1
|
Ge J, Wang Y, Li X, Lu Q, Yu H, Liu H, Ma K, Deng X, Luo ZQ, Liu X, Qiu J. Phosphorylation of caspases by a bacterial kinase inhibits host programmed cell death. Nat Commun 2024; 15:8464. [PMID: 39349471 PMCID: PMC11442631 DOI: 10.1038/s41467-024-52817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
The intracellular bacterial pathogen Legionella pneumophila utilizes the Dot/Icm system to translocate over 330 effectors into the host cytosol. These virulence factors modify a variety of cell processes, including pathways involved in cell death and survival, to promote bacterial proliferation. Here, we show that the effector LegK3 is a eukaryotic-like Ser/Thr kinase that functions to suppress host apoptosis. Mechanistically, LegK3 directly phosphorylates multiple caspases involved in apoptosis signaling, including Caspase-3, Caspase-7, and Caspase-9. LegK3-induced phosphorylation of these caspases occurs at serine (Ser29 in Caspase-3 and Ser199 in Caspase-7) or threonine (Thr102 in Caspase-9) residues located in the prodomain or interdomain linkers. These modifications interfere with the suitability of the caspases as the substrates of initiator caspases or upstream regulators without impacting their proteolytic activity. Collectively, our study reveals a novel strategy used by L. pneumophila to maintain the integrity of infected cells for its intracellular growth.
Collapse
Affiliation(s)
- Jinli Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ying Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xueyu Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qian Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hangqian Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kelong Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Ghorbani N, Yaghubi R, Davoodi J, Pahlavan S. How does caspases regulation play role in cell decisions? apoptosis and beyond. Mol Cell Biochem 2024; 479:1599-1613. [PMID: 37976000 DOI: 10.1007/s11010-023-04870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
Caspases are a family of cysteine proteases, and the key factors behind the cellular events which occur during apoptosis and inflammation. However, increasing evidence shows the non-conventional pro-survival action of apoptotic caspases in crucial processes. These cellular events include cell proliferation, differentiation, and migration, which may appear in the form of metastasis, and chemotherapy resistance in cancerous situations. Therefore, there should be a precise and strict control of caspases activity, perhaps through maintaining the threshold below the required levels for apoptosis. Thus, understanding the regulators of caspase activities that render apoptotic caspases as non-apoptotic is of paramount importance both mechanistically and clinically. Furthermore, the functions of apoptotic caspases are affected by numerous post-translational modifications. In the present mini-review, we highlight the various mechanisms that directly impact caspases with respect to their anti- or non-apoptotic functions. In this regard, post-translational modifications (PTMs), isoforms, subcellular localization, transient activity, substrate availability, substrate selection, and interaction-mediated regulations are discussed.
Collapse
Affiliation(s)
- Negar Ghorbani
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Roham Yaghubi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Jamshid Davoodi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
3
|
Dalle S. Targeting Protein Kinases to Protect Beta-Cell Function and Survival in Diabetes. Int J Mol Sci 2024; 25:6425. [PMID: 38928130 PMCID: PMC11203834 DOI: 10.3390/ijms25126425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of diabetes is increasing worldwide. Massive death of pancreatic beta-cells causes type 1 diabetes. Progressive loss of beta-cell function and mass characterizes type 2 diabetes. To date, none of the available antidiabetic drugs promotes the maintenance of a functional mass of endogenous beta-cells, revealing an unmet medical need. Dysfunction and apoptotic death of beta-cells occur, in particular, through the activation of intracellular protein kinases. In recent years, protein kinases have become highly studied targets of the pharmaceutical industry for drug development. A number of drugs that inhibit protein kinases have been approved for the treatment of cancers. The question of whether safe drugs that inhibit protein kinase activity can be developed and used to protect the function and survival of beta-cells in diabetes is still unresolved. This review presents arguments suggesting that several protein kinases in beta-cells may represent targets of interest for the development of drugs to treat diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| |
Collapse
|
4
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
5
|
Unnisa A, Greig NH, Kamal MA. Inhibition of Caspase 3 and Caspase 9 Mediated Apoptosis: A Multimodal Therapeutic Target in Traumatic Brain Injury. Curr Neuropharmacol 2023; 21:1001-1012. [PMID: 35339178 PMCID: PMC10227914 DOI: 10.2174/1570159x20666220327222921] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/17/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the significant causes of death and morbidity, and it is hence a focus of translational research. Apoptosis plays an essential part in the pathophysiology of TBI, and its inhibition may help overcome TBI's negative consequences and improve functional recovery. Although physiological neuronal death is necessary for appropriate embryologic development and adult cell turnover, it can also drive neurodegeneration. Caspases are principal mediators of cell death due to apoptosis and are critical for the required cleavage of intracellular proteins of cells committed to die. Caspase-3 is the major executioner Caspase of apoptosis and is regulated by a range of cellular components during physiological and pathological conditions. Activation of Caspase-3 causes proteolyzation of DNA repair proteins, cytoskeletal proteins, and the inhibitor of Caspase-activated DNase (ICAD) during programmed cell death, resulting in morphological alterations and DNA damage that define apoptosis. Caspase-9 is an additional crucial part of the intrinsic pathway, activated in response to several stimuli. Caspases can be altered post-translationally or by modulatory elements interacting with the zymogenic or active form of a Caspase, preventing their activation. The necessity of Caspase-9 and -3 in diverse apoptotic situations suggests that mammalian cells have at least four distinct apoptotic pathways. Continued investigation of these processes is anticipated to disclose new Caspase regulatory mechanisms with consequences far beyond apoptotic cell death control. The present review discusses various Caspase-dependent apoptotic pathways and the treatment strategies to inhibit the Caspases potentially.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail, KSA;
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, NSW, Australia
| |
Collapse
|
6
|
Lan B, Zeng S, Zhang S, Ren X, Xing Y, Kutschick I, Pfeffer S, Frey B, Britzen-Laurent N, Grützmann R, Cordes N, Pilarsky C. CRISPR-Cas9 Screen Identifies DYRK1A as a Target for Radiotherapy Sensitization in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14020326. [PMID: 35053488 PMCID: PMC8773906 DOI: 10.3390/cancers14020326] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Pancreatic cancer is the fourth leading cause of cancer-related death in Western countries. Although several therapeutic strategies have been developed for pancreatic cancer, radiation therapy has not yet yielded satisfactory results. Unraveling the mechanism of radioresistance in pancreatic cancer and developing new therapeutic targets has become a major challenge. Therefore, we applied kinome-wide CRISPR-Cas9 loss-of-function screening combined with the 3D cell culture method and identified DYRK1A as a sensitive target for radiotherapy. Additionally, we confirmed that DYRK1A-targeted inhibitors could enhance the efficacy of radiotherapy. Our results further support the use of CRISPR-Cas9 screening to identify novel therapeutic targets and develop new strategies to enhance radiotherapy efficacy in pancreatic cancer. Abstract Although radiation therapy has recently made great advances in cancer treatment, the majority of patients diagnosed with pancreatic cancer (PC) cannot achieve satisfactory outcomes due to intrinsic and acquired radioresistance. Identifying the molecular mechanisms that impair the efficacy of radiotherapy and targeting these pathways are essential to improve the radiation response of PC patients. Our goal is to identify sensitive targets for pancreatic cancer radiotherapy (RT) using the kinome-wide CRISPR-Cas9 loss-of-function screen and enhance the therapeutic effect through the development and application of targeted inhibitors combined with radiotherapy. We transduced pancreatic cancer cells with a protein kinase library; 2D and 3D library cells were irradiated daily with a single dose of up to 2 Gy for 4 weeks for a total of 40 Gy using an X-ray generator. Sufficient DNA was collected for next-generation deep sequencing to identify candidate genes. In this study, we identified several cell cycle checkpoint kinases and DNA damage related kinases in 2D- and 3D-cultivated cells, including DYRK1A, whose loss of function sensitizes cells to radiotherapy. Additionally, we demonstrated that the harmine-targeted suppression of DYRK1A used in conjunction with radiotherapy increases DNA double-strand breaks (DSBs) and impairs homologous repair (HR), resulting in more cancer cell death. Our results support the use of CRISPR-Cas9 screening to identify new therapeutic targets, develop radiosensitizers, and provide novel strategies for overcoming the tolerance of pancreatic cancer to radiotherapy.
Collapse
Affiliation(s)
- Bin Lan
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (B.L.); (S.Z.); (S.Z.); (X.R.); (Y.X.); (I.K.); (S.P.); (N.B.-L.); (R.G.)
| | - Siyuan Zeng
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (B.L.); (S.Z.); (S.Z.); (X.R.); (Y.X.); (I.K.); (S.P.); (N.B.-L.); (R.G.)
| | - Shuman Zhang
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (B.L.); (S.Z.); (S.Z.); (X.R.); (Y.X.); (I.K.); (S.P.); (N.B.-L.); (R.G.)
| | - Xiaofan Ren
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (B.L.); (S.Z.); (S.Z.); (X.R.); (Y.X.); (I.K.); (S.P.); (N.B.-L.); (R.G.)
| | - Yuming Xing
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (B.L.); (S.Z.); (S.Z.); (X.R.); (Y.X.); (I.K.); (S.P.); (N.B.-L.); (R.G.)
| | - Isabella Kutschick
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (B.L.); (S.Z.); (S.Z.); (X.R.); (Y.X.); (I.K.); (S.P.); (N.B.-L.); (R.G.)
| | - Susanne Pfeffer
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (B.L.); (S.Z.); (S.Z.); (X.R.); (Y.X.); (I.K.); (S.P.); (N.B.-L.); (R.G.)
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Nathalie Britzen-Laurent
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (B.L.); (S.Z.); (S.Z.); (X.R.); (Y.X.); (I.K.); (S.P.); (N.B.-L.); (R.G.)
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (B.L.); (S.Z.); (S.Z.); (X.R.); (Y.X.); (I.K.); (S.P.); (N.B.-L.); (R.G.)
| | - Nils Cordes
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus Technische Universität Dresden, 01307 Dresden, Germany;
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- German Cancer Consortium, Partner Site Dresden: German Cancer Research Center, 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (B.L.); (S.Z.); (S.Z.); (X.R.); (Y.X.); (I.K.); (S.P.); (N.B.-L.); (R.G.)
- Correspondence:
| |
Collapse
|
7
|
Atas-Ozcan H, Brault V, Duchon A, Herault Y. Dyrk1a from Gene Function in Development and Physiology to Dosage Correction across Life Span in Down Syndrome. Genes (Basel) 2021; 12:1833. [PMID: 34828439 PMCID: PMC8624927 DOI: 10.3390/genes12111833] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Down syndrome is the main cause of intellectual disabilities with a large set of comorbidities from developmental origins but also that appeared across life span. Investigation of the genetic overdosage found in Down syndrome, due to the trisomy of human chromosome 21, has pointed to one main driver gene, the Dual-specificity tyrosine-regulated kinase 1A (Dyrk1a). Dyrk1a is a murine homolog of the drosophila minibrain gene. It has been found to be involved in many biological processes during development and in adulthood. Further analysis showed its haploinsufficiency in mental retardation disease 7 and its involvement in Alzheimer's disease. DYRK1A plays a role in major developmental steps of brain development, controlling the proliferation of neural progenitors, the migration of neurons, their dendritogenesis and the function of the synapse. Several strategies targeting the overdosage of DYRK1A in DS with specific kinase inhibitors have showed promising evidence that DS cognitive conditions can be alleviated. Nevertheless, providing conditions for proper temporal treatment and to tackle the neurodevelopmental and the neurodegenerative aspects of DS across life span is still an open question.
Collapse
Affiliation(s)
- Helin Atas-Ozcan
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Arnaud Duchon
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
- Université de Strasbourg, CNRS, INSERM, Celphedia, Phenomin-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| |
Collapse
|
8
|
Pucelik B, Barzowska A, Dąbrowski JM, Czarna A. Diabetic Kinome Inhibitors-A New Opportunity for β-Cells Restoration. Int J Mol Sci 2021; 22:9083. [PMID: 34445786 PMCID: PMC8396662 DOI: 10.3390/ijms22169083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
Diabetes, and several diseases related to diabetes, including cancer, cardiovascular diseases and neurological disorders, represent one of the major ongoing threats to human life, becoming a true pandemic of the 21st century. Current treatment strategies for diabetes mainly involve promoting β-cell differentiation, and one of the most widely studied targets for β-cell regeneration is DYRK1A kinase, a member of the DYRK family. DYRK1A has been characterized as a key regulator of cell growth, differentiation, and signal transduction in various organisms, while further roles and substrates are the subjects of extensive investigation. The targets of interest in this review are implicated in the regulation of β-cells through DYRK1A inhibition-through driving their transition from highly inefficient and death-prone populations into efficient and sufficient precursors of islet regeneration. Increasing evidence for the role of DYRK1A in diabetes progression and β-cell proliferation expands the potential for pharmaceutical applications of DYRK1A inhibitors. The variety of new compounds and binding modes, determined by crystal structure and in vitro studies, may lead to new strategies for diabetes treatment. This review provides recent insights into the initial self-activation of DYRK1A by tyrosine autophosphorylation. Moreover, the importance of developing novel DYRK1A inhibitors and their implications for the treatment of diabetes are thoroughly discussed. The evolving understanding of DYRK kinase structure and function and emerging high-throughput screening technologies have been described. As a final point of this work, we intend to promote the term "diabetic kinome" as part of scientific terminology to emphasize the role of the synergistic action of multiple kinases in governing the molecular processes that underlie this particular group of diseases.
Collapse
Affiliation(s)
- Barbara Pucelik
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Agata Barzowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Janusz M. Dąbrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Anna Czarna
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| |
Collapse
|
9
|
Laham AJ, Saber-Ayad M, El-Awady R. DYRK1A: a down syndrome-related dual protein kinase with a versatile role in tumorigenesis. Cell Mol Life Sci 2021; 78:603-619. [PMID: 32870330 PMCID: PMC11071757 DOI: 10.1007/s00018-020-03626-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/22/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a dual kinase that can phosphorylate its own activation loop on tyrosine residue and phosphorylate its substrates on threonine and serine residues. It is the most studied member of DYRK kinases, because its gene maps to human chromosome 21 within the Down syndrome critical region (DSCR). DYRK1A overexpression was found to be responsible for the phenotypic features observed in Down syndrome such as mental retardation, early onset neurodegenerative, and developmental heart defects. Besides its dual activity in phosphorylation, DYRK1A carries the characteristic of duality in tumorigenesis. Many studies indicate its possible role as a tumor suppressor gene; however, others prove its pro-oncogenic activity. In this review, we will focus on its multifaceted role in tumorigenesis by explaining its participation in some cancer hallmarks pathways such as proliferative signaling, transcription, stress, DNA damage repair, apoptosis, and angiogenesis, and finally, we will discuss targeting DYRK1A as a potential strategy for management of cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amina Jamal Laham
- College of Medicine, University of Sharjah, Sharjah, UAE
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, UAE.
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.
| | - Raafat El-Awady
- College of Medicine, University of Sharjah, Sharjah, UAE.
- College of Pharmacy, University of Sharjah, Sharjah, UAE.
| |
Collapse
|
10
|
A Crosstalk Between Dual-Specific Phosphatases and Dual-Specific Protein Kinases Can Be A Potential Therapeutic Target for Anti-cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:357-382. [PMID: 33539023 DOI: 10.1007/978-3-030-49844-3_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While protein tyrosine kinases (PTKs) play an initiative role in growth factor-mediated cellular processes, protein tyrosine phosphatases (PTPs) negatively regulates these processes, acting as tumor suppressors. Besides selective tyrosine dephosphorylation of PTKs via PTPs may affect oncogenic pathways during carcinogenesis. The PTP family contains a group of dual-specificity phosphatases (DUSPs) that regulate the activity of Mitogen-activated protein kinases (MAPKs), which are key effectors in the control of cell growth, proliferation and survival. Abnormal MAPK signaling is critical for initiation and progression stages of carcinogenesis. Since depletion of DUSP-MAPK phosphatases (MKPs) can reduce tumorigenicity, altering MAPK signaling by DUSP-MKP inhibitors could be a novel strategy in anti-cancer therapy. Moreover, Cdc25A is, a DUSP and a key regulator of the cell cycle, promotes cell cycle progression by dephosphorylating and activating cyclin-dependent kinases (CDK). Cdc25A-CDK pathway is a novel mechanism in carcinogenesis. Besides the mammalian target of rapamycin (mTOR) kinase inhibitors or mammalian target of rapamycin complex 1 (mTORC1) inhibition in combination with the dual phosphatidylinositol 3 kinase (PI3K)/mTOR or AKT kinase inhibitors are more effective in inhibiting the phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and cap-dependent translation. Dual targeting of the Akt and mTOR signaling pathways regulates cellular growth, proliferation and survival. Like the Cdc2-like kinases (CLK), dual-specific tyrosine phosphorylation-regulated kinases (DYRKs) are essential for the regulation of cell fate. The crosstalk between dual-specific phosphatases and dual- specific protein kinases is a novel drug target for anti-cancer therapy. Therefore, the focus of this chapter involves protein kinase modules, critical biochemical checkpoints of cancer therapy and the synergistic effects of protein kinases and anti-cancer molecules.
Collapse
|
11
|
Han J, Wu J, Silke J. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Res 2020; 9. [PMID: 32612808 PMCID: PMC7324945 DOI: 10.12688/f1000research.22092.1] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular responses to nearly all stressful stimuli. This review provides a succinct summary of multiple aspects of the biology, role, and substrates of the mammalian family of p38 kinases. Since p38 activity is implicated in inflammatory and other diseases, we also discuss the clinical implications and pharmaceutical approaches to inhibit p38.
Collapse
Affiliation(s)
- Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - John Silke
- The Walter and Eliza Hall Institute, IG Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia
| |
Collapse
|
12
|
Understanding MAPK Signaling Pathways in Apoptosis. Int J Mol Sci 2020; 21:ijms21072346. [PMID: 32231094 PMCID: PMC7177758 DOI: 10.3390/ijms21072346] [Citation(s) in RCA: 707] [Impact Index Per Article: 141.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/10/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
MAPK (mitogen-activated protein kinase) signaling pathways regulate a variety of biological processes through multiple cellular mechanisms. In most of these processes, such as apoptosis, MAPKs have a dual role since they can act as activators or inhibitors, depending on the cell type and the stimulus. In this review, we present the main pro- and anti-apoptotic mechanisms regulated by MAPKs, as well as the crosstalk observed between some MAPKs. We also describe the basic signaling properties of MAPKs (ultrasensitivity, hysteresis, digital response), and the presence of different positive feedback loops in apoptosis. We provide a simple guide to predict MAPKs’ behavior, based on the intensity and duration of the stimulus. Finally, we consider the role of MAPKs in osmostress-induced apoptosis by using Xenopus oocytes as a cell model. As we will see, apoptosis is plagued with multiple positive feedback loops. We hope this review will help to understand how MAPK signaling pathways engage irreversible cellular decisions.
Collapse
|
13
|
Dhuriya YK, Sharma D, Naik AA. Cellular demolition: Proteins as molecular players of programmed cell death. Int J Biol Macromol 2019; 138:492-503. [PMID: 31330212 DOI: 10.1016/j.ijbiomac.2019.07.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022]
Abstract
Apoptosis, a well-characterized and regulated cell death programme in eukaryotes plays a fundamental role in developing or later-life periods to dispose of unwanted cells to maintain typical tissue architecture, homeostasis in a spatiotemporal manner. This silent cellular death occurs without affecting any neighboring cells/tissue and avoids triggering of immunological response. Furthermore, diminished forms of apoptosis result in cancer and autoimmune diseases, whereas unregulated apoptosis may also lead to the development of a myriad of neurodegenerative diseases. Unraveling the mechanistic events in depth will provide new insights into understanding physiological control of apoptosis, pathological consequences of abnormal apoptosis and development of novel therapeutics for diseases. Here we provide a brief overview of molecular players of programmed cell death with discussion on the role of caspases, modifications, ubiquitylation in apoptosis, removal of the apoptotic body and its relevance to diseases.
Collapse
Affiliation(s)
- Yogesh Kumar Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India; Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| | - Aijaz A Naik
- Neurology, School of Medicine, University of Virginia, Charlottesville 22908, United States of America
| |
Collapse
|
14
|
Li P, Zhou L, Zhao T, Liu X, Zhang P, Liu Y, Zheng X, Li Q. Caspase-9: structure, mechanisms and clinical application. Oncotarget 2017; 8:23996-24008. [PMID: 28177918 PMCID: PMC5410359 DOI: 10.18632/oncotarget.15098] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/22/2017] [Indexed: 12/27/2022] Open
Abstract
As the most intensively studied initiator caspase, caspase-9 is a key player in the intrinsic or mitochondrial pathway which is involved in various stimuli, including chemotherapies, stress agents and radiation. Caspase-9 is activated on the apoptosome complex to remain catalytic status and is thought of involving homo-dimerization monomeric zymogens. Failing to activate caspase-9 has profound physiological and pathophysiological outcomes, leading to degenerative and developmental disorders even cancer. To govern the apoptotic commitment process appropriately, plenty of proteins and small molecules involved in regulating caspase-9. Therefore, this review is to summarize recent pertinent literature on the comprehensive description of the molecular events implicated in caspase-9 activation and inhibition, as well as the clinical trials in progress to give deep insight into caspase-9 for suppressing cancer. We hope that our concerns will be helpful for further clinical studies addressing the roles of caspase-9 and its regulators demanded to identify more effective solutions to overcome intrinsic apoptosis-related diseases especially cancer.
Collapse
Affiliation(s)
- Ping Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China
| | - Libin Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| | - Ting Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China
| | - Pengcheng Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaogang Zheng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China
| |
Collapse
|
15
|
Shakeri R, Kheirollahi A, Davoodi J. Apaf-1: Regulation and function in cell death. Biochimie 2017; 135:111-125. [PMID: 28192157 DOI: 10.1016/j.biochi.2017.02.001] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/08/2023]
Abstract
Apoptosis, a form of programmed cell death, is responsible for eliminating damaged or unnecessary cells in multicellular organisms. Various types of intracellular stress trigger apoptosis by induction of cytochrome c release from mitochondria into the cytosol. Apoptotic protease activating factor-1 (Apaf-1) is a key molecule in the intrinsic or mitochondrial pathway of apoptosis, which oligomerizes in response to cytochrome c release and forms a large complex known as apoptosome. Procaspase-9, an initiator caspase in the mitochondrial pathway, is recruited and activated by the apoptosome leading to downstream caspase-3 processing. Various cellular proteins and small molecules can modulate apoptosome formation and function directly or indirectly. Despite recent progress in understanding the mitochondrial pathway of apoptosis, numerous questions such as the molecular mechanism of Apaf-1 oligomerization and caspase-9 activation remain poorly understood. In addition, reports have emerged showing non-apoptotic functions for Apaf-1. The current review summarizes the latest findings regarding structure-function relationship of Apaf-1 as well as its modifiers.
Collapse
Affiliation(s)
- Raheleh Shakeri
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Asma Kheirollahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Jamshid Davoodi
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran.
| |
Collapse
|
16
|
Zamaraev AV, Kopeina GS, Prokhorova EA, Zhivotovsky B, Lavrik IN. Post-translational Modification of Caspases: The Other Side of Apoptosis Regulation. Trends Cell Biol 2017; 27:322-339. [PMID: 28188028 DOI: 10.1016/j.tcb.2017.01.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/21/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022]
Abstract
Apoptosis is a crucial program of cell death that controls development and homeostasis of multicellular organisms. The main initiators and executors of this process are the Cysteine-dependent ASPartate proteASES - caspases. A number of regulatory circuits tightly control caspase processing and activity. One of the most important, yet, at the same time still poorly understood control mechanisms of activation of caspases involves their post-translational modifications. The addition and/or removal of chemical groups drastically alters the catalytic activity of caspases or stimulates their nonapoptotic functions. In this review, we will describe and discuss the roles of key caspase modifications such as phosphorylation, ubiquitination, nitrosylation, glutathionylation, SUMOylation, and acetylation in the regulation of apoptotic cell death and cell survival.
Collapse
Affiliation(s)
- Alexey V Zamaraev
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Gelina S Kopeina
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeniia A Prokhorova
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm, Sweden.
| | - Inna N Lavrik
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Department of Translational Inflammation, Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
17
|
Guo R, Lin B, Pan JF, Liong EC, Xu AM, Youdim M, Fung ML, So KF, Tipoe GL. Inhibition of caspase-9 aggravates acute liver injury through suppression of cytoprotective autophagy. Sci Rep 2016; 6:32447. [PMID: 27580936 PMCID: PMC5007529 DOI: 10.1038/srep32447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 08/08/2016] [Indexed: 12/13/2022] Open
Abstract
Acute liver disease is characterized by inflammation, oxidative stress and necrosis, which can greatly influence the long term clinical outcome and lead to liver failure or cancer. Here, we initially demonstrated the beneficial role of caspase-9-dependent autophagy in acute liver injury. Treatment with caspase-9 inhibitor z-LEHD-FMK in HepG2 cells, AML12 cells and C57BL/b6N mice exacerbated CCl4-induced acute hepatocellular damage, and also down-regulated autophagy markers expression levels, indicating that caspase-9 inhibition may aggravate acute liver damage by suppressing cytoprotective autophagy. CCl4 was used as an acute liver injury inducer which caused oxidative stress and apoptosis through up-regulation of HIF-1α, as well as triggered hepatic inflammation and necroptosis via TLR4/NF-κB pathway. Caspase-9 Thr125 site was firstly phosphorylated by ERK1/2 which subsequently activated the cytoprotective autophagy process to attenuate acute CCl4 injury. Caspase-9 inhibition further aggravated hepatic necroptosis through NF-κB expression, leading to increased pro-inflammatory mediators levels, suggesting a protective role of caspase-9-dependent autophagy in the inflammatory process as well as its possibility being a new therapeutic target for the treatment of acute liver injury.
Collapse
Affiliation(s)
- Rui Guo
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong
| | - Bin Lin
- School of Optometry, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, SAR, Hong Kong
| | - Jing Fei Pan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong
| | - Emily C Liong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong
| | - Ai Min Xu
- Brain Hormone Healthy Aging Centre, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong.,Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong
| | - Moussa Youdim
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Man Lung Fung
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong.,Brain Hormone Healthy Aging Centre, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong
| | - Kwok Fai So
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong.,Brain Hormone Healthy Aging Centre, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong
| | - George L Tipoe
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong.,Brain Hormone Healthy Aging Centre, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong
| |
Collapse
|
18
|
Kay LJ, Smulders-Srinivasan TK, Soundararajan M. Understanding the Multifaceted Role of Human Down Syndrome Kinase DYRK1A. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 105:127-71. [PMID: 27567487 DOI: 10.1016/bs.apcsb.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The dual-specificity tyrosine (Y) phosphorylation-regulated kinase DYRK1A, also known as Down syndrome (DS) kinase, is a dosage-dependent signaling kinase that was originally shown to be highly expressed in DS patients as a consequence of trisomy 21. Although this was evident some time ago, it is only in recent investigations that the molecular roles of DYRK1A in a wide range of cellular processes are becoming increasingly apparent. Since initial knowledge on DYRK1A became evident through minibrain mnb, the Drosophila homolog of DYRK1A, this review will first summarize the scientific reports on minibrain and further expand on the well-established neuronal functions of mammalian and human DYRK1A. Recent investigations across the current decade have provided rather interesting and compelling evidence in establishing nonneuronal functions for DYRK1A, including its role in infection, immunity, cardiomyocyte biology, cancer, and cell cycle control. The latter part of this review will therefore focus in detail on the emerging nonneuronal functions of DYRK1A and summarize the regulatory role of DYRK1A in controlling Tau and α-synuclein. Finally, the emerging role of DYRK1A in Parkinson's disease will be outlined.
Collapse
Affiliation(s)
- L J Kay
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - T K Smulders-Srinivasan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - M Soundararajan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
19
|
Zhou X, Naguro I, Ichijo H, Watanabe K. Mitogen-activated protein kinases as key players in osmotic stress signaling. Biochim Biophys Acta Gen Subj 2016; 1860:2037-52. [PMID: 27261090 DOI: 10.1016/j.bbagen.2016.05.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/21/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Osmotic stress arises from the difference between intracellular and extracellular osmolality. It induces cell swelling or shrinkage as a consequence of water influx or efflux, which threatens cellular activities. Mitogen-activated protein kinases (MAPKs) play central roles in signaling pathways in osmotic stress responses, including the regulation of intracellular levels of inorganic ions and organic osmolytes. SCOPE OF REVIEW The present review summarizes the cellular osmotic stress response and the function and regulation of the vertebrate MAPK signaling pathways involved. We also describe recent findings regarding apoptosis signal-regulating kinase 3 (ASK3), a MAP3K member, to demonstrate its regulatory effects on signaling molecules beyond MAPKs. MAJOR CONCLUSIONS MAPKs are rapidly activated by osmotic stress and have diverse roles, such as cell volume regulation, gene expression, and cell survival/death. There is significant cell type specificity in the function and regulation of MAPKs. Based on its activity change during osmotic stress and its regulation of the WNK1-SPAK/OSR1 pathway, ASK3 is expected to play important roles in osmosensing mechanisms and cellular functions related to osmoregulation. GENERAL SIGNIFICANCE MAPKs are essential for various cellular responses to osmotic stress; thus, the identification of the upstream regulators of MAPK pathways will provide valuable clues regarding the cellular osmosensing mechanism, which remains elusive in mammals. The elucidation of in vivo MAPK functions is also important because osmotic stress in physiological and pathophysiological conditions often results from changes in the intracellular osmolality. These studies potentially contribute to the establishment of therapeutic strategies against diseases that accompany osmotic perturbation.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
20
|
Abbassi R, Johns TG, Kassiou M, Munoz L. DYRK1A in neurodegeneration and cancer: Molecular basis and clinical implications. Pharmacol Ther 2015; 151:87-98. [PMID: 25795597 DOI: 10.1016/j.pharmthera.2015.03.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 01/10/2023]
Abstract
Protein kinases are one of the most studied drug targets in current pharmacological research, as evidenced by the vast number of kinase-targeting agents enrolled in active clinical trials. Dual-specificity Tyrosine phosphorylation-Regulated Kinase 1A (DYRK1A) has been much less studied compared to many other kinases. DYRK1A primary function occurs during early development, where this protein regulates cellular processes related to proliferation and differentiation of neuronal progenitor cells. Although most extensively characterised for its role in brain development, DYRK1A is over-expressed in a variety of diseases including a number of human malignancies, such as haematological and brain cancers. Here we review the accumulating molecular studies that support our understanding of how DYRK1A signalling could underlie these pathological functions. The relevance of DYRK1A in a number of diseases is also substantiated with intensive drug discovery efforts to develop potent and selective inhibitors of DYRK1A. Several classes of DYRK1A inhibitors have recently been disclosed and some molecules are promising leads to develop DYRK1A inhibitors as drugs for DYRK1A-dependent diseases.
Collapse
Affiliation(s)
- Ramzi Abbassi
- Department of Pharmacology, School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Terrance G Johns
- MIMR-PHI Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia; Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Michael Kassiou
- School of Chemistry and Faculty of Health Sciences, University of Sydney, NSW 2006, Australia
| | - Lenka Munoz
- Department of Pharmacology, School of Medical Sciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
21
|
Fernández-Martínez P, Zahonero C, Sánchez-Gómez P. DYRK1A: the double-edged kinase as a protagonist in cell growth and tumorigenesis. Mol Cell Oncol 2015; 2:e970048. [PMID: 27308401 PMCID: PMC4905233 DOI: 10.4161/23723548.2014.970048] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 01/12/2023]
Abstract
DYRK1A (dual-specificity tyrosine-regulated kinase 1A) is a kinase with multiple implications for embryonic development, especially in the nervous system where it regulates the balance between proliferation and differentiation of neural progenitors. The DYRK1A gene is located in the Down syndrome critical region and may play a significant role in the developmental brain defects, early neurodegeneration, and cancer susceptibility of individuals with this syndrome. DYRK1A is also expressed in adults, where it might participate in the regulation of cell cycle, survival, and tumorigenesis, thus representing a potential therapeutic target for certain types of cancer. However, the final readout of DYRK1A overexpression or inhibition depends strongly on the cellular context, as it has both tumor suppressor and oncogenic activities. Here, we will discuss the functions and substrates of DYRK1A associated with the control of cell growth and tumorigenesis with a focus on the potential use of DYRK1A inhibitors in cancer therapy.
Collapse
Affiliation(s)
- P Fernández-Martínez
- Instituto de Medicina Molecular Aplicada; Universidad CEU-San Pablo ; Madrid, Spain
| | - C Zahonero
- Neuro-oncology Unit; Instituto de Salud Carlos III-UFIEC ; Madrid, Spain
| | - P Sánchez-Gómez
- Neuro-oncology Unit; Instituto de Salud Carlos III-UFIEC ; Madrid, Spain
| |
Collapse
|
22
|
Abstract
INTRODUCTION Caspase-9 is the apoptotic initiator protease of the intrinsic or mitochondrial apoptotic pathway, which is activated at multi-protein activation platforms. Its activation is believed to involve homo-dimerization of the monomeric zymogens. It binds to the apoptosome to retain substantial catalytic activity. Variety of apoptotic stimuli can regulate caspase-9. However, the mechanism of action of various regulators of caspase-9 has not been summarized and compared yet. In this article, we elucidate the regulators of caspase-9 including microRNAs, natural compounds that are related to caspase-9 and ongoing clinical trials with caspase-9 to better understand the caspase-9 in suppressing cancer. AREAS COVERED In this study, the basic mechanism of apoptosis pathways, regulators of caspase-9 and the development of drugs to regulate caspase-9 are reviewed. Also, ongoing clinical trials for caspase-9 are discussed. EXPERT OPINION Apoptosis has crucial role in cancer, brain disease, aging and heart disease to name a few. Since caspase-9 is an initiator caspase of apoptosis, it is an important therapeutic target of various diseases related to apoptosis. Therefore, a deep understanding on the roles as well as regulators of caspase-9 is required to find more effective ways to conquer apoptosis-related diseases especially cancer.
Collapse
Affiliation(s)
- Bonglee Kim
- Kyunghee University, College of Korean Medicine, Cancer Preventive Material Development Research Center , 1 Hoegi-dong, Dongdaemun-ku, Seoul 131-701 , South Korea
| | | | | |
Collapse
|
23
|
Grossi V, Peserico A, Tezil T, Simone C. p38α MAPK pathway: A key factor in colorectal cancer therapy and chemoresistance. World J Gastroenterol 2014; 20:9744-9758. [PMID: 25110412 PMCID: PMC4123363 DOI: 10.3748/wjg.v20.i29.9744] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/13/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) remains one of the most common malignancies in the world. Although surgical resection combined with adjuvant therapy is effective at the early stages of the disease, resistance to conventional therapies is frequently observed in advanced stages, where treatments become ineffective. Resistance to cisplatin, irinotecan and 5-fluorouracil chemotherapy has been shown to involve mitogen-activated protein kinase (MAPK) signaling and recent studies identified p38α MAPK as a mediator of resistance to various agents in CRC patients. Studies published in the last decade showed a dual role for the p38α pathway in mammals. Its role as a negative regulator of proliferation has been reported in both normal (including cardiomyocytes, hepatocytes, fibroblasts, hematopoietic and lung cells) and cancer cells (colon, prostate, breast, lung tumor cells). This function is mediated by the negative regulation of cell cycle progression and the transduction of some apoptotic stimuli. However, despite its anti-proliferative and tumor suppressor activity in some tissues, the p38α pathway may also acquire an oncogenic role involving cancer related-processes such as cell metabolism, invasion, inflammation and angiogenesis. In this review, we summarize current knowledge about the predominant role of the p38α MAPK pathway in CRC development and chemoresistance. In our view, this might help establish the therapeutic potential of the targeted manipulation of this pathway in clinical settings.
Collapse
|
24
|
Barallobre MJ, Perier C, Bové J, Laguna A, Delabar JM, Vila M, Arbonés ML. DYRK1A promotes dopaminergic neuron survival in the developing brain and in a mouse model of Parkinson's disease. Cell Death Dis 2014; 5:e1289. [PMID: 24922073 PMCID: PMC4611726 DOI: 10.1038/cddis.2014.253] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/22/2014] [Accepted: 05/08/2014] [Indexed: 12/18/2022]
Abstract
In the brain, programmed cell death (PCD) serves to adjust the numbers of the different types of neurons during development, and its pathological reactivation in the adult leads to neurodegeneration. Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) is a pleiotropic kinase involved in neural proliferation and cell death, and its role during brain growth is evolutionarily conserved. Human DYRK1A lies in the Down syndrome critical region on chromosome 21, and heterozygous mutations in the gene cause microcephaly and neurological dysfunction. The mouse model for DYRK1A haploinsufficiency (the Dyrk1a(+/-) mouse) presents neuronal deficits in specific regions of the adult brain, including the substantia nigra (SN), although the mechanisms underlying these pathogenic effects remain unclear. Here we study the effect of DYRK1A copy number variation on dopaminergic cell homeostasis. We show that mesencephalic DA (mDA) neurons are generated in the embryo at normal rates in the Dyrk1a haploinsufficient model and in a model (the mBACtgDyrk1a mouse) that carries three copies of Dyrk1a. We also show that the number of mDA cells diminishes in postnatal Dyrk1a(+/-) mice and increases in mBACtgDyrk1a mice due to an abnormal activity of the mitochondrial caspase9 (Casp9)-dependent apoptotic pathway during the main wave of PCD that affects these neurons. In addition, we show that the cell death induced by 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP), a toxin that activates Casp9-dependent apoptosis in mDA neurons, is attenuated in adult mBACtgDyrk1a mice, leading to an increased survival of SN DA neurons 21 days after MPTP intoxication. Finally, we present data indicating that Dyrk1a phosphorylation of Casp9 at the Thr125 residue is the mechanism by which this kinase hinders both physiological and pathological PCD in mDA neurons. These data provide new insight into the mechanisms that control cell death in brain DA neurons and they show that deregulation of developmental apoptosis may contribute to the phenotype of patients with imbalanced DYRK1A gene dosage.
Collapse
Affiliation(s)
- M J Barallobre
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - C Perier
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute and Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - J Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute and Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - A Laguna
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - J M Delabar
- Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - M Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute and Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - M L Arbonés
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
25
|
Inhibitors of enhancer of zeste homolog 2 (EZH2) activate tumor-suppressor microRNAs in human cancer cells. Oncogenesis 2014; 3:e104. [PMID: 24861464 PMCID: PMC4035694 DOI: 10.1038/oncsis.2014.17] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/28/2014] [Accepted: 04/10/2014] [Indexed: 12/14/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) enhances tumorigenesis and is commonly overexpressed in several types of cancer. To investigate the anticancer effects of EZH2 inhibitors, microRNA (miRNA) expression profiles were examined in gastric and liver cancer cells treated with suberoylanilide hydroxamic acid (SAHA) and 3-deazaneplanocin A (DZNep). We confirmed that SAHA and DZNep suppressed EZH2 expression in AGS and HepG2 cells and inhibited their proliferation. The results of microarray analyses demonstrated that miR-1246 was commonly upregulated in cancer cells by treatment with SAHA and DZNep. MiR-302a and miR-4448 were markedly upregulated by treatment with SAHA and DZNep, respectively. DYRK1A, CDK2, BMI-1 and Girdin, which are targets of miR-1246, miR-302a and miR-4448, were suppressed by treatment with SAHA and DZNep, leading to apoptosis, cell cycle arrest and reduced migration of AGS and HepG2 cells. ChIP assay revealed that SAHA and DZNep inhibited the binding of EZH2 to the promoter regions of miR-1246, miR-302a and miR-4448. These findings suggest that EZH2 inhibitors such as SAHA and DZNep exert multiple anticancer effects through activation of tumor-suppressor miRNAs.
Collapse
|
26
|
Fernald K, Kurokawa M. Evading apoptosis in cancer. Trends Cell Biol 2013; 23:620-33. [PMID: 23958396 DOI: 10.1016/j.tcb.2013.07.006] [Citation(s) in RCA: 400] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 12/12/2022]
Abstract
Carcinogenesis is a mechanistically complex and variable process with a plethora of underlying genetic causes. Cancer development comprises a multitude of steps that occur progressively starting with initial driver mutations leading to tumorigenesis and, ultimately, metastasis. During these transitions, cancer cells accumulate a series of genetic alterations that confer on the cells an unwarranted survival and proliferative advantage. During the course of development, however, cancer cells also encounter a physiologically ubiquitous cellular program that aims to eliminate damaged or abnormal cells: apoptosis. Thus, it is essential that cancer cells acquire instruments to circumvent programmed cell death. Here we discuss emerging evidence indicating how cancer cells adopt various strategies to override apoptosis, including amplifying the antiapoptotic machinery, downregulating the proapoptotic program, or both.
Collapse
Affiliation(s)
- Kaleigh Fernald
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | |
Collapse
|
27
|
IRE1α dissociates with BiP and inhibits ER stress-mediated apoptosis in cartilage development. Cell Signal 2013; 25:2136-46. [PMID: 23816533 DOI: 10.1016/j.cellsig.2013.06.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 06/19/2013] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic protein 2 is known to activate unfolded protein response signaling molecules, including XBP1S, BiP and IRE1α. Endoplasmic reticulum stress is induced in chondrogenesis and activates IRE1α signal pathway, which is associated with ER stress-mediated apoptosis. However, the influence on IRE1α and BiP in BMP2-induced chondrocyte differentiation has not yet been elucidated; the molecular mechanism remains unexplored. In this study, we demonstrate that IRE1α interacts with BiP in unstressed cells and dissociates from BiP in the course of cartilage development. Induction of ER stress-responsive proteins (XBP1S, IRE1α, BiP) was also observed in differentiating cells. IRE1α inhibition ER stress-mediated apoptosis lies in the process of chondrocyte differentiation. Furthermore, knockdown of IRE1α expression by way of the RNAi approach accelerates ER stress-mediated apoptosis in chondrocyte differentiation induced by BMP2, as revealed by enhanced expressions of cleaved caspase3, CHOP and p-JNK1; and this IRE1α inhibition effect on ER stress-mediated apoptosis is required for BiP in chondrogenesis. Collectively, the ER stress sensors were activated during apoptosis in cartilage development, suggesting that selective activation of ER stress signaling was sufficient for induction of apoptosis. These findings reveal a novel critical role of IRE1α in ER stress-mediated apoptosis and the molecular mechanisms involved. These results suggest that activation of p-JNK1, caspase3 and CHOP was detected in developing chondrocytes and that specific ER stress signaling leads to naturally occurring apoptosis during cartilage development.
Collapse
|
28
|
Parrish AB, Freel CD, Kornbluth S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol 2013; 5:5/6/a008672. [PMID: 23732469 DOI: 10.1101/cshperspect.a008672] [Citation(s) in RCA: 414] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Caspases are the primary drivers of apoptotic cell death, cleaving cellular proteins that are critical for dismantling the dying cell. Initially translated as inactive zymogenic precursors, caspases are activated in response to a variety of cell death stimuli. In addition to factors required for their direct activation (e.g., dimerizing adaptor proteins in the case of initiator caspases that lie at the apex of apoptotic signaling cascades), caspases are regulated by a variety of cellular factors in a myriad of physiological and pathological settings. For example, caspases may be modified posttranslationally (e.g., by phosphorylation or ubiquitylation) or through interaction of modulatory factors with either the zymogenic or active form of a caspase, altering its activation and/or activity. These regulatory events may inhibit or enhance enzymatic activity or may affect activity toward particular cellular substrates. Finally, there is emerging literature to suggest that caspases can participate in a variety of cellular processes unrelated to apoptotic cell death. In these settings, it is particularly important that caspases are maintained under stringent control to avoid inadvertent cell death. It is likely that continued examination of these processes will reveal new mechanisms of caspase regulation with implications well beyond control of apoptotic cell death.
Collapse
Affiliation(s)
- Amanda B Parrish
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
29
|
Wippich F, Bodenmiller B, Trajkovska MG, Wanka S, Aebersold R, Pelkmans L. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 2013; 152:791-805. [PMID: 23415227 DOI: 10.1016/j.cell.2013.01.033] [Citation(s) in RCA: 450] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/08/2012] [Accepted: 01/10/2013] [Indexed: 12/14/2022]
Abstract
Cytosolic compartmentalization through liquid-liquid unmixing, such as the formation of RNA granules, is involved in many cellular processes and might be used to regulate signal transduction. However, specific molecular mechanisms by which liquid-liquid unmixing and signal transduction are coupled remain unknown. Here, we show that during cellular stress the dual specificity kinase DYRK3 regulates the stability of P-granule-like structures and mTORC1 signaling. DYRK3 displays a cyclic partitioning mechanism between stress granules and the cytosol via a low-complexity domain in its N terminus and its kinase activity. When DYRK3 is inactive, it prevents stress granule dissolution and the release of sequestered mTORC1. When DYRK3 is active, it allows stress granule dissolution, releasing mTORC1 for signaling and promoting its activity by directly phosphorylating the mTORC1 inhibitor PRAS40. This mechanism links cytoplasmic compartmentalization via liquid phase transitions with cellular signaling.
Collapse
Affiliation(s)
- Frank Wippich
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Liao JM, Zhou X, Zhang Y, Lu H. MiR-1246: a new link of the p53 family with cancer and Down syndrome. Cell Cycle 2012; 11:2624-30. [PMID: 22751441 PMCID: PMC3409007 DOI: 10.4161/cc.20809] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Since the discovery of miRNAs, a number of miRNAs have been identified as p53's transcriptional targets. Most of them are involved in regulation of the known p53 functions, such as cell cycle, apoptosis and senescence. Our recent study revealed miR-1246 as a novel target of p53 and its analogs p63 and p73 to suppress the expression of DYRK1A and consequently activate NFAT, both of which are associated with Down syndrome and possibly with tumorigenesis. This finding suggests that miR-1246 might serve as a likely link of the p53 family with Down syndrome. Here, we provide some prospective views on the potential role of the p53 family in Down syndrome via miR-1246 and propose a new p53-miR-1246-DYRK1A-NFAT pathway in cancer.
Collapse
Affiliation(s)
- Jun-Ming Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center; Tulane University School of Medicine; New Orleans, LA USA
| | - Xiang Zhou
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center; Tulane University School of Medicine; New Orleans, LA USA
| | - Yu Zhang
- Department of Obstetrics and Gynecology; Xiangya Hospital; Central South University; Hunan, China
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center; Tulane University School of Medicine; New Orleans, LA USA
| |
Collapse
|
31
|
Saeki T, Yui S, Hirai T, Fujii T, Okada S, Kanamoto R. Ursodeoxycholic acid protects colon cancer HCT116 cells from deoxycholic acid-induced apoptosis by inhibiting apoptosome formation. Nutr Cancer 2012; 64:617-26. [PMID: 22497644 DOI: 10.1080/01635581.2012.669876] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We previously demonstrated that ursodeoxycholic acid (UDC) requires prolonged (≥5 h) preincubation to exhibit effective protection of colon cancer HCT116 cells from deoxycholic acid (DC)-induced apoptosis. Although UDC diminished DC-mediated caspase-9 activation, cytochrome c release from the mitochondria was not inhibited, indicating that UDC acts on the steps of caspase-9 activation. In the present study, therefore, we investigated the effects of UDC on the factors involved in caspase-9 activation. We found that UDC had no significant effect on the expression of antiapoptotic XIAP. Furthermore, UDC did not affect the expression or release of proapoptotic Smac/DIABLO, or the association of XIAP and Smac/DIABLO. In contrast, association of Apaf-1 and caspase-9 stimulated by 500 μM DC was inhibited by UDC pretreatment. Although UDC caused remarkable activation of Akt/PKB, phosphatidylinositol-3-kinase (PI3K) inhibitor did not significantly reduce UDC-mediated cytoprotection. Furthermore, phosphorylation of threonine residues on caspase-9 after UDC pretreatment could not be detected. UDC-mediated cytoprotection was independent of the MAPK pathway, and cyclic AMP (cAMP) analogue did not inhibit DC-induced apoptosis. Our results indicate that UDC protects colon cancer cells from apoptosis induced by hydrophobic bile acids, by inhibiting apoptosome formation independently of the survival signals mediated by the PI3K, MAPK, or cAMP pathways.
Collapse
Affiliation(s)
- Tohru Saeki
- Laboratory of Molecular Nutrition, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Rsk-mediated phosphorylation and 14-3-3ɛ binding of Apaf-1 suppresses cytochrome c-induced apoptosis. EMBO J 2012; 31:1279-92. [PMID: 22246185 DOI: 10.1038/emboj.2011.491] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 12/14/2011] [Indexed: 01/13/2023] Open
Abstract
Many pro-apoptotic signals trigger mitochondrial cytochrome c release, leading to caspase activation and ultimate cellular breakdown. Cell survival pathways, including the mitogen-activated protein kinase (MAPK) cascade, promote cell viability by impeding mitochondrial cytochrome c release and by inhibiting subsequent caspase activation. Here, we describe a mechanism for the inhibition of cytochrome c-induced caspase activation by MAPK signalling, identifying a novel mode of apoptotic regulation exerted through Apaf-1 phosphorylation by the 90-kDa ribosomal S6 kinase (Rsk). Recruitment of 14-3-3ɛ to phosphorylated Ser268 impedes the ability of cytochrome c to nucleate apoptosome formation and activate downstream caspases. High endogenous levels of Rsk in PC3 prostate cancer cells or Rsk activation in other cell types promoted 14-3-3ɛ binding to Apaf-1 and rendered the cells insensitive to cytochrome c, suggesting a potential role for Rsk signalling in apoptotic resistance of prostate cancers and other cancers with elevated Rsk activity. Collectively, these results identify a novel locus of apoptosomal regulation wherein MAPK signalling promotes Rsk-catalysed Apaf-1 phosphorylation and consequent binding of 14-3-3ɛ, resulting in decreased cellular responsiveness to cytochrome c.
Collapse
|
33
|
Affiliation(s)
- Shawn B Bratton
- Division of Pharmacology and Toxicology, College of Pharmacy, and Center for Molecular and Cellular Toxicology, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712-0125, USA.
| | | |
Collapse
|
34
|
Aranda S, Laguna A, de la Luna S. DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J 2011; 25:449-62. [PMID: 21048044 DOI: 10.1096/fj.10-165837] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dual-specificity tyrosine-regulated kinases (DYRKs) comprise a family of protein kinases within the CMGC group of the eukaryotic kinome. Members of the DYRK family are found in 4 (animalia, plantae, fungi, and protista) of the 5 main taxa or kingdoms, and all DYRK proteins studied to date share common structural, biochemical, and functional properties with their ancestors in yeast. Recent work on DYRK proteins indicates that they participate in several signaling pathways critical for developmental processes and cell homeostasis. In this review, we focus on the DYRK family of proteins from an evolutionary, biochemical, and functional point of view and discuss the most recent, relevant, and controversial contributions to the study of these kinases.
Collapse
Affiliation(s)
- Sergi Aranda
- Center for Genomic Regulation, University Pompeu Fabra, Barcelona, Spain
| | | | | |
Collapse
|
35
|
Abstract
MNB/DYRK1A is a member of the dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) family that has been strongly conserved across evolution. There are substantial data implicating MNB/DYRK1A in brain development and adult brain function, as well as in neurodegeneration and Down syndrome pathologies. Here we review our current understanding of the neurodevelopmental activity of MNB/DYRK1A. We discuss how MNB/DYRK1A fulfils several sequential roles in neuronal development and the molecular mechanisms possibly underlying these functions. We also summarize the evidence behind the hypotheses to explain how the imbalance in MNB/DYRK1A gene dosage might be implicated in the neurodevelopmental alterations associated with Down syndrome. Finally, we highlight some research directions that may help to clarify the mechanisms and functions of MNB/DYRK1A signalling in the developing brain.
Collapse
Affiliation(s)
- Francisco J Tejedor
- Instituto de Neurociencias, CSIC and Universidad Miguel Hernandez, Alicante, Spain.
| | | |
Collapse
|
36
|
Abstract
Kinases and proteases are responsible for two fundamental regulatory mechanisms--phosphorylation and proteolysis--that orchestrate the rhythms of life and death in all organisms. Recent studies have highlighted the elaborate interplay between both post-translational regulatory systems. Many intracellular or pericellular proteases are regulated by phosphorylation, whereas multiple kinases are activated or inactivated by proteolytic cleavage. The functional consequences of this regulatory crosstalk are especially relevant in the different stages of cancer progression. What are the clinical implications derived from the fertile dialogue between kinases and proteases in cancer?
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain.
| | | |
Collapse
|
37
|
Abstract
The complex process of apoptosis is orchestrated by caspases, a family of cysteine proteases with unique substrate specificities. Accumulating evidence suggests that cell death pathways are finely tuned by multiple signaling events, including direct phosphorylation of caspases, whereas kinases are often substrates of active caspases. Importantly, caspase-mediated cleavage of kinases can terminate prosurvival signaling or generate proapoptotic peptide fragments that help to execute the death program and facilitate packaging of the dying cells. Here, we review caspases as kinase substrates and kinases as caspase substrates and discuss how the balance between cell survival and cell death can be shifted through crosstalk between these two enzyme families.
Collapse
Affiliation(s)
- Manabu Kurokawa
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
38
|
Abstract
Cell death by the process of apoptosis plays important roles in development, tissue homeostasis, diseases and drug responses. The cysteine aspartyl protease caspase-9 plays a central role in the mitochondrial or intrinsic apoptotic pathway that is engaged in response to many apoptotic stimuli. Caspase-9 is activated in a large multimeric complex, the apoptosome, which is formed with apoptotic peptidase activating factor 1 (Apaf-1) in response to the release of cytochrome c from mitochondria. Once activated, caspase-9 cleaves and activates the effector caspases 3 and 7 to bring about apoptosis. This pathway is tightly regulated at multiple steps, including apoptosome formation and caspase-9 activation. Recent work has shown that caspase-9 is the direct target for regulatory phosphorylation by multiple protein kinases activated in response to extracellular growth/survival factors, osmotic stress or during mitosis. Here, we review these advances and discuss the possible roles of caspase-9 phosphorylation in the regulation of apoptosis during development and in pathological states, including cancer.
Collapse
Affiliation(s)
- Lindsey A Allan
- Biomedical Research Institute, School of Medicine, College of Medicine, Dentistry and Nursing, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, UK
| | | |
Collapse
|