1
|
Ravala SK, Tesmer JJG. New Mechanisms Underlying Oncogenesis in Dbl Family Rho Guanine Nucleotide Exchange Factors. Mol Pharmacol 2024; 106:117-128. [PMID: 38902036 PMCID: PMC11331503 DOI: 10.1124/molpharm.124.000904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
Transmembrane signaling is a critical process by which changes in the extracellular environment are relayed to intracellular systems that induce changes in homeostasis. One family of intracellular systems are the guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GTP for GDP bound to inactive guanine nucleotide binding proteins (G proteins). The resulting active G proteins then interact with downstream targets that control cell proliferation, growth, shape, migration, adhesion, and transcription. Dysregulation of any of these processes is a hallmark of cancer. The Dbl family of GEFs activates Rho family G proteins, which, in turn, alter the actin cytoskeleton and promote gene transcription. Although they have a common catalytic mechanism exercised by their highly conserved Dbl homology (DH) domains, Dbl GEFs are regulated in diverse ways, often involving the release of autoinhibition imposed by accessory domains. Among these domains, the pleckstrin homology (PH) domain is the most commonly observed and found immediately C-terminal to the DH domain. The domain has been associated with both positive and negative regulation. Recently, some atomic structures of Dbl GEFs have been determined that reemphasize the complex and central role that the PH domain can play in orchestrating regulation of the DH domain. Here, we discuss these newer structures, put them into context by cataloging the various ways that PH domains are known to contribute to signaling across the Dbl family, and discuss how the PH domain might be exploited to achieve selective inhibition of Dbl family RhoGEFs by small-molecule therapeutics. SIGNIFICANCE STATEMENT: Dysregulation via overexpression or mutation of Dbl family Rho guanine nucleotide exchange factors (GEFs) contributes to cancer and neurodegeneration. Targeting the Dbl homology catalytic domain by small-molecule therapeutics has been challenging due to its high conservation and the lack of a discrete binding pocket. By evaluating some new autoinhibitory mechanisms in the Dbl family, we demonstrate the great diversity of roles played by the regulatory domains, in particular the PH domain, and how this holds tremendous potential for the development of selective therapeutics that modulate GEF activity.
Collapse
Affiliation(s)
- Sandeep K Ravala
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology (S.K.R., J.J.G.T.) and Purdue University Institute for Cancer Research (J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - John J G Tesmer
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology (S.K.R., J.J.G.T.) and Purdue University Institute for Cancer Research (J.J.G.T.), Purdue University, West Lafayette, Indiana
| |
Collapse
|
2
|
Miyamoto S. Untangling the role of RhoA in the heart: protective effect and mechanism. Cell Death Dis 2024; 15:579. [PMID: 39122698 PMCID: PMC11315981 DOI: 10.1038/s41419-024-06928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
RhoA (ras homolog family member A) is a small G-protein that transduces intracellular signaling to regulate a broad range of cellular functions such as cell growth, proliferation, migration, and survival. RhoA serves as a proximal downstream effector of numerous G protein-coupled receptors (GPCRs) and is also responsive to various stresses in the heart. Upon its activation, RhoA engages multiple downstream signaling pathways. Rho-associated coiled-coil-containing protein kinase (ROCK) is the first discovered and best characterized effector or RhoA, playing a major role in cytoskeletal arrangement. Many other RhoA effectors have been identified, including myocardin-related transcription factor A (MRTF-A), Yes-associated Protein (YAP) and phospholipase Cε (PLCε) to regulate transcriptional and post-transcriptional processes. The role of RhoA signaling in the heart has been increasingly studied in last decades. It was initially suggested that RhoA signaling pathway is maladaptive in the heart, but more recent studies using cardiac-specific expression or deletion of RhoA have revealed that RhoA activation provides cardioprotection against stress through various mechanisms including the novel role of RhoA in mitochondrial quality control. This review summarizes recent advances in understanding the role of RhoA in the heart and its signaling pathways to prevent progression of heart disease.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093-0636, USA.
| |
Collapse
|
3
|
Izquierdo-Villalba I, Mirra S, Manso Y, Parcerisas A, Rubio J, Del Valle J, Gil-Bea FJ, Ulloa F, Herrero-Lorenzo M, Verdaguer E, Benincá C, Castro-Torres RD, Rebollo E, Marfany G, Auladell C, Navarro X, Enríquez JA, López de Munain A, Soriano E, Aragay AM. A mammalian-specific Alex3/Gα q protein complex regulates mitochondrial trafficking, dendritic complexity, and neuronal survival. Sci Signal 2024; 17:eabq1007. [PMID: 38320000 DOI: 10.1126/scisignal.abq1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Mitochondrial dynamics and trafficking are essential to provide the energy required for neurotransmission and neural activity. We investigated how G protein-coupled receptors (GPCRs) and G proteins control mitochondrial dynamics and trafficking. The activation of Gαq inhibited mitochondrial trafficking in neurons through a mechanism that was independent of the canonical downstream PLCβ pathway. Mitoproteome analysis revealed that Gαq interacted with the Eutherian-specific mitochondrial protein armadillo repeat-containing X-linked protein 3 (Alex3) and the Miro1/Trak2 complex, which acts as an adaptor for motor proteins involved in mitochondrial trafficking along dendrites and axons. By generating a CNS-specific Alex3 knockout mouse line, we demonstrated that Alex3 was required for the effects of Gαq on mitochondrial trafficking and dendritic growth in neurons. Alex3-deficient mice had altered amounts of ER stress response proteins, increased neuronal death, motor neuron loss, and severe motor deficits. These data revealed a mammalian-specific Alex3/Gαq mitochondrial complex, which enables control of mitochondrial trafficking and neuronal death by GPCRs.
Collapse
Affiliation(s)
| | - Serena Mirra
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBER-CIBERER), ISCIII, Madrid 28031, Spain
- Institut de Biomedicina- Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, Barcelona 08028, Spain
| | - Yasmina Manso
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Antoni Parcerisas
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic, Central University of Catalonia (UVic-UCC); and Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), 08500 Vic, Spain
| | - Javier Rubio
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Jaume Del Valle
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Francisco J Gil-Bea
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián 20014, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Marina Herrero-Lorenzo
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
| | - Ester Verdaguer
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Cristiane Benincá
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Rubén D Castro-Torres
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
| | - Elena Rebollo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBER-CIBERER), ISCIII, Madrid 28031, Spain
- Institut de Biomedicina- Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, Barcelona 08028, Spain
| | - Carme Auladell
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Xavier Navarro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - José A Enríquez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBER-CIBERFES), Madrid 28031, Spain
| | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián 20014, Spain
- Neurology Department, Donostia University Hospital, San Sebastián 20014, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Anna M Aragay
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| |
Collapse
|
4
|
Cervantes-Villagrana RD, García-Jiménez I, Vázquez-Prado J. Guanine nucleotide exchange factors for Rho GTPases (RhoGEFs) as oncogenic effectors and strategic therapeutic targets in metastatic cancer. Cell Signal 2023; 109:110749. [PMID: 37290677 DOI: 10.1016/j.cellsig.2023.110749] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Metastatic cancer cells dynamically adjust their shape to adhere, invade, migrate, and expand to generate secondary tumors. Inherent to these processes is the constant assembly and disassembly of cytoskeletal supramolecular structures. The subcellular places where cytoskeletal polymers are built and reorganized are defined by the activation of Rho GTPases. These molecular switches directly respond to signaling cascades integrated by Rho guanine nucleotide exchange factors (RhoGEFs), which are sophisticated multidomain proteins that control morphological behavior of cancer and stromal cells in response to cell-cell interactions, tumor-secreted factors and actions of oncogenic proteins within the tumor microenvironment. Stromal cells, including fibroblasts, immune and endothelial cells, and even projections of neuronal cells, adjust their shapes and move into growing tumoral masses, building tumor-induced structures that eventually serve as metastatic routes. Here we review the role of RhoGEFs in metastatic cancer. They are highly diverse proteins with common catalytic modules that select among a variety of homologous Rho GTPases enabling them to load GTP, acquiring an active conformation that stimulates effectors controlling actin cytoskeleton remodeling. Therefore, due to their strategic position in oncogenic signaling cascades, and their structural diversity flanking common catalytic modules, RhoGEFs possess unique characteristics that make them conceptual targets of antimetastatic precision therapies. Preclinical proof of concept, demonstrating the antimetastatic effect of inhibiting either expression or activity of βPix (ARHGEF7), P-Rex1, Vav1, ARHGEF17, and Dock1, among others, is emerging.
Collapse
|
5
|
Grubisha MJ, DeGiosio RA, Wills ZP, Sweet RA. Trio and Kalirin as unique enactors of Rho/Rac spatiotemporal precision. Cell Signal 2022; 98:110416. [PMID: 35872089 DOI: 10.1016/j.cellsig.2022.110416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/18/2022]
Abstract
Rac1 and RhoA are among the most widely studied small GTPases. The classic dogma surrounding their biology has largely focused on their activity as an "on/off switch" of sorts. However, the advent of more sophisticated techniques, such as genetically-encoded FRET-based sensors, has afforded the ability to delineate the spatiotemporal regulation of Rac1 and RhoA. As a result, there has been a shift from this simplistic global view to one incorporating the precision of spatiotemporal modularity. This review summarizes emerging data surrounding the roles of Rac1 and RhoA as cytoskeletal regulators and examines how these new data have led to a revision of the traditional dogma which placed Rac1 and RhoA in antagonistic pathways. This more recent evidence suggests that rather than absolute activity levels, it is the tight spatiotemporal regulation of Rac1 and RhoA across multiple roles, from oppositional to complementary, that is necessary to execute coordinated cytoskeletal processes affecting cell structure, function, and migration. We focus on how Kalirin and Trio, as dual GEFs that target Rac1 and RhoA, are uniquely designed to provide the spatiotemporally-precise shifts in Rac/Rho balance which mediate changes in neuronal structure and function, particularly by way of cytoskeletal rearrangements. Finally, we review how alterations in Trio and/or Kalirin function are associated with cellular abnormalities and neuropsychiatric disease.
Collapse
Affiliation(s)
- M J Grubisha
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - R A DeGiosio
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Z P Wills
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - R A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Cabezudo S, Sanz-Flores M, Caballero A, Tasset I, Rebollo E, Diaz A, Aragay AM, Cuervo AM, Mayor F, Ribas C. Gαq activation modulates autophagy by promoting mTORC1 signaling. Nat Commun 2021; 12:4540. [PMID: 34315875 PMCID: PMC8316552 DOI: 10.1038/s41467-021-24811-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
The mTORC1 node plays a major role in autophagy modulation. We report a role of the ubiquitous Gαq subunit, a known transducer of plasma membrane G protein-coupled receptors signaling, as a core modulator of mTORC1 and autophagy. Cells lacking Gαq/11 display higher basal autophagy, enhanced autophagy induction upon different types of nutrient stress along with a decreased mTORC1 activation status. They are also unable to reactivate mTORC1 and thus inactivate ongoing autophagy upon nutrient recovery. Conversely, stimulation of Gαq/11 promotes sustained mTORC1 pathway activation and reversion of autophagy promoted by serum or amino acids removal. Gαq is present in autophagic compartments and lysosomes and is part of the mTORC1 multi-molecular complex, contributing to its assembly and activation via its nutrient status-sensitive interaction with p62, which displays features of a Gαq effector. Gαq emerges as a central regulator of the autophagy machinery required to maintain cellular homeostasis upon nutrient fluctuations.
Collapse
Affiliation(s)
- Sofía Cabezudo
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain
- Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria Sanz-Flores
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Alvaro Caballero
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Inmaculada Tasset
- Department of Developmental and Molecular Biology and Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Elena Rebollo
- Molecular Imaging Platform (MIP), Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Antonio Diaz
- Department of Developmental and Molecular Biology and Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna M Aragay
- Department of Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Ana María Cuervo
- Department of Developmental and Molecular Biology and Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain.
| | - Catalina Ribas
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain.
| |
Collapse
|
7
|
Chiu YH, Medina CB, Doyle CA, Zhou M, Narahari AK, Sandilos JK, Gonye EC, Gao HY, Guo SY, Parlak M, Lorenz UM, Conrads TP, Desai BN, Ravichandran KS, Bayliss DA. Deacetylation as a receptor-regulated direct activation switch for pannexin channels. Nat Commun 2021; 12:4482. [PMID: 34301959 PMCID: PMC8302610 DOI: 10.1038/s41467-021-24825-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Activation of Pannexin 1 (PANX1) ion channels causes release of intercellular signaling molecules in a variety of (patho)physiological contexts. PANX1 can be activated by G protein-coupled receptors (GPCRs), including α1-adrenergic receptors (α1-ARs), but how receptor engagement leads to channel opening remains unclear. Here, we show that GPCR-mediated PANX1 activation can occur via channel deacetylation. We find that α1-AR-mediated activation of PANX1 channels requires Gαq but is independent of phospholipase C or intracellular calcium. Instead, α1-AR-mediated PANX1 activation involves RhoA, mammalian diaphanous (mDia)-related formin, and a cytosolic lysine deacetylase activated by mDia - histone deacetylase 6. HDAC6 associates with PANX1 and activates PANX1 channels, even in excised membrane patches, suggesting direct deacetylation of PANX1. Substitution of basally-acetylated intracellular lysine residues identified on PANX1 by mass spectrometry either prevents HDAC6-mediated activation (K140/409Q) or renders the channels constitutively active (K140R). These data define a non-canonical RhoA-mDia-HDAC6 signaling pathway for GαqPCR activation of PANX1 channels and uncover lysine acetylation-deacetylation as an ion channel silencing-activation mechanism.
Collapse
Affiliation(s)
- Yu-Hsin Chiu
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan.
| | - Christopher B Medina
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Catherine A Doyle
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ming Zhou
- Inova Center for Personalized Health, Inova Schar Cancer Institute, Fairfax, VA, USA
| | - Adishesh K Narahari
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Joanna K Sandilos
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth C Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Hong-Yu Gao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih Yi Guo
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Mahmut Parlak
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Ulrike M Lorenz
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Thomas P Conrads
- Inova Center for Personalized Health, Inova Schar Cancer Institute, Fairfax, VA, USA
| | - Bimal N Desai
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
8
|
Blankenbach KV, Claas RF, Aster NJ, Spohner AK, Trautmann S, Ferreirós N, Black JL, Tesmer JJG, Offermanns S, Wieland T, Meyer zu Heringdorf D. Dissecting G q/11-Mediated Plasma Membrane Translocation of Sphingosine Kinase-1. Cells 2020; 9:cells9102201. [PMID: 33003441 PMCID: PMC7599897 DOI: 10.3390/cells9102201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/24/2022] Open
Abstract
Diverse extracellular signals induce plasma membrane translocation of sphingosine kinase-1 (SphK1), thereby enabling inside-out signaling of sphingosine-1-phosphate. We have shown before that Gq-coupled receptors and constitutively active Gαq/11 specifically induced a rapid and long-lasting SphK1 translocation, independently of canonical Gq/phospholipase C (PLC) signaling. Here, we further characterized Gq/11 regulation of SphK1. SphK1 translocation by the M3 receptor in HEK-293 cells was delayed by expression of catalytically inactive G-protein-coupled receptor kinase-2, p63Rho guanine nucleotide exchange factor (p63RhoGEF), and catalytically inactive PLCβ3, but accelerated by wild-type PLCβ3 and the PLCδ PH domain. Both wild-type SphK1 and catalytically inactive SphK1-G82D reduced M3 receptor-stimulated inositol phosphate production, suggesting competition at Gαq. Embryonic fibroblasts from Gαq/11 double-deficient mice were used to show that amino acids W263 and T257 of Gαq, which interact directly with PLCβ3 and p63RhoGEF, were important for bradykinin B2 receptor-induced SphK1 translocation. Finally, an AIXXPL motif was identified in vertebrate SphK1 (positions 100–105 in human SphK1a), which resembles the Gαq binding motif, ALXXPI, in PLCβ and p63RhoGEF. After M3 receptor stimulation, SphK1-A100E-I101E and SphK1-P104A-L105A translocated in only 25% and 56% of cells, respectively, and translocation efficiency was significantly reduced. The data suggest that both the AIXXPL motif and currently unknown consequences of PLCβ/PLCδ(PH) expression are important for regulation of SphK1 by Gq/11.
Collapse
Affiliation(s)
- Kira Vanessa Blankenbach
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Ralf Frederik Claas
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Natalie Judith Aster
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Anna Katharina Spohner
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Sandra Trautmann
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.T.); (N.F.)
| | - Nerea Ferreirós
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.T.); (N.F.)
| | - Justin L. Black
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - John J. G. Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette, West Lafayette, IN 47907-2054, USA;
| | - Stefan Offermanns
- Abteilung für Pharmakologie, Max-Planck-Institut für Herz- und Lungenforschung, 61231 Bad Nauheim, Germany;
| | - Thomas Wieland
- Experimentelle Pharmakologie Mannheim, European Center for Angioscience, Universität Heidelberg, 68167 Mannheim, Germany;
| | - Dagmar Meyer zu Heringdorf
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
- Correspondence: ; Tel.: +49-69-6301-3906
| |
Collapse
|
9
|
Felline A, Belmonte L, Raimondi F, Bellucci L, Fanelli F. Interconnecting Flexibility, Structural Communication, and Function in RhoGEF Oncoproteins. J Chem Inf Model 2019; 59:4300-4313. [PMID: 31490066 DOI: 10.1021/acs.jcim.9b00271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dbl family Rho guanine nucleotide exchange factors (RhoGEFs) play a central role in cell biology by catalyzing the exchange of guanosine 5'-triphosphate for guanosine 5'-diphosphate (GDP) on RhoA. Insights into the oncogenic constitutive activity of the Lbc RhoGEF were gained by analyzing the structure and dynamics of the protein in different functional states and in comparison with a close homologue, leukemia-associated RhoGEF. Higher intrinsic flexibility, less dense and extended structure network, and less stable allosteric communication pathways in Lbc, compared to the nonconstitutively active homologue, emerged as major determinants of the constitutive activity. Independent of the state, the essential dynamics of the two RhoGEFs is contributed by the last 10 amino acids of Dbl homology (DH) and the whole pleckstrin homology (PH) domains and tends to be equalized by the presence of RhoA. The catalytic activity of the RhoGEF relies on the scaffolding action of the DH domain that primarily turns the switch I (SWI) of RhoA on itself through highly conserved amino acids participating in the stability core and essential for function. Changes in the conformation of SWI and disorganization of the RhoA regions deputed to nucleotide binding are among the major RhoGEF effects leading to GDP release. Binding of RhoA reorganizes the allosteric communication on RhoGEF, strengthening the communication among the canonical RhoA binding site on DH, a secondary RhoA binding site on PH, and the binding site for heterotrimeric G proteins, suggesting dual roles for RhoA as a catalysis substrate and as a regulatory protein. The structure network-based analysis tool employed in this study proved to be useful for predicting potentially druggable regulatory sites in protein structures.
Collapse
Affiliation(s)
- Angelo Felline
- Department of Life Sciences , University of Modena and Reggio Emilia , via Campi 103 , 41125 Modena , Italy
| | - Luca Belmonte
- Department of Life Sciences , University of Modena and Reggio Emilia , via Campi 103 , 41125 Modena , Italy
| | - Francesco Raimondi
- Department of Life Sciences , University of Modena and Reggio Emilia , via Campi 103 , 41125 Modena , Italy
| | - Luca Bellucci
- Department of Life Sciences , University of Modena and Reggio Emilia , via Campi 103 , 41125 Modena , Italy
| | - Francesca Fanelli
- Department of Life Sciences , University of Modena and Reggio Emilia , via Campi 103 , 41125 Modena , Italy.,Center for Neuroscience and Neurotechnology , University of Modena and Reggio Emilia , via Campi 287 , 41125 Modena , Italy
| |
Collapse
|
10
|
Zhang Y. Exploring the autoinhibition mechanism of the C-terminal guanine nucleotide exchange factor module of Trio through molecular dynamics simulations. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Navot S, Kosloff M. Structural design principles that underlie the multi-specific interactions of Gα q with dissimilar partners. Sci Rep 2019; 9:6898. [PMID: 31053791 PMCID: PMC6499889 DOI: 10.1038/s41598-019-43395-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Gαq is a ubiquitous molecular switch that activates the effectors phospholipase-C-β3 (PLC-β3) and Rho guanine-nucleotide exchange factors. Gαq is inactivated by regulators of G protein signaling proteins, as well as by PLC-β3. Gαq further interacts with G protein-coupled receptor kinase 2 (GRK2), although the functional role of this interaction is debated. While X-ray structures of Gαq bound to representatives of these partners have revealed details of their interactions, the mechanistic basis for differential Gαq interactions with multiple partners (i.e., Gαq multi-specificity) has not been elucidated at the individual residue resolution. Here, we map the structural determinants of Gαq multi-specificity using structure-based energy calculations. We delineate regions that specifically interact with GTPase Activating Proteins (GAPs) and residues that exclusively contribute to effector interactions, showing that only the Gαq “Switch II” region interacts with all partners. Our analysis further suggests that Gαq-GRK2 interactions are consistent with GRK2 functioning as an effector, rather than a GAP. Our multi-specificity analysis pinpoints Gαq residues that uniquely contribute to interactions with particular partners, enabling precise manipulation of these cascades. As such, we dissect the molecular basis of Gαq function as a central signaling hub, which can be used to target Gαq-mediated signaling in therapeutic interventions.
Collapse
Affiliation(s)
- Shir Navot
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, 3498838, Israel
| | - Mickey Kosloff
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
12
|
Bandekar SJ, Arang N, Tully ES, Tang BA, Barton BL, Li S, Gutkind JS, Tesmer JJG. Structure of the C-terminal guanine nucleotide exchange factor module of Trio in an autoinhibited conformation reveals its oncogenic potential. Sci Signal 2019; 12:12/569/eaav2449. [PMID: 30783010 DOI: 10.1126/scisignal.aav2449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The C-terminal guanine nucleotide exchange factor (GEF) module of Trio (TrioC) transfers signals from the Gαq/11 subfamily of heterotrimeric G proteins to the small guanosine triphosphatase (GTPase) RhoA, enabling Gαq/11-coupled G protein-coupled receptors (GPCRs) to control downstream events, such as cell motility and gene transcription. This conserved signal transduction axis is crucial for tumor growth in uveal melanoma. Previous studies indicate that the GEF activity of the TrioC module is autoinhibited, with release of autoinhibition upon Gαq/11 binding. Here, we determined the crystal structure of TrioC in its basal state and found that the pleckstrin homology (PH) domain interacts with the Dbl homology (DH) domain in a manner that occludes the Rho GTPase binding site, thereby suggesting the molecular basis of TrioC autoinhibition. Biochemical and biophysical assays revealed that disruption of the autoinhibited conformation destabilized and activated the TrioC module in vitro. Last, mutations in the DH-PH interface found in patients with cancer activated TrioC and, in the context of full-length Trio, led to increased abundance of guanosine triphosphate-bound RhoA (RhoA·GTP) in human cells. These mutations increase mitogenic signaling through the RhoA axis and, therefore, may represent cancer drivers operating in a Gαq/11-independent manner.
Collapse
Affiliation(s)
- Sumit J Bandekar
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nadia Arang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.,Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Ena S Tully
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brittany A Tang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brenna L Barton
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sheng Li
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.,Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - John J G Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
13
|
Pagnin E, Ravarotto V, Maiolino G, Naso E, Davis PA, Calò LA. Gαq/p63RhoGEF interaction in RhoA/Rho kinase signaling: investigation in Gitelman's syndrome and implications with hypertension. J Endocrinol Invest 2018; 41:351-356. [PMID: 28840514 DOI: 10.1007/s40618-017-0749-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/19/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE Gitelman's syndrome (GS) presents normo-hypotension and absence of cardiovascular-renal remodeling despite high angiotensin II (Ang II), activation of renin-angiotensin-aldosterone system and is a human model of endogenous antagonism of Ang II signaling, opposite to hypertension. GS's clinical presentation leads to questions regarding what features might be responsible. One area of investigation involves Ang II signaling. In hypertensive patients, RhoA/Rho kinase (RhoA/ROCK) pathway activation by Ang II is involved in hypertension development/maintenance and induction of long-term consequences (cardiovascular-renal remodeling), while GS has reduced p63RhoGEF gene and protein levels and ROCK activity. Ang II signaling is mediated by Gαq, which interacts with p63RhoGEF via the α6-αN linker connecting p63RhoGEF's DH and PH domains acting as a conformational switch to activate RhoA/ROCK signaling. METHODS We have investigated in GS patients, the presence of mutations in either p63RhoGEF's α6-αN linker domain and in Gαq's Ala253, Trp263, and Tyr356 residues, crucial for p63RhoGEF-Gαq interplay. RESULTS No mutations have been found in specific aminoacids of p63RhoGEF α6-αN linker and Gαq, key for p63RhoGEF/Gαq interplay. CONCLUSIONS Gitelman's syndrome normo/hypotension and lack of cardiovascular-renal remodeling are not due to mutations of p63RhoGEF α6-αN linker and Gαq interactions. This opens the way for investigations on different coding and no-coding regions (p63RhoGEF and Gαq promoters) and on altered transcriptional/post-transcriptional regulation. Clarification of how these biochemical/molecular mechanisms work/interact would provide insights into mechanisms involved in the GS's Ang II signaling fine tuning, in human physiology/pathophysiology in general and could also identify significant targets for intervention in the treatments of hypertension.
Collapse
Affiliation(s)
- E Pagnin
- Department of Medicine (DIMED), Nephrology, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - V Ravarotto
- Department of Medicine (DIMED), Nephrology, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - G Maiolino
- Hypertension, University of Padova, Padua, Italy
| | - E Naso
- Department of Medicine (DIMED), Nephrology, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - P A Davis
- Department of Nutrition, University of California, Davis, USA
| | - L A Calò
- Department of Medicine (DIMED), Nephrology, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy.
| |
Collapse
|
14
|
Kinetics of recruitment and allosteric activation of ARHGEF25 isoforms by the heterotrimeric G-protein Gαq. Sci Rep 2016; 6:36825. [PMID: 27833100 PMCID: PMC5105084 DOI: 10.1038/srep36825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Rho GTPases are master regulators of the eukaryotic cytoskeleton. The activation of Rho GTPases is governed by Rho guanine nucleotide exchange factors (GEFs). Three RhoGEF isoforms are produced by the gene ARHGEF25; p63RhoGEF580, GEFT and a recently discovered longer isoform of 619 amino acids (p63RhoGEF619). The subcellular distribution of p63RhoGEF580 and p63RhoGEF619 is strikingly different in unstimulated cells, p63RhoGEF580 is located at the plasma membrane and p63RhoGEF619 is confined to the cytoplasm. Interestingly, we find that both P63RhoGEF580 and p63RhoGEF619 activate RhoGTPases to a similar extent after stimulation of Gαq coupled GPCRs. Furthermore, we show that p63RhoGEF619 relocates to the plasma membrane upon activation of Gαq coupled GPCRs, resembling the well-known activation mechanism of RhoGEFs activated by Gα12/13. Synthetic recruitment of p63RhoGEF619 to the plasma membrane increases RhoGEF activity towards RhoA, but full activation requires allosteric activation via Gαq. Together, these findings reveal a dual role for Gαq in RhoGEF activation, as it both recruits and allosterically activates cytosolic ARHGEF25 isoforms.
Collapse
|
15
|
Charpentier TH, Waldo GL, Lowery-Gionta EG, Krajewski K, Strahl BD, Kash TL, Harden TK, Sondek J. Potent and Selective Peptide-based Inhibition of the G Protein Gαq. J Biol Chem 2016; 291:25608-25616. [PMID: 27742837 DOI: 10.1074/jbc.m116.740407] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/13/2016] [Indexed: 11/06/2022] Open
Abstract
In contrast to G protein-coupled receptors, for which chemical and peptidic inhibitors have been extensively explored, few compounds are available that directly modulate heterotrimeric G proteins. Active Gαq binds its two major classes of effectors, the phospholipase C (PLC)-β isozymes and Rho guanine nucleotide exchange factors (RhoGEFs) related to Trio, in a strikingly similar fashion: a continuous helix-turn-helix of the effectors engages Gαq within its canonical binding site consisting of a groove formed between switch II and helix α3. This information was exploited to synthesize peptides that bound active Gαq in vitro with affinities similar to full-length effectors and directly competed with effectors for engagement of Gαq A representative peptide was specific for active Gαq because it did not bind inactive Gαq or other classes of active Gα subunits and did not inhibit the activation of PLC-β3 by Gβ1γ2 In contrast, the peptide robustly prevented activation of PLC-β3 or p63RhoGEF by Gαq; it also prevented G protein-coupled receptor-promoted neuronal depolarization downstream of Gαq in the mouse prefrontal cortex. Moreover, a genetically encoded form of this peptide flanked by fluorescent proteins inhibited Gαq-dependent activation of PLC-β3 at least as effectively as a dominant-negative form of full-length PLC-β3. These attributes suggest that related, cell-penetrating peptides should effectively inhibit active Gαq in cells and that these and genetically encoded sequences may find application as molecular probes, drug leads, and biosensors to monitor the spatiotemporal activation of Gαq in cells.
Collapse
Affiliation(s)
- Thomas H Charpentier
- From the Departments of Pharmacology and.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | | | | | - Krzysztof Krajewski
- Biochemistry and Biophysics.,High-Throughput Peptide Synthesis and Array Facility, and
| | - Brian D Strahl
- Biochemistry and Biophysics.,High-Throughput Peptide Synthesis and Array Facility, and
| | | | | | - John Sondek
- From the Departments of Pharmacology and .,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599.,Biochemistry and Biophysics
| |
Collapse
|
16
|
Understanding the mechanisms of angiotensin II signaling involved in hypertension and its long-term sequelae: insights from Bartter's and Gitelman's syndromes, human models of endogenous angiotensin II signaling antagonism. J Hypertens 2016; 32:2109-19; discussion 2119. [PMID: 25202962 DOI: 10.1097/hjh.0000000000000321] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Angiotensin II (Ang II) plays a key role in hypertension, renal and cardiovascular pathophysiology via intracellular pathways that involve the activation of a multiplicity of signaling mechanisms. Although experimental and genetic animal models have been developed and used to explore Ang II signaling's role in hypertension, a complete understanding of the processes mediating Ang II signaling in hypertension in humans remains elusive. One impediment is that these animal models do not exhibit all the traits of human hypertension, making it impossible to extrapolate from them to humans. To overcome this issue, we have used patients with Bartter's and Gitelman's syndromes, a human model of endogenously blunted and blocked Ang II signaling that presents a constellation of clinical findings which manifest themselves as the opposite of hypertension. This article reviews the aspects of the pathophysiology of human hypertension and its short and long term sequelae, and uses the results of our studies in Bartter's and Gitelman's syndromes along with those of others to gain better insight and understanding of the role of Ang II signaling in these processes.
Collapse
|
17
|
Sánchez-Fernández G, Cabezudo S, Caballero Á, García-Hoz C, Tall GG, Klett J, Michnick SW, Mayor F, Ribas C. Protein Kinase C ζ Interacts with a Novel Binding Region of Gαq to Act as a Functional Effector. J Biol Chem 2016; 291:9513-25. [PMID: 26887939 DOI: 10.1074/jbc.m115.684308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 12/13/2022] Open
Abstract
Heterotrimeric G proteins play an essential role in the initiation of G protein-coupled receptor (GPCR) signaling through specific interactions with a variety of cellular effectors. We have recently reported that GPCR activation promotes a direct interaction between Gαq and protein kinase C ζ (PKCζ), leading to the stimulation of the ERK5 pathway independent of the canonical effector PLCβ. We report herein that the activation-dependent Gαq/PKCζ complex involves the basic PB1-type II domain of PKCζ and a novel interaction module in Gαq different from the classical effector-binding site. Point mutations in this Gαq region completely abrogate ERK5 phosphorylation, indicating that Gαq/PKCζ association is required for the activation of the pathway. Indeed, PKCζ was demonstrated to directly bind ERK5 thus acting as a scaffold between Gαq and ERK5 upon GPCR activation. The inhibition of these protein complexes by G protein-coupled receptor kinase 2, a known Gαq modulator, led to a complete abrogation of ERK5 stimulation. Finally, we reveal that Gαq/PKCζ complexes link Gαq to apoptotic cell death pathways. Our data suggest that the interaction between this novel region in Gαq and the effector PKCζ is a key event in Gαq signaling.
Collapse
Affiliation(s)
- Guzmán Sánchez-Fernández
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain, Instituto de Investigación Sanitaria La Princesa, 29006-Madrid, Spain, Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Sofía Cabezudo
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain, Instituto de Investigación Sanitaria La Princesa, 29006-Madrid, Spain
| | - Álvaro Caballero
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain, Instituto de Investigación Sanitaria La Princesa, 29006-Madrid, Spain
| | - Carlota García-Hoz
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain, Instituto de Investigación Sanitaria La Princesa, 29006-Madrid, Spain
| | - Gregory G Tall
- Departments of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Javier Klett
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain
| | - Stephen W Michnick
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7 Canada
| | - Federico Mayor
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain, Instituto de Investigación Sanitaria La Princesa, 29006-Madrid, Spain,
| | - Catalina Ribas
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain, Instituto de Investigación Sanitaria La Princesa, 29006-Madrid, Spain,
| |
Collapse
|
18
|
Ravarotto V, Pagnin E, Maiolino G, Fragasso A, Carraro G, Rossi B, Calò LA. The blocking of angiotensin II type 1 receptor and RhoA/Rho kinase activity in hypertensive patients: Effect of olmesartan medoxomil and implication with cardiovascular-renal remodeling. J Renin Angiotensin Aldosterone Syst 2015; 16:1245-50. [DOI: 10.1177/1470320315594324] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/02/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
- Verdiana Ravarotto
- Department of Medicine Nephrology, University of Padova-Azienda Ospedaliera Padova, Italy
- Hypertension Clinic, University of Padova-Azienda Ospedaliera Padova, Italy
| | - Elisa Pagnin
- Department of Medicine Nephrology, University of Padova-Azienda Ospedaliera Padova, Italy
| | - Giuseppe Maiolino
- Hypertension Clinic, University of Padova-Azienda Ospedaliera Padova, Italy
| | - Antonio Fragasso
- Department of Medicine Nephrology, University of Padova-Azienda Ospedaliera Padova, Italy
| | - Gianni Carraro
- Department of Medicine Nephrology, University of Padova-Azienda Ospedaliera Padova, Italy
| | - Barbara Rossi
- Department of Medicine Nephrology, University of Padova-Azienda Ospedaliera Padova, Italy
| | - Lorenzo A Calò
- Department of Medicine Nephrology, University of Padova-Azienda Ospedaliera Padova, Italy
| |
Collapse
|
19
|
Yu OM, Brown JH. G Protein-Coupled Receptor and RhoA-Stimulated Transcriptional Responses: Links to Inflammation, Differentiation, and Cell Proliferation. Mol Pharmacol 2015; 88:171-80. [PMID: 25904553 DOI: 10.1124/mol.115.097857] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/22/2015] [Indexed: 01/06/2023] Open
Abstract
The low molecular weight G protein RhoA (rat sarcoma virus homolog family member A) serves as a node for transducing signals through G protein-coupled receptors (GPCRs). Activation of RhoA occurs through coupling of G proteins, most prominently, G12/13, to Rho guanine nucleotide exchange factors. The GPCR ligands that are most efficacious for RhoA activation include thrombin, lysophosphatidic acid, sphingosine-1-phosphate, and thromboxane A2. These ligands also stimulate proliferation, differentiation, and inflammation in a variety of cell and tissues types. The molecular events underlying these responses are the activation of transcription factors, transcriptional coactivators, and downstream gene programs. This review describes the pathways leading from GPCRs and RhoA to the regulation of activator protein-1, NFκB (nuclear factor κ-light-chain-enhancer of activated B cells), myocardin-related transcription factor A, and Yes-associated protein. We also focus on the importance of two prominent downstream transcriptional gene targets, the inflammatory mediator cyclooxygenase 2, and the matricellular protein cysteine-rich angiogenic inducer 61 (CCN1). Finally, we describe the importance of GPCR-induced activation of these pathways in the pathophysiology of cancer, fibrosis, and cardiovascular disease.
Collapse
Affiliation(s)
- Olivia M Yu
- Department of Pharmacology (O.Y., J.H.B.) and Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California (O.Y.)
| | - Joan Heller Brown
- Department of Pharmacology (O.Y., J.H.B.) and Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California (O.Y.)
| |
Collapse
|
20
|
Artamonov MV, Jin L, Franke AS, Momotani K, Ho R, Dong XR, Majesky MW, Somlyo AV. Signaling pathways that control rho kinase activity maintain the embryonic epicardial progenitor state. J Biol Chem 2015; 290:10353-67. [PMID: 25733666 DOI: 10.1074/jbc.m114.613190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Indexed: 12/25/2022] Open
Abstract
This study identifies signaling pathways that play key roles in the formation and maintenance of epicardial cells, a source of progenitors for coronary smooth muscle cells (SMCs). After epithelial to mesenchymal transition (EMT), mesenchymal cells invade the myocardium to form coronary SMCs. RhoA/Rho kinase activity is required for EMT and for differentiation into coronary SMCs, whereas cAMP activity is known to inhibit EMT in epithelial cells by an unknown mechanism. We use outgrowth of epicardial cells from E9.5 isolated mouse proepicardium (PE) explants, wild type and Epac1 null E12.5 mouse heart explants, adult rat epicardial cells, and immortalized mouse embryonic epicardial cells as model systems to identify signaling pathways that regulate RhoA activity to maintain the epicardial progenitor state. We demonstrate that RhoA activity is suppressed in the epicardial progenitor state, that the cAMP-dependent Rap1 GTP exchange factor (GEF), Epac, known to down-regulate RhoA activity through activation of Rap1 GTPase activity increased, that Rap1 activity increased, and that expression of the RhoA antagonistic Rnd proteins known to activate p190RhoGAP increased and associated with p190RhoGAP. Finally, EMT is associated with increased p63RhoGEF and RhoGEF-H1 protein expression, increased GEF-H1 activity, with a trend in increased p63RhoGEF activity. EMT is suppressed by partial silencing of p63RhoGEF and GEF-H1. In conclusion, we have identified new signaling molecules that act together to control RhoA activity and play critical roles in the maintenance of coronary smooth muscle progenitor cells in the embryonic epicardium. We suggest that their eventual manipulation could promote revascularization after myocardial injury.
Collapse
Affiliation(s)
- Mykhaylo V Artamonov
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Li Jin
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Aaron S Franke
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Ko Momotani
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Ruoya Ho
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Xiu Rong Dong
- Seattle Children's Research Institute, Seattle, Washington 98101
| | - Mark W Majesky
- Seattle Children's Research Institute, Seattle, Washington 98101
| | - Avril V Somlyo
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| |
Collapse
|
21
|
Goicoechea SM, Awadia S, Garcia-Mata R. I'm coming to GEF you: Regulation of RhoGEFs during cell migration. Cell Adh Migr 2014; 8:535-49. [PMID: 25482524 PMCID: PMC4594598 DOI: 10.4161/cam.28721] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cell migration is a highly regulated multistep process that requires the coordinated regulation of cell adhesion, protrusion, and contraction. These processes require numerous protein–protein interactions and the activation of specific signaling pathways. The Rho family of GTPases plays a key role in virtually every aspect of the cell migration cycle. The activation of Rho GTPases is mediated by a large and diverse family of proteins; the guanine nucleotide exchange factors (RhoGEFs). GEFs work immediately upstream of Rho proteins to provide a direct link between Rho activation and cell–surface receptors for various cytokines, growth factors, adhesion molecules, and G protein-coupled receptors. The regulated targeting and activation of RhoGEFs is essential to coordinate the migratory process. In this review, we summarize the recent advances in our understanding of the role of RhoGEFs in the regulation of cell migration.
Collapse
Key Words
- DH, Dbl-homology
- DHR, DOCK homology region
- DOCK, dedicator of cytokinesis
- ECM, extracellular matrix
- EGF, epidermal growth factor
- FA, focal adhesion
- FN, fibronectin
- GAP, GTPase activating protein
- GDI, guanine nucleotide dissociation inhibitor
- GEF, guanine nucleotide exchange factor
- GPCR, G protein-coupled receptor
- HGF, hepatocyte growth factor
- LPA, lysophosphatidic acid
- MII, myosin II
- PA, phosphatidic acid
- PDGF, platelet-derived growth factor
- PH, pleckstrin-homology
- PIP2, phosphatidylinositol 4, 5-bisphosphate
- PIP3, phosphatidylinositol (3, 4, 5)-trisphosphate.
- Rho GEFs
- Rho GTPases
- bFGF, basic fibroblast growth factor
- cell migration
- cell polarization
- focal adhesions
- guanine nucleotide exchange factors
Collapse
Affiliation(s)
- Silvia M Goicoechea
- a Department of Biological Sciences ; University of Toledo ; Toledo , OH USA
| | | | | |
Collapse
|
22
|
Abstract
OBJECTIVE p63RhoGEF, a guanine nucleotide exchange factor, has been reported 'in vitro' as key mediator of the angiotensin II-induced RhoA/Rho kinase activation leading to vasoconstriction and cardiovascular remodeling. We assessed p63RhoGEF gene and protein expression and RhoA/Rho kinase activity in essential hypertensive and Bartter's and Gitelman's syndrome patients, a human model opposite to hypertension; the latter have, in fact, increased plasma angiotensin II, activation of the renin-angiotensin system, yet normotension/hypotension, reduced peripheral resistance and lack of cardiovascular remodeling due to an endogenously blunted angiotensin II type 1 receptor signaling. METHODS Mononuclear cell p63RhoGEF gene and protein expression and the phosphorylation status of the myosin phosphatase target protein-1 (MYPT-1), marker of Rho kinase activity, were assessed in essential hypertensive patients, Bartter's/Gitelman's patients and healthy individuals by quantitative real-time PCR and western blot. RESULTS p63RhoGEF mRNA and protein level and MYPT-1 phosphorylation status were higher in hypertensive patients and lower in Bartter's/Gitelman's patients compared with healthy individuals: p63RhoGEF mRNA level: 0.59 ± 0.17 ΔΔCt vs. 0.37 ± 0.17 vs. 0.20 ± 0.19, analysis of variance (ANOVA): P <0.016; p63RhoGEF protein level 1.35 ± 0.14 vs. 1.09 ± 0.05 vs. 0.90 ± 0.09 densitometric units, ANOVA: P <0.0001; MYPT-1: 1.39 ± 0.34 vs. 1.01 ± 0.12 vs. 0.81 ± 0.06, ANOVA: P < 0.0001. p63RhoGEF mRNA was significantly correlated with both SBP and DBP in both hypertensive patients (R = 0.79, P < 0.02 and R = 0.78, P < 0.02) and in Bartter's syndrome/Gitelman's syndrome patients (R = 0.87, P < 0.001 and R = 0.86, P < 0.001), respectively. CONCLUSION Increased p63RhoGEF mRNA and protein level and Rho kinase activity are shown for the first time in essential hypertensive patients, whereas the opposite was found in Bartter's/Gitelman's patients, a human model opposite to hypertension. These results combined with other 'in-vitro' studies strongly support the crucial importance of p63RhoGEF in Ang II-mediated signaling involved in the regulation of blood pressure and its long-term complications in humans.
Collapse
|
23
|
Lenoir M, Sugawara M, Kaur J, Ball LJ, Overduin M. Structural insights into the activation of the RhoA GTPase by the lymphoid blast crisis (Lbc) oncoprotein. J Biol Chem 2014; 289:23992-4004. [PMID: 24993829 PMCID: PMC4156082 DOI: 10.1074/jbc.m114.561787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The small GTPase RhoA promotes deregulated signaling upon interaction with lymphoid blast crisis (Lbc), the oncogenic form of A-kinase anchoring protein 13 (AKAP13). The onco-Lbc protein is a hyperactive Rho-specific guanine nucleotide exchange factor (GEF), but its structural mechanism has not been reported despite its involvement in cardiac hypertrophy and cancer causation. The pleckstrin homology (PH) domain of Lbc is located at the C-terminal end of the protein and is shown here to specifically recognize activated RhoA rather than lipids. The isolated dbl homology (DH) domain can function as an independent activator with an enhanced activity. However, the DH domain normally does not act as a solitary Lbc interface with RhoA-GDP. Instead it is negatively controlled by the PH domain. In particular, the DH helical bundle is coupled to the structurally dependent PH domain through a helical linker, which reduces its activity. Together the two domains form a rigid scaffold in solution as evidenced by small angle x-ray scattering and 1H,13C,15N-based NMR spectroscopy. The two domains assume a “chair” shape with its back possessing independent GEF activity and the PH domain providing a broad seat for RhoA-GTP docking rather than membrane recognition. This provides structural and dynamical insights into how DH and PH domains work together in solution to support regulated RhoA activity. Mutational analysis supports the bifunctional PH domain mediation of DH-RhoA interactions and explains why the tandem domain is required for controlled GEF signaling.
Collapse
Affiliation(s)
- Marc Lenoir
- From the School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Masae Sugawara
- From the School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jaswant Kaur
- From the School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Linda J Ball
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom, and The Leibniz Institute of Molecular Pharmacology, Campus Buch, 13125 Berlin, Germany
| | - Michael Overduin
- From the School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom,
| |
Collapse
|
24
|
Gadang V, Konaniah E, Hui DY, Jaeschke A. Mixed-lineage kinase 3 deficiency promotes neointima formation through increased activation of the RhoA pathway in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2014; 34:1429-36. [PMID: 24790140 PMCID: PMC4084683 DOI: 10.1161/atvbaha.114.303439] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Mitogen-activated protein kinase pathways play an important role in neointima formation secondary to vascular injury, in part by promoting proliferation of vascular smooth muscle cells (VSMC). Mixed-lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase that activates multiple mitogen-activated protein kinase pathways and has been implicated in regulating proliferation in several cell types. However, the role of MLK3 in VSMC proliferation and neointima formation is unknown. The aim of this study was to determine the function of MLK3 in the development of neointimal hyperplasia and to elucidate the underlying mechanisms. APPROACH AND RESULTS Neointima formation was analyzed after endothelial denudation of carotid arteries from wild-type and MLK3-deficient mice. MLK3 deficiency promoted injury-induced neointima formation and increased proliferation of primary VSMC derived from aortas isolated from MLK3-deficient mice compared with wild-type mice. Furthermore, MLK3 deficiency increased the activation of p63Rho guanine nucleotide exchange factor, RhoA, and Rho kinase in VSMC, a pathway known to promote neointimal hyperplasia, and reconstitution of MLK3 expression attenuated Rho kinase activation. Furthermore, cJun NH2-terminal kinase activation was decreased in MLK3-deficient VSMC, and proliferation of wild-type but not MLK3 knockout cells treated with a cJun NH2-terminal kinase inhibitor was attenuated. CONCLUSIONS We demonstrate that MLK3 limits RhoA activation and injury-induced neointima formation by binding to and inhibiting the activation of p63Rho guanine nucleotide exchange factor, a RhoA activator. In MLK3-deficient cells, activation of p63Rho guanine nucleotide exchange factor proceeds in an unchecked manner, leading to a net increase in RhoA pathway activation. Reconstitution of MLK3 expression restores MLK3/p63Rho guanine nucleotide exchange factor interaction, which is attenuated by feedback from activated cJun NH2-terminal kinase.
Collapse
MESH Headings
- Animals
- Carotid Arteries/enzymology
- Carotid Arteries/pathology
- Carotid Artery Injuries/enzymology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/pathology
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Hyperplasia
- JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors
- JNK Mitogen-Activated Protein Kinases/metabolism
- MAP Kinase Kinase Kinases/deficiency
- MAP Kinase Kinase Kinases/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Neointima
- Protein Kinase Inhibitors/pharmacology
- Rho Guanine Nucleotide Exchange Factors/metabolism
- Signal Transduction
- Time Factors
- rho GTP-Binding Proteins/metabolism
- rho-Associated Kinases/metabolism
- rhoA GTP-Binding Protein
- Mitogen-Activated Protein Kinase Kinase Kinase 11
Collapse
Affiliation(s)
- Vidya Gadang
- From the Department of Pathology, Metabolic Diseases Institute, University of Cincinnati, OH
| | - Eddy Konaniah
- From the Department of Pathology, Metabolic Diseases Institute, University of Cincinnati, OH
| | - David Y Hui
- From the Department of Pathology, Metabolic Diseases Institute, University of Cincinnati, OH
| | - Anja Jaeschke
- From the Department of Pathology, Metabolic Diseases Institute, University of Cincinnati, OH.
| |
Collapse
|
25
|
Dynamics of Gαq-protein-p63RhoGEF interaction and its regulation by RGS2. Biochem J 2014; 458:131-40. [PMID: 24299002 DOI: 10.1042/bj20130782] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Some G-protein-coupled receptors regulate biological processes via Gα12/13- or Gαq/11-mediated stimulation of RhoGEFs (guanine-nucleotide-exchange factors). p63RhoGEF is known to be specifically activated by Gαq/11 and mediates a major part of the acute response of vascular smooth muscle cells to angiotensin II treatment. In order to gain information about the dynamics of receptor-mediated activation of p63RhoGEF, we developed a FRET-based assay to study interactions between Gαq-CFP and Venus-p63RhoGEF in single living cells. Upon activation of histaminergic H1 or muscarinic M3 receptors, a robust FRET signal occurred that allowed for the first time the analysis of the kinetics of this interaction in detail. On- and off-set kinetics of Gαq-p63RhoGEF interactions closely resembled the kinetics of Gαq activity. Analysis of the effect of RGS2 (regulator of G-protein signalling 2) on the dynamics of Gαq activity and their interaction with p63RhoGEF showed that RGS2 is able to accelerate both deactivation of Gαq proteins and dissociation of Gαq and p63RhoGEF to a similar extent. Furthermore, we were able to detect activation-dependent FRET between RGS2 and p63RhoGEF and observed a reduced p63RhoGEF-mediated downstream signalling in the presence of RGS2. In summary, these observations support the concept of a functional activation-dependent p63RhoGEF-Gαq-RGS2 complex.
Collapse
|
26
|
Goedhart J, van Unen J, Adjobo-Hermans MJW, Gadella TWJ. Signaling efficiency of Gαq through its effectors p63RhoGEF and GEFT depends on their subcellular location. Sci Rep 2014; 3:2284. [PMID: 23884432 PMCID: PMC3722567 DOI: 10.1038/srep02284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/10/2013] [Indexed: 02/02/2023] Open
Abstract
The p63RhoGEF and GEFT proteins are encoded by the same gene and both members of the Dbl family of guanine nucleotide exchange factors. These proteins can be activated by the heterotrimeric G-protein subunit Gαq. We show that p63RhoGEF is located at the plasma membrane, whereas GEFT is confined to the cytoplasm. Live-cell imaging studies yielded quantitative information on diffusion coefficients, association rates and encounter times of GEFT and p63RhoGEF. Calcium signaling was examined as a measure of the signal transmission, revealing more efficient signaling through the membrane-associated p63RhoGEF. A rapamycin dependent recruitment system was used to dynamically alter the subcellular location and concentration of GEFT, showing efficient signaling through GEFT only upon membrane recruitment. Together, our results show efficient signal transmission through membrane located effectors, and highlight a role for increased concentration rather than increased encounter times due to membrane localization in the Gαq mediated pathways to p63RhoGEF and PLCβ.
Collapse
Affiliation(s)
- Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
27
|
Sánchez-Fernández G, Cabezudo S, García-Hoz C, Benincá C, Aragay AM, Mayor F, Ribas C. Gαq signalling: the new and the old. Cell Signal 2014; 26:833-48. [PMID: 24440667 DOI: 10.1016/j.cellsig.2014.01.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/09/2014] [Indexed: 01/25/2023]
Abstract
In the last few years the interactome of Gαq has expanded considerably, contributing to improve our understanding of the cellular and physiological events controlled by this G alpha subunit. The availability of high-resolution crystal structures has led the identification of an effector-binding region within the surface of Gαq that is able to recognise a variety of effector proteins. Consequently, it has been possible to ascribe different Gαq functions to specific cellular players and to identify important processes that are triggered independently of the canonical activation of phospholipase Cβ (PLCβ), the first identified Gαq effector. Novel effectors include p63RhoGEF, that provides a link between G protein-coupled receptors and RhoA activation, phosphatidylinositol 3-kinase (PI3K), implicated in the regulation of the Akt pathway, or the cold-activated TRPM8 channel, which is directly inhibited upon Gαq binding. Recently, the activation of ERK5 MAPK by Gq-coupled receptors has also been described as a novel PLCβ-independent signalling axis that relies upon the interaction between this G protein and two novel effectors (PKCζ and MEK5). Additionally, the association of Gαq with different regulatory proteins can modulate its effector coupling ability and, therefore, its signalling potential. Regulators include accessory proteins that facilitate effector activation or, alternatively, inhibitory proteins that downregulate effector binding or promote signal termination. Moreover, Gαq is known to interact with several components of the cytoskeleton as well as with important organisers of membrane microdomains, which suggests that efficient signalling complexes might be confined to specific subcellular environments. Overall, the complex interaction network of Gαq underlies an ever-expanding functional diversity that puts forward this G alpha subunit as a major player in the control of physiological functions and in the development of different pathological situations.
Collapse
Affiliation(s)
- Guzmán Sánchez-Fernández
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Sofía Cabezudo
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Carlota García-Hoz
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | | | - Anna M Aragay
- Department of Cell Biology, Molecular Biology Institute of Barcelona, Spain
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Catalina Ribas
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
| |
Collapse
|
28
|
Lyon AM, Taylor VG, Tesmer JJG. Strike a pose: Gαq complexes at the membrane. Trends Pharmacol Sci 2013; 35:23-30. [PMID: 24287282 DOI: 10.1016/j.tips.2013.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 12/20/2022]
Abstract
The heterotrimeric G protein Gαq is a central player in signal transduction, relaying signals from activated G-protein-coupled receptors (GPCRs) to effectors and other proteins to elicit changes in intracellular Ca(2+), the actin cytoskeleton, and gene transcription. Gαq functions at the intracellular surface of the plasma membrane, as do its best-characterized targets, phospholipase C-β, p63RhoGEF, and GPCR kinase 2 (GRK2). Recent insights into the structure and function of these signaling complexes reveal several recurring themes, including complex multivalent interactions between Gαq, its protein target, and the membrane, that are likely essential for allosteric control and maximum efficiency in signal transduction. Thus, the plasma membrane is not only a source of substrates but also a key player in the scaffolding of Gαq-dependent signaling pathways.
Collapse
Affiliation(s)
- Angeline M Lyon
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Veronica G Taylor
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - John J G Tesmer
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
29
|
Chow CR, Suzuki N, Kawamura T, Hamakubo T, Kozasa T. Modification of p115RhoGEF Ser(330) regulates its RhoGEF activity. Cell Signal 2013; 25:2085-92. [PMID: 23816534 PMCID: PMC4076829 DOI: 10.1016/j.cellsig.2013.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 01/04/2023]
Abstract
p115RhoGEF is a member of a family of Rho-specific guanine nucleotide exchange factors that also contains a regulator of G protein signaling homology domain (RH-RhoGEFs) that serves as a link between Gα13 signaling and RhoA activation. While the mechanism of regulation of p115RhoGEF by Gα13 is becoming well-known, the role of other regulatory mechanisms, such as post-translational modification or autoinhibition, in mediating p115RhoGEF activity is less well-characterized. Here, putative phosphorylation sites on p115RhoGEF are identified and characterized. Mutation of Ser(330) leads to a decrease in serum response element-mediated transcription as well as decreased activation by Gα13 in vitro. Additionally, this study provides the first report of the binding kinetics between full-length p115RhoGEF and RhoA in its various nucleotide states and examines the binding kinetics of phospho-mutant p115RhoGEF to RhoA. These data, together with other recent reports on regulatory mechanisms of p115RhoGEF, suggest that this putative phosphorylation site serves as a means for initiation or relief of autoinhibition of p115RhoGEF, providing further insight into the regulation of its activity.
Collapse
Affiliation(s)
- Christina R. Chow
- Department of Pharmacology, University of Illinois at Chicago, 835 S. Wolcott Avenue Room E403 (m/c 868), Chicago, Illinois 60612, USA
- Laboratory for Systems Biology and Medicine, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Nobuchika Suzuki
- Laboratory for Systems Biology and Medicine, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Takeshi Kawamura
- Laboratory for Systems Biology and Medicine, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Tohru Kozasa
- Department of Pharmacology, University of Illinois at Chicago, 835 S. Wolcott Avenue Room E403 (m/c 868), Chicago, Illinois 60612, USA
- Laboratory for Systems Biology and Medicine, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
30
|
Artamonov MV, Momotani K, Stevenson A, Trentham DR, Derewenda U, Derewenda ZS, Read PW, Gutkind JS, Somlyo AV. Agonist-induced Ca2+ sensitization in smooth muscle: redundancy of Rho guanine nucleotide exchange factors (RhoGEFs) and response kinetics, a caged compound study. J Biol Chem 2013; 288:34030-34040. [PMID: 24106280 DOI: 10.1074/jbc.m113.514596] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Many agonists, acting through G-protein-coupled receptors and Gα subunits of the heterotrimeric G-proteins, induce contraction of smooth muscle through an increase of [Ca(2+)]i as well as activation of the RhoA/RhoA-activated kinase pathway that amplifies the contractile force, a phenomenon known as Ca(2+) sensitization. Gα12/13 subunits are known to activate the regulator of G-protein signaling-like family of guanine nucleotide exchange factors (RhoGEFs), which includes PDZ-RhoGEF (PRG) and leukemia-associated RhoGEF (LARG). However, their contributions to Ca(2+)-sensitized force are not well understood. Using permeabilized blood vessels from PRG(-/-) mice and a new method to silence LARG in organ-cultured blood vessels, we show that both RhoGEFs are activated by the physiologically and pathophysiologically important thromboxane A2 and endothelin-1 receptors. The co-activation is the result of direct and independent activation of both RhoGEFs as well as their co-recruitment due to heterodimerization. The isolated recombinant C-terminal domain of PRG, which is responsible for heterodimerization with LARG, strongly inhibited Ca(2+)-sensitized force. We used photolysis of caged phenylephrine, caged guanosine 5'-O-(thiotriphosphate) (GTPγS) in solution, and caged GTPγS or caged GTP loaded on the RhoA·RhoGDI complex to show that the recruitment and activation of RhoGEFs is the cause of a significant time lag between the initial Ca(2+) transient and phasic force components and the onset of Ca(2+)-sensitized force.
Collapse
Affiliation(s)
- Mykhaylo V Artamonov
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Ko Momotani
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Andra Stevenson
- Department of Cardiovascular Diseases, Merck Research Laboratories, Kenilworth, New Jersey 07033
| | - David R Trentham
- The Randall Division of Cell and Molecular Biophysics, School of Biomedical Sciences, King's College London, London SE1 1UK, United Kingdom
| | - Urszula Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Zygmunt S Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Paul W Read
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908
| | - J Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Avril V Somlyo
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908.
| |
Collapse
|
31
|
Abstract
Small GTPases use GDP/GTP alternation to actuate a variety of functional switches that are pivotal for cell dynamics. The GTPase switch is turned on by GEFs, which stimulate dissociation of the tightly bound GDP, and turned off by GAPs, which accelerate the intrinsically sluggish hydrolysis of GTP. For Ras, Rho, and Rab GTPases, this switch incorporates a membrane/cytosol alternation regulated by GDIs and GDI-like proteins. The structures and core mechanisms of representative members of small GTPase regulators from most families have now been elucidated, illuminating their general traits combined with scores of unique features. Recent studies reveal that small GTPase regulators have themselves unexpectedly sophisticated regulatory mechanisms, by which they process cellular signals and build up specific cell responses. These mechanisms include multilayered autoinhibition with stepwise release, feedback loops mediated by the activated GTPase, feed-forward signaling flow between regulators and effectors, and a phosphorylation code for RhoGDIs. The flipside of these highly integrated functions is that they make small GTPase regulators susceptible to biochemical abnormalities that are directly correlated with diseases, notably a striking number of missense mutations in congenital diseases, and susceptible to bacterial mimics of GEFs, GAPs, and GDIs that take command of small GTPases in infections. This review presents an overview of the current knowledge of these many facets of small GTPase regulation.
Collapse
Affiliation(s)
- Jacqueline Cherfils
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Centre deRecherche de Gif, Gif-sur-Yvette, France
| | | |
Collapse
|
32
|
Lutz S, Mohl M, Rauch J, Weber P, Wieland T. RhoGEF17, a Rho-specific guanine nucleotide exchange factor activated by phosphorylation via cyclic GMP-dependent kinase Iα. Cell Signal 2012. [PMID: 23195829 DOI: 10.1016/j.cellsig.2012.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RhoGEF17, the product of the ARHGEF17 gene, is a Rho-specific guanine nucleotide exchange factor (GEF) with an unusual structure and so far unknown function. In order to get insights in its regulation, we studied a variety of signaling pathways for activation of recombinantly expressed RhoGEF17. We found that in the presence of stable cGMP analogs RhoGEF17 associates with and is phosphorylated by co-expressed cGKIα at distinct phosphorylation sites leading to a cooperative activation of RhoA, the Rho dependent kinases (ROCK) and serum response factor-induced gene transcription. Activation of protein kinase A did not induce phosphorylation of RhoGEF17 nor altered its activity. Furthermore, we obtained evidence for a ROCK-driven positive feedback mechanism involving serine/threonine protein phosphatases, which further enhanced cGMP/cGKIα-induced RhoGEF17 activation. By using mutants of RhoA which are phosphorylation resistant to cGK or mimic phosphorylation at serine 188, we could show that RhoGEF17 is able to activate RhoA independently of its phosphorylation state. Together with the ROCK-enforced activation of RhoGEF17 by cGMP/cGKIα, this might explain why expression of RhoGEF17 switches the inhibitory effect of cGMP/cGKIα on serum-induced RhoA activation into a stimulatory one. We conclude that RhoGEF17, depending on its expression profile and level, might drastically alter the effect of cGMP/cGK involving signaling pathways on RhoA-activated downstream effectors.
Collapse
Affiliation(s)
- Susanne Lutz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty, University of Heidelberg, Maybachstrasse 14, 68169 Mannheim, Germany
| | | | | | | | | |
Collapse
|
33
|
Momotani K, Somlyo AV. p63RhoGEF: a new switch for G(q)-mediated activation of smooth muscle. Trends Cardiovasc Med 2012; 22:122-7. [PMID: 22902181 DOI: 10.1016/j.tcm.2012.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 02/07/2023]
Abstract
In normal and diseased vascular smooth muscle (SM), the RhoA pathway, which is activated by multiple agonists through G protein-coupled receptors (GPCRs), plays a central role in regulating basal tone and peripheral resistance. Multiple RhoA GTP exchange factors (GEFs) are expressed in SM, raising the possibility that specific agonists coupled to specific GPCRs may couple to distinct RhoGEFs and provide novel therapeutic targets. This review focuses on the function and mechanisms of activation of p63RhoGEF (Arhgef 25; GEFT) recently identified in SM and its possible role in selective targeting of RhoA-mediated regulation of basal blood pressure through agonists that couple through G(αq/11).
Collapse
Affiliation(s)
- Ko Momotani
- University of Virginia, Department of Molecular Physiology and Biological Physics, Charlottesville, VA 22908, USA
| | | |
Collapse
|
34
|
Csépányi-Kömi R, Lévay M, Ligeti E. Small G proteins and their regulators in cellular signalling. Mol Cell Endocrinol 2012; 353:10-20. [PMID: 22108439 DOI: 10.1016/j.mce.2011.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 09/27/2011] [Accepted: 11/07/2011] [Indexed: 01/04/2023]
Abstract
Small molecular weight GTPases (small G proteins) are essential in the transduction of signals from different plasma membrane receptors. Due to their endogenous GTP-hydrolyzing activity, these proteins function as time-dependent biological switches controlling diverse cellular functions including cell shape and migration, cell proliferation, gene transcription, vesicular transport and membrane-trafficking. This review focuses on endocrine diseases linked to small G proteins. We provide examples for the regulation of the activity of small G proteins by various mechanisms such as posttranslational modifications, guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) or guanine nucleotide dissociation inhibitors (GDIs). Finally we summarize endocrine diseases where small G proteins or their regulatory proteins have been revealed as the cause.
Collapse
Affiliation(s)
- Roland Csépányi-Kömi
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | | | | |
Collapse
|
35
|
Calò LA, Davis PA, Pessina AC. Does p63RhoGEF, a new key mediator of angiotensin II signalling, play a role in blood pressure regulation and cardiovascular remodelling in humans? J Renin Angiotensin Aldosterone Syst 2012; 12:634-6. [PMID: 22147804 DOI: 10.1177/1470320311407232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
36
|
Ligeti E, Welti S, Scheffzek K. Inhibition and Termination of Physiological Responses by GTPase Activating Proteins. Physiol Rev 2012; 92:237-72. [DOI: 10.1152/physrev.00045.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Physiological processes are strictly organized in space and time. However, in cell physiology research, more attention is given to the question of space rather than to time. To function as a signal, environmental changes must be restricted in time; they need not only be initiated but also terminated. In this review, we concentrate on the role of one specific protein family involved in biological signal termination. GTPase activating proteins (GAPs) accelerate the endogenously low GTP hydrolysis rate of monomeric guanine nucleotide-binding proteins (GNBPs), limiting thereby their prevalence in the active, GTP-bound form. We discuss cases where defective or excessive GAP activity of specific proteins causes significant alteration in the function of the nervous, endocrine, and hemopoietic systems, or contributes to development of infections and tumors. Biochemical and genetic data as well as observations from human pathology support the notion that GAPs represent vital elements in the spatiotemporal fine tuning of physiological processes.
Collapse
Affiliation(s)
- Erzsébet Ligeti
- Department of Physiology, Semmelweis University, Budapest, Hungary; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; and Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Stefan Welti
- Department of Physiology, Semmelweis University, Budapest, Hungary; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; and Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Klaus Scheffzek
- Department of Physiology, Semmelweis University, Budapest, Hungary; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; and Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
37
|
Bielnicki JA, Shkumatov AV, Derewenda U, Somlyo AV, Svergun DI, Derewenda ZS. Insights into the molecular activation mechanism of the RhoA-specific guanine nucleotide exchange factor, PDZRhoGEF. J Biol Chem 2011; 286:35163-75. [PMID: 21816819 PMCID: PMC3186380 DOI: 10.1074/jbc.m111.270918] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 07/07/2011] [Indexed: 11/06/2022] Open
Abstract
PDZRhoGEF (PRG) belongs to a small family of RhoA-specific nucleotide exchange factors that mediates signaling through select G-protein-coupled receptors via Gα(12/13) and activates RhoA by catalyzing the exchange of GDP to GTP. PRG is a multidomain protein composed of PDZ, regulators of G-protein signaling-like (RGSL), Dbl-homology (DH), and pleckstrin-homology (PH) domains. It is autoinhibited in cytosol and is believed to undergo a conformational rearrangement and translocation to the membrane for full activation, although the molecular details of the regulation mechanism are not clear. It has been shown recently that the main autoregulatory elements of PDZRhoGEF, the autoinhibitory "activation box" and the "GEF switch," which is required for full activation, are located directly upstream of the catalytic DH domain and its RhoA binding surface, emphasizing the functional role of the RGSL-DH linker. Here, using a combination of biophysical and biochemical methods, we show that the mechanism of PRG regulation is yet more complex and may involve an additional autoinhibitory element in the form of a molten globule region within the linker between RGSL and DH domains. We propose a novel, two-tier model of autoinhibition where the activation box and the molten globule region act synergistically to impair the ability of RhoA to bind to the catalytic DH-PH tandem. The molten globule region and the activation box become less ordered in the PRG-RhoA complex and dissociate from the RhoA-binding site, which may constitute a critical step leading to PRG activation.
Collapse
Affiliation(s)
- Jakub A. Bielnicki
- From the Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, Virginia 22908 and
| | - Alexander V. Shkumatov
- the European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Urszula Derewenda
- From the Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, Virginia 22908 and
| | - Avril V. Somlyo
- From the Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, Virginia 22908 and
| | - Dmitri I. Svergun
- the European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Zygmunt S. Derewenda
- From the Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, Virginia 22908 and
| |
Collapse
|
38
|
Aittaleb M, Nishimura A, Linder ME, Tesmer JJG. Plasma membrane association of p63 Rho guanine nucleotide exchange factor (p63RhoGEF) is mediated by palmitoylation and is required for basal activity in cells. J Biol Chem 2011; 286:34448-56. [PMID: 21832057 DOI: 10.1074/jbc.m111.273342] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of G protein-coupled receptors at the cell surface leads to the activation or inhibition of intracellular effector enzymes, which include various Rho guanine nucleotide exchange factors (RhoGEFs). RhoGEFs activate small molecular weight GTPases at the plasma membrane (PM). Many of the known G protein-coupled receptor-regulated RhoGEFs are found in the cytoplasm of unstimulated cells, and PM recruitment is a critical aspect of their regulation. In contrast, p63RhoGEF, a Gα(q)-regulated RhoGEF, appears to be constitutively localized to the PM. The objective of this study was to determine the molecular basis for the localization of p63RhoGEF and the impact of its subcellular localization on its regulation by Gα(q). Herein, we show that the pleckstrin homology domain of p63RhoGEF is not involved in its PM targeting. Instead, a conserved string of cysteines (Cys-23/25/26) at the N terminus of the enzyme is palmitoylated and required for membrane localization and full basal activity in cells. Conversion of these residues to serine relocates p63RhoGEF from the PM to the cytoplasm, diminishes its basal activity, and eliminates palmitoylation. The activity of palmitoylation-deficient p63RhoGEF can be rescued by targeting to the PM by fusion with tandem phospholipase C-δ1 pleckstrin homology domains or by co-expression with wild-type Gα(q) but not with palmitoylation-deficient Gα(q). Our data suggest that p63RhoGEF is regulated chiefly through allosteric control by Gα(q), as opposed to other known Gα-regulated RhoGEFs, which are instead sequestered in the cytoplasm, perhaps because of their high basal activity.
Collapse
Affiliation(s)
- Mohamed Aittaleb
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | | | | | |
Collapse
|