1
|
Berna-Erro A, Granados MP, Teruel-Montoya R, Ferrer-Marin F, Delgado E, Corbacho AJ, Fenández E, Vazquez-Godoy MT, Tapia JA, Redondo PC. SARAF overexpression impairs thrombin-induced Ca 2+ homeostasis in neonatal platelets. Br J Haematol 2024; 204:988-1004. [PMID: 38062782 DOI: 10.1111/bjh.19210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 03/14/2024]
Abstract
Neonatal platelets present a reduced response to the platelet agonist, thrombin (Thr), thus resulting in a deficient Thr-induced aggregation. These alterations are more pronounced in premature newborns. Here, our aim was to uncover the causes underneath the impaired Ca2+ homeostasis described in neonatal platelets. Both Ca2+ mobilization and Ca2+ influx in response to Thr are decreased in neonatal platelets compared to maternal and control woman platelets. In neonatal platelets, we observed impaired Ca2+ mobilization in response to the PAR-1 agonist (SFLLRN) or by blocking SERCA3 function with tert-butylhydroquinone. Regarding SOCE, the STIM1 regulatory protein, SARAF, was found overexpressed in neonatal platelets, promoting an increase in STIM1/SARAF interaction even under resting conditions. Additionally, higher interaction between SARAF and PDCD61/ALG2 was also observed, reducing SARAF ubiquitination and prolonging its half-life. These results were reproduced by overexpressing SARAF in MEG01 and DAMI cells. Finally, we also observed that pannexin 1 permeability is enhanced in response to Thr in control woman and maternal platelets, but not in neonatal platelets, hence, leading to the deregulation of the Ca2+ entry found in neonatal platelets. Summarizing, we show that in neonatal platelets both Ca2+ accumulation in the intracellular stores and Thr-evoked Ca2+ entry through either capacitative channels or non-selective channels are altered in neonatal platelets, contributing to deregulated Ca2+ homeostasis in neonatal platelets and leading to the altered aggregation observed in these subjects.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Department of Physiology (PHYCELL Group), University of Extremadura, Caceres, Spain
| | - Maria P Granados
- Pharmacy Unit of Health Center, Extremadura County Health Service, Caceres, Spain
| | - Raul Teruel-Montoya
- Hemodonation County Center, University Hospital of Morales-Meseguer, IMIB-Arrixaca, CIBERER CB55, Murcia, Spain
| | - Francisca Ferrer-Marin
- Hemodonation County Center, University Hospital of Morales-Meseguer, IMIB-Arrixaca, CIBERER CB55, Murcia, Spain
| | - Elena Delgado
- Blood Donation Center, Extremadura County Health Service, Merida, Spain
| | | | | | | | - Jose A Tapia
- Department of Physiology (PHYCELL Group), University of Extremadura, Caceres, Spain
| | - Pedro Cosme Redondo
- Department of Physiology (PHYCELL Group), University of Extremadura, Caceres, Spain
| |
Collapse
|
2
|
Yadav P, Panigrahi AR, Beura SK, Singh SK. Platelet-derived microvesicles induce intracellular calcium mobilization in human platelets. Cell Biol Int 2023; 47:1964-1975. [PMID: 37650361 DOI: 10.1002/cbin.12084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/15/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Platelet-derived microvesicles (PMVs) represent a significant proportion of microvesicles in circulation and have been linked to various pathophysiological complications. Recent research suggests that PMVs carry significant amounts of cargo that can affect cellular functions by influencing calcium oscillations in target cells. As calcium is involved in multiple cellular processes, including hemostasis and thrombosis, this study aimed to investigate the impact of PMVs on platelet calcium mobilization. The study found that PMVs increase platelet intracellular calcium levels via both intracellular storage and extracellular space in a dose-dependent manner. The study highlighted the critical role of the dense tubular system, acidic vacuoles, mitochondrial stores, and store-operated calcium entry (SOCE) in PMV-mediated calcium release in human platelets. Moreover, the study revealed that PMV-induced calcium rise in platelets does not occur via sarcoendoplasmic reticulum calcium ATPase, and extracellular calcium addition further increases the calcium level in platelets, demonstrating the involvement of SOCE. These findings provide insights into the platelet stimulation signaling mechanisms and contributes to our understanding of platelet and cell behavior when exposed to PMV-rich environments.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Bathinda, India
| | - Abhishek R Panigrahi
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Bathinda, India
| | - Samir K Beura
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Bathinda, India
| | - Sunil K Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
3
|
Reddel CJ, Pennings GJ, Chen VM, Gnanenthiran S, Kritharides L. Colchicine as a Modulator of Platelet Function: A Systematic Review. Semin Thromb Hemost 2022; 48:552-567. [PMID: 35882248 DOI: 10.1055/s-0042-1749660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The microtubule inhibitor and anti-inflammatory agent colchicine is used to treat a range of conditions involving inflammasome activation in monocytes and neutrophils, and is now known to prevent coronary and cerebrovascular events. In vitro studies dating back more than 50 years showed a direct effect of colchicine on platelets, but as little contemporary attention has been paid to this area, we have critically reviewed the effects of colchicine on diverse aspects of platelet biology in vitro and in vivo. In this systematic review we searched Embase, Medline, and PubMed for articles testing platelets after incubation with colchicine and/or reporting a clinical effect of colchicine treatment on platelet function, including only papers available in English and excluding reviews and conference abstracts. We identified 98 relevant articles and grouped their findings based on the type of study and platelet function test. In vitro, colchicine inhibits traditional platelet functions, including aggregation, clotting, degranulation, and platelet-derived extracellular vesicle formation, although many of these effects were reported at apparently supraphysiological concentrations. Physiological concentrations of colchicine inhibit collagen- and calcium ionophore-induced platelet aggregation and internal signaling. There have been limited studies of in vivo effects on platelets. The colchicine-platelet interaction has the potential to contribute to colchicine-mediated reduction in cardiovascular events, but there is a pressing need for high quality clinical research in this area.
Collapse
Affiliation(s)
- Caroline J Reddel
- ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia
| | - Gabrielle J Pennings
- ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia
| | - Vivien M Chen
- ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia.,Department of Haematology, Concord Repatriation General Hospital, Sydney, Australia
| | - Sonali Gnanenthiran
- ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia.,Department of Cardiology, Concord Repatriation General Hospital, Sydney, Australia
| | - Leonard Kritharides
- ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia.,Department of Cardiology, Concord Repatriation General Hospital, Sydney, Australia
| |
Collapse
|
4
|
Zheng TJ, Lofurno ER, Melrose AR, Lakshmanan HHS, Pang J, Phillips KG, Fallon ME, Kohs TCL, Ngo ATP, Shatzel JJ, Hinds MT, McCarty OJT, Aslan JE. Assessment of the effects of Syk and BTK inhibitors on GPVI-mediated platelet signaling and function. Am J Physiol Cell Physiol 2021; 320:C902-C915. [PMID: 33689480 PMCID: PMC8163578 DOI: 10.1152/ajpcell.00296.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Spleen tyrosine kinase (Syk) and Bruton's tyrosine kinase (BTK) play critical roles in platelet physiology, facilitating intracellular immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling downstream of platelet glycoprotein VI (GPVI) and GPIIb/IIIa receptors. Small molecule tyrosine kinase inhibitors (TKIs) targeting Syk and BTK have been developed as antineoplastic and anti-inflammatory therapeutics and have also gained interest as antiplatelet agents. Here, we investigate the effects of 12 different Syk and BTK inhibitors on GPVI-mediated platelet signaling and function. These inhibitors include four Syk inhibitors, Bay 61-3606, R406 (fostamatinib), entospletinib, TAK-659; four irreversible BTK inhibitors, ibrutinib, acalabrutinib, ONO-4059 (tirabrutinib), AVL-292 (spebrutinib); and four reversible BTK inhibitors, CG-806, BMS-935177, BMS-986195, and fenebrutinib. In vitro, TKIs targeting Syk or BTK reduced platelet adhesion to collagen, dense granule secretion, and alpha granule secretion in response to the GPVI agonist cross-linked collagen-related peptide (CRP-XL). Similarly, these TKIs reduced the percentage of activated integrin αIIbβ3 on the platelet surface in response to CRP-XL, as determined by PAC-1 binding. Although all TKIs tested inhibited phospholipase C γ2 (PLCγ2) phosphorylation following GPVI-mediated activation, other downstream signaling events proximal to phosphoinositide 3-kinase (PI3K) and PKC were differentially affected. In addition, reversible BTK inhibitors had less pronounced effects on GPIIb/IIIa-mediated platelet spreading on fibrinogen and differentially altered the organization of PI3K around microtubules during platelets spreading on fibrinogen. Select TKIs also inhibited platelet aggregate formation on collagen under physiological flow conditions. Together, our results suggest that TKIs targeting Syk or BTK inhibit central platelet functional responses but may differentially affect protein activities and organization in critical systems downstream of Syk and BTK in platelets.
Collapse
Affiliation(s)
- Tony J Zheng
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Elizabeth R Lofurno
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Alexander R Melrose
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | | | - Jiaqing Pang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | | | - Meghan E Fallon
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Tia C L Kohs
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Anh T P Ngo
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Joseph J Shatzel
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Joseph E Aslan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
5
|
Qiu X, Liang X, Li H, Sun R. LPS-induced vein endothelial cell injury and acute lung injury have Btk and Orai 1 to regulate SOC-mediated calcium influx. Int Immunopharmacol 2021; 90:107039. [PMID: 33127334 DOI: 10.1016/j.intimp.2020.107039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022]
Abstract
Patients with sepsis and sepsis-related complications have a high mortality. Endothelial cell dysfunction plays a central role in sepsis pathophysiological process. In sepsis patients, endothelial cell apoptosis is associated with intracellular calcium overload. Multiple functions in the apoptotic process have been found to be regulated by calcium signaling. Our previous work had proved that LPS-induced cell injury was associated with store-operated calcium (SOC) entry mediated by stromal interaction molecule-1 (STIM 1) in Human umbilical vein endothelial cells (HUVEC), but the underlying molecular mechanism has not been adequately defined. Here we report that the LPS-induced cell injury is related to the calcium overload in HUVEC. SOC entry mediated by calcium release-activated calcium modulator (Orai) 1 and transient receptor potential canonical (TRPC) 1 was associated with LPS-induced calcium overload and cell apoptosis. Bruton's tyrosine kinase (Btk)/Phospholipase C(PLC) γ/inositol 1,4,5-triphosphate receptor (IP3R) played a major role in regulating calcium overload in LPS-induced HUVEC. Knockdown of Btk markedly inhibited the expressions of Orai 1 and its downstream molecule IP3R but not that of TRPC1 in LPS-induced HUVEC. In mice, knockdown of Btk and Orai 1 inhibited LPS-induced calcium overload, pulmonary vascular endothelial cell (VEC) injury and acute lung injury. These findings demonstrated that Btk acts as a regulator of calcium-dependent signaling, especially in the Orai 1-mediated SOC entry of the LPS-induced VEC.
Collapse
Affiliation(s)
- Xiaochen Qiu
- Department of General Surgery, the Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China
| | - Xiaobo Liang
- Department of Dermatology, the Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China
| | - Hengyu Li
- Department of Breast and Thyroid Surgery, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Rongju Sun
- Department of Emergency, the First Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100853, China.
| |
Collapse
|
6
|
Yuan M, Wang Y, Qin YX. Engineered nanomedicine for neuroregeneration: light emitting diode-mediated superparamagnetic iron oxide-gold core-shell nanoparticles functionalized by nerve growth factor. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102052. [PMID: 31349088 DOI: 10.1016/j.nano.2019.102052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/04/2019] [Accepted: 06/14/2019] [Indexed: 01/01/2023]
Abstract
This paper reports nerve growth factor functionalized superparamagnetic iron oxide-gold core-shell nanoparticles (NGF-SPIO-Au NPs), an engineered nanomedicine for non-invasive neuron regeneration when irradiated by a low-intensity light-emitting diode (LED). NGF-SPIO-Au NPs of 20 μg/ml, were tested on PC-12 neuron-like cells, irradiated by LEDs (525 nm, 1.09, 1.44, and 1.90 mW/cm2). A remarkable Ca2+ influx was detected in differentiated PC-12 cells treated with NPs, irradiated by LED of 1.90 and 1.44 mW/cm2 with great cell viability (>84%) and proliferations. The strong heat generated through their plasmonic surface upon LED irradiation on NGF-SPIO-Au NPs was observed. For cells treated with LED (1.90 mW/cm2) and NGF-SPIO-Au NPs, a dramatic enhancement of neuronal differentiation (83%) and neurite outgrowth (51%) was found, and the upregulation of both the neural differentiation specific marker (β3-tubulin) and the cell adhesive molecule (integrin β1) was observed by the reverse transcription-polymerase chain reaction and western blot analysis.
Collapse
Affiliation(s)
- Muzhaozi Yuan
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX.
| | - Ya Wang
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX.
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY.
| |
Collapse
|
7
|
|
8
|
IP 3 receptor signaling and endothelial barrier function. Cell Mol Life Sci 2017; 74:4189-4207. [PMID: 28803370 DOI: 10.1007/s00018-017-2624-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/18/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022]
Abstract
The endothelium, a monolayer of endothelial cells lining vessel walls, maintains tissue-fluid homeostasis by restricting the passage of the plasma proteins and blood cells into the interstitium. The ion Ca2+, a ubiquitous secondary messenger, initiates signal transduction events in endothelial cells that is critical to control of vascular tone and endothelial permeability. The ion Ca2+ is stored inside the intracellular organelles and released into the cytosol in response to environmental cues. The inositol 1,4,5-trisphosphate (IP3) messenger facilitates Ca2+ release through IP3 receptors which are Ca2+-selective intracellular channels located within the membrane of the endoplasmic reticulum. Binding of IP3 to the IP3Rs initiates assembly of IP3R clusters, a key event responsible for amplification of Ca2+ signals in endothelial cells. This review discusses emerging concepts related to architecture and dynamics of IP3R clusters, and their specific role in propagation of Ca2+ signals in endothelial cells.
Collapse
|
9
|
Brailoiu GC, Brailoiu E. Modulation of Calcium Entry by the Endo-lysosomal System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:423-47. [PMID: 27161239 DOI: 10.1007/978-3-319-26974-0_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Endo-lysosomes are acidic organelles that besides the role in macromolecules degradation, act as intracellular Ca(2+) stores. Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca(2+)-mobilizing second messenger, produced in response to agonist stimulation, activates Ca(2+)-releasing channels on endo-lysosomes and modulates a variety of cellular functions. NAADP-evoked signals are amplified by Ca(2+) release from endoplasmic reticulum, via the recruitment of inositol 1,4,5-trisphosphate and/or ryanodine receptors through a Ca(2+)-induced Ca(2+)- release (CICR) mechanism. The endo-lysosomal Ca(2+) channels activated by NAADP were recently identified as the two-pore channels (TPCs). In addition to TPCs, endo-lysosomes express another distinct family of Ca(2+)- permeable channels, namely the transient receptor potential mucolipin (TRPML) channels, functionally distinct from TPCs. TPCs belong to the voltage-gated channels, resembling voltage-gated Na(+) and Ca(2+) channels. TPCs have important roles in vesicular fusion and trafficking, in triggering a global Ca(2+) signal and in modulation of the membrane excitability. Depletion of acidic Ca(2+) stores has been shown to activate store-operated Ca(2+) entry in human platelets and mouse pancreatic β-cells. In human platelets, Ca(2+) influx in response to acidic stores depletion is facilitated by the tubulin-cytoskeleton and occurs through non-selective cation channels and transient receptor potential canonical (TRPC) channels. Emerging evidence indicates that activation of intracellular receptors, situated on endo-lysosomes, elicits canonical and non-canonical signaling mechanisms that involve CICR and activation of non-selective cation channels in plasma membrane. The ability of endo-lysosomal Ca(2+) stores to modulate the Ca(2+) release from other organelles and the Ca(2+) entry increases the diversity and complexity of cellular signaling mechanisms.
Collapse
Affiliation(s)
- G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University, 901 Walnut St, Rm 916, Philadelphia, PA, 19107, USA.
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Temple University School of Medicine, 3500 N. Broad Street, Room 848, Philadelphia, PA, 19140, USA
| |
Collapse
|
10
|
Stiber JA, Wu JH, Zhang L, Nepliouev I, Zhang ZS, Bryson VG, Brian L, Bentley RC, Gordon-Weeks PR, Rosenberg PB, Freedman NJ. The Actin-Binding Protein Drebrin Inhibits Neointimal Hyperplasia. Arterioscler Thromb Vasc Biol 2016; 36:984-93. [PMID: 27013612 DOI: 10.1161/atvbaha.115.306140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 03/15/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Vascular smooth muscle cell (SMC) migration is regulated by cytoskeletal remodeling as well as by certain transient receptor potential (TRP) channels, nonselective cation channels that modulate calcium influx. Proper function of multiple subfamily C TRP (TRPC) channels requires the scaffolding protein Homer 1, which associates with the actin-binding protein Drebrin. We found that SMC Drebrin expression is upregulated in atherosclerosis and in response to injury and investigated whether Drebrin inhibits SMC activation, either through regulation of TRP channel function via Homer or through a direct effect on the actin cytoskeleton. APPROACH AND RESULTS Wild-type (WT) and congenic Dbn(-/+) mice were subjected to wire-mediated carotid endothelial denudation. Subsequent neointimal hyperplasia was 2.4±0.3-fold greater in Dbn(-/+) than in WT mice. Levels of globular actin were equivalent in Dbn(-/+) and WT SMCs, but there was a 2.4±0.5-fold decrease in filamentous actin in Dbn(-/+) SMCs compared with WT. Filamentous actin was restored to WT levels in Dbn(-/+) SMCs by adenoviral-mediated rescue expression of Drebrin. Compared with WT SMCs, Dbn(-/+) SMCs exhibited increased TRP channel activity in response to platelet-derived growth factor, increased migration assessed in Boyden chambers, and increased proliferation. Enhanced TRP channel activity and migration in Dbn(-/+) SMCs were normalized to WT levels by rescue expression of not only WT Drebrin but also a mutant Drebrin isoform that binds actin but fails to bind Homer. CONCLUSIONS Drebrin reduces SMC activation through its interaction with the actin cytoskeleton but independently of its interaction with Homer scaffolds.
Collapse
Affiliation(s)
- Jonathan A Stiber
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.).
| | - Jiao-Hui Wu
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Lisheng Zhang
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Igor Nepliouev
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Zhu-Shan Zhang
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Victoria G Bryson
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Leigh Brian
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Rex C Bentley
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Phillip R Gordon-Weeks
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Paul B Rosenberg
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Neil J Freedman
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| |
Collapse
|
11
|
Walford T, Musa FI, Harper AGS. Nicergoline inhibits human platelet Ca(2+) signalling through triggering a microtubule-dependent reorganization of the platelet ultrastructure. Br J Pharmacol 2016; 173:234-47. [PMID: 26450366 PMCID: PMC4813371 DOI: 10.1111/bph.13361] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 08/27/2015] [Accepted: 09/23/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Recently, we demonstrated that a pericellular Ca(2+) recycling system potentiates agonist-evoked Ca(2+) signalling and granule secretion in human platelets and hypothesized a role for the membrane complex (MC) in orchestrating the accumulation of Ca(2+) in the pericellular region. Previous work has demonstrated that treatment with high concentrations of nicergoline may disrupt the MC through an ability to trigger a re-organization of the dense tubular system. Experiments were therefore performed to assess whether nicergoline-induced changes in platelet ultrastructure affects thrombin-evoked Ca(2+) fluxes and dense granule secretion. EXPERIMENTAL APPROACH Thrombin-evoked Ca(2+) fluxes were monitored in Fura-2- or Fluo-5N-loaded human platelets, or using platelet suspensions containing Fluo-4 or Rhod-5N K(+) salts. Fluorescence microscopy was utilized to monitor microtubule structure and intracellular Ca(2+) store distribution in TubulinTracker- and Fluo-5N-loaded platelets respectively. Dense granule secretion was monitored using luciferin-luciferase. KEY RESULTS Nicergoline treatment inhibited thrombin-evoked Ca(2+) signalling and induced alterations in the microtubule structure and the distribution of intracellular Ca(2+) stores in platelets. Nicergoline altered the generation and spreading of thrombin-induced pericellular Ca(2+) signals and almost completely prevented dense granule secretion. Stabilization of microtubules using taxol reversed most effects of nicergoline on platelet Ca(2+) signalling and partially reversed its effects on dense granule secretion. CONCLUSIONS AND IMPLICATIONS Nicergoline-induced alterations to platelet ultrastructure disrupt platelet Ca(2+) signalling in a manner that would be predicted if the MC had been disrupted. These data suggest that nicergoline may be a useful prototype for the discovery of novel MC-disrupting anti-thrombotics.
Collapse
Affiliation(s)
- T Walford
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Stoke-on-Trent, Staffordshire, UK
| | - F I Musa
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Stoke-on-Trent, Staffordshire, UK
| | - A G S Harper
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Stoke-on-Trent, Staffordshire, UK
| |
Collapse
|
12
|
Lopez E, Bermejo N, Berna-Erro A, Alonso N, Salido GM, Redondo PC, Rosado JA. Relationship between calcium mobilization and platelet α- and δ-granule secretion. A role for TRPC6 in thrombin-evoked δ-granule exocytosis. Arch Biochem Biophys 2015; 585:75-81. [PMID: 26386308 DOI: 10.1016/j.abb.2015.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 11/25/2022]
Abstract
Changes in cytosolic Ca(2+) concentration ([Ca(2+)]c) regulate granule secretion in different cell types. Thrombin activates PAR1 and PAR4 receptors and promotes release of Ca(2+) from distinct intracellular stores, which, in turn, activates store-operated Ca(2+) entry (SOCE). A crucial step during platelet function is the release of physiological agonists stored in secretory granules to the extracellular compartment during activation. We aim to study the role of Ca(2+) mobilization from the extracellular compartment or from different intracellular stores in platelet granule secretion. By using flow cytometry, we have found that α- and δ-granules are secreted in thrombin-stimulated platelets in the absence of extracellular Ca(2+), and in a concentration-dependent manner. Our findings show that thrombin-stimulated granule secretion depends on Ca(2+) mobilization from intracellular stores. Analysis of the kinetics of granule secretion reveals that platelet stimulation with thrombin results in rapid release of α-granules which precedes the secretion of δ-granules. Incubation of platelets with a specific antibody, which recognizes the extracellular amino acid sequence 573-586 of TRPC6, inhibited thrombin-evoked δ-granule exocytosis. Our results indicate that the mechanisms underlying thrombin-induced α- and δ-granule secretion show differences in dependency on Ca(2+) mobilization.
Collapse
Affiliation(s)
- E Lopez
- Department of Physiology, University of Extremadura, Phycell, 10003, Spain
| | - N Bermejo
- Department of Hematology, Hospital San Pedro de Alcantara, 10003 Cáceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Phycell, 10003, Spain
| | - N Alonso
- Department of Hematology, Hospital Infanta Cristina, 06006 Badajoz, Spain
| | - G M Salido
- Department of Physiology, University of Extremadura, Phycell, 10003, Spain
| | - P C Redondo
- Department of Physiology, University of Extremadura, Phycell, 10003, Spain
| | - J A Rosado
- Department of Physiology, University of Extremadura, Phycell, 10003, Spain.
| |
Collapse
|
13
|
Huang YW, Chang SJ, Harn HIC, Huang HT, Lin HH, Shen MR, Tang MJ, Chiu WT. Mechanosensitive store-operated calcium entry regulates the formation of cell polarity. J Cell Physiol 2015; 230:2086-97. [PMID: 25639747 DOI: 10.1002/jcp.24936] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/16/2015] [Indexed: 12/11/2022]
Abstract
Ca(2+) -mediated formation of cell polarity is essential for directional migration which plays an important role in physiological and pathological processes in organisms. To examine the critical role of store-operated Ca(2+) entry, which is the major form of extracellular Ca(2+) influx in non-excitable cells, in the formation of cell polarity, we employed human bone osteosarcoma U2OS cells, which exhibit distinct morphological polarity during directional migration. Our analyses showed that Ca(2+) was concentrated at the rear end of cells and that extracellular Ca(2+) influx was important for cell polarization. Inhibition of store-operated Ca(2+) entry using specific inhibitors disrupted the formation of cell polarity in a dose-dependent manner. Moreover, the channelosomal components caveolin-1, TRPC1, and Orai1 were concentrated at the rear end of polarized cells. Knockdown of TRPC1 or a TRPC inhibitor, but not knockdown of Orai1, reduced cell polarization. Furthermore, disruption of lipid rafts or overexpression of caveolin-1 contributed to the downregulation of cell polarity. On the other hand, we also found that cell polarity, store-operated Ca(2+) entry activity, and cell stiffness were markedly decreased by low substrate rigidity, which may be caused by the disorganization of actin filaments and microtubules that occurs while regulating the activity of the mechanosensitive TRPC1 channel.
Collapse
Affiliation(s)
- Yi-Wei Huang
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Jing Chang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hans I-Chen Harn
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ting Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hsi-Hui Lin
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Ru Shen
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Tang
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
14
|
Pozo-Guisado E, Martin-Romero FJ. The regulation of STIM1 by phosphorylation. Commun Integr Biol 2013; 6:e26283. [PMID: 24505502 PMCID: PMC3914909 DOI: 10.4161/cib.26283] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/31/2022] Open
Abstract
Calcium ion (Ca(2+)) concentration plays a key role in cell signaling in eukaryotic cells. At the cellular level, Ca(2+) directly participates in such diverse cellular events as adhesion and migration, differentiation, contraction, secretion, synaptic transmission, fertilization, and cell death. As a consequence of these diverse actions, the cytosolic concentration of free Ca(2+) is tightly regulated by the coordinated activity of Ca(2+) channels, Ca(2+) pumps, and Ca(2+)-binding proteins. Although many of these regulators have been studied in depth, other proteins have been described recently, and naturally far less is known about their contribution to cell physiology. Within this last group of proteins, STIM1 has emerged as a major contributor to Ca(2+) signaling by means of its activity as Ca(2+) channel regulator. STIM1 is a protein resident mainly, but not exclusively, in the endoplasmic reticulum (ER), and activates a set of plasma membrane Ca(2+) channels termed store-operated calcium channels (SOCs) when the concentration of free Ca(2+) within the ER drops transiently as a result of Ca(2+) release from this compartment. Knowledge regarding the molecular architecture of STIM1 has grown considerably during the last years, and several structural domains within STIM1 have been reported to be required for the specific molecular interactions with other important players in Ca(2+) signaling, such as Ca(2+) channels and microtubules. Within the modulators of STIM1, phosphorylation has been shown to both activate and inactivate STIM1-dependent Ca(2+) entry depending on the cell type, cell cycle phase, and the specific residue that becomes modified. Here we shall review current knowledge regarding the modulation of STIM1 by phosphorylation.
Collapse
Affiliation(s)
- Eulalia Pozo-Guisado
- Department of Biochemistry and Molecular Biology; School of Life Sciences; University of Extremadura; Badajoz, Spain
| | | |
Collapse
|
15
|
Smani T, Dionisio N, López JJ, Berna-Erro A, Rosado JA. Cytoskeletal and scaffolding proteins as structural and functional determinants of TRP channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:658-64. [PMID: 23333715 DOI: 10.1016/j.bbamem.2013.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/30/2012] [Accepted: 01/10/2013] [Indexed: 12/14/2022]
Abstract
Transient receptor potential (TRP) channels are six transmembrane-spanning proteins, with variable selectivity for cations, that play a relevant role in intracellular Ca(2+) homeostasis. There is a large body of evidence that shows association of TRP channels with the actin cytoskeleton or even the microtubules and demonstrating the functional importance of this interaction for TRP channel function. Conversely, cation currents through TRP channels have also been found to modulate cytoskeleton rearrangements. The interplay between TRP channels and the cytoskeleton has been demonstrated to be essential for full activation of a variety of cellular functions. Furthermore, TRP channels have been reported to take part of macromolecular complexes including different signal transduction proteins. Scaffolding proteins play a relevant role in the association of TRP proteins with other signaling molecules into specific microdomains. Especially relevant are the roles of the Homer family members for the regulation of TRPC channel gating in mammals and INAD in the modulation of Drosophila TRP channels. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Tarik Smani
- Institute of Biomedicine of Seville, Seville, Spain
| | - Natalia Dionisio
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, Cáceres, Spain
| | - José J López
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, Cáceres, Spain
| | - Alejandro Berna-Erro
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, Cáceres, Spain.
| |
Collapse
|
16
|
López E, Berna-Erro A, Salido GM, Rosado JA, Redondo PC. FKBP52 is involved in the regulation of SOCE channels in the human platelets and MEG 01 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:652-62. [PMID: 23228564 DOI: 10.1016/j.bbamcr.2012.11.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/17/2012] [Accepted: 11/30/2012] [Indexed: 12/17/2022]
Abstract
Immunophilins are FK506-binding proteins that have been involved in the regulation of calcium homeostasis, either by modulating Ca(2+) channels located in the plasma membrane or in the rough endoplasmic reticulum (RE). We have investigated whether immunophilins would participate in the regulation of stored-operated Ca(2+) entry (SOCE) in human platelets and MEG 01. Both cell types were loaded with fura-2 for determining cytosolic calcium concentration changes ([Ca(2+)](c)), or stimulated and fixed to evaluate the protein interaction profile by performing immunoprecipitation and western blotting. We have found that incubation of platelets with FK506 increases Ca(2+) mobilization. Thapsigargin (TG)-evoked, Thr-evoked SOCE and TG-evoked Mn(2+) entry resulted in significant reduction by treatment of platelets with immunophilin antagonists. We confirmed by immunoprecipitation that immunophilins interact with transient receptor potential channel 1 (TRPC1) and Orai1 in human platelets. FK506 and rapamycin reduced the association between TRPC1 and Orai1 with FK506 binding protein (52) (FKBP52) in human platelets, and between TRPC1 and the type II IP(3)R, which association is known to be crucial for the maintenance of SOCE in human platelets. FKBP52 role in SOCE activation was confirmed by silencing FKBP52 using SiRNA FKBP52 in MEG 01 as demonstrated by single cell configuration imaging technique. TRPC1 silencing and depletion of cell of TRPC1 and FKBP52 simultaneously, impair activation of SOCE evoked by TG in MEG 01. Finally, in MEG 01 incubated with FK506 we observed a reduction in TRPC1/FKBP52 coupling, and similarly, FKBP52 silencing reduced the association between IP3R type II and TRPC1 during SOCE. All together, these results demonstrate that immunophilins participate in the regulation of SOCE in human platelets.
Collapse
Affiliation(s)
- Esther López
- Department of Physiology Cellular Physiology Research Group, University of Extremadura, 10003 Cáceres, Spain
| | | | | | | | | |
Collapse
|
17
|
Thrombin-stimulated discharge of calcium stores in human platelets: analysis of experimental data. Arch Biochem Biophys 2012; 526:78-83. [PMID: 22846427 DOI: 10.1016/j.abb.2012.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 11/21/2022]
Abstract
The purpose of this research was to analyze experimental data concerning thrombin-stimulated discharge of calcium stores in human platelets contained in calcium-free medium in view of better understanding the mechanisms involved in calcium fluxes. The model curves are reasonably close to experimental data; the parameters of the models are related to the properties of the entities responsible for control or maintenance of cytosolic calcium concentration. It has been shown that: (a) time-course of calcium concentration in cytosol of human platelets can be acceptably modeled on the basis of reasonable assumptions concerning agonist stimulated calcium redistribution in cellular compartments; (b) those assumptions are of fundamental importance for the model (c) some parameters of the model (taken arbitrarily) cannot be estimated independently of others from fitting the model to experimental data available; (d) special experiments are necessary to determine the unknown parameters; (e) agonist-stimulated change of the permeability of endomembrane of calcium stores can be regarded as a pulse of the permeability; it can be modeled as a sequence of transitions of the system from inactive to active and to inactive state again.
Collapse
|
18
|
|
19
|
Rosado J. Acidic Ca2+ stores in platelets. Cell Calcium 2011; 50:168-74. [DOI: 10.1016/j.ceca.2010.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/25/2010] [Accepted: 11/27/2010] [Indexed: 02/06/2023]
|
20
|
Juška A. Calcium fluxes into and out of cytosol in human platelets: analysis of experimental data. Biochem Biophys Res Commun 2011; 412:537-42. [PMID: 21798249 DOI: 10.1016/j.bbrc.2011.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 07/11/2011] [Indexed: 12/11/2022]
Abstract
The purpose of this research was to analyse experimental data concerning cytosolic calcium concentration in view of the mechanisms involved in calcium fluxes in human platelets. The parameters of model curves are related to the properties of the entities responsible for control or maintenance of cytosolic calcium concentration. It has been shown that: (a) biphasicity of increase in cytosolic calcium concentration caused by inhibition of SERCAs either by TBHQ and TG or by TG alone is related to fast and slow discharge of acidic calcium stores and DTS; (b) biphasicity of decline in cytosolic calcium concentration after its rise caused by stimulation of platelets by the agonists is related to non-synchronous extrusion of calcium by PMCA and NCX; (c) NCX is active only in calcium containing medium: calcium ion(s) are necessary to be bound to the site(s) located on the medium-facing side of the (macro)molecule; (d) PMCA is likely to be activated either by binding calcium ion(s) to the site(s) located on its cytosol-facing side or by unbinding identical ion(s) from the site(s) on its medium-facing side.
Collapse
Affiliation(s)
- Alfonsas Juška
- Vilniaus Gedimino technikos universitetas, Vilnius, Lithuania.
| |
Collapse
|
21
|
Galán C, Dionisio N, Smani T, Salido GM, Rosado JA. The cytoskeleton plays a modulatory role in the association between STIM1 and the Ca2+ channel subunits Orai1 and TRPC1. Biochem Pharmacol 2011; 82:400-10. [PMID: 21640715 DOI: 10.1016/j.bcp.2011.05.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/15/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is a major pathway for Ca(2+) influx in non-excitable cells. Recent studies favour a conformational coupling mechanism between the endoplasmic reticulum (ER) Ca(2+) sensor STIM1 and Ca(2+) permeable channels in the plasma membrane to explain SOCE. Previous studies have reported a role for the cytoskeleton modulating the activation of SOCE; therefore, here we have investigated whether the interaction between STIM1 and the Ca(2+) permeable channels is modulated by the actin or microtubular network. In HEK-293 cells, treatment with the microtubular disrupter colchicine enhanced both the activation of SOCE and the association between STIM1 and Orai1 or TRPC1 induced by thapsigargin (TG). Conversely, stabilization of the microtubules by paclitaxel attenuated TG-evoked activation of SOCE and the interaction between STIM1 and the Ca(2+) channels Orai1 and TRPC1, altogether suggesting that the microtubules act as a negative regulator of SOCE. Stabilization of the cortical actin filament layer results in inhibition of TG-evoked both association between STIM1, Orai1 and TRPC1 and SOCE. Interestingly, disruption of the actin filament network by cytochalasin D did not significantly modify TG-evoked association between STIM1 and Orai1 or TRPC1 but enhanced TG-stimulated SOCE. Finally, inhibition of calmodulin by calmidazolium enhances TG-evoked SOCE and disruption of the actin cytoskeleton results in inhibition of TG-evoked association of calmodulin with Orai1 and TRPC1. Thus, we demonstrate that the cytoskeleton plays an essential role in the regulation of SOCE through the modulation of the interaction between their main molecular components.
Collapse
Affiliation(s)
- Carmen Galán
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, 10071 Cáceres, Spain
| | | | | | | | | |
Collapse
|
22
|
Miki K, Tanaka H, Nagai Y, Kimura C, Oike M. Transforming growth factor beta1 alters calcium mobilizing properties and endogenous ATP release in A549 cells: possible implications for cell migration. J Pharmacol Sci 2010; 113:387-94. [PMID: 20668365 DOI: 10.1254/jphs.10124fp] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We examined the effects of transforming growth factor beta(1) (TGFbeta(1)) on cellular functions in human lung cancer cell line A549. Treatment of A549 cells with 1 ng/ml TGFbeta(1) for more than 3 days altered their morphology from an epithelial cobblestone-like appearance to a fibroblast-like one, reduced the expression of E-cadherin mRNA and protein, and induced the formation of F-actin fibers. These hallmarks indicate that TGFbeta(1) induced the epithelial-mesenchymal transition in A549 cells. Migration of TGFbeta(1)-treated A549 cells, which was quantified by the wound-healing assay, was markedly accelerated by 3 microM ATPgammaS, a non-hydrolyzable ATP analogue. ATPgammaS-induced migration of TGFbeta(1)-treated A549 cells was reversed by the P2 antagonist suramin. In contrast, migration of control A549 cells was not altered by ATPgammaS. TGFbeta(1)-treated A549 cells showed an augmentation of ATP-induced Ca(2+) transients, thapsigargin-induced Ca(2+) transients, and store-operated Ca(2+) entry compared with those in control cells. Basal level of the extracellular ATP concentration was significantly lower in TGFbeta(1)-treated A549 cells than in control cells. We conclude from these results that TGFbeta(1) augments ATP-induced Ca(2+) mobilization, which leads to the acceleration of migration, in A549 cells but, it markedly reduces endogenous ATP release. This implies that the actions of ATP would become a novel therapeutic target for inhibiting cancer cell migration.
Collapse
Affiliation(s)
- Kenji Miki
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
23
|
Russa AD, Ishikita N, Masu K, Akutsu H, Saino T, Satoh YI. Microtubule remodeling mediates the inhibition of store-operated calcium entry (SOCE) during mitosis in COS-7 cells. ACTA ACUST UNITED AC 2009; 71:249-63. [PMID: 19359807 DOI: 10.1679/aohc.71.249] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Regulation of the intracellular calcium ion concentration ([Ca(2+)](i)) is critical, because calcium signaling controls diverse and vital cellular processes such as secretion, proliferation, division, gene transcription, and apoptosis. Store-operated calcium entry (SOCE) is the main mechanism through which non-excitable cells replenish and thus maintain this delicate balance. There is limited evidence which indicates that SOCE may be inhibited during mitosis, and the mechanisms leading to the presumed inhibition has not been elucidated. In the present study, we examined and compared the [Ca(2+)](i) dynamics of COS-7 cells in mitotic and non-mitotic phases with special reference paid to SOCE. Laser scanning confocal microscopy to monitor [Ca(2+)](i) dynamics revealed that SOCE was progressively inhibited in mitosis and became virtually absent during the metaphase. We used various cytoskeletal modifying drugs and immunofluorescence to assess the contribution of microtubule and actin filaments in SOCE signaling. Nocodazole treatment caused microtubule reorganization and retraction from the cell periphery that mimicked the natural mitotic microtubule remodeling that was also accompanied by SOCE inhibition. Short exposure to paclitaxel, a microtubule-stabilizing drug, bolstered SOCE, whereas long exposure resulted in microtubule disruption and SOCE inhibition. Actin-modifying drugs did not affect SOCE. These findings indicate that mitotic microtubule remodeling plays a significant role in the inhibition of SOCE during mitosis.
Collapse
Affiliation(s)
- Afadhali Denis Russa
- Department of Anatomy (Cell Biology Group), Iwate Medical University School of Medicine, Uchimaru, Morioka, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Cinnamtannin B-1 as an antioxidant and platelet aggregation inhibitor. Life Sci 2008; 82:977-82. [PMID: 18433795 DOI: 10.1016/j.lfs.2008.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 02/19/2008] [Accepted: 03/17/2008] [Indexed: 01/01/2023]
Abstract
Cinnamtannin B-1 is a naturally occurring trimeric A-type proanthocyanidin, present in a limited number of plants, which exhibits a large number of cellular actions mostly derived from its antioxidant properties. Cinnamtannin B-1 modulates several biological processes such as changes in cytosolic free Ca(2+) concentration, endogenous reactive oxygen species generation, protein tyrosine phosphorylation and platelet aggregation. Proanthocyanidins, such as cinnamtannin B-1, have been reported to exert antitumoral activity mediated by a selective proapoptotic action in a number of tumoral cell lines associated with antiapoptotic activity in normal cells. The opposite effects of proanthocyanidins in normal and tumoral cells suggest that these compounds might be the base for therapeutic strategies directed selectively against tumoral cells. In addition, cinnamtannin B-1 shows antithrombotic actions through inhibition, in platelets, of endogenous ROS generation, Ca(2+) mobilization and, subsequently, aggregation. This has been reported to be especially relevant in platelets from diabetic patients, where cinnamtannin B-1 reverses both platelet hypersensitivity and hyperactivity. Considering the large number of cellular effects of cinnamtannin B-1 the development of therapeutic strategies for thrombotic disorders or certain types of cancer deserves further studies. This review summarizes the current knowledge on the actions and relevance of the signalling pathways modulated by cinnamtannin B-1.
Collapse
|
25
|
Intracellular Calcium Release from Human Platelets: Different Messengers for Multiple Stores. Trends Cardiovasc Med 2008; 18:57-61. [DOI: 10.1016/j.tcm.2007.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 11/22/2007] [Accepted: 12/06/2007] [Indexed: 11/24/2022]
|
26
|
Redondo PC, Salido GM, Pariente JA, Sage SO, Rosado JA. SERCA2b and 3 play a regulatory role in store-operated calcium entry in human platelets. Cell Signal 2008; 20:337-46. [DOI: 10.1016/j.cellsig.2007.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 10/18/2007] [Indexed: 11/26/2022]
|
27
|
Redondo PC, Jardin I, Lopez JJ, Salido GM, Rosado JA. Intracellular Ca2+ store depletion induces the formation of macromolecular complexes involving hTRPC1, hTRPC6, the type II IP3 receptor and SERCA3 in human platelets. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:1163-76. [PMID: 18191041 DOI: 10.1016/j.bbamcr.2007.12.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 12/11/2007] [Accepted: 12/11/2007] [Indexed: 11/26/2022]
Abstract
Endogenously expressed human canonical transient receptor potential 1 (hTRPC1) and human canonical transient receptor potential 6 (hTRPC6) have been shown to play a role in store-operated Ca2+ entry (SOCE) in human platelets, where two mechanisms for SOCE, regulated by the dense tubular system (DTS) or the acidic granules, have been identified. In cells preincubated for 1 min with 100 microM flufenamic acid we show that hTRPC6 is involved in SOCE activated by both mechanisms, as demonstrated by selective depletion of the DTS or the acidic stores, using thapsigargin (TG) (10 nM) or 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ) (20 microM), respectively, although it is more relevant after acidic store depletion. Co-immunoprecipitation experiments indicated that depletion of both stores separately results in time-dependent interaction between hTRPC1 and hTRPC6, and also between both hTRPCs and the type II IP3 receptor (IP3RII). The latter was greater after treatment with TG. TBHQ-induced coupling between hTRPC1 and 6 was transient and decreased after 30s of treatment, while that induced by TG increased for at least 3 min. TBHQ induced association between SERCA3, located in the acidic stores, hTRPC1, hTRPC6 and Orai1. TBHQ also evoked coupling between SERCA3 and IP3RII, presumably located in the DTS, thus suggesting interplay between both Ca2+ stores. Similarly, TG induces the interaction of SERCA2b with hTRPC1 and 6 and the IP3RII. The interactions between hTRPC1, hTRPC6, IP3RII and SERCA3 were impaired by disruption of the microtubules, supporting a role for microtubules in Ca2+ homeostasis. In conclusion, the present data demonstrate for the first time that hTRPC1, hTRPC6, IP3RII and SERCA3 are parts of a macromolecular protein complex activated by depletion of the intracellular Ca2+ stores in human platelets.
Collapse
Affiliation(s)
- Pedro C Redondo
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3EG Cambridge, UK.
| | | | | | | | | |
Collapse
|