1
|
Camargo LL, Rios FJ, Montezano AC, Touyz RM. Reactive oxygen species in hypertension. Nat Rev Cardiol 2025; 22:20-37. [PMID: 39048744 DOI: 10.1038/s41569-024-01062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Hypertension is a leading risk factor for stroke, heart disease and chronic kidney disease. Multiple interacting factors and organ systems increase blood pressure and cause target-organ damage. Among the many molecular elements involved in the development of hypertension are reactive oxygen species (ROS), which influence cellular processes in systems that contribute to blood pressure elevation (such as the cardiovascular, renal, immune and central nervous systems, or the renin-angiotensin-aldosterone system). Dysregulated ROS production (oxidative stress) is a hallmark of hypertension in humans and experimental models. Of the many ROS-generating enzymes, NADPH oxidases are the most important in the development of hypertension. At the cellular level, ROS influence signalling pathways that define cell fate and function. Oxidative stress promotes aberrant redox signalling and cell injury, causing endothelial dysfunction, vascular damage, cardiovascular remodelling, inflammation and renal injury, which are all important in both the causes and consequences of hypertension. ROS scavengers reduce blood pressure in almost all experimental models of hypertension; however, clinical trials of antioxidants have yielded mixed results. In this Review, we highlight the latest advances in the understanding of the role and the clinical implications of ROS in hypertension. We focus on cellular sources of ROS, molecular mechanisms of oxidative stress and alterations in redox signalling in organ systems, and their contributions to hypertension.
Collapse
Affiliation(s)
- Livia L Camargo
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada.
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada.
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Department of Family Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Cortassa S, Juhaszova M, Aon MA, Zorov DB, Sollott SJ. Mitochondrial Ca 2+, redox environment and ROS emission in heart failure: Two sides of the same coin? J Mol Cell Cardiol 2021; 151:113-125. [PMID: 33301801 PMCID: PMC7880885 DOI: 10.1016/j.yjmcc.2020.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/05/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is a progressive, debilitating condition characterized, in part, by altered ionic equilibria, increased ROS production and impaired cellular energy metabolism, contributing to variable profiles of systolic and diastolic dysfunction with significant functional limitations and risk of premature death. We summarize current knowledge concerning changes of intracellular Na+ and Ca2+ control mechanisms during the disease progression and their consequences on mitochondrial Ca2+ homeostasis and the shift in redox balance. Absent existing biological data, our computational modeling studies advance a new 'in silico' analysis to reconcile existing opposing views, based on different experimental HF models, regarding variations in mitochondrial Ca2+ concentration that participate in triggering and perpetuating oxidative stress in the failing heart and their impact on cardiac energetics. In agreement with our hypothesis and the literature, model simulations demonstrate the possibility that the heart's redox status together with cytoplasmic Na+ concentrations act as regulators of mitochondrial Ca2+ levels in HF and of the bioenergetics response that will ultimately drive ATP supply and oxidative stress. The resulting model predictions propose future directions to study the evolution of HF as well as other types of heart disease, and to develop novel testable mechanistic hypotheses that may lead to improved therapeutics.
Collapse
Affiliation(s)
- Sonia Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States.
| | - Magdalena Juhaszova
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States.
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States; Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States.
| | - Dmitry B Zorov
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Steven J Sollott
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States.
| |
Collapse
|
3
|
Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 2019; 145:385-427. [PMID: 31585207 DOI: 10.1016/j.freeradbiomed.2019.09.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The last 20-25 years have seen an explosion of interest in the role of NADPH oxidase (NOX) in cardiovascular function and disease. In vascular smooth muscle and endothelium, NOX generates reactive oxygen species (ROS) that act as second messengers, contributing to the control of normal vascular function. NOX activity is altered in response to a variety of stimuli, including G-protein coupled receptor agonists, growth-factors, perfusion pressure, flow and hypoxia. NOX-derived ROS are involved in smooth muscle constriction, endothelium-dependent relaxation and smooth muscle growth, proliferation and migration, thus contributing to the fine-tuning of blood flow, arterial wall thickness and vascular resistance. Through reversible oxidative modification of target proteins, ROS regulate the activity of protein tyrosine phosphatases, kinases, G proteins, ion channels, cytoskeletal proteins and transcription factors. There is now considerable, but somewhat contradictory evidence that NOX contributes to the pathogenesis of hypertension through oxidative stress. Specific NOX isoforms have been implicated in endothelial dysfunction, hyper-contractility and vascular remodelling in various animal models of hypertension, pulmonary hypertension and pulmonary arterial hypertension, but also have potential protective effects, particularly NOX4. This review explores the multiplicity of NOX function in the healthy vasculature and the evidence for and against targeting NOX for antihypertensive therapy.
Collapse
Affiliation(s)
- Greg A Knock
- Dpt. of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.
| |
Collapse
|
4
|
Montezano AC, De Lucca Camargo L, Persson P, Rios FJ, Harvey AP, Anagnostopoulou A, Palacios R, Gandara ACP, Alves-Lopes R, Neves KB, Dulak-Lis M, Holterman CE, de Oliveira PL, Graham D, Kennedy C, Touyz RM. NADPH Oxidase 5 Is a Pro-Contractile Nox Isoform and a Point of Cross-Talk for Calcium and Redox Signaling-Implications in Vascular Function. J Am Heart Assoc 2018; 7:e009388. [PMID: 29907654 PMCID: PMC6220544 DOI: 10.1161/jaha.118.009388] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/07/2018] [Indexed: 12/02/2022]
Abstract
BACKGROUND NADPH Oxidase 5 (Nox5) is a calcium-sensitive superoxide-generating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in pro-contractile signaling and vascular function. METHODS AND RESULTS Transgenic mice expressing human Nox5 in a vascular smooth muscle cell-specific manner (Nox5 mice) and Rhodnius prolixus, an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5-expressing mice, agonist-induced vasoconstriction was exaggerated and endothelium-dependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by N-acetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca2+]i, increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of pro-contractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wild-type and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus, gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor). CONCLUSIONS Nox5 is a pro-contractile Nox isoform important in redox-sensitive contraction. This involves calcium-calmodulin and endoplasmic reticulum-regulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the pro-contractile molecular machinery in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | | | - Patrik Persson
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Adam P Harvey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | | | - Roberto Palacios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Ana Caroline P Gandara
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo De Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Rheure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Karla B Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Maria Dulak-Lis
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Chet E Holterman
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Pedro Lagerblad de Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo De Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Christopher Kennedy
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
5
|
Wenceslau CF, McCarthy CG, Webb RC. To Be, or Nox to Be, Endoplasmic Reticulum Stress in Hypertension. Hypertension 2018; 72:59-60. [PMID: 29844150 DOI: 10.1161/hypertensionaha.118.10940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | - R Clinton Webb
- From the Department of Physiology, Augusta University, GA
| |
Collapse
|
6
|
From Physiological Redox Signalling to Oxidant Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:335-342. [PMID: 29047097 DOI: 10.1007/978-3-319-63245-2_21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidant stress is strongly associated with cardiovascular disease, including pulmonary hypertension, but antioxidant therapies have so far proven ineffective. This is partly due to a lack of understanding of the key role played by reactive oxygen species (ROS) in physiological cell signalling, and partly to the complex interrelationships between generators of ROS (e.g. mitochondria and NADPH oxidases, NOX), cellular antioxidant systems and indeed Ca2+ signalling. At physiological levels ROS reversibly affect the function of numerous enzymes and transcription factors, most often via oxidation of specific protein thiols. Importantly, they also affect pathways that promote ROS generation by NOX or mitochondria (ROS-induced ROS release), which has an inherent propensity for positive feedback and uncontrolled oxidant production. The reason this does not occur under normal conditions reflects in part a high level of compartmentalisation of ROS signalling within the cell, akin to that for Ca2+. This article considers the physiological processes which regulate NOX and mitochondrial ROS production and degradation and their interactions with each other and Ca2+ signalling pathways, and discusses how loss of spatiotemporal constraints and activation of positive feedback pathways may impact on their dysregulation in pulmonary hypertension.
Collapse
|
7
|
Schiavoni I, Scagnolari C, Horenstein AL, Leone P, Pierangeli A, Malavasi F, Ausiello CM, Fedele G. CD38 modulates respiratory syncytial virus-driven proinflammatory processes in human monocyte-derived dendritic cells. Immunology 2017; 154:122-131. [PMID: 29178427 DOI: 10.1111/imm.12873] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 11/26/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of hospitalization due to bronchiolitis in infants. Although the mechanisms behind this association are not completely elucidated, they appear to involve an excessive immune response causing lung pathology. Understanding the host response to RSV infection may help in the identification of targets for therapeutic intervention. We infected in-vitro human monocyte-derived dendritic cells (DCs) with RSV and analysed various aspects of the cellular response. We found that RSV induces in DCs the expression of CD38, an ectoenzyme that catalyses the synthesis of cyclic ADPR (cADPR). Remarkably, CD38 was under the transcriptional control of RSV-induced type I interferon (IFN). CD38 and a set of IFN-stimulated genes (ISGs) were inhibited by the anti-oxidant N-acetyl cysteine. When CD38-generated cADPR was restrained by 8-Br-cADPR or kuromanin, a flavonoid known to inhibit CD38 enzymatic activity, RSV-induced type I/III IFNs and ISGs were markedly reduced. Taken together, these results suggest a key role of CD38 in the regulation of anti-viral responses. Inhibition of CD38 enzymatic activity may represent an encouraging approach to reduce RSV-induced hyperinflammation and a novel therapeutic option to treat bronchiolitis.
Collapse
Affiliation(s)
- Ilaria Schiavoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Alberto L Horenstein
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino, Italy.,CERMS, University of Torino, Torino, Italy
| | - Pasqualina Leone
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Pierangeli
- Department of Molecular Medicine, Laboratory of Virology affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Fabio Malavasi
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino, Italy.,CERMS, University of Torino, Torino, Italy.,Transplantation Immunology 'Città della Salute e della Scienza' Hospital, Torino, Italy
| | - Clara M Ausiello
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giorgio Fedele
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
8
|
Peng QY, Zou Y, Zhang LN, Ai ML, Liu W, Ai YH. Blocking Cyclic Adenosine Diphosphate Ribose-mediated Calcium Overload Attenuates Sepsis-induced Acute Lung Injury in Rats. Chin Med J (Engl) 2017; 129:1725-30. [PMID: 27411462 PMCID: PMC4960964 DOI: 10.4103/0366-6999.185854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background: Acute lung injury (ALI) is a common complication of sepsis that is associated with high mortality. Intracellular Ca2+ overload plays an important role in the pathophysiology of sepsis-induced ALI, and cyclic adenosine diphosphate ribose (cADPR) is an important regulator of intracellular Ca2+ mobilization. The cluster of differentiation 38 (CD38)/cADPR pathway has been found to play roles in multiple inflammatory processes but its role in sepsis-induced ALI is still unknown. This study aimed to investigate whether the CD38/cADPR signaling pathway is activated in sepsis-induced ALI and whether blocking cADPR-mediated calcium overload attenuates ALI. Methods: Septic rat models were established by cecal ligation and puncture (CLP). Rats were divided into the sham group, the CLP group, and the CLP+ 8-bromo-cyclic adenosine diphosphate ribose (8-Br-cADPR) group. Nicotinamide adenine dinucleotide (NAD+), cADPR, CD38, and intracellular Ca2+ levels in the lung tissues were measured at 6, 12, 24, and 48 h after CLP surgery. Lung histologic injury, tumor necrosis factor (TNF)-α, malondialdehyde (MDA) levels, and superoxide dismutase (SOD) activities were measured. Results: NAD+, cADPR, CD38, and intracellular Ca2+ levels in the lungs of septic rats increased significantly at 24 h after CLP surgery. Treatment with 8-Br-cADPR, a specific inhibitor of cADPR, significantly reduced intracellular Ca2+ levels (P = 0.007), attenuated lung histological injury (P = 0.023), reduced TNF-α and MDA levels (P < 0.001 and P = 0.002, respectively) and recovered SOD activity (P = 0.031) in the lungs of septic rats. Conclusions: The CD38/cADPR pathway is activated in the lungs of septic rats, and blocking cADPR-mediated calcium overload with 8-Br-cADPR protects against sepsis-induced ALI.
Collapse
Affiliation(s)
- Qian-Yi Peng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yu Zou
- Department of Anesthesia, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Li-Na Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Mei-Lin Ai
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Liu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yu-Hang Ai
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
9
|
Van Kempen TA, Narayan A, Waters EM, Marques-Lopes J, Iadecola C, Glass MJ, Pickel VM, Milner TA. Alterations in the subcellular distribution of NADPH oxidase p47(phox) in hypothalamic paraventricular neurons following slow-pressor angiotensin II hypertension in female mice with accelerated ovarian failure. J Comp Neurol 2016; 524:2251-65. [PMID: 26659944 PMCID: PMC4892978 DOI: 10.1002/cne.23944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/12/2022]
Abstract
At younger ages, women have a lower risk for hypertension than men, but this sexual dimorphism declines with the onset of menopause. These differences are paralleled in rodents following "slow-pressor" angiotensin II (AngII) administration: young male and aged female mice, but not young females, develop hypertension. There is also an established sexual dimorphism both in the cardiovascular response to the neurohypophyseal hormone arginine vasopressin (AVP) and in the expression of oxidative stress. We examined the relationship between AngII-mediated hypertension and the cellular distribution of the superoxide generating NADPH oxidase (NOX) in AVP-expressing hypothalamic paraventricular nucleus (PVN) neurons in "menopausal" female mice. Dual-labeling immunoelectron microscopy was used to determine whether the subcellular distribution of the organizer/adapter NOX p47(phox) subunit is altered in PVN dendrites following AngII administered (14 days) during the "postmenopausal" stage of accelerated ovarian failure (AOF) in young female mice treated with 4-vinylcyclohexene diepoxide. Slow-pressor AngII elevated blood pressure in AOF females and induced a significant increase in near plasmalemmal p47(phox) and a decrease in cytoplasmic p47(phox) in PVN AVP dendrites. These changes are the opposite of those observed in AngII-induced hypertensive male mice (Coleman et al. [2013] J. Neurosci. 33:4308-4316) and may be ascribed in part to baseline differences between young females and males in the near plasmalemmal p47(phox) on AVP dendrites seen in the present study. These findings highlight fundamental differences in the neural substrates of oxidative stress in the PVN associated with AngII hypertension in postmenopausal females compared with males. J. Comp. Neurol. 524:2251-2265, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tracey A. Van Kempen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021
| | - Ankita Narayan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021
| | - Michael J. Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021
| | - Virginia M. Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| |
Collapse
|
10
|
Afzal A, Sarfraz M, Wu Z, Wang G, Sun J. Integrated scientific data bases review on asulacrine and associated toxicity. Crit Rev Oncol Hematol 2016; 104:78-86. [DOI: 10.1016/j.critrevonc.2016.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/08/2016] [Accepted: 05/25/2016] [Indexed: 12/18/2022] Open
|
11
|
Wang P, Sheng M, Li B, Jiang Y, Chen Y. High osmotic pressure increases reactive oxygen species generation in rabbit corneal epithelial cells by endoplasmic reticulum. Am J Transl Res 2016; 8:860-870. [PMID: 27158374 PMCID: PMC4846931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Tear high osmotic pressure (HOP) has been recognized as the core mechanism underlying ocular surface inflammation, injury and symptoms and is closely associated with many ocular surface diseases, especially dry eye. The endoplasmic reticulum (ER) is a multi-functional organelle responsible for protein synthesis, folding and transport, biological synthesis of lipids, vesicle transport and intracellular calcium storage. Accumulation of unfolded proteins and imbalance of calcium ion in the ER would induce ER stress and protective unfolded protein response (UPR). Many studies have demonstrated that ER stress can induce cell apoptosis. However, the association between tear HOP and ER stress has not been studied systematically. In the present study, rabbit corneal epithelial cells were treated with HOP and results showed that the production of reactive oxygen species increased markedly, which further activated the ER signaling pathway and ultimately induced cell apoptosis. These findings shed new lights on the pathogenesis and clinical treatment of dry eye and other ocular surface diseases.
Collapse
Affiliation(s)
- Peng Wang
- Department of Ophthalmology, Yangpu Hospital, Tongji UniversityShanghai 200000, China
| | - Minjie Sheng
- Department of Ophthalmology, Yangpu Hospital, Tongji UniversityShanghai 200000, China
| | - Bing Li
- Department of Ophthalmology, Yangpu Hospital, Tongji UniversityShanghai 200000, China
| | - Yaping Jiang
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji UniversityShanghai 200072, China
| | - Yihui Chen
- Department of Ophthalmology, Yangpu Hospital, Tongji UniversityShanghai 200000, China
| |
Collapse
|
12
|
Peng QY, Ai ML, Zhang LN, Zou Y, Ma XH, Ai YH. Blocking NAD(+)/CD38/cADPR/Ca(2+) pathway in sepsis prevents organ damage. J Surg Res 2015; 201:480-9. [PMID: 27020835 DOI: 10.1016/j.jss.2015.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/15/2015] [Accepted: 11/20/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Although the nicotinamide adenine dinucleotide (NAD(+))/CD38/cyclic ADP ribose (cADPR)/Ca(2+) signaling pathway has been shown to regulate intracellular calcium homeostasis and functions in multiple inflammatory processes, its role in sepsis remains unknown. The aim of this study was to determine whether the NAD(+)/CD38/cADPR/Ca(2+) signaling pathway is activated during sepsis and whether an inhibitor of this pathway, 8-Br-cADPR, protects the organs from sepsis-induced damage. MATERIALS AND METHODS Male Sprague-Dawley rats were subjected to cecal ligation and puncture (CLP) or sham laparotomies. NAD(+), cADPR, CD38, and intracellular Ca(2+) levels were measured in the hearts, livers, and kidneys of septic rats at 0, 6, 12, 24, and 48 h after CLP surgery. Rats were also divided into sham, CLP, and CLP+8-Br-cADPR groups, and the hearts, livers, and kidneys were hematoxylin-eosin-stained and assayed for malondialdehyde and superoxide dismutase activities. RESULTS NAD(+), cADPR, CD38, and intracellular Ca(2+) levels increased in the hearts, livers, and kidneys of septic rats as early as 6-24 h after CLP surgery. Treatment with 8-Br-cADPR inhibited sepsis-induced intracellular Ca(2+) mobilization, attenuated tissue injury, reduced malondialdehyde levels, and increased superoxide dismutase activity in septic rats. CONCLUSIONS The NAD(+)/CD38/cADPR/Ca(2+) signaling pathway was activated during sepsis in the CLP rat model. Blocking this pathway with 8-Br-cADPR protected hearts, livers, and kidneys from sepsis-induced damage.
Collapse
Affiliation(s)
- Qian-Yi Peng
- Department of Critical Care Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, China
| | - Mei-Lin Ai
- Department of Critical Care Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, China
| | - Li-Na Zhang
- Department of Critical Care Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu Zou
- Department of Anesthesia, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xin-Hua Ma
- Department of Critical Care Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu-Hang Ai
- Department of Critical Care Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
13
|
Xu M, Li XX, Wang L, Wang M, Zhang Y, Li PL. Contribution of Nrf2 to Atherogenic Phenotype Switching of Coronary Arterial Smooth Muscle Cells Lacking CD38 Gene. Cell Physiol Biochem 2015; 37:432-44. [PMID: 26315049 PMCID: PMC4678283 DOI: 10.1159/000430366] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2015] [Indexed: 12/14/2022] Open
Abstract
Background/Aims Recent studies have indicated that CD38 gene deficiency results in dedifferentiation or transdifferentiation of arterial smooth muscle cells upon atherogenic stimulations. However, the molecular mechanisms mediating this vascular smooth muscle (SMC) phenotypic switching remain unknown. Methods & Results In the present study, we first characterized the phenotypic change in the primary cultures of coronary arterial myocytes (CAMs) from CD38−/− mice. It was shown that CD38 deficiency decreased the expression of contractile marker calponin, SM22α and α-SMA but increased the expression of SMC dedifferentiation marker, vimentin, which was accompanied by enhanced cell proliferation. This phenotypic change in CD38−/− CAMs was enhanced by 7-ketocholesterol (7-Ket), an atherogenic stimulus. We further found that the CD38 deficiency decreased the expression and activity of nuclear factor E2-related factor 2 (Nrf2), a basic leucine zipper (bZIP) transcription factor sensitive to redox regulation. Similar to CD38 deletion, Nrf2 gene silencing increased CAM dedifferentiation upon 7-Ket stimulation. In contrast, the overexpression of Nrf2 gene abolished 7-Ket-induced dedifferentiation in CD38−/− CAMs. Given the sensitivity of Nrf2 to oxidative stress, we determined the role of redox signaling in the regulation of Nrf2 expression and activity associated with CD38 effect in CAM phenotype changes. It was demonstrated that in CD38−/− CAMs, 7-Ket failed to stimulate the production of O2−., while in CD38+/+ CAMs 7-Ket induced marked O2−. production and enhancement of Nrf2 activity, which was substantially attenuated by NOX4 gene silencing. Finally, we demonstrated that 7-Ket-induced and NOX4-dependent O2−. production was inhibited by 8-Br-cADPR, an antagonist of cADPR or NED-19, an antagonist of NAADP as product of CD38 ADP-ribosylcyclase, which significantly inhibited the level of cytosolic Ca2+ and the activation of Nrf2 under 7-Ket. Conclusion Taken together, these results suggest that CD38 activity is required for 7-Ket-induced Ca2+ and consequently O2−. production in CAMs, which increases Nrf2 activity to maintain their differentiated status. When CD38 gene expression and function are deficient, the Nrf2 activity is suppressed, thereby leading to phenotypic switching of CAMs.
Collapse
Affiliation(s)
- Ming Xu
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | | | | | | | |
Collapse
|
14
|
Antenatal betamethasone increases vascular reactivity to endothelin-1 by upregulation of CD38/cADPR signaling. J Dev Orig Health Dis 2015; 5:56-62. [PMID: 24847691 DOI: 10.1017/s2040174413000512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antenatal steroid administration is associated with hypertension in adult life; however, the mechanisms underlying this phenomenon are unclear. The aim of this study was to further characterize the effects of antenatal glucocorticoid exposure on the endothelin (ET-1) system, specifically to ascertain the role of the cyclic adenosine diphosphate ribose (cADPR)/ryanodine receptor pathway in the increased sensitivity to ET-1 observed in the offspring exposed to antenatal glucocorticoids. Pregnant sheep were randomly treated with betamethasone (Beta; 0.17 mg/kg) or vehicle at 80 and 81 days of gestation. In adults, we studied endothelium-denuded arterial segments of the brachial arteries. ET-1-induced vasoconstriction was significantly higher in the arteries from Beta sheep (F=3.5, P<0.05). Inhibition of ADP-ribosyl cyclase with 2-2'-dihydroxy-azobenzene significantly decreased the ET-1-induced contraction in Beta but not in vehicle-treated sheep. Nicotinamide attenuated ET-1 contraction in both, but it was significantly more pronounced in the Beta-treated sheep. No significant differences were observed following KCl-induced (6.25-75 mM) contraction. Nicotinamide (10 mM) significantly attenuated the KCl-induced vasoconstriction in both groups. In KCl (62.5 mM)-constricted arteries, the effect of nicotinamide (NIC) was significantly greater in the vehicle-treated sheep (50% relaxation v. 40% relaxation; t=2.2, P<0.05). In contrast, the sodium nitroprusside (SNP) relaxation was not statistically different. An additive effect was observed when NIC and SNP were used in combination and it was also more pronounced in vehicle-treated sheep. We conclude that the increased response to ET-1 is mediated by activation of the CD38/cADPR signaling pathway. Further studies are required to identify the effectors downstream from cADPR affected by exposure to antenatal steroids.
Collapse
|
15
|
Abstract
SIGNIFICANCE Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. RECENT ADVANCES Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. CRITICAL ISSUES Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. FUTURE DIRECTIONS We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between Noxes and the ER may provide relevant insights in Nox-related (patho)physiology.
Collapse
Affiliation(s)
- Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine , São Paulo, Brazil
| | | | | |
Collapse
|
16
|
Li PL, Zhang Y, Abais JM, Ritter JK, Zhang F. Cyclic ADP-Ribose and NAADP in Vascular Regulation and Diseases. ACTA ACUST UNITED AC 2013; 2:63-85. [PMID: 24749015 DOI: 10.1166/msr.2013.1022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), two intracellular Ca2+ mobilizing second messengers, have been recognized as a fundamental signaling mechanism regulating a variety of cell or organ functions in different biological systems. Here we reviewed the literature regarding these ADP-ribosylcyclase products in vascular cells with a major focus on their production, physiological roles, and related underlying mechanisms mediating their actions. In particular, several hot topics in this area of research are comprehensively discussed, which may help understand some of the controversial evidence provided by different studies. For example, some new models are emerging for the agonist receptor coupling of CD38 or ADP-ribosylcyclase and for the formation of an acidic microenvironment to facilitate the production of NAADP in vascular cells. We also summarized the evidence regarding the NAADP-mediated two-phase Ca2+ release with a slow Ca2+-induced Ca2+ release (CICR) and corresponding physiological relevance. The possibility of a permanent structural space between lysosomes and sarcoplasmic reticulum (SR), as well as the critical role of lysosome trafficking in phase 2 Ca2+ release in response to some agonists are also explored. With respect to the molecular targets of NAADP within cells, several possible candidates including SR ryanodine receptors (RyRs), lysosomal transient receptor potential-mucolipin 1 (TRP-ML1) and two pore channels (TPCs) are presented with supporting and opposing evidence. Finally, the possible role of NAADP-mediated regulation of lysosome function in autophagy and atherogenesis is discussed, which may indicate a new direction for further studies on the pathological roles of cADPR and NAADP in the vascular system.
Collapse
Affiliation(s)
- Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Yang Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Justine M Abais
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| |
Collapse
|
17
|
Xu J, Hao Z, Gou X, Tian W, Jin Y, Cui S, Guo J, Sun Y, Wang Y, Xu Z. Imaging of reactive oxygen species burst from mitochondria using laser scanning confocal microscopy. Microsc Res Tech 2013; 76:612-7. [PMID: 23580478 DOI: 10.1002/jemt.22207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/18/2013] [Accepted: 03/03/2013] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Although several methods have been used to detect the intracellular reactive oxygen species (ROS) generation, it is still difficult to determine where ROS generate from. This study aimed to demonstrate whether ROS generate from mitochondria during oxidative stress induced mitochondria damage in cardiac H9c2 cells by laser scanning confocal microscopy (LSCM). METHODS Cardiac H9c2 cells were exposed to H2 O2 (1200μM) to induce mitochondrial oxidant damage. Mitochondrial membrane potential (ΔΨm) was measured by staining cells with tetramethylrhodamine ethyl ester (TMRE); ROS generation was measured by staining cells with dichlorodihydrofluorescein diacetate (H2 DCFDA). RESULTS A rapid/transient ROS burst from mitochondria was induced in cardiac cells treated with H2 O2 compared with the control group, suggesting that mitochondria are the main source of ROS induced by oxidative stress in H9c2 cells. Meanwhile, the TMRE fluorescence intensity of mitochondria which had produced a great deal of ROS decreased significantly, indicating that the burst of ROS induces the loss of ΔΨm. In addition, the structure of mitochondria was damaged seriously after ROS burst. However, we also demonstrated that the TMRE fluorescence intensity might be affected by H2 DCFDA. CONCLUSIONS Mitochondria are the main source of ROS induced by oxidative stress in H9c2 cells and these findings provide a new method to observe whether ROS generate from mitochondria by LSCM. However, these observations also suggested that it is inaccurate to test the fluorescence intensities of cells stained with two or more different fluorescent dyes which should be paid more attention to.
Collapse
Affiliation(s)
- Jingman Xu
- Heart Institute, Medical Experimental Research Center, Hebei United University, Tangshan, Hebei, 063000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Phytochemical indicaxanthin suppresses 7-ketocholesterol-induced THP-1 cell apoptosis by preventing cytosolic Ca(2+) increase and oxidative stress. Br J Nutr 2012; 110:230-40. [PMID: 23228674 DOI: 10.1017/s000711451200493x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
7-Ketocholesterol (7-KC)-induced apoptosis of macrophages is considered a key event in the development of human atheromas. In the present study, the effect of indicaxanthin (Ind), a bioactive pigment from cactus pear fruit, on 7-KC-induced apoptosis of human monocyte/macrophage THP-1 cells was investigated. A pathophysiological condition was simulated by using amounts of 7-KC that can be reached in human atheromatous plaque. Ind was assayed within a micromolar concentration range, consistent with its plasma level after dietary supplementation with cactus pear fruit. Pro-apoptotic effects of 7-KC were assessed by cell cycle arrest, exposure of phosphatidylserine at the plasma membrane, variation of nuclear morphology, decrease of mitochondrial trans-membrane potential, activation of Bcl-2 antagonist of cell death and poly(ADP-ribose) polymerase-1 cleavage. Kinetic measurements within 24 h showed early formation of intracellular reactive oxygen species over basal levels, preceding NADPH oxidase-4 (NOX-4) over-expression and elevation of cytosolic Ca²⁺, with progressive depletion of total thiols. 7-KC-dependent activation of the redox-sensitive NF-κB was observed. Co-incubation of 2·5 μm of Ind completely prevented 7-KC-induced pro-apoptotic events. The effects of Ind may be ascribed to inhibition of NOX-4 basal activity and over-expression, inhibition of NF-κB activation, maintaining cell redox balance and Ca homeostasis, with prevention of mitochondrial damage and consequently apoptosis. The findings suggest that Ind, a highly bioavailable dietary phytochemical, may exert protective effects against atherogenetic toxicity of 7-KC at a concentration of nutritional interest.
Collapse
|
19
|
Yang Y, Li S, Konduru AS, Zhang S, Trower TC, Shi W, Cui N, Yu L, Wang Y, Zhu D, Jiang C. Prolonged exposure to methylglyoxal causes disruption of vascular KATP channel by mRNA instability. Am J Physiol Cell Physiol 2012; 303:C1045-54. [PMID: 22972803 DOI: 10.1152/ajpcell.00020.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is characterized by hyperglycemia and excessive production of intermediary metabolites including methylglyoxal (MGO), a reactive carbonyl species that can lead to cell injuries. Interacting with proteins, lipids, and DNA, excessive MGO can cause dysfunction of various tissues, especially the vascular walls where diabetic complications often take place. However, the potential vascular targets of excessive MGO remain to be fully understood. Here we show that the vascular Kir6.1/SUR2B isoform of ATP-sensitive K(+) (K(ATP)) channels is likely to be disrupted with an exposure to submillimolar MGO. Up to 90% of the Kir6.1/SUR2B currents were suppressed by 1 mM MGO with a time constant of ∼2 h. Consistently, MGO treatment caused a vast reduction of both Kir6.1 and SUR2B mRNAs endogenously expressed in the A10 vascular smooth muscle cells. In the presence of the transcriptional inhibitor actinomycin-D, MGO remained to lower the Kir6.1 and SUR2B mRNAs to the same degree as MGO alone, suggesting that the MGO effect is likely to compromise the mRNA stability. Luciferase reporter assays indicated that the 3'-untranslated regions (UTRs) of the Kir6.1 but not SUR2 mRNA were targeted by MGO. In contrast, the SUR2B mRNAs obtained with in vitro transcription were disrupted by MGO directly, while the Kir6.1 transcripts were unaffected. Consistent with these results, the constriction of mesenteric arterial rings was markedly augmented with an exposure to 1 mM MGO for 2 h, and such an MGO effect was totally eliminated in the presence of glibenclamide. These results therefore suggest that acting on the 3'-UTR of Kir6.1 and the coding region of SUR2B, MGO causes instability of Kir6.1 and SUR2B mRNAs, disruption of vascular K(ATP) channels, and impairment of arterial function.
Collapse
Affiliation(s)
- Yang Yang
- Deptartment of Biology, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30302, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wei WJ, Sun HY, Ting KY, Zhang LH, Lee HC, Li GR, Yue J. Inhibition of cardiomyocytes differentiation of mouse embryonic stem cells by CD38/cADPR/Ca2+ signaling pathway. J Biol Chem 2012; 287:35599-35611. [PMID: 22908234 PMCID: PMC3471724 DOI: 10.1074/jbc.m112.392530] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cyclic adenosine diphosphoribose (cADPR) is an endogenous Ca2+ mobilizing messenger that is formed by ADP-ribosyl cyclases from nicotinamide adenine dinucleotide (NAD). The main ADP-ribosyl cyclase in mammals is CD38, a multi-functional enzyme and a type II membrane protein. Here we explored the role of CD38-cADPR-Ca2+ in the cardiomyogenesis of mouse embryonic stem (ES) cells. We found that the mouse ES cells are responsive to cADPR and possess the key components of the cADPR signaling pathway. In vitro cardiomyocyte (CM) differentiation of mouse ES cells was initiated by embryoid body (EB) formation. Interestingly, beating cells appeared earlier and were more abundant in CD38 knockdown EBs than in control EBs. Real-time RT-PCR and Western blot analyses further showed that the expression of several cardiac markers, including GATA4, MEF2C, NKX2.5, and α-MLC, were increased markedly in CD38 knockdown EBs than those in control EBs. Similarly, FACS analysis showed that more cardiac Troponin T-positive CMs existed in CD38 knockdown or 8-Br-cADPR, a cADPR antagonist, treated EBs compared with that in control EBs. On the other hand, overexpression of CD38 in mouse ES cells significantly inhibited CM differentiation. Moreover, CD38 knockdown ES cell-derived CMs possess the functional properties characteristic of normal ES cell-derived CMs. Last, we showed that the CD38-cADPR pathway negatively modulated the FGF4-Erks1/2 cascade during CM differentiation of ES cells, and transiently inhibition of Erk1/2 blocked the enhanced effects of CD38 knockdown on the differentiation of CM from ES cells. Taken together, our data indicate that the CD38-cADPR-Ca2+ signaling pathway antagonizes the CM differentiation of mouse ES cells.
Collapse
Affiliation(s)
- Wen-Jie Wei
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Hai-Ying Sun
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Kai Yiu Ting
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Li-He Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hon-Cheung Lee
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Gui-Rong Li
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Jianbo Yue
- Department of Physiology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
21
|
Altenhöfer S, Kleikers PWM, Radermacher KA, Scheurer P, Rob Hermans JJ, Schiffers P, Ho H, Wingler K, Schmidt HHHW. The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cell Mol Life Sci 2012; 69:2327-43. [PMID: 22648375 PMCID: PMC3383958 DOI: 10.1007/s00018-012-1010-9] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are cellular signals but also disease triggers; their relative excess (oxidative stress) or shortage (reductive stress) compared to reducing equivalents are potentially deleterious. This may explain why antioxidants fail to combat diseases that correlate with oxidative stress. Instead, targeting of disease-relevant enzymatic ROS sources that leaves physiological ROS signaling unaffected may be more beneficial. NADPH oxidases are the only known enzyme family with the sole function to produce ROS. Of the catalytic NADPH oxidase subunits (NOX), NOX4 is the most widely distributed isoform. We provide here a critical review of the currently available experimental tools to assess the role of NOX and especially NOX4, i.e. knock-out mice, siRNAs, antibodies, and pharmacological inhibitors. We then focus on the characterization of the small molecule NADPH oxidase inhibitor, VAS2870, in vitro and in vivo, its specificity, selectivity, and possible mechanism of action. Finally, we discuss the validation of NOX4 as a potential therapeutic target for indications including stroke, heart failure, and fibrosis.
Collapse
Affiliation(s)
- Sebastian Altenhöfer
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Pamela W. M. Kleikers
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Kim A. Radermacher
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | | | - J. J. Rob Hermans
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Paul Schiffers
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Heidi Ho
- National Stroke Research Institute, Melbourne, VIC Australia
| | - Kirstin Wingler
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Harald H. H. W. Schmidt
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
22
|
Regulation by mitochondrial superoxide and NADPH oxidase of cellular formation of nitrated cyclic GMP: potential implications for ROS signalling. Biochem J 2012; 441:719-30. [PMID: 21967515 DOI: 10.1042/bj20111130] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
8-Nitro-cGMP (8-nitroguanosine 3',5'-cyclic monophosphate) is a nitrated derivative of cGMP, which can function as a unique electrophilic second messenger involved in regulation of an antioxidant adaptive response in cells. In the present study, we investigated chemical and biochemical regulatory mechanisms involved in 8-nitro-cGMP formation, with particular focus on the roles of ROS (reactive oxygen species). Chemical analyses demonstrated that peroxynitrite-dependent oxidation and myeloperoxidase-dependent oxidation of nitrite in the presence of H2O2 were two major pathways for guanine nucleotide nitration. Among the guanine nucleotides examined, GTP was the most sensitive to peroxynitrite-mediated nitration. Immunocytochemical and tandem mass spectrometric analyses revealed that formation of 8-nitro-cGMP in rat C6 glioma cells stimulated with lipopolysaccharide plus pro-inflammatory cytokines depended on production of both superoxide and H2O2. Using the mitochondria-targeted chemical probe MitoSOX Red, we found that mitochondria-derived superoxide can act as a direct determinant of 8-nitro-cGMP formation. Furthermore, we demonstrated that Nox2 (NADPH oxidase 2)-generated H2O2 regulated mitochondria-derived superoxide production, which suggests the importance of cross-talk between Nox2-dependent H2O2 production and mitochondrial superoxide production. The results of the present study suggest that 8-nitro-cGMP can serve as a unique second messenger that may be implicated in regulating ROS signalling in the presence of NO.
Collapse
|
23
|
Xu M, Zhang Y, Xia M, Li XX, Ritter JK, Zhang F, Li PL. NAD(P)H oxidase-dependent intracellular and extracellular O2•- production in coronary arterial myocytes from CD38 knockout mice. Free Radic Biol Med 2012; 52:357-65. [PMID: 22100343 PMCID: PMC3253214 DOI: 10.1016/j.freeradbiomed.2011.10.485] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 10/20/2011] [Accepted: 10/24/2011] [Indexed: 12/12/2022]
Abstract
Activation of NAD(P)H oxidase has been reported to produce superoxide (O(2)(•-)) extracellularly as an autocrine/paracrine regulator or intracellularly as a signaling messenger in a variety of mammalian cells. However, it remains unknown how the activity of NAD(P)H oxidase is regulated in arterial myocytes. Recently, CD38-associated ADP-ribosylcyclase has been reported to use an NAD(P)H oxidase product, NAD(+) or NADP(+), to produce cyclic ADP-ribose (cADPR) or nicotinic acid adenine dinucleotide phosphate, which mediates intracellular Ca(2+) signaling. This study was designed to test a hypothesis that the CD38/cADPR pathway as a downstream event exerts feedback regulatory action on the NAD(P)H oxidase activity in production of extra- or intracellular O(2)(•-) in mouse coronary arterial myocytes (CAMs). By fluorescence microscopic imaging, we simultaneously monitored extra- and intracellular O(2)(•-) production in wild-type (CD38(+/+)) and CD38 knockout (CD38(-/-)) CAMs in response to oxotremorine (OXO), a muscarinic type 1 receptor agonist. It was found that CD38 deficiency prevented OXO-induced intracellular but not extracellular O(2)(•-) production in CAMs. Consistently, the OXO-induced intracellular O(2)(•-) production was markedly inhibited by CD38 shRNA or the CD38 inhibitor nicotinamide in CD38(+/+) CAMs. Further, Nox4 siRNA inhibited OXO-induced intracellular but not extracellular O(2)(•-) production, whereas Nox1 siRNA attenuated both intracellular and extracellular O(2)(•-) production in CD38(+/+) CAMs. Direct delivery of exogenous cADPR into CAMs markedly elevated intracellular Ca(2+) and O(2)(•-) production in CD38(-/-) CAMs. Functionally, CD38 deficiency or Nox1 siRNA and Nox4 siRNA prevented OXO-induced contraction in isolated perfused coronary arteries in CD38 WT mice. These results provide direct evidence that the CD38/cADPR pathway is an important controller of Nox4-mediated intracellular O(2)(•-) production and that CD38-dependent intracellular O(2)(•-) production is augmented in an autocrine manner by CD38-independent Nox1-derived extracellular O(2)(•-) production in CAMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pin-Lan Li
- Correspondence sent to: Pin-Lan Li, MD, PhD, Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, 1220 East Broad Street, P.O. Box 980613, Richmond, VA 23298, Tel. 804 828-4793, Fax: 804 828-2117,
| |
Collapse
|
24
|
Yi F, Jin S, Zhang F, Xia M, Bao JX, Hu J, Poklis JL, Li PL. Formation of lipid raft redox signalling platforms in glomerular endothelial cells: an early event of homocysteine-induced glomerular injury. J Cell Mol Med 2011; 13:3303-14. [PMID: 20196779 PMCID: PMC3752605 DOI: 10.1111/j.1582-4934.2009.00743.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The present study tested the hypothesis that homocysteine (Hcys)-induced ceramide production stimulates lipid rafts (LRs) clustering on the membrane of glomerular endothelial cells (GECs) to form redox signalling platforms by aggregation and activation of NADPH oxidase subunits and thereby enhances superoxide (O2*-) production, leading to glomerular endothelial dysfunction and ultimate injury or sclerosis. Using confocal microscopy, we first demonstrated a co-localization of LR clusters with NADPH oxidase subunits, gp91(phox) and p47(phox) in the GECs membrane upon Hcys stimulation. Immunoblot analysis of floated detergent-resistant membrane fractions found that in LR fractions NADPH oxidase subunits gp91(phox) and p47(phox) are enriched and that the activity of this enzyme dramatically increased. We also examined the effect of elevated Hcys on the cell monolayer permeability in GECs. It was found that Hcys significantly increased GEC permeability, which was blocked by inhibition of LR redox signalling platform formation. Finally, we found that Hcys-induced enhancement of GEC permeability is associated with the regulation of microtubule stability through these LR-redox platforms. It is concluded that the early injurious effect of Hcys on the glomerular endothelium is associated with the formation of redox signalling platforms via LR clustering, which may lead to increases in glomerular permeability by disruption of microtubule network in GECs.
Collapse
Affiliation(s)
- Fan Yi
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Gul R, Shawl AI, Kim SH, Kim UH. Cooperative interaction between reactive oxygen species and Ca2+ signals contributes to angiotensin II-induced hypertrophy in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 2011; 302:H901-9. [PMID: 22140048 DOI: 10.1152/ajpheart.00250.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) and Ca(2+) signals are closely associated with the pathogenesis of cardiac hypertrophy. However, the cause and effect of the two signals in cardiac hypertrophy remain to be clarified. We extend our recent report by investigating a potential interaction between ROS and Ca(2+) signals utilizing in vitro and in vivo angiotensin II (ANG II)-induced cardiac hypertrophy models. ANG II-induced initial Ca(2+) transients mediated by inositol trisphosphate (IP(3)) triggered initial ROS production in adult rat cardiomyocytes. The ROS generated by activation of the NAD(P)H oxidase complex via Rac1 in concert with Ca(2+) activates ADP-ribosyl cyclase to generate cyclic ADP-ribose (cADPR). This messenger-mediated Ca(2+) signal further augments ROS production, since 2,2'-dihydroxyazobenzene, an ADP-ribosyl cyclase inhibitor, or 8-Br-cADPR, an antagonistic analog of cADPR, abolished further ROS production. Data from short hairpin RNA (shRNA)-mediated knockdown of Akt1 and p47(phox) demonstrated that Akt1 is the upstream key molecule responsible for the initiation of Ca(2+) signal that activates p47(phox) to generate ROS in cardiomyocytes. Nuclear translocation of nuclear factor of activated T-cell in cardiomyocytes was significantly suppressed by treatment with NAD(P)H oxidase inhibitors as well as by shRNA against Akt1 and p47(phox). Our results suggest that in cardiomyocytes Ca(2+) and ROS messengers generated by ANG II amplify the initial signals in a cooperative manner, thereby leading to cardiac hypertrophy.
Collapse
Affiliation(s)
- Rukhsana Gul
- Dept. of Biochemistry, Chonbuk National Univ. Medical School, Jeonju 561-182, Republic of Korea
| | | | | | | |
Collapse
|
26
|
Santos CXC, Tanaka LY, Wosniak J, Laurindo FRM. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 2009; 11:2409-27. [PMID: 19388824 DOI: 10.1089/ars.2009.2625] [Citation(s) in RCA: 416] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular mechanisms governing redox homeostasis likely involve their integration with other stresses. Endoplasmic reticulum (ER) stress triggers complex adaptive or proapoptotic signaling defined as the unfolded protein response (UPR), involved in several pathophysiological processes. Since protein folding is highly redox-dependent, convergence between ER stress and oxidative stress has attracted interest. Evidence suggests that ROS production and oxidative stress are not only coincidental to ER stress, but are integral UPR components, being triggered by distinct types of ER stressors and contributing to support proapoptotic, as well as proadaptive UPR signaling. Thus, ROS generation can be upstream or downstream UPR targets and may display a UPR-specific plus a nonspecific component. Enzymatic mechanisms of ROS generation during UPR include: (a) Multiple thiol-disulfide exchanges involving ER oxidoreductases including flavooxidase Ero1 and protein disulfide isomerase (PDI); (b) Mitochondrial electron transport; (c) Nox4 NADPH oxidase complex, particularly Nox4. Understanding the roles of such mechanisms and how they interconnect with the UPR requires more investigation. Integration among such ROS sources may depend on Ca(2+) levels, ROS themselves, and PDI, which associates with NADPH oxidase and regulates its function. Oxidative stress may frequently integrate with a background of ER stress/UPR in several diseases; here we discuss a focus in the vascular system.
Collapse
Affiliation(s)
- Célio X C Santos
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, CEP 05403-000, São Paulo, Brazil
| | | | | | | |
Collapse
|
27
|
Liu M, Sanyal S, Gao G, Gurung IS, Zhu X, Gaconnet G, Kerchner LJ, Shang LL, Huang CLH, Grace A, London B, Dudley SC. Cardiac Na+ current regulation by pyridine nucleotides. Circ Res 2009; 105:737-45. [PMID: 19745168 DOI: 10.1161/circresaha.109.197277] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Mutations in glycerol-3-phosphate dehydrogenase 1-like (GPD1-L) protein reduce cardiac Na+ current (I(Na)) and cause Brugada Syndrome (BrS). GPD1-L has >80% amino acid homology with glycerol-3-phosphate dehydrogenase, which is involved in NAD-dependent energy metabolism. OBJECTIVE Therefore, we tested whether NAD(H) could regulate human cardiac sodium channels (Na(v)1.5). METHODS AND RESULTS HEK293 cells stably expressing Na(v)1.5 and rat neonatal cardiomyocytes were used. The influence of NADH/NAD+ on arrhythmic risk was evaluated in wild-type or SCN5A(+/-) mouse heart. A280V GPD1-L caused a 2.48+/-0.17-fold increase in intracellular NADH level (P<0.001). NADH application or cotransfection with A280V GPD1-L resulted in decreased I(Na) (0.48+/-0.09 or 0.19+/-0.04 of control group, respectively; P<0.01), which was reversed by NAD+, chelerythrine, or superoxide dismutase. NAD+ antagonism of the Na+ channel downregulation by A280V GPD1-L or NADH was prevented by a protein kinase (PK)A inhibitor, PKAI(6-22). The effects of NADH and NAD+ were mimicked by a phorbol ester and forskolin, respectively. Increasing intracellular NADH was associated with an increased risk of ventricular tachycardia in wild-type mouse hearts. Extracellular application of NAD+ to SCN5A(+/-) mouse hearts ameliorated the risk of ventricular tachycardia. CONCLUSIONS Our results show that Na(v)1.5 is regulated by pyridine nucleotides, suggesting a link between metabolism and I(Na). This effect required protein kinase C activation and was mediated by oxidative stress. NAD+ could prevent this effect by activating PKA. Mutations of GPD1-L may downregulate Na(v)1.5 by altering the oxidized to reduced NAD(H) balance.
Collapse
Affiliation(s)
- Man Liu
- Division in Cardiology, University of Illinois at Chicago and the Jesse Brown Veteran Affairs Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Csordás G, Hajnóczky G. SR/ER-mitochondrial local communication: calcium and ROS. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1352-62. [PMID: 19527680 DOI: 10.1016/j.bbabio.2009.06.004] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 02/07/2023]
Abstract
Mitochondria form junctions with the sarco/endoplasmic reticulum (SR/ER), which support signal transduction and biosynthetic pathways and affect organellar distribution. Recently, these junctions have received attention because of their pivotal role in mediating calcium signal propagation to the mitochondria, which is important for both ATP production and mitochondrial cell death. Many of the SR/ER-mitochondrial calcium transporters and signaling proteins are sensitive to redox regulation and are directly exposed to the reactive oxygen species (ROS) produced in the mitochondria and SR/ER. Although ROS has been emerging as a novel signaling entity, the redox signaling of the SR/ER-mitochondrial interface is yet to be elucidated. We describe here possible mechanisms of the mutual interaction between local Ca(2+) and ROS signaling in the control of SR/ER-mitochondrial function.
Collapse
Affiliation(s)
- György Csordás
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
29
|
Yang D, Elner SG, Lin LR, Reddy VN, Petty HR, Elner VM. Association of superoxide anions with retinal pigment epithelial cell apoptosis induced by mononuclear phagocytes. Invest Ophthalmol Vis Sci 2009; 50:4998-5005. [PMID: 19458341 DOI: 10.1167/iovs.09-3620] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Oxidative stress of the retinal pigment epithelium by reactive oxygen species and monocytic infiltration have been implicated in age-related macular degeneration. The purpose of this study was to determine the role of superoxide anions (O(2)(-)) in mononuclear phagocyte-induced RPE apoptosis. METHODS Mouse RPE cell cultures were established from wild-type and heterozygous superoxide dismutase 2-knockout (Sod2(+/-)) mice. The intracellular reactive oxygen species, O(2)(-) and hydrogen peroxide, were measured by using dihydroethidium assay and 5-(and 6)-chloromethyl-2',7'-dichlorodihydrofluorescence diacetate, acetyl ester assay, respectively. RPE apoptosis was evaluated by Hoechst staining and terminal deoxynucleotidyltransferase dUTP nick-end labeling assay. Changes in mitochondrial membrane potential were detected by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide dye. Activated caspases and caspase-3 were detected in situ by FITC-VAD-fmk staining and caspase-3 substrate, respectively. RESULTS Mononuclear phagocytes and interferon-gamma-activated mononuclear phagocytes induced the production of intracellular RPE O(2)(-), a decrease in RPE mitochondrial membrane potential, caspase activation, and apoptosis of mouse RPE cells. All theses changes were significantly enhanced in the Sod2(+/-) RPE cells. Activated mononuclear phagocytes induced more of these oxidative and apoptotic changes in RPE cells than did unstimulated mononuclear phagocytes. CONCLUSIONS The authors have shown that the decreased expression of SOD2 and increased superoxide production correlate with RPE apoptosis induced by unstimulated and activated mononuclear phagocytes. The authors suggest that elevated O(2)(-) levels due to genetic abnormalities of SOD2 or immunologic activation of mononuclear phagocytes lead to greater levels of RPE apoptosis. The present study could serve as a useful model to characterize RPE/phagocyte interaction in AMD and other retinal diseases.
Collapse
Affiliation(s)
- Dongli Yang
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105-0714, USA
| | | | | | | | | | | |
Collapse
|
30
|
Akifusa S, Kamio N, Shimazaki Y, Yamaguchi N, Yamashita Y. Involvement of Ca(2+) in globular adiponectin-induced reactive oxygen species. Biochem Biophys Res Commun 2009; 381:649-53. [PMID: 19249286 DOI: 10.1016/j.bbrc.2009.02.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 02/20/2009] [Indexed: 11/18/2022]
Abstract
Globular adiponectin (gAd) induces the generation of reactive oxygen species (ROS) and nitric oxide (NO) in the murine macrophage cell line RAW 264. We investigated the role of Ca(2+) in gAd-induced ROS and NO generation. Pretreatment with BAPTA-AM, a selective chelator of intracellular Ca(2+) ([Ca(2+)](i)), partially reduced gAd-induced generation of ROS and NO in gAd-treated RAW 264 cells. The lowest [Ca(2+)](i) occurred 30min after gAd treatment, after which [Ca(2+)](i) increased continually and exceeded the initial level. The mitochondrial Ca(2+) ([Ca(2+)](m)) detected by Rhod-2 fluorescence started to increase at 6h after gAd treatment. Pretreatment with a NAD(P)H oxidase inhibitor, diphenyleneiodonium, prevented the reduction of [Ca(2+)](i) in the early phase after gAd treatment. Calcium depletion by BAPTA-AM had no effect on the gAd-induced [Ca(2+)](m) oscillation. The administration of a specific calmodulin inhibitor, calmidazolium, significantly suppressed gAd-induced ROS and NO generation and NOS activity.
Collapse
Affiliation(s)
- Sumio Akifusa
- Department of Preventive Dentistry, Kyushu University, Higashi-ku, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
31
|
Dependence of cathepsin L-induced coronary endothelial dysfunction upon activation of NAD(P)H oxidase. Microvasc Res 2009; 78:45-50. [PMID: 19345232 DOI: 10.1016/j.mvr.2009.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 11/23/2022]
Abstract
Cathepsin L is a cysteine protease that can generate endogenous endostatin in vascular and epithelial basement membranes and importantly participates in a variety of pathophysiological processes. The present study was designed to determine whether this cathepsin L-derived endogenous endostatin alters endothelium-dependent vasodilator responses in coronary arteries via NAD(P)H oxidase activation. In isolated and perfused small bovine coronary arteries, administration of cathepsin L (200 ng/ml) markedly attenuated endothelium-dependent vasodilator responses to bradykinin or A23187 by 56.16+/-9.58% and 68.95+/-10.32%, respectively. This inhibitory effect of cathepsin L on endothelium-dependent vasodilator responses could be significantly reversed by pre-incubation of the arteries with O(2)(-) scavenger, Tiron, or neutralizing anti-endostatin antibody. By fluorescent ELISA assay, cathepsin L dose-dependently increased endostatin production in coronary arteries. In situ high-speed dual wavelength switching fluorescent microscopic imaging showed that cathepsin L decreased bradykinin- and A23187-induced NO levels in the intact endothelium, but it had no effect on Ca(2+) response to these vasodilators. This cathepsin L-induced reduction of NO was restored by the pretreatment of an anti-endostatin antibody. Electron spin resonance (ESR) analysis demonstrated that cathepsin L increased O(2)(-) production which could be markedly attenuated by the NAD(P)H oxidase inhibitors, apocynin or anti-endostatin antibody. It is concluded that endostatin could be endogenously produced in coronary arteries when cathepsin L is increased and that this cathepsin L-derived endostatin, if excessive, may result in endothelial dysfunction through enhanced production of O(2)(-) due to NAD(P)H oxidase activation.
Collapse
|
32
|
Li S, Tabar SS, Malec V, Eul BG, Klepetko W, Weissmann N, Grimminger F, Seeger W, Rose F, Hänze J. NOX4 regulates ROS levels under normoxic and hypoxic conditions, triggers proliferation, and inhibits apoptosis in pulmonary artery adventitial fibroblasts. Antioxid Redox Signal 2008; 10:1687-98. [PMID: 18593227 DOI: 10.1089/ars.2008.2035] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The NADPH oxidases are involved in vascular remodeling processes and oxygen sensing. Hypoxia-induced pulmonary arterial remodeling results in thickening of the vessel wall and reduction of the area of vessel lumen, leading to pulmonary hypertension and cor pulmonale. The proliferation of pulmonary artery adventitial fibroblasts (PAFB) is critically involved in this process. In this study, we analyzed the role of the non-phagocytic NADPH oxidase subunits NOX1 and NOX4 in PAFB. NOX4 was predominantly expressed in comparison to NOX1 at mRNA levels. Under hypoxic conditions, NOX4 was significantly upregulated at mRNA and protein levels. Silencing of NOX4 by siRNA caused reduction of ROS levels under both normoxic and hypoxic (24 h) conditions and suppressed the significant hypoxic-induced ROS increase. PAFB proliferation was significantly decreased in cells transfected with NOX4 siRNA, whereas apoptosis was enhanced. Also, the expression of NOX4 was studied in PAFB isolated from the lungs of patients with idiopathic pulmonary arterial hypertension (IPAH). Interestingly, a significant increase of NOX4 mRNA expression was observed under hypoxic conditions in PAFB from the lungs with IPAH compared to healthy donors. In conclusion, NOX4 maintains ROS levels under normoxic and hypoxic conditions and enhances proliferation and inhibits apoptosis of PAFB.
Collapse
Affiliation(s)
- Shu Li
- University of Giessen Lung Center, Medical Clinic II, Giessen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jia SJ, Jin S, Zhang F, Yi F, Dewey WL, Li PL. Formation and function of ceramide-enriched membrane platforms with CD38 during M1-receptor stimulation in bovine coronary arterial myocytes. Am J Physiol Heart Circ Physiol 2008; 295:H1743-52. [PMID: 18723763 DOI: 10.1152/ajpheart.00617.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CD38 contains an ADP ribosylcyclase domain that mediates intracellular Ca(2+) signaling by the production of cyclic ADP-ribose (cADPR), but the mechanisms by which the agonists activate this enzyme remain unclear. The present study tested a hypothesis that a special lipid-raft (LR) form, ceramide-enriched lipid platform, contributes to CD38 activation to produce cADPR in response to muscarinic type 1 (M(1)) receptor stimulation in bovine coronary arterial myocytes (CAMs). By confocal microscopic analysis, oxotremorine (Oxo), an M(1) receptor agonist, was found to increase LR clustering on the membrane with the formation of a complex of CD38 and LR components such as GM(1), acid sphingomyelinase (ASMase), and ceramide, a typical ceramide-enriched macrodomain. At 80 microM, Oxo increased LR clustering by 78.8%, which was abolished by LR disruptors, methyl-beta-cyclodextrin (MCD), or filipin. With the use of a fluorescence resonance energy transfer (FRET) technique, 15.5+/-1.9% energy transfer rate (vs. 5.3+/-0.9% of control) between CD38 and LR component, ganglioside M(1) was detected, further confirming the proximity of both molecules. In the presence of MCD or filipin, there were no FRET signals detected. In floated detergent-resistant membrane fractions, CD38 significantly increased in LR fractions of CAMs treated by Oxo. Moreover, MCD or filipin attenuated Oxo-induced production of cADPR via CD38. Functionally, Oxo-induced intracellular Ca(2+) release and coronary artery constriction via cADPR were also blocked by LR disruption or ASMase inhibition. These results provide the first evidence that the formation of ceramide-enriched lipid macrodomains is crucial for Oxo-induced activation of CD38 to produce cADPR in CAMs, and these lipid macrodomains mediate transmembrane signaling of M(1) receptor activation to produce second messenger cADPR.
Collapse
Affiliation(s)
- Su-Jie Jia
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | |
Collapse
|