1
|
Cui X, Zhang C, Fu C, Hu J, Li T, Li L. YY1 is involved in homologous recombination inhibition at guanine quadruplex sites in human cells. Nucleic Acids Res 2024; 52:7401-7413. [PMID: 38869071 PMCID: PMC11260479 DOI: 10.1093/nar/gkae502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Homologous recombination (HR) is a key process for repairing DNA double strand breaks and for promoting genetic diversity. However, HR occurs unevenly across the genome, and certain genomic features can influence its activity. One such feature is the presence of guanine quadruplexes (G4s), stable secondary structures widely distributed throughout the genome. These G4s play essential roles in gene transcription and genome stability regulation. Especially, elevated G4 levels in cells deficient in the Bloom syndrome helicase (BLM) significantly enhance HR at G4 sites, potentially threatening genome stability. Here, we investigated the role of G4-binding protein Yin Yang-1 (YY1) in modulating HR at G4 sites in human cells. Our results show that YY1's binding to G4 structures suppresses sister chromatid exchange after BLM knockdown, and YY1's chromatin occupancy negatively correlates with the overall HR rate observed across the genome. By limiting RAD51 homolog 1 (RAD51) access, YY1 preferentially binds to essential genomic regions, shielding them from excessive HR. Our findings unveil a novel role of YY1-G4 interaction, revealing novel insights into cellular mechanisms involved in HR regulation.
Collapse
Affiliation(s)
- Xinyu Cui
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengwen Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunqing Fu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinglei Hu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tengjiao Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Williquett J, Allamargot C, Sun H. AMPK-SP1-Guided Dynein Expression Represents a New Energy-Responsive Mechanism and Therapeutic Target for Diabetic Nephropathy. KIDNEY360 2024; 5:538-549. [PMID: 38467599 PMCID: PMC11093544 DOI: 10.34067/kid.0000000000000392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
Key Points AMP kinase senses diabetic stresses in podocytes, subsequently upregulates specificity protein 1–mediated dynein expression and promotes podocyte injury. Pharmaceutical restoration of dynein expression by targeting specificity protein 1 represents an innovative therapeutic strategy for diabetic nephropathy. Background Diabetic nephropathy (DN) is a major complication of diabetes. Injury to podocytes, epithelial cells that form the molecular sieve of a kidney, is a preclinical feature of DN. Protein trafficking mediated by dynein, a motor protein complex, is a newly recognized pathophysiology of diabetic podocytopathy and is believed to be derived from the hyperglycemia-induced expression of subunits crucial for the transportation activity of the dynein complex. However, the mechanism underlying this transcriptional signature remains unknown. Methods Through promoter analysis, we identified binding sites for transcription factor specificity protein 1 (SP1) as the most shared motif among hyperglycemia-responsive dynein genes. We demonstrated the essential role of AMP-activated protein kinase (AMPK)–regulated SP1 in the transcription of dynein subunits and dynein-mediated trafficking in diabetic podocytopathy using chromatin immunoprecipitation quantitative PCR and live cell imaging. SP1-dependent dynein-driven pathogenesis of diabetic podocytopathy was demonstrated by pharmaceutical intervention with SP1 in a mouse model of streptozotocin-induced diabetes. Results Hyperglycemic conditions enhance SP1 binding to dynein promoters, promoted dynein expression, and enhanced dynein-mediated mistrafficking in cultured podocytes. These changes can be rescued by chemical inhibition or genetic silencing of SP1. The direct repression of AMPK, an energy sensor, replicates hyperglycemia-induced dynein expression by activating SP1. Mithramycin inhibition of SP1-directed dynein expression in streptozotocin-induced diabetic mice protected them from developing podocytopathy and prevented DN progression. Conclusions Our work implicates AMPK-SP1–regulated dynein expression as an early mechanism that translates energy disturbances in diabetes into podocyte dysfunction. Pharmaceutical restoration of dynein expression by targeting SP1 offers a new therapeutic strategy to prevent DN.
Collapse
Affiliation(s)
- Jillian Williquett
- Division of Nephrology, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa
- Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Chantal Allamargot
- Central Microscopy Research Facility, The University of Iowa, Iowa City, Iowa
| | - Hua Sun
- Division of Nephrology, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa
- Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
3
|
Wang M, Xia D, Xu D, Yin Y, Xu F, Zhang B, Li K, Yang Z, Zou J. Neovascularization directed by CAVIN1/CCBE1/VEGFC confers TMZ-resistance in glioblastoma. Cancer Lett 2024; 582:216593. [PMID: 38092144 DOI: 10.1016/j.canlet.2023.216593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Acquisition of resistance to temozolomide (TMZ) poses a significant challenge in glioblastoma (GBM) therapy. Neovascularization, a pivotal process in tumorigenesis and development, remains poorly understood in its contribution to chemoresistance in GBMs. This study unveils aberrant vascular networks within TMZ-resistant (TMZ-R) GBM tissues and identifies the extracellular matrix (ECM) protein CCBE1 as a potential mediator. Through in vivo and in vitro experiments involving gain and loss of function assessments, we demonstrate that high expression of CCBE1 promotes hyper-angiogenesis and orchestrates partial endothelial-to-mesenchymal transition (EndMT) in human microvascular endothelial cells (HCMEC/d3) within GBM. This is likely driven by VEGFC/Rho signaling. Intriguingly, CCBE1 overexpression substantially fails to promote tumor growth, but endows resistance to GBM cells in a vascular endothelial cell-dependent manner. Mechanically, the constitutive phosphorylation of SP1 at Ser101 drives the upregulation of CCBE1 transcription in TMZ resistant tumors, and the excretion of CCBE1 depends on caveolae associated protein 1 (CAVIN1) binding and assembling. Tumor cells derived CCBE1 promotes VEGFC maturation, activates VEGFR2/VEGFR3/Rho signaling in vascular endothelial cells, and ultimately results in hyper-angiogenesis in TMZ-R tumors. Collectively, the current study uncovers the cellular and molecular basis of abnormal angiogenesis in a chemo resistant microenvironment, implying that curbing CCBE1 is key to reversing TMZ resistance.
Collapse
Affiliation(s)
- Mei Wang
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Die Xia
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Daxing Xu
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Ying Yin
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Fei Xu
- Department of Nuclear Medicine, T Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Bo Zhang
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Koukou Li
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Zhenkun Yang
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Jian Zou
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China.
| |
Collapse
|
4
|
Zhong M, Fang Z, Guo W, Yu X. Translation regulatory long non-coding RNA 1 negatively regulates cell radiosensitivity via the miR-22-3p/SP1 axis in non-small cell lung cancer. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13734. [PMID: 38286742 PMCID: PMC10824624 DOI: 10.1111/crj.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/11/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
OBJECTIVE Non-small cell lung cancer (NSCLC) occupies 85% of lung cancer. Long non-coding RNAs (LncRNAs) can regulate the radiosensitivity of cancers. This study explored the mechanism of lncRNA TRERNA1 in the radiosensitivity of NSCLC cells. METHODS LncRNA TRERNA1 level in NSCLC cell lines was determined. NSCLC cell radiation tolerance was measured. TRERNA1 expression was silenced or overexpressed in A549/HCC827 cells with the highest/lowest radiation tolerance, respectively. The contents of γ-H2AX and SA-β-gal in NSCLC cells after radiation induction were detected. The targeted binding of TRERNA1 to miR-22-3p and miR-22-3p to SP1 were verified by dual-luciferase assay. SP1 expression were detected. Functional rescue experiments were implemented to confirm the roles of miR-22-3p and SP1 in the regulatory mechanism of TRERNA1. RESULTS TRERNA1 was upregulated in NSCLC cells. TRERNA1 silencing enhanced radiosensitivity of NSCLC cells. TRERNA1 silencing elevated the contents of γ-H2AX and SA-β-gal in A549 cells after radiation induction, while TRERNA1 overexpression showed an opposite trend in HCC827 cells. There were targeting relationships between TRERNA1 and miR-22-3p, and miR-22-3p and SP1. miR-22-3p repression or SP1 overexpression abolished the effects of TRERNA1 silencing. CONCLUSION TRERNA1 silencing enhanced radiosensitivity of NSCLC cells via the miR-22-3p/SP1 axis. This study may offer new targets for NSCLC treatment.
Collapse
Affiliation(s)
- Ming Zhong
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Zheng Fang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Weixi Guo
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Xiuyi Yu
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| |
Collapse
|
5
|
Liu X, Sun C, Wang Q, Li P, Zhao T, Li Q. Sp1 Upregulation Bolsters the Radioresistance of Glioblastoma Cells by Promoting Double Strand Breaks Repair. Int J Mol Sci 2023; 24:10658. [PMID: 37445835 PMCID: PMC10342049 DOI: 10.3390/ijms241310658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Radioresistance remains a critical obstacle in the clinical management of glioblastoma (GBM) by radiotherapy. Therefore, it is necessary to explore the molecular mechanisms underlying radioresistance to improve patient response to radiotherapy and increase the treatment efficacy. The present study aimed to elucidate the role of specificity protein 1 (Sp1) in the radioresistance of GBM cells. Different human GBM cell lines and tumor-bearing mice were exposed to ionizing radiation (IR). Cell survival was determined by the colony formation assay. The expression of genes and proteins in the cells and tissues was analyzed by RT-PCR and western blotting, respectively. The γ-H2AX, p-Sp1 and dependent protein kinase catalytic subunit (DNA-PKcs phospho S2056) foci were analyzed by immunofluorescence. Apoptotic rates were measured by flow cytometry. Sp1 was upregulated after IR in vitro and in vivo and knocking down Sp1-sensitized GBM cells to IR. Sp1 activated the DNA-PKcs promoter and increased its expression and activity. Furthermore, the loss of Sp1 delayed double-strand breaks (DSB) repair and increased IR-induced apoptosis of GBM cells. Taken together, IR upregulates Sp1 expression in GBM cells, enhancing the activity of DNA-PKcs and promoting IR-induced DSB repair, thereby leading to increased radioresistance.
Collapse
Affiliation(s)
- Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiqi Wang
- College of Life Science, Northwest Normal University, Lanzhou 730030, China
| | - Ping Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Yu P, Zhou J, Ge C, Fang M, Zhang Y, Wang H. Differential expression of placental 11β-HSD2 induced by high maternal glucocorticoid exposure mediates sex differences in placental and fetal development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154396. [PMID: 35259391 DOI: 10.1016/j.scitotenv.2022.154396] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/20/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
A variety of adverse environmental factors during pregnancy cause maternal chronic stress. Caffeine is a common stressor, and its consumption during pregnancy is widespread. Our previous study showed that prenatal caffeine exposure (PCE) increased maternal blood glucocorticoid levels and caused abnormal development of offspring. However, the placental mechanism for fetal development inhibition caused by PCE-induced high maternal glucocorticoid has not been reported. This study investigated the effects of PCE-induced high maternal glucocorticoid level on placental and fetal development by regulating placental 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) expression and its underlying mechanism. First, human placenta and umbilical cord blood samples were collected from women without prenatal use of synthetic glucocorticoids. We found that placental 11β-HSD2 expression was significantly correlated with umbilical cord blood cortisol level and birth weight in male newborns but not in females. Furthermore, we established a rat model of high maternal glucocorticoids induced by PCE (caffeine, 60 mg/kg·d, ig), and found that the expression of 11β-HSD2 in male PCE placenta was decreased and negatively correlated with the maternal/fetal/placental corticosterone levels. Meanwhile, we found abnormal placental structure and nutrient transporter expression. In vitro, BeWo cells were used and confirm that 11β-HSD2 mediated inhibition of placental nutrient transporter expression induced by high levels of glucocorticoid. Finally, combined with the animal and cell experiments, we further confirmed that high maternal glucocorticoid could activate the GR-C/EBPα-Egr1 signaling pathway, leading to decreased expression of 11β-HSD2 in males. However, there was no significant inhibition of placental 11β-HSD2 expression, placental and fetal development in females. In summary, we confirmed that high maternal glucocorticoids could regulate placental 11β-HSD2 expression in a sex-specific manner, leading to differences in placental and fetal development. This study provides the theoretical and experimental basis for analyzing the inhibition of fetoplacental development and its sex difference caused by maternal stress.
Collapse
Affiliation(s)
- Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Jin Zhou
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan 430071, China; Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
7
|
Zhang S, Zheng W, Jiang D, Xiong H, Liao G, Yang X, Ma H, Li J, Qiu M, Li B, Sun C, Zhao J, Wang L, Pang J. Systematic Chromatin Accessibility Analysis Based on Different Immunological Subtypes of Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:575425. [PMID: 33937014 PMCID: PMC8085385 DOI: 10.3389/fonc.2021.575425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/23/2021] [Indexed: 01/14/2023] Open
Abstract
Background Recent research of clear cell renal cell carcinoma (ccRCC) is focused on the tumor immune microenvironment (TIME). Chromatin accessibility is critical for regulation of gene expression. However, its role in different immunological subtypes of ccRCC based on immune cell infiltration has not been systematically studied. Methods Five hundred thirty patient data from The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) were adopted to estimate immune cell infiltration. Twenty-four types of immune cells were evaluated with single-sample Gene Set Enrichment Analysis (ssGSEA). Patients were divided into two clusters based on immune cell infiltration. Systematic chromatin accessibility analysis was conducted based on the two clusters. Results We compared the relative expression of the immune gene signatures among 530 patients of TCGA-KIRC using ssGSEA. Overall survival (OS) analysis revealed 10 types of immune cells were significantly associated with prognosis. Patients were divided into two clusters based on 24 types of immune cell infiltration. Immune cell signals as well as PD-1/PD-L1 signal were higher in cluster 1. Among the two clusters, 2,400 differential peaks were found in TCGA-KIRC Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) data. The distribution of differential peaks and prognosis-related immune cells in 23 chromosomes are essentially the same. There is no peak distribution downstream. The proportion of peaks upstream of the 5’ transcription start site decreases, and both sides of binding regions of the TSS 0.1-1 kb becomes smaller. Enrichment analysis of GO and KEGG of these differential peaks showed that they are remarkably related to the immune regulation in tumor microenvironment. Known motifs and de novo motifs were found by linking motif annotations to different peaks. Survival analysis of related motif transcription factors were prognostic. The GSEA enrichment analysis showed that high SP1 expression positively correlates with TGF-beta signaling and inflammatory response, while negatively correlates with TNF-alpha signaling via NFKB. High KLF12 expression negatively correlates with interferon gamma response, IL2-STAT5 signaling, TNF-alpha signaling via NFKB, IL6-JAK-STAT3 signaling. Conclusion The abnormality of chromatin accessibility may play an important regulatory role in ccRCC immunity.
Collapse
Affiliation(s)
- Shiqiang Zhang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wenzhong Zheng
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Donggen Jiang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Haiyun Xiong
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Guolong Liao
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiangwei Yang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - He Ma
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jun Li
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Miaojuan Qiu
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Binbin Li
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chunhui Sun
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jing Zhao
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liling Wang
- Maternal and Child Health Research Institute, Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Jun Pang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
8
|
Guo G, Li L, Song G, Wang J, Yan Y, Zhao Y. miR‑7/SP1/TP53BP1 axis may play a pivotal role in NSCLC radiosensitivity. Oncol Rep 2020; 44:2678-2690. [PMID: 33125142 PMCID: PMC7640372 DOI: 10.3892/or.2020.7824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
MicroRNA‑7 (miR‑7) has been identified as a tumor suppressor in non‑small cell lung cancer (NSCLC) and a radiosensitivity regulator. Numerous studies have revealed that specific protein 1 (SP1) plays a critical role in the tumorigenesis of various types of cancers and regulates radiosensitivity and tumor suppressor p53‑binding protein 1 (TP53BP1), which plays an essential role in DNA repair. However, it is not clear whether miR‑7 has a regulatory effect on SP1 and TP53BP1 in NSCLC. In the present study it was revealed that miR‑7 directly binds to the 3'UTR of SP1, thereby suppressing SP1 expression to regulate radiosensitivity. Overexpression of miR‑7 and SP1 and knockdown of miR‑7 and SP1 were performed using lentiviral transfection. Protein and mRNA abundance of SP1 and TP53BP1 were determined using western blotting and RT‑qPCR, respectively, while miR‑7 binding to SP1 was validated using a luciferase reporter assay. Biological function analysis indicated that miR‑7 negatively regulated SP1 and inhibited cell proliferation, migration, and invasion when combined with radiation. It was also revealed that the expression of TP53BP1 was positively regulated by SP1 or negatively regulated by miR‑7. In conclusion, SP1 was a target of miR‑7, and the decreased expression of SP1 resulting from miR‑7 overexpression in NSCLC was vital for improving radiosensitivity in NSCLC cells. Moreover, SP1 expression was detected in 95 paired NSCLC and adjacent normal tissues, and it was determined that SP1 was significantly upregulated in NSCLC tissues and that its upregulation was correlated with the degree of tissue differentiation. Thus, SP1 and/or miR‑7 may be potential molecular targets in NSCLC radiotherapy.
Collapse
Affiliation(s)
- Genyan Guo
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Lingling Li
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Guanchu Song
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Jie Wang
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
- Department of Radiation Oncology, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, P.R. China
| | - Ying Yan
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
- Department of Radiation Oncology, The General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yuxia Zhao
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
9
|
Wu PH, Onodera Y, Giaccia AJ, Le QT, Shimizu S, Shirato H, Nam JM. Lysosomal trafficking mediated by Arl8b and BORC promotes invasion of cancer cells that survive radiation. Commun Biol 2020; 3:620. [PMID: 33110168 PMCID: PMC7591908 DOI: 10.1038/s42003-020-01339-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Enhanced invasiveness, a critical determinant of metastasis and poor prognosis, has been observed in cancer cells that survive cancer therapy, including radiotherapy. Here, we show that invasiveness in radiation-surviving cancer cells is associated with alterations in lysosomal exocytosis caused by the enhanced activation of Arl8b, a small GTPase that regulates lysosomal trafficking. The binding of Arl8b with its effector, SKIP, is increased after radiation through regulation of BORC-subunits. Knockdown of Arl8b or BORC-subunits decreases lysosomal exocytosis and the invasiveness of radiation-surviving cells. Notably, high expression of ARL8B and BORC-subunit genes is significantly correlated with poor prognosis in breast cancer patients. Sp1, an ATM-regulated transcription factor, is found to increase BORC-subunit genes expression after radiation. In vivo experiments show that ablation of Arl8b decreases IR-induced invasive tumor growth and distant metastasis. These findings suggest that BORC-Arl8b-mediated lysosomal trafficking is a target for improving radiotherapy by inhibiting invasive tumor growth and metastasis.
Collapse
Affiliation(s)
- Ping-Hsiu Wu
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan.
- Department of Molecular Biology, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan.
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shinichi Shimizu
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan
- Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan
| | - Hiroki Shirato
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan
| | - Jin-Min Nam
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan.
| |
Collapse
|
10
|
Manickavinayaham S, Velez-Cruz R, Biswas AK, Chen J, Guo R, Johnson DG. The E2F1 transcription factor and RB tumor suppressor moonlight as DNA repair factors. Cell Cycle 2020; 19:2260-2269. [PMID: 32787501 PMCID: PMC7513849 DOI: 10.1080/15384101.2020.1801190] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023] Open
Abstract
The E2F1 transcription factor and RB tumor suppressor are best known for their roles in regulating the expression of genes important for cell cycle progression but, they also have transcription-independent functions that facilitate DNA repair at sites of damage. Depending on the type of DNA damage, E2F1 can recruit either the GCN5 or p300/CBP histone acetyltransferases to deposit different histone acetylation marks in flanking chromatin. At DNA double-strand breaks, E2F1 also recruits RB and the BRG1 ATPase to remodel chromatin and promote loading of the MRE11-RAD50-NBS1 complex. Knock-in mouse models demonstrate important roles for E2F1 post-translational modifications in regulating DNA repair and physiological responses to DNA damage. This review highlights how E2F1 moonlights in DNA repair, thus revealing E2F1 as a versatile protein that recruits many of the same chromatin-modifying enzymes to sites of DNA damage to promote repair that it recruits to gene promoters to regulate transcription.
Collapse
Affiliation(s)
- Swarnalatha Manickavinayaham
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Renier Velez-Cruz
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Anup K. Biswas
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Jie Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Ruifeng Guo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David G. Johnson
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| |
Collapse
|
11
|
Loshchenova PS, Sergeeva SV, Fletcher SC, Dianov GL. The role of Sp1 in the detection and elimination of cells with persistent DNA strand breaks. NAR Cancer 2020; 2:zcaa004. [PMID: 34316684 PMCID: PMC8210011 DOI: 10.1093/narcan/zcaa004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/06/2020] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
Maintenance of genome stability suppresses cancer and other human diseases and is critical for organism survival. Inevitably, during a life span, multiple DNA lesions can arise due to the inherent instability of DNA molecules or due to endogenous or exogenous DNA damaging factors. To avoid malignant transformation of cells with damaged DNA, multiple mechanisms have evolved to repair DNA or to detect and eradicate cells accumulating unrepaired DNA damage. In this review, we discuss recent findings on the role of Sp1 (specificity factor 1) in the detection and elimination of cells accumulating persistent DNA strand breaks. We also discuss how this mechanism may contribute to the maintenance of physiological populations of healthy cells in an organism, thus preventing cancer formation, and the possible application of these findings in cancer therapy.
Collapse
Affiliation(s)
- Polina S Loshchenova
- Department of Natural Sciences, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation.,Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentyeva 10, Novosibirsk 630090, Russian Federation
| | - Svetlana V Sergeeva
- Department of Natural Sciences, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation.,Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentyeva 10, Novosibirsk 630090, Russian Federation
| | - Sally C Fletcher
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Grigory L Dianov
- Department of Natural Sciences, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation.,Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentyeva 10, Novosibirsk 630090, Russian Federation.,Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| |
Collapse
|
12
|
Deng YR, Chen XJ, Chen W, Wu LF, Jiang HP, Lin D, Wang LJ, Wang W, Guo SQ. Sp1 contributes to radioresistance of cervical cancer through targeting G2/M cell cycle checkpoint CDK1. Cancer Manag Res 2019; 11:5835-5844. [PMID: 31303791 PMCID: PMC6610296 DOI: 10.2147/cmar.s200907] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/21/2019] [Indexed: 01/27/2023] Open
Abstract
Background/aims Radioresistance remains a significant obstacle in the therapy of cervical cancer, and the mechanism of it is still unclear. We aimed to investigate the role of specificity protein 1 (Sp1) in radioresistance of cervical cancer. Methods Sp1 was examined immunohistochemically on tissues from 36 human cervical cancer patients. We used RT-qPCR and Western blot to examine the expression of Sp1 in irradiated cervical cancer cell lines SiHa and HeLa. The role of Sp1 in radioresistance of cervical cancer cells was assessed by colony-formation assay and cell cycle analysis. Dual-luciferase reporter assay was performed to detect the downstream of Sp1. Results High Sp1 expression was positively correlated with advanced International Federation of Gynecology and Obstetrics (FIGO) stage, lymph node metastasis, and lymphovascular space invasion (LVSI) of cervical cancer. The expression of Sp1 was dose-dependently increased in irradiated cervical cancer cell lines at both mRNA and protein levels. Colony-formation assay showed that alteration of Sp1 expression affected the survival of cervical cancer cells with radiotherapy (RT) treatment. Knockdown of Sp1 significantly strengthened the cellular response to radiation by inducing G2/M arrest in cervical cancer cells. Overexpression of Sp1 significantly decreased G2/M arrest in cervical cancer cells, which was related to upregulation of CDK1 expression. Dual-luciferase reporter assay showed the direct effect of Sp1 on the transcriptional activation of CDK1. Conclusion Sp1 may contribute to radioresistance through inhibiting G2/M phase arrest by targeting CDK1, and be considered as a potential therapeutic target to promote the effect of RT for patients with cervical cancer.
Collapse
Affiliation(s)
- Yuan-Run Deng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiao-Jing Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wei Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Lan-Fang Wu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Hui-Ping Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Dan Lin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Li-Jing Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Sui-Qun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
13
|
Zhang L, Liu X, Che S, Cui J, Ma X, An X, Cao B, Song Y. Endometrial Epithelial Cell Apoptosis Is Inhibited by a ciR8073-miR181a-Neurotensis Pathway during Embryo Implantation. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 14:262-273. [PMID: 30654188 PMCID: PMC6348770 DOI: 10.1016/j.omtn.2018.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/17/2023]
Abstract
Development of the receptive endometrium (RE) from the pre-receptive endometrium (PE) is essential for embryo implantation, but its molecular mechanisms have not been fully understood. In this study, lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA networks were constructed to explore the functions of potential competing endogenous RNAs (ceRNA) during the development of RE in dairy goats. We observed that circRNA8073 (ciR8073) decreased the levels of miR-181a by acting as a miRNA sponge. This effect indirectly increased the expression of neurotensin in endometrial epithelial cells (EECs). Neurotensin then inhibited EEC apoptosis by increasing the expression of BCL-2/BAX in favor of BCL-2 via the MAPK pathway and also induced increased expression of leukemia-inhibitory factor, cyclo-oxygenase 2, vascular endothelial growth factor A, and homeobox A10. We have thus identified a ciR8073-miR181a-neurotensin pathway in the endometrium of dairy goats. Through this pathway, ciR8073 functions as a ceRNA that sequesters miR-181a, thereby protecting neurotensin transcripts from miR-181a-mediated suppression in EECs.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiaorui Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Sicheng Che
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jiuzeng Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xingna Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
| |
Collapse
|
14
|
Frisan T, Nagy N, Chioureas D, Terol M, Grasso F, Masucci MG. A bacterial genotoxin causes virus reactivation and genomic instability in Epstein-Barr virus infected epithelial cells pointing to a role of co-infection in viral oncogenesis. Int J Cancer 2018; 144:98-109. [PMID: 29978480 PMCID: PMC6587852 DOI: 10.1002/ijc.31652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/10/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022]
Abstract
We have addressed the role of bacterial co‐infection in viral oncogenesis using as model Epstein–Barr virus (EBV), a human herpesvirus that causes lymphoid malignancies and epithelial cancers. Infection of EBV carrying epithelial cells with the common oral pathogenic Gram‐negative bacterium Aggregatibacter actinomycetemcomitans (Aa) triggered reactivation of the productive virus cycle. Using isogenic Aa strains that differ in the production of the cytolethal distending toxin (CDT) and purified catalytically active or inactive toxin, we found that the CDT acts via induction of DNA double strand breaks and activation of the Ataxia Telangectasia Mutated (ATM) kinase. Exposure of EBV‐negative epithelial cells to the virus in the presence of sub‐lethal doses of CDT was accompanied by the accumulation of latently infected cells exhibiting multiple signs of genomic instability. These findings illustrate a scenario where co‐infection with certain bacterial species may favor the establishment of a microenvironment conducive to the EBV‐induced malignant transformation of epithelial cells. What's new? Little is known about the influence of coinfections, especially of bacteria, on viral oncogenesis. Here, the authors examined the effect of the cytolethal distending toxin (CDT) of Aggregatibacter actinomycetemcomitans, a common oral pathogen, on epithelial cells infected with Epstein–Barr virus (EBV). Exposure of EBV+ cells to CDT induced viral reactivation, while exposure of EBV‐ cells to low amounts of CDT led to the accumulation of latently infected cells upon infection, pointing to a multi‐layered role of bacterial co‐infection in viral oncogenesis.
Collapse
Affiliation(s)
- Teresa Frisan
- Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Noemi Nagy
- Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden
| | - Dimitrios Chioureas
- Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden
| | - Marie Terol
- Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden
| | - Francesca Grasso
- Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden
| | - Maria G Masucci
- Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Fletcher SC, Grou CP, Legrand AJ, Chen X, Soderstrom K, Poletto M, Dianov GL. Sp1 phosphorylation by ATM downregulates BER and promotes cell elimination in response to persistent DNA damage. Nucleic Acids Res 2018; 46:1834-1846. [PMID: 29294106 PMCID: PMC5829641 DOI: 10.1093/nar/gkx1291] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 11/15/2022] Open
Abstract
ATM (ataxia-telangiectasia mutated) is a central molecule for DNA quality control. Its activation by DNA damage promotes cell-cycle delay, which facilitates DNA repair prior to replication. On the other hand, persistent DNA damage has been implicated in ATM-dependent cell death via apoptosis; however, the mechanisms underlying this process remain elusive. Here we find that, in response to persistent DNA strand breaks, ATM phosphorylates transcription factor Sp1 and initiates its degradation. We show that Sp1 controls expression of the key base excision repair gene XRCC1, essential for DNA strand break repair. Therefore, degradation of Sp1 leads to a vicious cycle that involves suppression of DNA repair and further aggravation of the load of DNA damage. This activates transcription of pro-apoptotic genes and renders cells susceptible to elimination via both apoptosis and natural killer cells. These findings constitute a previously unrecognized 'gatekeeper' function of ATM as a detector of cells with persistent DNA damage.
Collapse
Affiliation(s)
- Sally C Fletcher
- Department of Oncology, CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Claudia P Grou
- Department of Oncology, CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Arnaud J Legrand
- Department of Oncology, CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Xin Chen
- Department of Oncology, CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
- Department of Marine Technology, College of Ocean, Nantong University, Nantong, Jiangsu, 226007, China
| | - Kalle Soderstrom
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - Mattia Poletto
- Department of Oncology, CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Grigory L Dianov
- Department of Oncology, CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentyeva 10 Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
| |
Collapse
|
16
|
Torabi B, Flashner S, Beishline K, Sowash A, Donovan K, Bassett G, Azizkhan-Clifford J. Caspase cleavage of transcription factor Sp1 enhances apoptosis. Apoptosis 2018; 23:65-78. [PMID: 29236199 DOI: 10.1007/s10495-017-1437-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sp1 is a ubiquitous transcription factor that regulates many genes involved in apoptosis and senescence. Sp1 also has a role in the DNA damage response; at low levels of DNA damage, Sp1 is phosphorylated by ATM and localizes to double-strand break sites where it facilitates DNA double-strand-break repair. Depletion of Sp1 increases the sensitivity of cells to DNA damage, whereas overexpression of Sp1 can drive cells into apoptosis. In response to a variety of stimuli, Sp1 can be regulated through proteolytic cleavage by caspases and/or degradation. Here, we show that activation of apoptosis through DNA damage or TRAIL-mediated activation of the extrinsic apoptotic pathway induces caspase-mediated cleavage of Sp1. Cleavage of Sp1 was coincident with the appearance of cleaved caspase 3, and produced a 70 kDa Sp1 product. In vitro analysis revealed a novel caspase cleavage site at aspartic acid 183. Mutation of aspartic acid 183 to alanine conferred resistance to cleavage, and ectopic expression of the Sp1 D183A rendered cells resistant to apoptotic stimuli, indicating that Sp1 cleavage is involved in the induction of apoptosis. The 70 kDa product resulting from caspase cleavage of Sp1 comprises amino acids 184-785. This truncated form, designated Sp1-70C, which retains transcriptional activity, induced apoptosis when overexpressed in normal epithelial cells, whereas Sp1D183A induced significantly less apoptosis. Together, these data reveal a new caspase cleavage site in Sp1 and demonstrate for the first time that caspase cleavage of Sp1 promotes apoptosis.
Collapse
Affiliation(s)
- Behzad Torabi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Samuel Flashner
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Aislinn Sowash
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Kelly Donovan
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Garrett Bassett
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
17
|
Hau PM, Tsao SW. Epstein-Barr Virus Hijacks DNA Damage Response Transducers to Orchestrate Its Life Cycle. Viruses 2017; 9:v9110341. [PMID: 29144413 PMCID: PMC5707548 DOI: 10.3390/v9110341] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/30/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
The Epstein–Barr virus (EBV) is a ubiquitous virus that infects most of the human population. EBV infection is associated with multiple human cancers, including Burkitt’s lymphoma, Hodgkin’s lymphoma, a subset of gastric carcinomas, and almost all undifferentiated non-keratinizing nasopharyngeal carcinoma. Intensive research has shown that EBV triggers a DNA damage response (DDR) during primary infection and lytic reactivation. The EBV-encoded viral proteins have been implicated in deregulating the DDR signaling pathways. The consequences of DDR inactivation lead to genomic instability and promote cellular transformation. This review summarizes the current understanding of the relationship between EBV infection and the DDR transducers, including ATM (ataxia telangiectasia mutated), ATR (ATM and Rad3-related), and DNA-PK (DNA-dependent protein kinase), and discusses how EBV manipulates the DDR signaling pathways to complete the replication process of viral DNA during lytic reactivation.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Sai Wah Tsao
- School of Biomedical Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
Iwahori S, Umaña AC, VanDeusen HR, Kalejta RF. Human cytomegalovirus-encoded viral cyclin-dependent kinase (v-CDK) UL97 phosphorylates and inactivates the retinoblastoma protein-related p107 and p130 proteins. J Biol Chem 2017; 292:6583-6599. [PMID: 28289097 DOI: 10.1074/jbc.m116.773150] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/09/2017] [Indexed: 01/19/2023] Open
Abstract
The human cytomegalovirus (HCMV)-encoded viral cyclin-dependent kinase (v-CDK) UL97 phosphorylates the retinoblastoma (Rb) tumor suppressor. Here, we identify the other Rb family members p107 and p130 as novel targets of UL97. UL97 phosphorylates p107 and p130 thereby inhibiting their ability to repress the E2F-responsive E2F1 promoter. As with Rb, this phosphorylation, and the rescue of E2F-responsive transcription, is dependent on the L1 LXCXE motif in UL97 and its interacting clefts on p107 and p130. Interestingly, UL97 does not induce the disruption of all p107-E2F or p130-E2F complexes, as it does to Rb-E2F complexes. UL97 strongly interacts with p107 but not Rb or p130. Thus the inhibitory mechanisms of UL97 for Rb family protein-mediated repression of E2F-responsive transcription appear to differ for each of the Rb family proteins. The immediate early 1 (IE1) protein of HCMV also rescues p107- and p130-mediated repression of E2F-responsive gene expression, but it does not induce their phosphorylation and does not disrupt p107-E2F or p130-E2F complexes. The unique regulation of Rb family proteins by HCMV UL97 and IE1 attests to the importance of modulating Rb family protein function in HCMV-infected cells.
Collapse
Affiliation(s)
- Satoko Iwahori
- From the Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Angie C Umaña
- From the Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Halena R VanDeusen
- From the Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Robert F Kalejta
- From the Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
19
|
Hellweg CE, Spitta LF, Henschenmacher B, Diegeler S, Baumstark-Khan C. Transcription Factors in the Cellular Response to Charged Particle Exposure. Front Oncol 2016; 6:61. [PMID: 27047795 PMCID: PMC4800317 DOI: 10.3389/fonc.2016.00061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/03/2016] [Indexed: 12/23/2022] Open
Abstract
Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor's p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles' LET, with a maximal activation in the LET range of 90-300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also neighboring cells in the bystander effect.
Collapse
Affiliation(s)
- Christine E. Hellweg
- Cellular Biodiagnostics, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Luis F. Spitta
- Cellular Biodiagnostics, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Bernd Henschenmacher
- Cellular Biodiagnostics, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Sebastian Diegeler
- Cellular Biodiagnostics, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Christa Baumstark-Khan
- Cellular Biodiagnostics, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| |
Collapse
|
20
|
Iordanskiy S, Kashanchi F. Potential of Radiation-Induced Cellular Stress for Reactivation of Latent HIV-1 and Killing of Infected Cells. AIDS Res Hum Retroviruses 2016; 32:120-4. [PMID: 26765533 DOI: 10.1089/aid.2016.0006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of highly active antiretroviral therapy against HIV-1 for last two decades has reduced mortality of patients through extension of nonsymptomatic phase of infection. However, HIV-1 can be preserved in long-lived resting CD4(+) T cells, which form a viral reservoir in infected individuals, and potentially in macrophages and astrocytes. Reactivation of viral replication is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus (shock and kill strategy). In this opinion piece, we consider potential application of therapeutic doses of irradiation, the well-known and effective stress signal that induces DNA damage and activates cellular stress response, to resolve two problems: activate HIV-1 replication and virion production in persistent reservoirs under cART and deplete infected cells through selective cell killing using DNA damage responses.
Collapse
Affiliation(s)
- Sergey Iordanskiy
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia
| |
Collapse
|
21
|
Iordanskiy S, Van Duyne R, Sampey GC, Woodson CM, Fry K, Saifuddin M, Guo J, Wu Y, Romerio F, Kashanchi F. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells. Virology 2015; 485:1-15. [PMID: 26184775 DOI: 10.1016/j.virol.2015.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/13/2015] [Accepted: 06/16/2015] [Indexed: 01/17/2023]
Abstract
The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4(+) T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4(+) T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4(+) T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the "Shock and Kill" strategy for latently HIV-1 infected cells.
Collapse
Affiliation(s)
- Sergey Iordanskiy
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Rachel Van Duyne
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Gavin C Sampey
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Caitlin M Woodson
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Kelsi Fry
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Mohammed Saifuddin
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Jia Guo
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Yuntao Wu
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Fabio Romerio
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Fatah Kashanchi
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
22
|
WANG WENJIE, SHENG WENJIONG, YU CHENXIAO, CAO JIANPING, ZHOU JUNDONG, WU JINCHANG, ZHANG HUOJUN, ZHANG SHUYU. REV3L modulates cisplatin sensitivity of non-small cell lung cancer H1299 cells. Oncol Rep 2015; 34:1460-8. [DOI: 10.3892/or.2015.4121] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/03/2015] [Indexed: 11/05/2022] Open
|
23
|
Dupuis-Maurin V, Brinza L, Baguet J, Plantamura E, Schicklin S, Chambion S, Macari C, Tomkowiak M, Deniaud E, Leverrier Y, Marvel J, Michallet MC. Overexpression of the transcription factor Sp1 activates the OAS-RNAse L-RIG-I pathway. PLoS One 2015; 10:e0118551. [PMID: 25738304 PMCID: PMC4349862 DOI: 10.1371/journal.pone.0118551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 01/20/2015] [Indexed: 12/13/2022] Open
Abstract
Deregulated expression of oncogenes or transcription factors such as specificity protein 1 (Sp1) is observed in many human cancers and plays a role in tumor maintenance. Paradoxically in untransformed cells, Sp1 overexpression induces late apoptosis but the early intrinsic response is poorly characterized. In the present work, we studied increased Sp1 level consequences in untransformed cells and showed that it turns on an early innate immune transcriptome. Sp1 overexpression does not activate known cellular stress pathways such as DNA damage response or endoplasmic reticulum stress, but induces the activation of the OAS-RNase L pathway and the generation of small self-RNAs, leading to the upregulation of genes of the antiviral RIG-I pathway at the transcriptional and translational levels. Finally, Sp1-induced intrinsic innate immune response leads to the production of the chemokine CXCL4 and to the recruitment of inflammatory cells in vitro and in vivo. Altogether our results showed that increased Sp1 level in untransformed cells constitutes a novel danger signal sensed by the OAS-RNase L axis leading to the activation of the RIG-I pathway. These results suggested that the OAS-RNase L-RIG-I pathway may be activated in sterile condition in absence of pathogen.
Collapse
Affiliation(s)
- Valéryane Dupuis-Maurin
- Centre International de Recherche en Infectiologie, INSERM U111-CNRS UMR5308, Université de Lyon 1, ENS de Lyon, Lyon, France
| | - Lilia Brinza
- Centre International de Recherche en Infectiologie, INSERM U111-CNRS UMR5308, Université de Lyon 1, ENS de Lyon, Lyon, France
| | - Joël Baguet
- Centre International de Recherche en Infectiologie, INSERM U111-CNRS UMR5308, Université de Lyon 1, ENS de Lyon, Lyon, France
| | - Emilie Plantamura
- Centre International de Recherche en Infectiologie, INSERM U111-CNRS UMR5308, Université de Lyon 1, ENS de Lyon, Lyon, France
| | - Stéphane Schicklin
- Centre International de Recherche en Infectiologie, INSERM U111-CNRS UMR5308, Université de Lyon 1, ENS de Lyon, Lyon, France
| | - Solène Chambion
- Centre International de Recherche en Infectiologie, INSERM U111-CNRS UMR5308, Université de Lyon 1, ENS de Lyon, Lyon, France
| | - Claire Macari
- Centre International de Recherche en Infectiologie, INSERM U111-CNRS UMR5308, Université de Lyon 1, ENS de Lyon, Lyon, France
| | - Martine Tomkowiak
- Centre International de Recherche en Infectiologie, INSERM U111-CNRS UMR5308, Université de Lyon 1, ENS de Lyon, Lyon, France
| | - Emmanuelle Deniaud
- Centre International de Recherche en Infectiologie, INSERM U111-CNRS UMR5308, Université de Lyon 1, ENS de Lyon, Lyon, France
| | - Yann Leverrier
- Centre International de Recherche en Infectiologie, INSERM U111-CNRS UMR5308, Université de Lyon 1, ENS de Lyon, Lyon, France
| | - Jacqueline Marvel
- Centre International de Recherche en Infectiologie, INSERM U111-CNRS UMR5308, Université de Lyon 1, ENS de Lyon, Lyon, France
| | - Marie-Cécile Michallet
- Centre International de Recherche en Infectiologie, INSERM U111-CNRS UMR5308, Université de Lyon 1, ENS de Lyon, Lyon, France
| |
Collapse
|
24
|
ATM Regulates Adipocyte Differentiation and Contributes to Glucose Homeostasis. Cell Rep 2015; 10:957-967. [DOI: 10.1016/j.celrep.2015.01.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 12/16/2014] [Accepted: 01/09/2015] [Indexed: 01/13/2023] Open
|
25
|
Beishline K, Azizkhan-Clifford J. Sp1 and the 'hallmarks of cancer'. FEBS J 2015; 282:224-58. [PMID: 25393971 DOI: 10.1111/febs.13148] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
For many years, transcription factor Sp1 was viewed as a basal transcription factor and relegated to a role in the regulation of so-called housekeeping genes. Identification of Sp1's role in recruiting the general transcription machinery in the absence of a TATA box increased its importance in gene regulation, particularly in light of recent estimates that the majority of mammalian genes lack a TATA box. In this review, we briefly consider the history of Sp1, the founding member of the Sp family of transcription factors. We review the evidence suggesting that Sp1 is highly regulated by post-translational modifications that positively and negatively affect the activity of Sp1 on a wide array of genes. Sp1 is over-expressed in many cancers and is associated with poor prognosis. Targeting Sp1 in cancer treatment has been suggested; however, our review of the literature on the role of Sp1 in the regulation of genes that contribute to the 'hallmarks of cancer' illustrates the extreme complexity of Sp1 functions. Sp1 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, as well as genes involved in essential cellular functions, including proliferation, differentiation, the DNA damage response, apoptosis, senescence and angiogenesis. Sp1 is also implicated in inflammation and genomic instability, as well as epigenetic silencing. Given the apparently opposing effects of Sp1, a more complete understanding of the function of Sp1 in cancer is required to validate its potential as a therapeutic target.
Collapse
Affiliation(s)
- Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
26
|
Hau PM, Deng W, Jia L, Yang J, Tsurumi T, Chiang AKS, Huen MSY, Tsao SW. Role of ATM in the formation of the replication compartment during lytic replication of Epstein-Barr virus in nasopharyngeal epithelial cells. J Virol 2015; 89:652-68. [PMID: 25355892 PMCID: PMC4301132 DOI: 10.1128/jvi.01437-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 10/10/2014] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV), a type of oncogenic herpesvirus, is associated with human malignancies. Previous studies have shown that lytic reactivation of EBV in latently infected cells induces an ATM-dependent DNA damage response (DDR). The involvement of ATM activation has been implicated in inducing viral lytic gene transcription to promote lytic reactivation. Its contribution to the formation of a replication compartment during lytic reactivation of EBV remains poorly defined. In this study, the role of ATM in viral DNA replication was investigated in EBV-infected nasopharyngeal epithelial cells. We observed that induction of lytic infection of EBV triggers ATM activation and localization of DDR proteins at the viral replication compartments. Suppression of ATM activity using a small interfering RNA (siRNA) approach or a specific chemical inhibitor profoundly suppressed replication of EBV DNA and production of infectious virions in EBV-infected cells induced to undergo lytic reactivation. We further showed that phosphorylation of Sp1 at the serine-101 residue is essential in promoting the accretion of EBV replication proteins at the replication compartment, which is crucial for replication of viral DNA. Knockdown of Sp1 expression by siRNA effectively suppressed the replication of viral DNA and localization of EBV replication proteins to the replication compartments. Our study supports an important role of ATM activation in lytic reactivation of EBV in epithelial cells, and phosphorylation of Sp1 is an essential process downstream of ATM activation involved in the formation of viral replication compartments. Our study revealed an essential role of the ATM-dependent DDR pathway in lytic reactivation of EBV, suggesting a potential antiviral replication strategy using specific DDR inhibitors. IMPORTANCE Epstein-Barr virus (EBV) is closely associated with human malignancies, including undifferentiated nasopharyngeal carcinoma (NPC), which has a high prevalence in southern China. EBV can establish either latent or lytic infection depending on the cellular context of infected host cells. Recent studies have highlighted the importance of the DNA damage response (DDR), a surveillance mechanism that evolves to maintain genome integrity, in regulating lytic EBV replication. However, the underlying molecular events are largely undefined. ATM is consistently activated in EBV-infected epithelial cells when they are induced to undergo lytic reactivation. Suppression of ATM inhibits replication of viral DNA. Furthermore, we observed that phosphorylation of Sp1 at the serine-101 residue, a downstream event of ATM activation, plays an essential role in the formation of viral replication compartments for replication of virus DNA. Our study provides new insights into the mechanism through which EBV utilizes the host cell machinery to promote replication of viral DNA upon lytic reactivation.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Wen Deng
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Lin Jia
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Jie Yang
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Tatsuya Tsurumi
- Division of Virology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Alan Kwok Shing Chiang
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Michael Shing-Yan Huen
- Genome Stability Research Laboratory, Department of Anatomy and Centre for Cancer Research, The University of Hong Kong, Hong Kong SAR
| | - Sai Wah Tsao
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
27
|
Ghandhi SA, Ponnaiya B, Panigrahi SK, Hopkins KM, Cui Q, Hei TK, Amundson SA, Lieberman HB. RAD9 deficiency enhances radiation induced bystander DNA damage and transcriptomal response. Radiat Oncol 2014; 9:206. [PMID: 25234738 PMCID: PMC4261775 DOI: 10.1186/1748-717x-9-206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Radiation induced bystander effects are an important component of the overall response of cells to irradiation and are associated with human health risks. The mechanism responsible includes intra-cellular and inter-cellular signaling by which the bystander response is propagated. However, details of the signaling mechanism are not well defined. METHODS We measured the bystander response of Mrad9+/+ and Mrad9-/- mouse embryonic stem cells, as well as human H1299 cells with inherent or RNA interference-mediated reduced RAD9 levels after exposure to 1 Gy α particles, by scoring chromosomal aberrations and micronuclei formation, respectively. In addition, we used microarray gene expression analyses to profile the transcriptome of directly irradiated and bystander H1299 cells. RESULTS We demonstrated that Mrad9 null enhances chromatid aberration frequency induced by radiation in bystander mouse embryonic stem cells. In addition, we found that H1299 cells with reduced RAD9 protein levels showed a higher frequency of radiation induced bystander micronuclei formation, compared with parental cells containing inherent levels of RAD9. The enhanced bystander response in human cells was associated with a unique transcriptomic profile. In unirradiated cells, RAD9 reduction broadly affected stress response pathways at the mRNA level; there was reduction in transcript levels corresponding to genes encoding multiple members of the UVA-MAPK and p38MAPK families, such as STAT1 and PARP1, suggesting that these signaling mechanisms may not function optimally when RAD9 is reduced. Using network analysis, we found that differential activation of the SP1 and NUPR1 transcriptional regulators was predicted in directly irradiated and bystander H1299 cells. Transcription factor prediction analysis also implied that HIF1α (Hypoxia induced factor 1 alpha) activation by protein stabilization in irradiated cells could be a negative predictor of the bystander response, suggesting that local hypoxic stress experienced by cells directly exposed to radiation may influence whether or not they will elicit a bystander response in neighboring cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Howard B Lieberman
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
28
|
Malewicz M, Perlmann T. Function of transcription factors at DNA lesions in DNA repair. Exp Cell Res 2014; 329:94-100. [PMID: 25173987 DOI: 10.1016/j.yexcr.2014.08.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022]
Abstract
Cellular systems for DNA repair ensure prompt removal of DNA lesions that threaten the genomic stability of the cell. Transcription factors (TFs) have long been known to facilitate DNA repair via transcriptional regulation of specific target genes encoding key DNA repair proteins. However, recent findings identified TFs as DNA repair components acting directly at the DNA lesions in a transcription-independent fashion. Together this recent progress is consistent with the hypothesis that TFs have acquired the ability to localize DNA lesions and function by facilitating chromatin remodeling at sites of damaged DNA. Here we review these recent findings and discuss how TFs may function in DNA repair.
Collapse
Affiliation(s)
- Michal Malewicz
- MRC Toxicology Unit, Lancaster Road, Leicester LE1 9HN, United Kingdom.
| | - Thomas Perlmann
- Ludwig Institute for Cancer Research (LICR), Department of Cell and Molecular Biology (CMB), Karolinska Institute, Nobels väg 3, S-171 77 Stockholm, Sweden
| |
Collapse
|
29
|
Liu Y, Xie K, Wen J, Deng M, Li J, Hu Z. A genetic variant in microRNA-122 regulatory region confers risk for chronic hepatitis B virus infection and hepatocellular carcinoma in Han Chinese. J Med Virol 2014; 86:1669-74. [PMID: 24995424 DOI: 10.1002/jmv.23996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2014] [Indexed: 12/12/2022]
Abstract
miR-122 plays a vital role in the development of chronic hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC). Based on data from the Encyclopedia of DNA Elements (ENCODE), two single nucleotide polymorphisms (SNPs), rs4309483 and rs4503880, were identified in the upstream regulatory region of miR-122. A case-control study consisting of 1,300 HBV-positive HCC cases, 1,344 HBV carriers, and 1,344 persons who cleared HBV naturally was carried out to test the association between the two SNPs and the risk for chronic HBV infection and HCC. The CA/AA genotypes of rs4309483 were associated with significantly increased risk for HCC [adjusted odds ratio (OR) = 1.21, 95% confidence intervals (CIs) = 1.02-1.43, P = 0.025] compared with HBV carriers, but decreased risk for chronic HBV infection (adjusted OR = 0.82, 95% CIs = 0.70-0.97, P = 0.017) compared with persons who cleared HBV naturally. The genotype-expression correlation between rs4309483 and the expression of primary or mature miR-122 expression was investigated in 29 pairs of HBV positive HCC and noncancerous liver tissues. In noncancerous liver tissues, subjects carrying the CA genotype exhibited significantly lower expression level of pri-miR-122 than those carrying the CC genotype. In addition, positive or inverse correlation between the expression levels of pri-miR-122 and mature miR-122 were observed in HCC tissues or noncancerous tissues, respectively. These findings indicate that the C to A base change of rs4309483 may alter the expression of miR-122, thus providing protective effect from chronic HBV infection but an increased risk for HCC in HBV carriers.
Collapse
Affiliation(s)
- Yao Liu
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, MOE Key Laboratory of Modern Toxicology, and State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | | | | | | | | | | |
Collapse
|
30
|
Nishida Y, Mizutani N, Inoue M, Omori Y, Tamiya-Koizumi K, Takagi A, Kojima T, Suzuki M, Nozawa Y, Minami Y, Ohnishi K, Naoe T, Murate T. Phosphorylated Sp1 is the regulator of DNA-PKcs and DNA ligase IV transcription of daunorubicin-resistant leukemia cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:265-74. [PMID: 24530422 DOI: 10.1016/j.bbagrm.2014.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/01/2014] [Accepted: 02/06/2014] [Indexed: 01/29/2023]
Abstract
Multidrug resistance (MDR) is a serious problem faced in the treatment of malignant tumors. In this study, we characterized the expression of non-homologous DNA end joining (NHEJ) components, a major DNA double strand break (DSB) repair mechanism in mammals, in K562 cell and its daunorubicin (DNR)-resistant subclone (K562/DNR). K562/DNR overexpressed major enzymes of NHEJ, DNA-PKcs and DNA ligase IV, and K562/DNR repaired DSB more rapidly than K562 after DNA damage by neocarzinostatin (MDR1-independent radiation-mimetic). Overexpressed DNA-PKcs and DNA ligase IV were also observed in DNR-resistant HL60 (HL60/DNR) cells as compared with parental HL60 cells. Expression level of DNA-PKcs mRNA paralleled its protein level, and the promoter activity of DNA-PKcs of K562/DNR was higher than that of K562, and the 5'-region between -49bp and the first exon was important for its activity. Because this region is GC-rich, we tried to suppress Sp1 family transcription factor using mithramycin A (MMA), a specific Sp1 family inhibitor, and siRNAs for Sp1 and Sp3. Both MMA and siRNAs suppressed DNA-PKcs expression. Higher serine-phosphorylated Sp1 but not total Sp1 of both K562/DNR and HL60/DNR was observed compared with their parental K562 and HL60 cells. DNA ligase IV expression of K562/DNR was also suppressed significantly with Sp1 family protein inhibition. EMSA and ChIP assay confirmed higher binding of Sp1 and Sp3 with DNA-PKcs 5'-promoter region of DNA-PKcs of K562/DNR than that of K562. Thus, the Sp1 family transcription factor affects important NHEJ component expressions in anti-cancer drug-resistant malignant cells, leading to the more aggressive MDR phenotype.
Collapse
Affiliation(s)
- Yayoi Nishida
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Mizutani
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Minami Inoue
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukari Omori
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Tamiya-Koizumi
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Takagi
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuhito Kojima
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motoshi Suzuki
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Yosuke Minami
- Division of Blood Transfusion/Division of Oncology and Hematology, Kobe University Hospital, Kobe, Japan
| | - Kazunori Ohnishi
- Oncology Center, Hamamatsu University Graduate School of Medicine, Hamamatsu, Japan
| | - Tomoki Naoe
- National Hospital Organization, Nagoya Medical Center, Nagoya, Japan
| | - Takashi Murate
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
31
|
Transcriptional activation of p21(WAF¹/CIP¹) is mediated by increased DNA binding activity and increased interaction between p53 and Sp1 via phosphorylation during replicative senescence of human embryonic fibroblasts. Mol Biol Rep 2014; 41:2397-408. [PMID: 24445528 DOI: 10.1007/s11033-014-3094-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 01/04/2014] [Indexed: 12/11/2022]
Abstract
Although p21(WAF1/CIP1) is known to be elevated during replicative senescence of human embryonic fibroblasts (HEFs), the mechanism for p21 up-regulation has not been elucidated clearly. In order to explore the mechanism, we analyzed expression of p21 mRNA and protein and luciferase activity of full-length p21 promoter. The result demonstrated that p21 up-regulation was accomplished largely at transcription level. The promoter assay using serially-deleted p21 promoter constructs revealed that p53 binding site was the most important site and Sp1 binding sites were necessary but not sufficient for transcriptional activation of p21. In addition, p53 protein was shown to interact with Sp1 protein. The interaction was increased in aged fibroblasts and was regulated by phosphorylation of p53 and Sp1. DNA binding activity of p53 was significantly elevated in aged fibroblasts but that of Sp1 was not. DNA binding activities of p53 and Sp1 were also regulated by phosphorylation. Phosphorylation of p53 at serine-15 and of Sp1 at serines appears to be involved. Taken together, the result demonstrated that p21 transcription during replicative senescence of HEFs is up-regulated by increase in DNA binding activity and interaction between p53 and Sp1 via phosphorylation.
Collapse
|
32
|
Rieswijk L, Lizarraga D, Brauers KJJ, Kleinjans JCS, van Delft JHM. Characterisation of cisplatin-induced transcriptomics responses in primary mouse hepatocytes, HepG2 cells and mouse embryonic stem cells shows conservation of regulating transcription factor networks. Mutagenesis 2013; 29:17-26. [DOI: 10.1093/mutage/get055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Doxorubicin promotes transcriptional upregulation of Cdc25B in cancer cells by releasing Sp1 from the promoter. Oncogene 2012; 32:5123-8. [PMID: 23160377 DOI: 10.1038/onc.2012.524] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 01/10/2023]
Abstract
Cdc25B phosphatases have a key role in G2/M cell-cycle progression by activating the CDK1-cyclinB1 complexes and functioning as important targets of checkpoints. Overexpression of Cdc25B results in a bypass of the G2/M checkpoint and illegitimate entry into mitosis. It can also cause replicative stress, which leads to genomic instability. Thus, fine-tuning of the Cdc25B expression level is critical for correct cell-cycle arrest in response to DNA damage. In response to genotoxic stress, Cdc25B is mainly regulated by post-transcriptional mechanisms affecting either Cdc25B protein stability or translation. Here, we show that upon DNA damage Cdc25B can be regulated at the transcriptional level. Although ionizing radiation downregulates Cdc25B in a p53-dependent pathway, doxorubicin transcriptionally upregulates Cdc25B in p53-proficient cancer cells. We show that in the presence of wild-type p53, doxorubicin activates the Cdc25B promoter by preventing the binding of Sp1 and increasing the binding of NF-Y on the Cdc25B promoter, thus preventing p53 from downregulating this promoter. Our results highlight the mechanistically distinct regulation of the three Cdc25 phosphatases by checkpoint signalling following doxorubicin treatment.
Collapse
|
34
|
Xu W, Zhu Q, Wu Z, Guo H, Wu F, Mashausi DS, Zheng C, Li D. A Novel Evolutionarily Conserved Element Is a General Transcriptional Repressor of p21WAF1/CIP1. Cancer Res 2012; 72:6236-46. [DOI: 10.1158/0008-5472.can-12-1236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Sumitomo Y, Higashitsuji H, Higashitsuji H, Liu Y, Fujita T, Sakurai T, Candeias MM, Itoh K, Chiba T, Fujita J. Identification of a novel enhancer that binds Sp1 and contributes to induction of cold-inducible RNA-binding protein (cirp) expression in mammalian cells. BMC Biotechnol 2012; 12:72. [PMID: 23046908 PMCID: PMC3534229 DOI: 10.1186/1472-6750-12-72] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/09/2012] [Indexed: 11/26/2022] Open
Abstract
Background There are a growing number of reports on the sub-physiological temperature culturing of mammalian cells for increased recombinant protein yields. However, the effect varies and the reasons for the enhancement are not fully elucidated. Expression of cold-inducible RNA-binding protein (cirp, also called cirbp or hnRNP A18) is known to be induced in response to mild, but not severe, hypothermia in mammalian cells. To clarify the molecular mechanism underlying the induction and to exploit this to improve the productivity of recombinant proteins, we tried to identify the regulatory sequence(s) in the 5′ flanking region of the mouse cirp gene. Results By transiently transfecting HEK293 cells with plasmids expressing chloramphenicol acetyltransferase as a reporter, we found that the cirp 5′ flanking region octanucleotide 5′-TCCCCGCC-3′ is a mild-cold responsive element (MCRE). When 3 copies of MCRE were placed upstream of the CMV promoter and used in transient transfection, reporter gene expression was increased 3- to 7-fold at 32°C relative to 37°C in various cell lines including HEK293, U-2 OS, NIH/3T3, BALB/3T3 and CHO-K1 cells. In stable transfectants, MCRE also enhanced the reporter gene expression at 32°C, although more copy numbers of MCRE were necessary. Sp1 transcription factor bound to MCRE in vitro. Immunohistochemistry and chromatin immunoprecipitation assays demonstrated that more Sp1, but not Sp3, was localized in the nucleus to bind to the cirp regulatory region containing MCRE at 32°C than 37°C. Overexpression of Sp1 protein increased the expression of endogenous Cirp as well as a reporter gene driven by the 5′ flanking region of the cirp gene, and down-regulation of Sp1 had the opposite effect. Mutations within the MCRE sequence in the 5′ flanking region abolished the effects of Sp1 on the reporter gene expression both at 37°C and 32°C. Conclusions Cold-induced, as well as constitutive, expression of cirp is dependent, at least partly, on MCRE and Sp1. The present novel enhancer permits conditional high-level gene expression at moderately low culture temperatures and could be utilized to increase the yield of recombinant proteins in mammalian cells.
Collapse
Affiliation(s)
- Yasuhiko Sumitomo
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Transcriptional regulation by post-transcriptional modification—Role of phosphorylation in Sp1 transcriptional activity. Gene 2012; 508:1-8. [DOI: 10.1016/j.gene.2012.07.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/22/2012] [Accepted: 07/16/2012] [Indexed: 01/05/2023]
|
37
|
Beishline K, Kelly CM, Olofsson BA, Koduri S, Emrich J, Greenberg RA, Azizkhan-Clifford J. Sp1 facilitates DNA double-strand break repair through a nontranscriptional mechanism. Mol Cell Biol 2012; 32:3790-9. [PMID: 22826432 PMCID: PMC3430196 DOI: 10.1128/mcb.00049-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 07/08/2012] [Indexed: 12/18/2022] Open
Abstract
Sp1 is a ubiquitously expressed transcription factor that is phosphorylated by ataxia telangiectasia mutated kinase (ATM) in response to ionizing radiation and H(2)O(2). Here, we show by indirect immunofluorescence that Sp1 phosphorylated on serine 101 (pSp1) localizes to ionizing radiation-induced foci with phosphorylated histone variant γH2Ax and members of the MRN (Mre11, Rad50, and Nbs1) complex. More precise analysis of occupancy of DNA double-strand breaks (DSBs) by chromatin immunoprecipitation (ChIP) shows that Sp1, like Nbs1, resides within 200 bp of DSBs. Using laser microirradiation of cells, we demonstrate that pSp1 is present at DNA DSBs by 7.5 min after induction of damage and remains at the break site for at least 8 h. Depletion of Sp1 inhibits repair of site-specific DNA breaks, and the N-terminal 182-amino-acid peptide, which contains targets of ATM kinase but lacks the zinc finger DNA binding domain, is phosphorylated, localizes to DSBs, and rescues the repair defect resulting from Sp1 depletion. Together, these data demonstrate that Sp1 is rapidly recruited to the region immediately adjacent to sites of DNA DSBs and is required for DSB repair, through a mechanism independent of its sequence-directed transcriptional effects.
Collapse
Affiliation(s)
- Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Crystal M. Kelly
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Beatrix A. Olofsson
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Sravanthi Koduri
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jacqueline Emrich
- Department of Radiation Oncology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Roger A. Greenberg
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Saito M, Kohara M, Tsukiyama-Kohara K. Hepatitis C virus promotes expression of the 3β-hydroxysterol δ24-reductase through Sp1. J Med Virol 2012; 84:733-46. [PMID: 22431021 DOI: 10.1002/jmv.23250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatitis C virus (HCV) establishes chronic infection, which often causes hepatocellular carcinoma. Overexpression of 3β-hydroxysterol Δ24-reductase (DHCR24) by HCV has been shown to impair the p53-mediated cellular response, resulting in tumorigenesis. In the present study, the molecular mechanism by which HCV promotes the expression of DHCR24 was investigated. A significant increase in DHCR24 mRNA transcription was observed in a cell line expressing complete HCV genome, whereas no significant difference in the expression of DHCR24 was seen in cell lines expressing individual viral proteins. The 5'-flanking genomic region of DHCR24 was characterized to explore the genomic region and host factor(s) involved in the transcriptional regulation of DHCR24. As a result, the HCV response element (-167/-140) was identified, which contains AP-2α, MZF-1, and Sp1 binding motifs. The binding affinity of the host factor to this response element was increased in nuclear extracts from cells infected with HCV and corresponded with augmented affinity of Sp1. Both mithramycin A (Sp1 inhibitor) and small interfering RNA targeting Sp1 prevented the binding of host factors to the response element. Silencing of Sp1 also downregulated the increased expression of DHCR24. The binding affinity of Sp1 to the response element was augmented by oxidative stress, whereas upregulation of DHCR24 in cells expressing HCV was blocked significantly by a reactive oxygen species scavenger. Elevated phosphorylation of Sp1 in response to oxidative stress was mediated by the ATM kinase. Thus, activation of Sp1 by oxidative stress is involved in the promotion of expression of DHCR24 by HCV.
Collapse
Affiliation(s)
- Makoto Saito
- Department of Experimental Phylaxiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | | |
Collapse
|
39
|
Magkoufopoulou C, Claessen SMH, Tsamou M, Jennen DGJ, Kleinjans JCS, van Delft JHM. A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis 2012; 33:1421-9. [PMID: 22623647 DOI: 10.1093/carcin/bgs182] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The lack of accurate in vitro assays for predicting in vivo toxicity of chemicals together with new legislations demanding replacement and reduction of animal testing has triggered the development of alternative methods. This study aimed at developing a transcriptomics-based in vitro prediction assay for in vivo genotoxicity. Transcriptomics changes induced in the human liver cell line HepG2 by 34 compounds after treatment for 12, 24, and 48 h were used for the selection of gene-sets that are capable of discriminating between in vivo genotoxins (GTX) and in vivo nongenotoxins (NGTX). By combining transcriptomics with publicly available results for these chemicals from standard in vitro genotoxicity studies, we developed several prediction models. These models were validated by using an additional set of 28 chemicals. The best prediction was achieved after stratification of chemicals according to results from the Ames bacterial gene mutation assay prior to transcriptomics evaluation after 24h of treatment. A total of 33 genes were selected for discriminating GTX from NGTX for Ames-positive chemicals and 22 for Ames-negative chemicals. Overall, this method resulted in 89% accuracy and 91% specificity, thereby clearly outperforming the standard in vitro test battery. Transcription factor network analysis revealed HNF3a, HNF4a, HNF6, androgen receptor, and SP1 as main factors regulating the expression of classifiers for Ames-positive chemicals. Thus, the classical bacterial gene mutation assay in combination with in vitro transcriptomics in HepG2 is proposed as an upgraded in vitro approach for predicting in vivo genotoxicity of chemicals holding a great promise for reducing animal experimentations on genotoxicity.
Collapse
Affiliation(s)
- C Magkoufopoulou
- Department of Toxicogenomics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Payne CM, Holubec H, Crowley-Skillicorn C, Nguyen H, Bernstein H, Wilcox G, Bernstein C. Maspin is a deoxycholate-inducible, anti-apoptotic stress-response protein differentially expressed during colon carcinogenesis. Clin Exp Gastroenterol 2011; 4:239-53. [PMID: 22162927 PMCID: PMC3234125 DOI: 10.2147/ceg.s24093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increased maspin expression in the colon is related to colon cancer risk and patient survival. Maspin is induced by the hydrophobic bile acid, deoxycholate (DOC), which is an endogenous carcinogen and inducer of oxidative stress and DNA damage in the colon. Persistent exposure of colon epithelial cells, in vitro, to high physiologic levels of DOC results in increased constitutive levels of maspin protein expression associated with the development of apoptosis resistance. When an apoptosis-resistant colon epithelial cell line (HCT-116RC) developed in the authors' laboratory was treated with a maspin-specific siRNA probe, there was a statistically significant increase in apoptosis compared to treatment with an siRNA control probe. These results indicate, for the first time, that maspin is an anti-apoptotic protein in the colon. Immunohistochemical evaluation of maspin expression in human colonic epithelial cells during sporadic colon carcinogenesis (131 human tissues evaluated) indicated a statistically significant increase in maspin protein expression beginning at the polyp stage of carcinogenesis. There was no statistically significant difference in maspin expression between hyperplastic/adenomatous polyps and colonic adenocarcinomas. The absence of "field defects" in the non-neoplastic colonic mucosa of patients with colonic neoplasia indicates that maspin may drive the growth of tumors, in part, through its anti-apoptotic function.
Collapse
Affiliation(s)
- Claire M Payne
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona
| | | | | | | | | | | | | |
Collapse
|
41
|
Infantino V, Convertini P, Iacobazzi F, Pisano I, Scarcia P, Iacobazzi V. Identification of a novel Sp1 splice variant as a strong transcriptional activator. Biochem Biophys Res Commun 2011; 412:86-91. [PMID: 21798247 DOI: 10.1016/j.bbrc.2011.07.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 07/11/2011] [Indexed: 02/03/2023]
Abstract
The transcription factor Sp1 regulates expression of numerous genes involved in many cellular processes. Different post-transcriptional modifications can influence the transcriptional control activity and stability of Sp1. In addition to these modifications, alternative splicing isoforms may also be the basis of its distinct functional activities. In this study, we identified a novel alternative splice isoform of Sp1 named Sp1c. This variant is generated by exclusion of a short domain, which we designate α, through alternative splice acceptor site usage in the exon 3. The existence of this new isoform was confirmed in vivo by Western blotting analysis. Although at very low levels, Sp1c is ubiquitously expressed, as seen in its full-length Sp1. A preliminary characterization of Sp1c shows that: (a) Sp1c works as stronger activator of transcription than full-length Sp1; (b) percentage of HEK293 Sp1c-overexpressing cells is higher in G1 phase and lower in S phase than percentage of HEK293 Sp1-overexpressing cells.
Collapse
Affiliation(s)
- Vittoria Infantino
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Magkoufopoulou C, Claessen S, Jennen D, Kleinjans J, van Delft J. Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis 2011; 26:593-604. [DOI: 10.1093/mutage/ger021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
43
|
Gu Y, Fan S, Xiong Y, Peng B, Zheng G, Yu Y, Ouyang Y, He Z. Cloning and functional characterization of TCRP1, a novel gene mediating resistance to cisplatin in an oral squamous cell carcinoma cell line. FEBS Lett 2011; 585:881-7. [PMID: 21334329 DOI: 10.1016/j.febslet.2010.12.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/26/2010] [Accepted: 12/29/2010] [Indexed: 11/18/2022]
Abstract
To explore the mechanisms of chemotherapy resistance, we previously established a multi-drug resistant cell line, Tca8113/Pingyangmycin (Tca8113/PYM) and identified differential expression in known genes and ESTs using microarray analysis. From among those ESTs we have now identified a novel gene producing an mRNA of 1834 nucleotides translated into a protein having 235 amino acids. This gene was denominated as tongue cancer resistance-associated protein 1 gene (TCRP1, accession number: EF363480). We further determined its functional characteristics. The results demonstrate that TCRP1 mediates a specific resistance to cisplatin in Tca8113 cells by reducing the cisplatin-induced apoptosis. This suggests that TCRP1 might be a novel molecular target to develop agents to reverse cisplatin-induced chemoresistance.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cisplatin/pharmacology
- Cloning, Molecular
- Comet Assay
- Cytoplasm/metabolism
- DNA Damage
- DNA, Neoplasm/genetics
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/genetics
- Flow Cytometry
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Microscopy, Fluorescence
- Proteins/genetics
- Proteins/metabolism
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
- Tongue Neoplasms/genetics
- Tongue Neoplasms/metabolism
- Tongue Neoplasms/pathology
Collapse
Affiliation(s)
- Yixue Gu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bertoni A, Giuliano P, Galgani M, Rotoli D, Ulianich L, Adornetto A, Santillo MR, Porcellini A, Avvedimento VE. Early and late events induced by polyQ-expanded proteins: identification of a common pathogenic property of polYQ-expanded proteins. J Biol Chem 2010; 286:4727-41. [PMID: 21115499 DOI: 10.1074/jbc.m110.156521] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To find a common pathogenetic trait induced by polyQ-expanded proteins, we have used a conditional expression system in PC12 cells to tune the expression of these proteins and analyze the early and late consequences of their expression. We find that expression for 3 h of a polyQ-expanded protein stimulates cellular reactive oxygen species (ROS) levels and significantly reduces the mitochondrial electrochemical gradient. 24-36 h later, ROS induce DNA damage and activation of the checkpoint kinase, ATM. DNA damage signatures are reversible and persist as long as polyQ-expanded proteins are expressed. Transcription of neural and stress response genes is down-regulated in these cells. Selective inhibition of ATM or histone deacetylase rescues transcription and restores the expression of silenced genes. Eventually, after 1 week, the expression of polyQ-expanded protein also induces endoplasmic reticulum stress. As to the primary mechanism responsible for ROS generation, we find that polyQ-expanded proteins, including native Ataxin-2 and Huntingtin, are selectively sequestered in the lipid raft membrane compartment and interact with gp91, the membrane NADPH-oxidase subunit. Selective inhibition of NADPH oxidase or silencing of H-Ras signaling dissolves the aggregates and eliminates DNA damage. We suggest that targeting of the polyQ-expanded proteins to the lipid rafts activates the resident NADPH oxidase. This triggers a signal linking H-Ras, ROS, and ERK1/2 that maintains and propagates the ROS wave to the nucleus. This mechanism may represent the common pathogenetic signature of all polyQ-expanded proteins independently of the specific context or the function of the native wild type protein.
Collapse
Affiliation(s)
- Alessandra Bertoni
- Department of Molecular and Cellular Biology and Pathology, School of Medicine, Federico II University of Naples, Naples 80131 Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jurado S, Smyth I, van Denderen B, Tenis N, Hammet A, Hewitt K, Ng JL, McNees CJ, Kozlov SV, Oka H, Kobayashi M, Conlan LA, Cole TJ, Yamamoto KI, Taniguchi Y, Takeda S, Lavin MF, Heierhorst J. Dual functions of ASCIZ in the DNA base damage response and pulmonary organogenesis. PLoS Genet 2010; 6:e1001170. [PMID: 20975950 PMCID: PMC2958817 DOI: 10.1371/journal.pgen.1001170] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/21/2010] [Indexed: 12/15/2022] Open
Abstract
Zn2+-finger proteins comprise one of the largest protein superfamilies with diverse biological functions. The ATM substrate Chk2-interacting Zn2+-finger protein (ASCIZ; also known as ATMIN and ZNF822) was originally linked to functions in the DNA base damage response and has also been proposed to be an essential cofactor of the ATM kinase. Here we show that absence of ASCIZ leads to p53-independent late-embryonic lethality in mice. Asciz-deficient primary fibroblasts exhibit increased sensitivity to DNA base damaging agents MMS and H2O2, but Asciz deletion or knock-down does not affect ATM levels and activation in mouse, chicken, or human cells. Unexpectedly, Asciz-deficient embryos also exhibit severe respiratory tract defects with complete pulmonary agenesis and severe tracheal atresia. Nkx2.1-expressing respiratory precursors are still specified in the absence of ASCIZ, but fail to segregate properly within the ventral foregut, and as a consequence lung buds never form and separation of the trachea from the oesophagus stalls early. Comparison of phenotypes suggests that ASCIZ functions between Wnt2-2b/ß-catenin and FGF10/FGF-receptor 2b signaling pathways in the mesodermal/endodermal crosstalk regulating early respiratory development. We also find that ASCIZ can activate expression of reporter genes via its SQ/TQ-cluster domain in vitro, suggesting that it may exert its developmental functions as a transcription factor. Altogether, the data indicate that, in addition to its role in the DNA base damage response, ASCIZ has separate developmental functions as an essential regulator of respiratory organogenesis. ASCIZ is a DNA damage response protein that has been proposed to be a regulator and stabilizing co-factor of the ATM kinase, mutations of which lead to a syndrome involving neurological and immune dysfunctions, tumour predisposition, and X-ray hypersensitivity. To study Asciz function in vivo, we have generated a knockout mouse model lacking this gene. Here we show that ASCIZ has a specific role in mediating cell survival in response to DNA base damage, but it is not required for stabilization and regulation of ATM. Strikingly, Asciz knockout mice fail to survive to birth and have tissue-specific defects in embryonic development. In particular, Asciz null embryos fail to develop lungs and undergo an early arrest in tracheal development. The precursor cells that normally form the lung are present in our embryos, but they fail to segregate from the foregut. These observations indicate that ASCIZ plays an important and previously unrecognized developmental role that is most likely unrelated to its function in mediating responses to DNA damage. Our study delineates the function of ASCIZ in DNA damage survival and highlights an exciting new function of the protein in controlling the early stages of lung development.
Collapse
Affiliation(s)
- Sabine Jurado
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
| | - Ian Smyth
- Department of Biochemistry and Molecular Biology and Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Bryce van Denderen
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
| | - Nora Tenis
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Andrew Hammet
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Kimberly Hewitt
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Jane-Lee Ng
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | | | | | - Hayato Oka
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Timothy J. Cole
- Department of Biochemistry and Molecular Biology and Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | | | - Yoshihito Taniguchi
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Martin F. Lavin
- Queensland Institute of Medical Research, Herston, Australia
- Central Clinical Division, University of Queensland, Royal Brisbane Hospital, Herston, Australia
| | - Jörg Heierhorst
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
- * E-mail:
| |
Collapse
|
46
|
Lu X, Ohata K, Kondo Y, Espinoza JL, Qi Z, Nakao S. Hydroxyurea upregulates NKG2D ligand expression in myeloid leukemia cells synergistically with valproic acid and potentially enhances susceptibility of leukemic cells to natural killer cell-mediated cytolysis. Cancer Sci 2010; 101:609-15. [PMID: 20028385 PMCID: PMC11158562 DOI: 10.1111/j.1349-7006.2009.01439.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Valproic acid (VPA), a histone deacetylase inhibitor, upregulates NKG2D ligands (NKG2DLs) on some monocytic and lymphoid leukemic cells. However, its effect on myeloid leukemia cells and synergistic agents that can augment the effect of VPA remains unknown. Of the various myeloid cell lines examined, OUN-1, a chronic myelogenous leukemia cell line, showed the most prominent upregulation of MICA/B and ULBP2 in response to VPA. The NKG2DL upregulation was observed only in leukemic cells without apoptosis and the effect was abrogated by pretreatment of cells with caffeine, an inhibitor of ATM/ATR. Several activators of ATM/ATR were screened for their effect on NKG2DL expression, but only hydroxyurea (HU) efficiently upregulated both MICA/B and ULPB2 expression on the cell line. VPA and HU synergistically upregulated the NKG2DLs on OUN-1 cells as well as primary leukemic cells from some patients with acute myeloid leukemia. The upregulation of NKG2DLs by VPA and/or HU was associated with increased transcription of each NKG2DL gene. OUN-1 cells treated with VPA + HU were more susceptible to killing by natural killer (NK) cells than untreated cells and the enhanced cytotoxicity of NK cells was blocked by the treatment of NK cells with anti-NKG2D monoclonal antibodies. The same concentrations of VPA and HU did not affect the cytotoxicity of NK cells against OUN-1 cells. These data suggest that VPA and HU might enhance the NK cell-mediated antileukemia effect by increasing the susceptibility of myeloid leukemic cells to NK cells.
Collapse
Affiliation(s)
- Xuzhang Lu
- Cellular Transplantation Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Zhu H, Fan Y, Jiang H, Shen J, Qi H, Mei R, Shao J. Response of human DNA polymerase ι promoter to N-methyl-N'-nitro-N-nitrosoguanidine. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 29:79-86. [PMID: 21787586 DOI: 10.1016/j.etap.2009.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 10/28/2009] [Accepted: 11/02/2009] [Indexed: 05/31/2023]
Abstract
Human Pol ι is a highly distributed, low-fidelity DNA polymerase lacking intrinsic exonuclease proofreading activity, thus its effects are strictly regulated. We predicted and cloned the promoter region of the human POLI gene. Successively, by transfection of deletion constructs of the POLI promoter, we demonstrated that the regions -848/-408 and -30/+215 contained positive regulatory elements, and the region +215/+335 had proximal promoter activity. Overexpression of Sp1 significantly increased the transcriptional activity of the promoter, and mutation of the Sp1 site reversed Sp1-induced promoter transactivation. Quantitative RT-PCR showed that POLI mRNA expression was up-regulated in human amnion FL cells treated by the carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Reporter gene assays demonstrated that MNNG also significantly increased the transcriptional activity of the predicted promoter (-848/+335) and the proximal promoter (+215/+335). However, the promoter with the Sp1 site mutation had no response to MNNG treatment, suggesting that Sp1 plays an important role in the transcriptional regulation of the POLI gene stimulated by MNNG. Our data suggest that abnormal regulation of Pol ι may be involved in the mutagenesis and carcinogenesis induced by environmental chemicals.
Collapse
Affiliation(s)
- Huifang Zhu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | | | | | | | | | | | | |
Collapse
|
48
|
Mathijs K, Brauers KJJ, Jennen DGJ, Boorsma A, van Herwijnen MHM, Gottschalk RWH, Kleinjans JCS, van Delft JHM. Discrimination for Genotoxic and Nongenotoxic Carcinogens by Gene Expression Profiling in Primary Mouse Hepatocytes Improves with Exposure Time. Toxicol Sci 2009; 112:374-84. [DOI: 10.1093/toxsci/kfp229] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
49
|
Laporte B, Gonzalez-Hilarion S, Maftah A, Petit JM. The second bovine beta-galactoside-alpha2,6-sialyltransferase (ST6Gal II): genomic organization and stimulation of its in vitro expression by IL-6 in bovine mammary epithelial cells. Glycobiology 2009; 19:1082-93. [PMID: 19617256 DOI: 10.1093/glycob/cwp094] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have cloned a cDNA sequence encoding the second bovine beta-galactoside-alpha2,6-sialyltransferase whose sequence shares more than 75% of identity with hST6Gal II cDNA coding sequence. The bovine gene, located on BTA 11, spans over 50 kbp with five exons (E1-E5) containing the 1488 bp open reading frame and a 5'-untranslated exon (E0). The gene expression pattern reveals a specific tissue distribution (brain, lungs, spleen, salivary, and mammary glands) compared to ST6Gal I which is ubiquitously expressed. We identified for bovine ST6Gal II three kinds of transcripts which differ by their 5'-untranslated regions. Among them, two transcripts are brain specific whereas the third one is found in all of the tissues expressing the gene. Two pFlag-bST6Gal II vector constructions were separately transfected in COS-1 cells in order to express either membrane-bound or soluble active forms of ST6Gal II. Enzymatic assays with these two forms indicated that the enzyme used the LacdiNAc structure (GalNAcbeta1,4GlcNAc) as a better acceptor substrate than the Type II (Galbeta1-4GlcNAc) disaccharide. Moreover, the enzyme's efficiency is improved when the acceptor substrate is provided as a free oligosaccharide rather than as a protein-bound oligosaccharide. In order to investigate the potential role of ST6Gal II during the acute phase of inflammation, we used primary cultures of bovine mammary epithelial cells which were stimulated with pro-inflammatory cytokines. It appears that the ST6Gal II gene was upregulated in cells stimulated by IL-6. This result suggested that alpha2,6-sialylation mediated by this gene could contribute to organism's response to infections.
Collapse
Affiliation(s)
- Benoit Laporte
- UMR1061, Unité de Génétique Moléculaire Animale, Université de Limoges, INRA, IFR N degrees 145 GEIST, France
| | | | | | | |
Collapse
|
50
|
Kim HS, Lim IK. Phosphorylated extracellular signal-regulated protein kinases 1 and 2 phosphorylate Sp1 on serine 59 and regulate cellular senescence via transcription of p21Sdi1/Cip1/Waf1. J Biol Chem 2009; 284:15475-86. [PMID: 19318349 DOI: 10.1074/jbc.m808734200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Expression of p21(Sdi1) downstream of p53 is essential for induction of cellular senescence, although cancer cell senescence can also occur in the p53 null condition. We report herein that senescence-associated phosphorylated extracellular signal-regulated protein kinases 1 and 2 (SA-pErk1/2) enhanced p21(Sdi1) transcription by phosphorylating Sp1 on Ser(59) downstream of protein kinase C (PKC) alpha. Reactive oxygen species (ROS), which was increased in cellular senescence, significantly activated both PKCalpha and PKCbetaI. However, PKCalpha, but not PKCbetaI, regulated ROS generation and cell proliferation in senescent cells along with activation of cdk2, proven by siRNAs. PKCalpha-siRNA also reduced SA-pErk1/2 expression in old human diploid fibroblast cells, accompanied with changes of senescence phenotypes to young cell-like. Regulation of SA-pErk1/2 was also confirmed by using catalytically active PKCalpha and its DN-mutant construct. These findings strongly suggest a new pathway to regulate senescence phenotypes by ROS via Sp1 phosphorylation between PKCalpha and SA-pErk1/2: employing GST-Sp1 mutants and MEK inhibitor analyses, we found that SA-pErk1/2 regulated Sp1 phosphorylation on the Ser(59) residue in vivo, but not threonine, in cellular senescence, which regulated transcription of p21(Sdi1) expression. In summary, PKCalpha, which was activated in senescent cells by ROS strongly activated Erk1/2, and the SA-pErk1/2 in turn phosphorylated Sp1 on Ser(59). Sp1-enhanced transcription of p21(Sdi1) resulted in regulation of cellular senescence in primary human diploid fibroblast cells.
Collapse
Affiliation(s)
- Hong Seok Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721, Korea
| | | |
Collapse
|