1
|
赵 娅, 邓 丽, 曹 玥, 马 步, 李 月, 徐 靖, 李 红, 黄 英. [Inhibitory Effect of Ginsenoside Rg3 Combined With 5-Fluorouracil on Tumor Angiogenesis and Tumor Growth of Colon Cancer in Mice: An Experimental Study]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:111-117. [PMID: 38322531 PMCID: PMC10839471 DOI: 10.12182/20240160506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Indexed: 02/08/2024]
Abstract
Objective To evaluate the inhibitory effect of ginsenoside Rg3 combined with 5-fluorouracil (5-FU) on tumor angiogenesis and tumor growth in colon cancer in mice. Methods CT26 mouse model of colon cancer was established and the mice were randomly assigned to the control group, the ginsenoside Rg3 group, the 5-FU group, and the Rg3 combined with 5-FU group. The 5-FU group was injected intraperitoneally at the dose of 20 mg/kg, 0.2 mL/animal, and once a day for 10 days. Treatment for the Rg3 group was given at the dose of 20 mg/kg, 0.2 mL/animal, and once a day for 21 days via gastric gavage. The dose and the mode of treatment for the Rg3+5-FU combination group were the same as those for the 5-FU and the Rg3 group. The control group was intraperitoneally injected with 0.2 mL/d of normal saline for 10 days. The expression of vascular endothelial growth factor (VEGF) and CD31 and the microvascular density (MVD) of the tumor tissues were examined by immunohistochemistry. The blood flow signals and tumor necrosis were examined by color Doppler flow imaging (CDFI). The quality of life, survival rate, tumor volume, tumor mass, and tumor inhibition rate of the mice were monitored. Results After 21 days of treatment, the tumor volume and the tumor mass of all treatment groups were significantly decreased compared with those the control group, with the combination treatment group exhibiting the most significant decrease. The tumor inhibition rates of the Rg3 group, the 5-FU group, and the combination group were 29.96%, 68.78%, and 73.42%, respectively. Rg3 treatment alone had inhibitory effect on tumor growth to a certain degree, while 5-FU treatment alone or 5-FU combined with Rg3 had a stronger inhibitory effect on tumor growth. The tumor inhibition rate of the combination group was higher than that of the 5-FU group, but the difference was not statistically significant (P>0.05). Color Doppler ultrasound showed that there were multiple localized and large tumor necrotic areas that were obvious and observable in the Rg3 group and the combination group, and that there were only small tumor necrotic areas in the 5-FU group and the control group. The tumor necrosis rate of the combination group was (55.63±3.12)%, which was significantly higher than those of the other groups (P<0.05). CDFI examination of the blood flow inside of the tumor of the mice showed that the blood flow signals in the combination group were mostly grade 0-Ⅰ, and that the blood flow signals in the control group were the most abundant, being mostly grade Ⅱ-Ⅲ. The abundance of the blood flow signals in the Rg3 and 5-FU groups were between those of the control group and the combination group. Compared with those of the control group, the expression levels of MVD and VEGF in the tumor tissues of the Rg3 group, the 5-FU group, and the combination group were significantly decreased, with the combination group showing the most significant decrease (P<0.05). HE staining results indicated that there was significant tumor necrosis in mice in the control group and that there were more blood vessels. In contrast, in the tumor of the Rg3 group and the 5-FU group, there were fewer blood vessels and necrotic gaps appeared within the tumors. In the combination group, the tumor tissues had the fewest blood vessels and rope-like necrosis was observed. The mice started dying on the 18th day after treatment started, and all the mice in the control group died on the 42nd day. By this time, there were 3, 5, and 7 mice still alive in the Rg3 group, the 5-FU group, and the combination group, respectively, presenting a survival rate of 30%, 50%, and 70%, respectively. All mice in all the groups died on day 60 after treatment started. Conclusion Ginsenoside Rg3 combined with 5-FU can significantly inhibit tumor angiogenesis and tumor growth of colon cancer in mice and improve the survival and quality of life of tumor-bearing mice.
Collapse
Affiliation(s)
- 娅菽 赵
- 四川大学华西基础医学与法医学院 病理生理学教研室 (成都 610041)Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 丽聪 邓
- 四川大学华西基础医学与法医学院 病理生理学教研室 (成都 610041)Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 玥 曹
- 四川大学华西基础医学与法医学院 病理生理学教研室 (成都 610041)Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 步云 马
- 四川大学华西基础医学与法医学院 病理生理学教研室 (成都 610041)Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 月 李
- 四川大学华西基础医学与法医学院 病理生理学教研室 (成都 610041)Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 靖怡 徐
- 四川大学华西基础医学与法医学院 病理生理学教研室 (成都 610041)Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 红 李
- 四川大学华西基础医学与法医学院 病理生理学教研室 (成都 610041)Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 英 黄
- 四川大学华西基础医学与法医学院 病理生理学教研室 (成都 610041)Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
How Do Hexokinases Inhibit Receptor-Mediated Apoptosis? BIOLOGY 2022; 11:biology11030412. [PMID: 35336786 PMCID: PMC8945020 DOI: 10.3390/biology11030412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary In multicellular animals, cells autonomously respond to lethal stress by inducing cell death programs. The most common regulated cell death is apoptosis. Cells protect their neighbors from damage by their cell contents or infection through this process. Apoptosis can occur as a result of intrinsic stress or induced by surface receptors, for example, by immune cells. In most cases, receptor-mediated apoptosis also requires the intrinsic signaling pathway. Intrinsic apoptosis is controlled by proteins of the B-cell lymphoma 2 (BCL-2) family. Pro-apoptotic BCL-2 proteins are inhibited by retrotranslocation from the mitochondria into the cytosol until the cell commits to apoptosis. Increasingly, discoveries show that BCL-2 proteins are regulated by proteins that are not themselves members of the BCL-2 family. Here, we discuss the selective inhibition of the link between death receptors activation and intrinsic apoptosis by hexokinases. These enzymes funnel glucose into the cellular metabolism. Independently, hexokinases retrotranslocate BCL-2 proteins and thereby protect cells from receptor-mediated apoptosis. Abstract The regulated cell death apoptosis enables redundant or compromised cells in ontogeny and homeostasis to remove themselves receptor-dependent after extrinsic signaling or after internal stress by BCL-2 proteins on the outer mitochondrial membrane (OMM). Mitochondrial BCL-2 proteins are also often needed for receptor-mediated signaling in apoptosis. Then, the truncated BH3-only protein BID (tBID) blocks retrotranslocation of the pro-apoptotic BCL-2 proteins BAX and BAK from the mitochondria into the cytosol. BAX and BAK in turn permeabilize the OMM. Although the BCL-2 proteins are controlled by a complex regulatory network, a specific mechanism for the inhibition of tBID remained unknown. Curiously, it was suggested that hexokinases, which channel glucose into the metabolism, have an intriguing function in the regulation of apoptosis. Recent analysis of transient hexokinase interactions with BAX revealed its participation in the inhibition of BAX and also BAK by retrotranslocation from mitochondria to the cytosol. In contrast to general apoptosis inhibition by anti-apoptotic BCL-2 proteins, hexokinase I and hexokinase 2 specifically inhibit tBID and thus the mitochondrial apoptosis pathway in response to death receptor signaling. Mitochondrial hexokinase localization and BH3 binding of cytosolic hexokinase domains are prerequisites for protection against receptor-mediated cell death, whereas glucose metabolism is not. This mechanism protects cells from apoptosis induced by cytotoxic T cells.
Collapse
|
3
|
Zhang Y, Roos M, Himburg H, Termini CM, Quarmyne M, Li M, Zhao L, Kan J, Fang T, Yan X, Pohl K, Diers E, Jin Gim H, Damoiseaux R, Whitelegge J, McBride W, Jung ME, Chute JP. PTPσ inhibitors promote hematopoietic stem cell regeneration. Nat Commun 2019; 10:3667. [PMID: 31413255 PMCID: PMC6694155 DOI: 10.1038/s41467-019-11490-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/18/2019] [Indexed: 01/08/2023] Open
Abstract
Receptor type protein tyrosine phosphatase-sigma (PTPσ) is primarily expressed by adult neurons and regulates neural regeneration. We recently discovered that PTPσ is also expressed by hematopoietic stem cells (HSCs). Here, we describe small molecule inhibitors of PTPσ that promote HSC regeneration in vivo. Systemic administration of the PTPσ inhibitor, DJ001, or its analog, to irradiated mice promotes HSC regeneration, accelerates hematologic recovery, and improves survival. Similarly, DJ001 administration accelerates hematologic recovery in mice treated with 5-fluorouracil chemotherapy. DJ001 displays high specificity for PTPσ and antagonizes PTPσ via unique non-competitive, allosteric binding. Mechanistically, DJ001 suppresses radiation-induced HSC apoptosis via activation of the RhoGTPase, RAC1, and induction of BCL-XL. Furthermore, treatment of irradiated human HSCs with DJ001 promotes the regeneration of human HSCs capable of multilineage in vivo repopulation. These studies demonstrate the therapeutic potential of selective, small-molecule PTPσ inhibitors for human hematopoietic regeneration.
Collapse
Affiliation(s)
- Yurun Zhang
- Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Martina Roos
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
| | - Heather Himburg
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Christina M Termini
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Mamle Quarmyne
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Michelle Li
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Liman Zhao
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Jenny Kan
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Tiancheng Fang
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
| | - Xiao Yan
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
| | - Katherine Pohl
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Emelyne Diers
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Hyo Jin Gim
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Robert Damoiseaux
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
- California Nanosystems Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Julian Whitelegge
- Department of Psychiatry and Behavioral Sciences, UCLA, Los Angeles, CA, 90095, USA
| | - William McBride
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
- Department of Radiation Oncology, UCLA, Los Angeles, CA, 90095, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- California Nanosystems Institute, UCLA, Los Angeles, CA, 90095, USA
| | - John P Chute
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA.
- Department of Radiation Oncology, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
4
|
Takahashi K, Itakura E, Takano K, Endo T. DA-Raf, a dominant-negative regulator of the Ras–ERK pathway, is essential for skeletal myocyte differentiation including myoblast fusion and apoptosis. Exp Cell Res 2019; 376:168-180. [DOI: 10.1016/j.yexcr.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/19/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
|
5
|
Zhang X, Wu N. Fasudil inhibits proliferation and migration of Hep-2 laryngeal carcinoma cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:373-381. [PMID: 29503530 PMCID: PMC5825979 DOI: 10.2147/dddt.s147547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Rho-kinase signal pathway is a new target for cancer therapy. Fasudil, a selective Rho-kinase inhibitor, is found to exert antitumor effects on several types of cancer, but whether fasudil has antitumor effects on laryngeal carcinoma is still unknown. The aim of this study was to determine the effects of fasudil on laryngeal carcinoma and explore the underlying molecular mechanisms in this process. Methods After treatment with fasudil, changes in biological behaviors, including the growth, proliferation, clone formation, apoptosis, and migration of human laryngeal carcinoma cells (Hep-2 cells) were observed. The influences on apoptotic protease activity factor-1 (APAF-1)-mediated apoptosis pathway and the activities of matrix metalloproteinases (MMP-2 and MMP-9) were measured by Western blotting and gelatin zymography assay. Results Half-maximal inhibitory concentration of fasudil to Hep-2 cells was ~3.40×103 µM (95% CI: 2.53-4.66×103 µM). Moreover, fasudil treatment significantly decreased the ability of growth, proliferation, clone formation, and migration of Hep-2 cells, while remarkably increased the apoptosis rate. Furthermore, the expressions of APAF-1, caspase-9, and caspase-3 significantly increased in fasudil treatment group. Meanwhile, fasudil led to a remarkable decrease in the expressions and activities of MMP-2 and MMP-9. Conclusion Our findings first demonstrate that fasudil not only inhibits the proliferation of laryngeal carcinoma cells through activating APAF-1-mediated apoptosis pathway, but also prevents migration by inhibiting the activities of MMP-2 and MMP-9. Therefore, fasudil is an attractive antitumor drug candidate for the treatment of laryngeal carcinoma.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Nan Wu
- The Core Laboratory for Public Health Science and Practice, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
More SV, Choi DK. Emerging preclinical pharmacological targets for Parkinson's disease. Oncotarget 2018; 7:29835-63. [PMID: 26988916 PMCID: PMC5045437 DOI: 10.18632/oncotarget.8104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurological condition caused by the degeneration of dopaminergic neurons in the basal ganglia. It is the most prevalent form of Parkinsonism, categorized by cardinal features such as bradykinesia, rigidity, tremors, and postural instability. Due to the multicentric pathology of PD involving inflammation, oxidative stress, excitotoxicity, apoptosis, and protein aggregation, it has become difficult to pin-point a single therapeutic target and evaluate its potential application. Currently available drugs for treating PD provide only symptomatic relief and do not decrease or avert disease progression resulting in poor patient satisfaction and compliance. Significant amount of understanding concerning the pathophysiology of PD has offered a range of potential targets for PD. Several emerging targets including AAV-hAADC gene therapy, phosphodiesterase-4, potassium channels, myeloperoxidase, acetylcholinesterase, MAO-B, dopamine, A2A, mGlu5, and 5-HT-1A/1B receptors are in different stages of clinical development. Additionally, alternative interventions such as deep brain stimulation, thalamotomy, transcranial magnetic stimulation, and gamma knife surgery, are also being developed for patients with advanced PD. As much as these therapeutic targets hold potential to delay the onset and reverse the disease, more targets and alternative interventions need to be examined in different stages of PD. In this review, we discuss various emerging preclinical pharmacological targets that may serve as a new promising neuroprotective strategy that could actually help alleviate PD and its symptoms.
Collapse
Affiliation(s)
- Sandeep Vasant More
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, South Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, South Korea
| |
Collapse
|
7
|
Tripathi S, Flobak Å, Chawla K, Baudot A, Bruland T, Thommesen L, Kuiper M, Lægreid A. The gastrin and cholecystokinin receptors mediated signaling network: a scaffold for data analysis and new hypotheses on regulatory mechanisms. BMC SYSTEMS BIOLOGY 2015. [PMID: 26205660 PMCID: PMC4513977 DOI: 10.1186/s12918-015-0181-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The gastrointestinal peptide hormones cholecystokinin and gastrin exert their biological functions via cholecystokinin receptors CCK1R and CCK2R respectively. Gastrin, a central regulator of gastric acid secretion, is involved in growth and differentiation of gastric and colonic mucosa, and there is evidence that it is pro-carcinogenic. Cholecystokinin is implicated in digestion, appetite control and body weight regulation, and may play a role in several digestive disorders. Results We performed a detailed analysis of the literature reporting experimental evidence on signaling pathways triggered by CCK1R and CCK2R, in order to create a comprehensive map of gastrin and cholecystokinin-mediated intracellular signaling cascades. The resulting signaling map captures 413 reactions involving 530 molecular species, and incorporates the currently available knowledge into one integrated signaling network. The decomposition of the signaling map into sub-networks revealed 18 modules that represent higher-level structures of the signaling map. These modules allow a more compact mapping of intracellular signaling reactions to known cell behavioral outcomes such as proliferation, migration and apoptosis. The integration of large-scale protein-protein interaction data to this literature-based signaling map in combination with topological analyses allowed us to identify 70 proteins able to increase the compactness of the map. These proteins represent experimentally testable hypotheses for gaining new knowledge on gastrin- and cholecystokinin receptor signaling. The CCKR map is freely available both in a downloadable, machine-readable SBML-compatible format and as a web resource through PAYAO (http://sblab.celldesigner.org:18080/Payao11/bin/). Conclusion We have demonstrated how a literature-based CCKR signaling map together with its protein interaction extensions can be analyzed to generate new hypotheses on molecular mechanisms involved in gastrin- and cholecystokinin-mediated regulation of cellular processes. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0181-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sushil Tripathi
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7489, Trondheim, Norway.
| | - Åsmund Flobak
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7489, Trondheim, Norway.
| | - Konika Chawla
- Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway.
| | - Anaïs Baudot
- I2M, Marseilles Institute of Mathematics CNRS - AMU, Case 907, 13288, Marseille, Cedex 9, France.
| | - Torunn Bruland
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7489, Trondheim, Norway.
| | - Liv Thommesen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7489, Trondheim, Norway. .,Department of Technology, Sør-Trøndelag University College, N-7004, Trondheim, Norway.
| | - Martin Kuiper
- Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway.
| | - Astrid Lægreid
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7489, Trondheim, Norway. .,Institute of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7489, Trondheim, Norway.
| |
Collapse
|
8
|
RhoGTPases - A novel link between cytoskeleton organization and cisplatin resistance. Drug Resist Updat 2015; 19:22-32. [PMID: 25660168 DOI: 10.1016/j.drup.2015.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/13/2015] [Accepted: 01/18/2015] [Indexed: 12/11/2022]
Abstract
For more than three decades, platinum compounds have been the first line treatment for a wide spectrum of solid tumors. Yet, cisplatin resistance is a major impediment in cancer therapy, and deciphering the mechanisms underlying chemoresistance is crucial for the development of novel therapies with enhanced efficacy. The Rho subfamily of small GTPases plays a significant role in cancer progression, and a growing body of evidence points toward the involvement of these proteins in anticancer drug resistance, including cisplatin resistance. The cycling between active and inactive states, governed by the balance between their GEFs, GAPs and GDIs, RhoGTPases, acts as molecular switches with a pivotal role in actin cytoskeleton organization. The Rho subfamily of proteins is involved in many key cellular processes including adhesion, vesicular trafficking, proliferation, survival, cell morphology and cell-matrix interactions. Although RhoA, RhoB and RhoC are highly homologous and share some upstream regulators and downstream effectors, they each have different roles in cancer progression and chemoresistance. While RhoA and RhoC are upregulated in many tumors and can stimulate transformation, RhoB appears to exhibit tumor suppressor characteristics with proapoptotic effects. In the current review, we discuss the role of Rho subfamily of proteins in cancer, and focus on their involvement in intrinsic and acquired drug resistance.
Collapse
|
9
|
Dammann K, Khare V, Gasche C. Republished: tracing PAKs from GI inflammation to cancer. Postgrad Med J 2014; 90:657-68. [PMID: 25335797 PMCID: PMC4222351 DOI: 10.1136/postgradmedj-2014-306768rep] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 12/20/2022]
Abstract
P-21 activated kinases (PAKs) are effectors of Rac1/Cdc42 which coordinate signals from the cell membrane to the nucleus. Activation of PAKs drive important signalling pathways including mitogen activated protein kinase, phospoinositide 3-kinase (PI3K/AKT), NF-κB and Wnt/β-catenin. Intestinal PAK1 expression increases with inflammation and malignant transformation, although the biological relevance of PAKs in the development and progression of GI disease is only incompletely understood. This review highlights the importance of altered PAK activation within GI inflammation, emphasises its effect on oncogenic signalling and discusses PAKs as therapeutic targets of chemoprevention.
Collapse
Affiliation(s)
- Kyle Dammann
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Labandeira-Garcia JL, Rodríguez-Perez AI, Villar-Cheda B, Borrajo A, Dominguez-Meijide A, Guerra MJ. Rho Kinase and Dopaminergic Degeneration. Neuroscientist 2014; 21:616-29. [DOI: 10.1177/1073858414554954] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The small GTP-binding protein Rho plays an important role in several cellular functions. RhoA, which is a member of the Rho family, initiates cellular processes that act on its direct downstream effector Rho-associated kinase (ROCK). ROCK inhibition protects against dopaminergic cell death induced by dopaminergic neurotoxins. It has been suggested that ROCK inhibition activates neuroprotective survival cascades in dopaminergic neurons. Axon-stabilizing effects in damaged neurons may represent another mechanism of neuroprotection of dopaminergic neurons by ROCK inhibition. However, it has been shown that microglial cells play a crucial role in neuroprotection by ROCK inhibition and that activation of microglial ROCK mediates major components of the microglial inflammatory response. Additional mechanisms such as interaction with autophagy may also contribute to the neuroprotective effects of ROCK inhibition. Interestingly, ROCK interacts with several brain factors that play a major role in dopaminergic neuron vulnerability such as NADPH-oxidase, angiotensin, and estrogen. ROCK inhibition may provide a new neuroprotective strategy for Parkinson’s disease. This is of particular interest because ROCK inhibitors are currently used against vascular diseases in clinical practice. However, it is necessary to develop more potent and selective ROCK inhibitors to reduce side effects and enhance the efficacy.
Collapse
Affiliation(s)
- Jose L. Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana I. Rodríguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Begoña Villar-Cheda
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Antonio Dominguez-Meijide
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria J. Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| |
Collapse
|
11
|
Abstract
P-21 activated kinases (PAKs) are effectors of Rac1/Cdc42 which coordinate signals from the cell membrane to the nucleus. Activation of PAKs drive important signalling pathways including mitogen activated protein kinase, phospoinositide 3-kinase (PI3K/AKT), NF-κB and Wnt/β-catenin. Intestinal PAK1 expression increases with inflammation and malignant transformation, although the biological relevance of PAKs in the development and progression of GI disease is only incompletely understood. This review highlights the importance of altered PAK activation within GI inflammation, emphasises its effect on oncogenic signalling and discusses PAKs as therapeutic targets of chemoprevention.
Collapse
Affiliation(s)
- Kyle Dammann
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Huynh N, Yim M, Chernoff J, Shulkes A, Baldwin GS, He H. p-21-Activated kinase 1 mediates gastrin-stimulated proliferation in the colorectal mucosa via multiple signaling pathways. Am J Physiol Gastrointest Liver Physiol 2013; 304:G561-7. [PMID: 23306081 PMCID: PMC3602683 DOI: 10.1152/ajpgi.00218.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrins, including amidated (Gamide) and glycine-extended (Ggly) forms, function as growth factors for the gastrointestinal mucosa. The p-21-activated kinase 1 (PAK1) plays important roles in growth factor signaling networks that control cell motility, proliferation, differentiation, and transformation. PAK1, activated by both Gamide and Ggly, mediates gastrin-stimulated proliferation and migration, and activation of β-catenin, in gastric epithelial cells. The aim of this study was to investigate the role of PAK1 in the regulation by gastrin of proliferation in the normal colorectal mucosa in vivo. Mucosal proliferation was measured in PAK1 knockout (PAK1 KO) mice by immunohistochemistry. The expression of phosphorylated and unphosphorylated forms of the signaling molecules PAK1, extracellular signal-regulated kinase (ERK), and protein kinase B (AKT), and the expression of β-catenin and its downstream targets c-Myc and cyclin D1, were measured in gastrin knockout (Gas KO) and PAK1 KO mice by Western blotting. The expression and activation of PAK1 are decreased in Gas KO mice, and these decreases are associated with reduced activation of ERK, AKT, and β-catenin. Proliferation in the colorectal mucosa of PAK1 KO mice is reduced, and the reduction is associated with reduced activation of ERK, AKT, and β-catenin. In compensation, antral gastrin mRNA and serum gastrin concentrations are increased in PAK1 KO mice. These results indicate that PAK1 mediates the stimulation of colorectal proliferation by gastrins via multiple signaling pathways involving activation of ERK, AKT, and β-catenin.
Collapse
Affiliation(s)
- Nhi Huynh
- 1Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia; and
| | - Mildred Yim
- 1Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia; and
| | | | - Arthur Shulkes
- 1Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia; and
| | - Graham S. Baldwin
- 1Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia; and
| | - Hong He
- 1Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia; and
| |
Collapse
|
13
|
Koh SL, Ager E, Malcontenti-Wilson C, Muralidharan V, Christophi C. Blockade of the renin-angiotensin system improves the early stages of liver regeneration and liver function. J Surg Res 2012; 179:66-71. [PMID: 23110972 DOI: 10.1016/j.jss.2012.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/23/2012] [Accepted: 09/05/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND Partial hepatectomy is the preferred option for selected patients with colorectal cancer liver metastases (CRCLM). Sufficient liver regeneration (LR) is essential for a successful outcome in these patients. The blockade of the renin-angiotensin system (RAS) reduces the growth of several tumor types. The RAS also acts as a regulator of liver fibrosis and potentially LR. The angiotensin-converting enzyme (ACE) inhibitor, captopril, significantly inhibits the growth of CRCLM, but its effect on LR remains undefined. METHODS After 70% of partial hepatectomy, mice were randomly assigned to control or captopril-treated groups. LR was measured by liver-to-body weight ratio on days 1, 2, 4, 6, and 8. Hepatocyte proliferation, apoptosis and cell size, hepatic stellate cell (HSC) count, and sinusoidal endothelial cell density were quantified. Matrix metalloproteinase 9 (MMP-9) protein levels, liver injury markers, and RAS messenger RNA levels were also determined. RESULTS At day 2, captopril increased liver-to-body weight ratio (56.5 ± 1.7 captopril versus 49.3 ± 2.4 control, P = 0.027). This was associated with increased HSC count (65.4 ± 4.8 cells per 100,000 μm(2), 48.7 ± 2.3, P = 0.007) and MMP-9 levels (0.68 ± 0.12 AU, 0.12 ± 0.04, P = 0.014). The messenger RNA levels of angiotensin-converting enzyme (P = 0.045) and angiotensin 1 receptor (P = 0.039) were reduced by captopril at day 2. CONCLUSION Captopril enhanced early LR. This effect was associated with increased HSC numbers and MMP-9 protein, whereas hepatocyte proliferation was lower than controls. Captopril may provide a beneficial treatment option for the management of patients with CRCLM.
Collapse
Affiliation(s)
- Shir Lin Koh
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
| | | | | | | | | |
Collapse
|
14
|
P-21 activated kinase 1 knockdown inhibits β-catenin signalling and blocks colorectal cancer growth. Cancer Lett 2012; 317:65-71. [DOI: 10.1016/j.canlet.2011.11.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/08/2011] [Accepted: 11/08/2011] [Indexed: 11/23/2022]
|
15
|
Fjeldbo CS, Bakke I, Erlandsen SE, Holmseth J, Lægreid A, Sandvik AK, Thommesen L, Bruland T. Gastrin upregulates the prosurvival factor secretory clusterin in adenocarcinoma cells and in oxyntic mucosa of hypergastrinemic rats. Am J Physiol Gastrointest Liver Physiol 2012; 302:G21-33. [PMID: 21995960 DOI: 10.1152/ajpgi.00197.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We show that the gastric hormone gastrin induces the expression of the prosurvival secretory clusterin (sCLU) in rat adenocarcinoma cells. Clusterin mRNA was still upregulated in the presence of the protein synthesis inhibitor cycloheximide, although at a lower level. This indicates that gastrin induces clusterin transcription independently of de novo protein synthesis but requires de novo protein synthesis of signal transduction pathway components to achieve maximal expression level. Luciferase reporter assay indicates that the AP-1 transcription factor complex is involved in gastrin-mediated activation of the clusterin promoter. Gastrin-induced clusterin expression and subsequent secretion is dependent on sustained treatment, because removal of gastrin after 1-2 h abolished the response. Neutralization of secreted clusterin by a specific antibody abolished the antiapoptotic effect of gastrin on serum starvation-induced apoptosis, suggesting that extracellular clusterin is involved in gastrin-mediated inhibition of apoptosis. The clusterin response to gastrin was validated in vivo in hypergastrinemic rats, showing increased clusterin expression in the oxyntic mucosa, as well as higher levels of clusterin in plasma. In normal rat oxyntic mucosa, clusterin protein was strongly expressed in chromogranin A-immunoreactive neuroendocrine cells, of which the main cell type was the histidine decarboxylase-immunoreactive enterochromaffin-like (ECL) cell. The association of clusterin with neuroendocrine differentiation was further confirmed in human gastric ECL carcinoids. Interestingly, in hypergastrinemic rats, clusterin-immunoreactive cells formed distinct groups of diverse cells at the base of many glands. Our results suggest that clusterin may contribute to gastrin's growth-promoting effect on the oxyntic mucosa.
Collapse
Affiliation(s)
- Christina Sæten Fjeldbo
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Provenzano PP, Keely PJ. Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J Cell Sci 2011; 124:1195-205. [PMID: 21444750 DOI: 10.1242/jcs.067009] [Citation(s) in RCA: 378] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The notion that cell shape and spreading can regulate cell proliferation has evolved over several years, but only recently has this been linked to forces from within and upon the cell. This emerging area of mechanical signaling is proving to be wide-spread and important for all cell types. The microenvironment that surrounds cells provides a complex spectrum of different, simultaneously active, biochemical, structural and mechanical stimuli. In this milieu, cells probe the stiffness of their microenvironment by pulling on the extracellular matrix (ECM) and/or adjacent cells. This process is dependent on transcellular cell-ECM or cell-cell adhesions, as well as cell contractility mediated by Rho GTPases, to provide a functional linkage through which forces are transmitted through the cytoskeleton by intracellular force-generating proteins. This Commentary covers recent advances in the underlying mechanisms that control cell proliferation by mechanical signaling, with an emphasis on the role of 3D microenvironments and in vivo extracellular matrices. Moreover, as there is much recent interest in the tumor-stromal interaction, we will pay particular attention to exciting new data describing the role of mechanical signaling in the progression of breast cancer.
Collapse
Affiliation(s)
- Paolo P Provenzano
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | |
Collapse
|
17
|
Street CA, Routhier AA, Spencer C, Perkins AL, Masterjohn K, Hackathorn A, Montalvo J, Dennstedt EA, Bryan BA. Pharmacological inhibition of Rho-kinase (ROCK) signaling enhances cisplatin resistance in neuroblastoma cells. Int J Oncol 2011; 37:1297-305. [PMID: 20878077 DOI: 10.3892/ijo_00000781] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The role of the RhoA/Rho kinase (ROCK) signaling pathway in cell survival remains a very controversial issue, with its activation being pro-apoptotic in many cell types and anti-apoptotic in others. To test if ROCK inhibition contributes to tumor cell survival or death following chemotherapy, we treated cisplatin damaged neuroblastoma cells with a pharmacological ROCK inhibitor (Y27632) or sham, and monitored cell survival, accumulation of a chemoresistant phenotype, and in vivo tumor formation. Additionally, we assayed if ROCK inhibition altered the expression of genes known to be involved in cisplatin resistance. Our studies indicate that ROCK inhibition results in increased cell survival, acquired chemoresistance, and enhanced tumor survival following cisplatin cytotoxicity, due in part to altered expression of cisplatin resistance genes. These findings suggest that ROCK inhibition in combination with cisplatin chemotherapy may lead to enhanced tumor chemoresistance in neuroblastoma.
Collapse
Affiliation(s)
- Catharine A Street
- Ghosh Science and Technology Center, Worcester State College, Worcester, MA 01602-2597, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Patel O, Marshall KM, Bramante G, Baldwin GS, Shulkes A. The C-terminal flanking peptide (CTFP) of progastrin inhibits apoptosis via a PI3-kinase-dependent pathway. ACTA ACUST UNITED AC 2010; 165:224-31. [PMID: 20727916 DOI: 10.1016/j.regpep.2010.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 05/26/2010] [Accepted: 08/11/2010] [Indexed: 12/22/2022]
Abstract
Progastrin is processed to a number of peptides including glycine-extended gastrin, amidated gastrin and the C-terminal flanking peptide (CTFP). Progastrin and gastrin-gly are pro-proliferative and anti-apoptotic in gastric and colorectal cancer cell lines. The CTFP is a major form of progastrin in the stomach and colon and stimulates proliferation. However the effect of CTFP on apoptosis has not been examined. Using the human gastric carcinoma cell line AGS we show that CTFP attenuates apoptosis through a PI3-kinase pathway by stimulating the phosphorylation of Akt leading to sustained increases in the concentrations of Bcl-xL and phosphorylated Bad protein and by reducing caspase 3 activity. The anti-apoptotic effect represents an important potential mechanism for the growth promoting action of CTFP.
Collapse
Affiliation(s)
- Oneel Patel
- Department of Surgery, University of Melbourne Austin Health, Melbourne, Victoria 3084, Australia
| | | | | | | | | |
Collapse
|
19
|
Blocking gastrin and CCK-B autocrine loop affects cell proliferation and apoptosis in vitro. Mol Cell Biochem 2010; 343:133-41. [PMID: 20559691 DOI: 10.1007/s11010-010-0507-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 06/02/2010] [Indexed: 01/15/2023]
Abstract
Gastrin and cholecystokinin-B receptor (CCK-B) were co-expressed in human gastric carcinoma tissues, suggesting that a functional autocrine loop, the gastrin and CCK-B receptor loop, may be presented in gastric cancer cells and play an important role in the pathogenesis and progression of gastric carcinomas. The present study was aimed at studying the effects of blocking the gastrin and CCK-B receptor loop on cell proliferation and apoptosis in gastric cancer cell line SGC-7901 cells (SGC-7901 cells). First, the expression of gastrin and CCK-B receptor mRNAs and gastrin protein in SGC-7901 cells were measured by RT-PCR and immunocytochemistry, respectively. Radioimmunoassay (RIA) was used to detect the concentrations of gastrin in culture medium. The gastrin-CCK-B receptor axis was blocked by using a specific neutralizing antibody against human gastrin and siRNA specifically targeting human CCK-B receptors, respectively. Flow cytometry was used to measure the cell cycle and apoptotic cells, and western blotting was used to measure the expression of CCK-B receptor, caspase-3, and matrix metalloproteinase-2 (MMP-2) in cells. The results showed that SGC-7901 cells not only coexpressed gastrin and CCK-B receptor mRNAs, but also endogenously secreted gastrin protein into the culture medium, thus forming gastrin-CCK-B receptor autocrine loop. Biologically, disrupting gastrin-CCK-B receptor autocrine loop by neutralizing the endogenous gastrin or by knocking down CCK-B receptor expression significantly inhibited the cell proliferation and decreased the percentage of cells residing in the S-phase of the cell cycle, and meanwhile promoted cell apoptosis and increased caspase-3 expression as well as decreased MMP-2 expression. An autocrine loop between endogenously secreted gastrin and CCK-B receptors may play a key role in the regulation of cell proliferation and apoptosis in SGC-7901 cells.
Collapse
|
20
|
Abstract
IMPORTANCE OF THE FIELD Gastric cancer is one of the most common causes of cancer death worldwide. P21-activated kinases (PAKs), regulators of cancer-cell signalling networks, play fundamental roles in a range of cellular processes through their binding partners or kinase substrates. AREAS COVERED IN THIS REVIEW The complex regulation of PAKs through their upstream or downstream effectors in human cancers, especially in gastric cancer, are described and the identified inhibitors of PAKs are summarized. WHAT THE READERS WILL GAIN The structural differences and activation mechanisms between two subgroups of PAK are described. Both groups of PAKs play complicated and important roles in human gastric cancer, which indicated a possible way for us to identify the specific inhibitors targeting PAKs for gastric cancer. TAKE HOME MESSAGE PAKs play important roles in progression of many cancer types, the full mechanisms of PAKs in gastric cancer are still unclear. It seems there are different roles for two groups of PAKs in cancers. Group I PAKs play their functions mostly through their specific substrates, however, many binding partners that are independent of phosphorylation by group II PAKs were identified. Finding specific inhibitors of PAKs will help us discover the roles of PAKs and target these kinases in human gastric cancer.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Cell Biology, China Medical University, Key Laboratory of Cell Biology, Ministry of Public Health, Shenyang, Liaoning 110001, P. R. China.
| | | | | |
Collapse
|
21
|
Pritchard DM, Berry D, Przemeck SMC, Campbell F, Edwards SW, Varro A. Gastrin increases mcl-1 expression in type I gastric carcinoid tumors and a gastric epithelial cell line that expresses the CCK-2 receptor. Am J Physiol Gastrointest Liver Physiol 2008; 295:G798-805. [PMID: 18719002 PMCID: PMC2575912 DOI: 10.1152/ajpgi.00015.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Elevated serum concentrations of the hormone gastrin are associated with the development of gastric carcinoid tumors, but the mechanisms of tumor development are not fully understood. We hypothesized that the antiapoptotic effects of gastrin may be implicated and have therefore investigated the role of antiapoptotic members of the bcl-2 family of proteins. AGS-G(R) human gastric carcinoma cells stably transfected with the CCK-2 receptor were used to assess changes in the expression of bcl-2 family members following gastrin treatment and the function of mcl-1 during apoptosis was investigated by use of small-interfering RNA (siRNA). Treatment of AGS-G(R) cells with 10 nM gastrin for 6 h caused maximally increased mcl-1 protein abundance. Gastrin-induced mcl-1 expression was inhibited by the transcription inhibitor actinomycin D and by the protein synthesis inhibitor cycloheximide. Downstream signaling of mcl-1 expression occurred via the CCK-2 receptor, protein kinase C, and MAP kinase pathways, but not via PI 3-kinase. Transfection with mcl-1 siRNA significantly suppressed mcl-1 protein expression and abolished the antiapoptotic effects of gastrin on serum starvation-induced apoptosis. Mcl-1 protein expression was also specifically increased in the type I enterochromaffin-like cell carcinoid tumors of 10 patients with autoimmune atrophic gastritis and hypergastrinemia. Gastrin therefore signals via the CCK-2 receptor, protein kinase C, and MAP kinase to induce expression of antiapoptotic mcl-1 in AGS-G(R) cells, and mcl-1 expression is also increased in human hypergastrinemia-associated type I gastric carcinoid tumors. Gastrin-induced mcl-1 expression may therefore be an important mechanism contributing toward type I gastric carcinoid development.
Collapse
Affiliation(s)
- D. M. Pritchard
- Division of Gastroenterology, School of Clinical Sciences, University of Liverpool; Department of Pathology, Royal Liverpool and Broadgreen University Hospitals National Health Service Trust, Liverpool; and School of Biological Sciences and Division of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - D. Berry
- Division of Gastroenterology, School of Clinical Sciences, University of Liverpool; Department of Pathology, Royal Liverpool and Broadgreen University Hospitals National Health Service Trust, Liverpool; and School of Biological Sciences and Division of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - S. M. C. Przemeck
- Division of Gastroenterology, School of Clinical Sciences, University of Liverpool; Department of Pathology, Royal Liverpool and Broadgreen University Hospitals National Health Service Trust, Liverpool; and School of Biological Sciences and Division of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - F. Campbell
- Division of Gastroenterology, School of Clinical Sciences, University of Liverpool; Department of Pathology, Royal Liverpool and Broadgreen University Hospitals National Health Service Trust, Liverpool; and School of Biological Sciences and Division of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - S. W. Edwards
- Division of Gastroenterology, School of Clinical Sciences, University of Liverpool; Department of Pathology, Royal Liverpool and Broadgreen University Hospitals National Health Service Trust, Liverpool; and School of Biological Sciences and Division of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - A. Varro
- Division of Gastroenterology, School of Clinical Sciences, University of Liverpool; Department of Pathology, Royal Liverpool and Broadgreen University Hospitals National Health Service Trust, Liverpool; and School of Biological Sciences and Division of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
22
|
He H, Shulkes A, Baldwin GS. PAK1 interacts with β-catenin and is required for the regulation of the β-catenin signalling pathway by gastrins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1943-54. [DOI: 10.1016/j.bbamcr.2008.04.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
|
23
|
He H, Baldwin GS. Rho GTPases and p21-activated kinase in the regulation of proliferation and apoptosis by gastrins. Int J Biochem Cell Biol 2008; 40:2018-22. [PMID: 18565785 DOI: 10.1016/j.biocel.2008.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 05/01/2008] [Accepted: 05/02/2008] [Indexed: 10/22/2022]
Abstract
Gastrins, including amidated gastrin (Gamide) and glycine-extended gastrin (Ggly), accelerate the growth of gastrointestinal cancer cells by stimulation of proliferation and inhibition of apoptosis. Gamide and Ggly activate different G proteins of the Rho family of small GTPases. For example, Gamide signals Rac/Cdc42 to activate p21-activated kinase 1 while Ggly signals Rho to activate Rho-activated kinase. p21-activated kinase 1 and Rho-activated kinase induce changes in phosphorylation or expression, respectively, of proteins of the Bcl-2 family, which then affect the caspase cascade with consequent inhibition of apoptosis. In addition, interaction of p21-activated kinase 1 with beta-catenin results in phosphorylation of beta-catenin, which enhances its translocation in to the nucleus, activation of TCF4-dependent transcription, and proliferation and migration. The central role of the beta-catenin pathway in carcinogenesis suggests that specific inhibitors of p21-activated kinase 1 may in the future provide novel therapies for gastrointestinal malignancies.
Collapse
Affiliation(s)
- Hong He
- Department of Surgery, University of Melbourne, Austin Health, Studley Road, Heidelberg, Victoria 3084, Australia
| | | |
Collapse
|