
Shin SY, Song H, Kim CG, Choi YK, Lee KS, Lee SJ, Lee HJ, Lim Y, Lee YH. Egr-1 is necessary for fibroblast growth factor-2-induced transcriptional activation of the glial cell line-derived neurotrophic factor in murine astrocytes. J Biol Chem 2009; 284:30583-93. [PMID: 19721135 DOI: 10.1074/jbc.m109.010678] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (Gdnf) promotes neurite outgrowth and survival of neuronal cells, but its transcriptional regulation is poorly understood. Here, we sought to investigate the mechanism underlying fibroblast growth factor-2 (FGF2) induction of Gdnf expression in astrocytes. We found that FGF2 stimulation of rat astrocytes induced expression of Egr-1 at a high level. Sequence analysis of the rat Gdnf gene identified three overlapping Egr-1-binding sites between positions -185 and -163 of the rat Gdnf promoter. Transfection studies using a series of deleted Gdnf promoters revealed that these Egr-1-binding sites are required for maximal activation of the Gdnf promoter by FGF2. Chromatin immunoprecipitation analysis indicated that Egr-1 binds to the Gdnf promoter. Furthermore, the induction of Gdnf expression by FGF2 is strongly attenuated both in C6 glioma cells stably expressing Egr-1-specific small interfering RNA and in primary cultured astrocytes from the Egr-1 knock-out mouse. Additionally, we found that stimulation of the ERK and JNK pathways by FGF2 is functionally linked to Gdnf expression through the induction of Egr-1. These data demonstrate that FGF2-induced Gdnf expression is mediated by the induction of Egr-1 through activation of the ERK and JNK/Elk-1 signaling pathways.
Collapse
Affiliation(s)
- Soon Young Shin
- Department of Biomedical Science and Technology, Institute of Biomedical Science & Technology, Konkuk University Hospital, Seoul 143-729, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Xiao L, Eto M, Kazanietz MG. ROCK mediates phorbol ester-induced apoptosis in prostate cancer cells via p21Cip1 up-regulation and JNK. J Biol Chem 2009; 284:29365-75. [PMID: 19667069 DOI: 10.1074/jbc.m109.007971] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is established that androgen-dependent prostate cancer cells undergo apoptosis upon treatment with phorbol esters and related analogs, an effect primarily mediated by PKCdelta. Treatment of LNCaP prostate cancer cells with phorbol 12-myristate 13-acetate (PMA) causes a strong and sustained activation of RhoA and its downstream effector ROCK (Rho kinase) as well as the formation of stress fibers. These effects are impaired in cells subjected to PKCdelta RNA interference depletion. Functional studies revealed that expression of a dominant negative RhoA mutant or treatment with the ROCK inhibitor Y-27632 inhibits the apoptotic effect of PMA in LNCaP cells. Remarkably, the cytoskeleton inhibitors cytochalasin B and blebbistatin blocked not only PMA-induced apoptosis but also the activation of JNK, a mediator of the cell death effect by the phorbol ester. In addition, we found that up-regulation of the cell cycle inhibitor p21(Cip1) is required for PMA-induced apoptosis and that inhibitors of ROCK or the cytoskeleton organization prevent p21(Cip1) induction. Real time PCR analysis and reporter gene assay revealed that PMA induces p21(Cip1) transcriptionally in a ROCK- and cytoskeleton-dependent manner. p21(Cip1) promoter analysis revealed that PMA induction is dependent on Sp1 elements in the p21(Cip1) promoter but independent of p53. Taken together, our studies implicate ROCK-mediated up-regulation of p21(Cip1) and the cytoskeleton in PKCdelta-dependent apoptosis in prostate cancer cells.
Collapse
Affiliation(s)
- Liqing Xiao
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | |
Collapse
|
28
|
Kramer EL, Mushaben EM, Pastura PA, Acciani TH, Deutsch GH, Khurana Hershey GK, Korfhagen TR, Hardie WD, Whitsett JA, Le Cras TD. Early growth response-1 suppresses epidermal growth factor receptor-mediated airway hyperresponsiveness and lung remodeling in mice. Am J Respir Cell Mol Biol 2009; 41:415-25. [PMID: 19188657 DOI: 10.1165/rcmb.2008-0470oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transforming growth factor (TGF)-alpha and its receptor, the epidermal growth factor receptor, are induced after lung injury and are associated with remodeling in chronic pulmonary diseases, such as pulmonary fibrosis and asthma. Expression of TGF-alpha in the lungs of adult mice causes fibrosis, pleural thickening, and pulmonary hypertension, in addition to increased expression of a transcription factor, early growth response-1 (Egr-1). Egr-1 was increased in airway smooth muscle (ASM) and the vascular adventitia in the lungs of mice conditionally expressing TGF-alpha in airway epithelium (Clara cell secretory protein-rtTA(+/-)/[tetO](7)-TGF-alpha(+/-)). The goal of this study was to determine the role of Egr-1 in TGF-alpha-induced lung disease. To accomplish this, TGF-alpha-transgenic mice were crossed to Egr-1 knockout (Egr-1(ko/ko)) mice. The lack of Egr-1 markedly increased the severity of TGF-alpha-induced pulmonary disease, dramatically enhancing airway muscularization, increasing pulmonary fibrosis, and causing greater airway hyperresponsiveness to methacholine. Smooth muscle hyperplasia, not hypertrophy, caused the ASM thickening in the absence of Egr-1. No detectable increases in pulmonary inflammation were found. In addition to the airway remodeling disease, vascular remodeling and pulmonary hypertension were also more severe in Egr-1(ko/ko) mice. Thus, Egr-1 acts to suppress epidermal growth factor receptor-mediated airway and vascular muscularization, fibrosis, and airway hyperresponsiveness in the absence of inflammation. This provides a unique model to study the processes causing pulmonary fibrosis and ASM thickening without the complicating effects of inflammation.
Collapse
Affiliation(s)
- Elizabeth L Kramer
- Section of Neonatology, Perinatal & Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhu L, Johnson C, Bakovic M. Stimulation of the human CTP:phosphoethanolamine cytidylyltransferase gene by early growth response protein 1. J Lipid Res 2008; 49:2197-211. [PMID: 18583706 DOI: 10.1194/jlr.m800259-jlr200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Change in phosphoethanolamine pool size in tumor tissues is an important indicator of tumor prognosis and drug therapy efficacy. Phosphoethanolamine is the substrate of the regulatory enzyme CTP:phosphoethanolamine cytidylyltransferase (ECT) in the de novo biosynthesis of phosphatidylethanolamine (PE). Metabolic labeling with [14C]ethanolamine revealed a reduced ECT activity in MCF-7 breast cancer cells, which led to an accumulation of phosphoethanolamine and a decrease in PE synthesis in comparison with MCF-10A mammary epithelial cells. The enhanced ECT activity in MCF-10A cells was due to significantly elevated CTP:phosphoethanolamine cytidylyltransferase gene (PCYT2) expression, at the level of promoter activity, mRNA, and protein content. The early growth response protein 1 (EGR1) could account for most of the elevated ECT activity in MCF-10A cells relative to MCF-7 cells, as evidenced by promoter-luciferase reporter assays, gel-shift analyses, and by alterations in the EGR1 gene expression. In MCF-7 cells, EGR1 is present at lower levels and the basal PCYT2 promoter activity is maintained by proximal CAAT and GC regions and by elevated nuclear NFkappaB activity. Together, these data demonstrate that EGR1 is an important transcriptional stimulator of the human PCYT2 and that conditions that modify EGR1 also affect the function of ECT and consequently PE synthesis.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
30
|
Choi BH, Kim CG, Bae YS, Lim Y, Lee YH, Shin SY. p21 Waf1/Cip1 expression by curcumin in U-87MG human glioma cells: role of early growth response-1 expression. Cancer Res 2008; 68:1369-77. [PMID: 18316600 DOI: 10.1158/0008-5472.can-07-5222] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Curcumin, a natural compound, is a well-known chemopreventive agent with potent anticarcinogenic activity in a wide variety of tumor cells. Curcumin inhibits cancer cell proliferation in part by suppressing cyclin D1 and inducing expression of the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). Both p53-dependent and p53-independent mechanisms regulate p21(Waf1/Cip1) expression, but the mechanism by which curcumin regulates p21(Waf1/Cip1) expression remains unknown. Here, we report that transcription of the p21(Waf1/Cip1) gene is activated by early growth response-1 (Egr-1) independently of p53 in response to curcumin treatment in U-87MG human glioblastoma cells. Egr-1 is a transcription factor that helps regulate differentiation, growth, and apoptosis in many cell types. Egr-1 expression is induced by curcumin through extracellular signal-regulated kinase (ERK) and c-Jun NH(2)-terminal kinase (JNK), but not the p38, mitogen-activated protein kinase (MAPK) pathways, which mediate the transactivation of Elk-1. Transient expression of Egr-1 enhanced curcumin-induced p21(Waf1/Cip1) promoter activity, whereas suppression of Egr-1 expression by small interfering RNA abrogated the ability of curcumin to induce p21(Waf1/Cip1) promoter activity. In addition, stable knockdown of Egr-1 expression in U-87MG cells suppressed curcumin-induced p21 expression. Our results indicate that ERK and JNK MAPK/Elk-1/Egr-1 signal cascade is required for p53-independent transcriptional activation of p21(Waf1/Cip1) in response to curcumin in U-87MG human glioblastoma cells.
Collapse
Affiliation(s)
- Byeong Hyeok Choi
- Department of Biomedical Science and Technology, Research Center for Transcription Control, Institute of Biomedical Science and Technology, Konkuk University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|