1
|
Koene JM, Jackson DJ, Nakadera Y, Cerveau N, Madoui MA, Noel B, Jamilloux V, Poulain J, Labadie K, Da Silva C, Davison A, Feng ZP, Adema CM, Klopp C, Aury JM, Wincker P, Coutellec MA. The genome of the simultaneously hermaphroditic snail Lymnaea stagnalis reveals an evolutionary expansion of FMRFamide-like receptors. Sci Rep 2024; 14:29213. [PMID: 39587195 PMCID: PMC11589774 DOI: 10.1038/s41598-024-78520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024] Open
Abstract
The great pond snail Lymnaea stagnalis has served as a model organism for over a century in diverse disciplines such as neurophysiology, evolution, ecotoxicology and developmental biology. To support both established uses and newly emerging research interests we have performed whole genome sequencing (avg.176 × depth), assembly and annotation of a single individual derived from an inbred line. These efforts resulted in a final assembly of 943 Mb (L50 = 257; N50 = 957,215) with a total of 22,499 predicted gene models. The mitogenome was found to be 13,834 bp long and similarly organized as in other lymnaeid species, with minor differences in location of tRNA genes. As a first step towards understanding the hermaphroditic reproductive biology of L. stagnalis, we identified molecular receptors, specifically nuclear receptors (including newly discovered 2xDNA binding domain-NRs), G protein-coupled receptors, and receptor tyrosine kinases, that may be involved in the cellular specification and maintenance of simultaneously active male and female reproductive systems. A phylogenetic analysis of one particular family of GPCRs (Rhodopsin neuropeptide FMRFamide-receptor-like genes) shows a remarkable expansion that coincides with the occurrence of simultaneous hermaphroditism in the Euthyneura gastropods. As some GPCRs and NRs also showed qualitative differences in expression in female (albumen gland) and male (prostate gland) organs, it is possible that separate regulation of male and female reproductive processes may in part have been enabled by an increased abundance of receptors in the transition from a separate-sexed state to a hermaphroditic condition. These findings will support efforts to pair receptors with their activating ligands, and more generally stimulate deeper insight into the mechanisms that underlie the modes of action of compounds involved in neuroendocrine regulation of reproduction, induced toxicity, and development in L. stagnalis, and molluscs in general.
Collapse
Affiliation(s)
- J M Koene
- Ecology and Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - D J Jackson
- Department of Geobiology, Georg-August University of Göttingen, Goldschmidtstr. 3, 37077, Göttingen, Germany
| | - Y Nakadera
- Ecology and Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - N Cerveau
- Department of Geobiology, Georg-August University of Göttingen, Goldschmidtstr. 3, 37077, Göttingen, Germany
| | - M A Madoui
- SEPIA, Institut François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| | - B Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - V Jamilloux
- URGI, INRAE, Université Paris-Saclay, Route de Saint-Cyr, 78026, Versailles, France
| | - J Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - K Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - C Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - A Davison
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Z P Feng
- Department of Physiology, University of Toronto, 1 King's College, Toronto, ON, M5S 1A8, Canada
| | - C M Adema
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87112, USA
| | - C Klopp
- INRAE, Sigenae, BioInfoMics MIAT, UR875, INRAE, Castanet-Tolosan, France
| | - J M Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - P Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - M A Coutellec
- DECOD (Ecosystem Dynamics and Sustainability), L'Institut Agro, Ifremer, INRAE, 35042, Rennes, France.
| |
Collapse
|
2
|
Egu DT, Schmitt T, Ernst N, Ludwig RJ, Fuchs M, Hiermaier M, Moztarzadeh S, Morón CS, Schmidt E, Beyersdorfer V, Spindler V, Steinert LS, Vielmuth F, Sigmund AM, Waschke J. EGFR Inhibition by Erlotinib Rescues Desmosome Ultrastructure and Keratin Anchorage and Protects against Pemphigus Vulgaris IgG-Induced Acantholysis in Human Epidermis. J Invest Dermatol 2024; 144:2440-2452. [PMID: 38642796 DOI: 10.1016/j.jid.2024.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
Pemphigus is a severe blistering disease caused by autoantibodies primarily against the desmosomal cadherins desmoglein (DSG)1 and DSG3, which impair desmosome integrity. Especially for the acute phase, additional treatment options allowing to reduce corticosteroids would fulfill an unmet medical need. In this study, we provide evidence that EGFR inhibition by erlotinib ameliorates pemphigus vulgaris IgG-induced acantholysis in intact human epidermis. Pemphigus vulgaris IgG caused phosphorylation of EGFR (Y845) and Rous sarcoma-related kinase in human epidermis. In line with this, a phosphotyrosine kinome analysis revealed a robust response associated with EGFR and Rous sarcoma-related kinase family kinase signaling in response to pemphigus vulgaris IgG but not to pemphigus foliaceus autoantibodies. Erlotinib inhibited pemphigus vulgaris IgG-induced epidermal blistering and EGFR phosphorylation, loss of desmosomes, as well as ultrastructural alterations of desmosome size, plaque symmetry, and keratin filament insertion and restored the desmosome midline considered as hallmark of mature desmosomes. Erlotinib enhanced both single-molecule DSG3-binding frequency and strength and delayed DSG3 fluorescence recovery, supporting that EGFR inhibition increases DSG3 availability and cytoskeletal anchorage. Our data indicate that EGFR is a promising target for pemphigus therapy owing to its link to several signaling pathways known to be involved in pemphigus pathogenesis.
Collapse
Affiliation(s)
- Desalegn Tadesse Egu
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Thomas Schmitt
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Nancy Ernst
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf Joachim Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Michael Fuchs
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Matthias Hiermaier
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sina Moztarzadeh
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Carla Sebastià Morón
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany; Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Vivien Beyersdorfer
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volker Spindler
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Letyfee Sarah Steinert
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Franziska Vielmuth
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anna Magdalena Sigmund
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jens Waschke
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany.
| |
Collapse
|
3
|
Trouvilliez S, Lagadec C, Toillon RA. TrkA Co-Receptors: The Janus Face of TrkA? Cancers (Basel) 2023; 15:cancers15071943. [PMID: 37046604 PMCID: PMC10093326 DOI: 10.3390/cancers15071943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Larotrectinib and Entrectinib are specific pan-Trk tyrosine kinase inhibitors (TKIs) approved by the Food and Drug Administration (FDA) in 2018 for cancers with an NTRK fusion. Despite initial enthusiasm for these compounds, the French agency (HAS) recently reported their lack of efficacy. In addition, primary and secondary resistance to these TKIs has been observed in the absence of other mutations in cancers with an NTRK fusion. Furthermore, when TrkA is overexpressed, it promotes ligand-independent activation, bypassing the TKI. All of these clinical and experimental observations show that genetics does not explain all therapeutic failures. It is therefore necessary to explore new hypotheses to explain these failures. This review summarizes the current status of therapeutic strategies with TrkA inhibitors, focusing on the mechanisms potentially involved in these failures and more specifically on the role of TrkA.
Collapse
Affiliation(s)
- Sarah Trouvilliez
- Univ. Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, Bvd. du Professeur Jules Leclercq, F-59000 Lille, France
| | - Chann Lagadec
- Univ. Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, Bvd. du Professeur Jules Leclercq, F-59000 Lille, France
| | - Robert-Alain Toillon
- Univ. Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, Bvd. du Professeur Jules Leclercq, F-59000 Lille, France
- GdR2082 APPICOM-«Approche Intégrative Pour Une Compréhension Multi-Échelles de la Fonction des Protéines Membranaires», 75016 Paris, France
| |
Collapse
|
4
|
Jiang T, Wang G, Liu Y, Feng L, Wang M, Liu J, Chen Y, Ouyang L. Development of small-molecule tropomyosin receptor kinase (TRK) inhibitors for NTRK fusion cancers. Acta Pharm Sin B 2021; 11:355-372. [PMID: 33643817 PMCID: PMC7893124 DOI: 10.1016/j.apsb.2020.05.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
Tropomyosin receptor kinase A, B and C (TRKA, TRKB and TRKC), which are well-known members of the cell surface receptor tyrosine kinase (RTK) family, are encoded by the neurotrophic receptor tyrosine kinase 1, 2 and 3 (NTRK1, NTRK2 and NTRK3) genes, respectively. TRKs can regulate cell proliferation, differentiation and even apoptosis through the RAS/MAPKs, PI3K/AKT and PLCγ pathways. Gene fusions involving NTRK act as oncogenic drivers of a broad diversity of adult and pediatric tumors, and TRKs have become promising antitumor targets. Therefore, achieving a comprehensive understanding of TRKs and relevant TRK inhibitors should be urgently pursued for the further development of novel TRK inhibitors for potential clinical applications. This review focuses on summarizing the biological functions of TRKs and NTRK fusion proteins, the development of small-molecule TRK inhibitors with different chemotypes and their activity and selectivity, and the potential therapeutic applications of these inhibitors for future cancer drug discovery efforts.
Collapse
Key Words
- AFAP1, actin filament-associated protein 1
- AML, acute myeloid leukemia
- ARHGEF2, Rho/Rac guanine nucleotide exchange factor 2
- BCAN, brevican
- BDNF, brain-derived neurotrophic factor
- BTBD1, BTB (POZ) domain containing 1
- CDK-2, cyclin-dependent kinase 2
- CR, complete response
- CRC, colorectal cancer
- CTCs, sequencing of circulating tumor cells
- DFG, Asp-Phe-Gly
- DOR, durable objective responses
- ETV6, ETS translocation variant 6
- EWG, electron-withdrawing group
- FDA, U.S. Food and Drug Administration
- FISH, fluorescence in situ hybridization
- GBM, glioblastoma multiforme
- HNSCC, head and neck squamous cell carcinoma
- HTS, high-throughput screening
- ICC, intrahepatic cholangiocarcinoma
- IG-C2, Ig-like C2 type I
- LMNA, lamin A/C
- MASC, mammary analogue secretory carcinoma
- MPRIP, myosin phosphatase Rho interacting protein
- NACC2, NACC family member 2
- NCCN, National Comprehensive Cancer Network
- NFASC, neurofascin
- NGF, nerve growth factor
- NGS, next-generation sequencing of tumor tissue
- NSCLC, non-small cell lung cancer
- NT3, neurotrophin-3
- NTRK fusion cancer
- NTRK, neurotrophic receptor tyrosine kinase
- Neurotrophic receptor tyrosine kinase fusions
- OAK, osteoarthritis of the knee
- ORR, overall response rate
- PAN3, poly(A) nuclease 3
- PPL, periplakin
- PROTAC proteolysis targeting chimera, QKI
- RABGTPase activating protein 1-like, RFWD2
- RTK, receptor tyrosine kinase
- SAR, structure–activity relationship
- SBC, secretory breast carcinoma
- SCYL3, SCY1 like pseudokinase 3
- SQSTM1, sequestosome 1
- Small-molecule inhibitor
- TFG, TRK-fused gene
- TP53, tumor protein P53
- TPM3, tropomyosin 3
- TPR, translocated promoter region
- TRIM24, tripartite motif containing 24
- TRK, tropomyosin receptor kinase
- Tropomyosin receptor kinase
- VCL, vinculin
- VEGFR2, vascular endothelial growth factor receptor 2
- quaking I protein, RABGAP1L
- ring finger and WD repeat domain 2, E3 ubiquitin protein ligase
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Meng Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Involvement of FATP2-mediated tubular lipid metabolic reprogramming in renal fibrogenesis. Cell Death Dis 2020; 11:994. [PMID: 33219209 PMCID: PMC7679409 DOI: 10.1038/s41419-020-03199-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
Abstract
Following a chronic insult, renal tubular epithelial cells (TECs) contribute to the development of kidney fibrosis through dysregulated lipid metabolism that lead to lipid accumulation and lipotoxicity. Intracellular lipid metabolism is tightly controlled by fatty acids (FAs) uptake, oxidation, lipogenesis, and lipolysis. Although it is widely accepted that impaired fatty acids oxidation (FAO) play a crucial role in renal fibrosis progression, other lipid metabolic pathways, especially FAs uptake, has not been investigated in fibrotic kidney. In this study, we aim to explore the potential mechanically role of FAs transporter in the pathogenesis of renal fibrosis. In the present study, the unbiased gene expression studies showed that fatty acid transporter 2 (FATP2) was one of the predominant expressed FAs transport in TECs and its expression was tightly associated with the decline of renal function. Treatment of unilateral ureteral obstruction (UUO) kidneys and TGF-β induced TECs with FATP2 inhibitor (FATP2i) lipofermata restored the FAO activities and alleviated fibrotic responses both in vivo and in vitro. Moreover, the expression of profibrotic cytokines including TGF-β, connective tissue growth factor (CTGF), fibroblast growth factor (FGF), and platelet-derived growth factor subunit B (PDGFB) were all decreased in FATP2i-treated UUO kidneys. Mechanically, FATP2i can effectively attenuate cell apoptosis and endoplasmic reticulum (ER) stress induced by TGF-β treatment in cultured TECs. Taking together, these findings reveal that FATP2 elicits a profibrotic response to renal interstitial fibrosis by inducing lipid metabolic reprogramming including abnormal FAs uptake and defective FAO in TECs.
Collapse
|
6
|
Dileepan M, Ge XN, Bastan I, Greenberg YG, Liang Y, Sriramarao P, Rao SP. Regulation of Eosinophil Recruitment and Allergic Airway Inflammation by Tropomyosin Receptor Kinase A. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:682-693. [PMID: 31871023 PMCID: PMC7058110 DOI: 10.4049/jimmunol.1900786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022]
Abstract
Eosinophilia is a hallmark of allergic airway inflammation (AAI). Identifying key molecules and specific signaling pathways that regulate eosinophilic inflammation is critical for development of novel therapeutics. Tropomycin receptor kinase A (TrkA) is the high-affinity receptor for nerve growth factor. AAI is associated with increased expression of TrkA by eosinophils; however, the functional role of TrkA in regulating eosinophil recruitment and contributing to AAI is poorly understood. This study identifies, to our knowledge, a novel mechanism of eotaxin-mediated activation of TrkA and its role in regulating eosinophil recruitment by using a chemical-genetic approach to specifically inhibit TrkA kinase activity with 1-NM-PP1 in TrkAF592A-knock-in (TrkA-KI) eosinophils. Blockade of TrkA by 1-NM-PP1 enhanced eosinophil spreading on VCAM-1 but inhibited eotaxin-1 (CCL11)-mediated eosinophil migration, calcium flux, cell polarization, and ERK1/2 activation, suggesting that TrkA is an important player in the signaling pathway activated by eotaxin-1 during eosinophil migration. Further, blockade of matrix metalloprotease with BB-94 inhibited eotaxin-1-induced TrkA activation and eosinophil migration, additively with 1-NM-PP1, indicating a role for matrix metalloproteases in TrkA activation. TrkA inhibition in Alternaria alternata-challenged TrkA-KI mice markedly inhibited eosinophilia and attenuated various features of AAI. These findings are indicative of a distinctive eotaxin-mediated TrkA-dependent signaling pathway, which, in addition to other TrkA-activating mediators, contributes to eosinophil recruitment during AAI and suggests that targeting the TrkA signaling pathway to inhibit eosinophil recruitment may serve as a therapeutic strategy for management of eosinophilic inflammation in allergic airway disease, including asthma.
Collapse
Affiliation(s)
- Mythili Dileepan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | | | | | - Yana G. Greenberg
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - P. Sriramarao
- Corresponding authors: P. Srirama Rao (), University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, Phone: 612-626-6989; Yuying Liang (), University of Minnesota, 1988 Fitch Ave., 295 AS/VM Bldg, St. Paul, MN 55108, Phone: 612-625-3376
| | - Savita P. Rao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| |
Collapse
|
7
|
NOX2-Dependent Reactive Oxygen Species Regulate Formyl-Peptide Receptor 1-Mediated TrkA Transactivation in SH-SY5Y Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2051235. [PMID: 31871542 PMCID: PMC6913242 DOI: 10.1155/2019/2051235] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/08/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
Several enzymes are capable of producing reactive oxygen species (ROS), but only NADPH oxidases (NOX) generate ROS as their primary and sole function. In the central nervous system, NOX2 is the major source of ROS, which play important roles in signalling and functions. NOX2 activation requires p47phox phosphorylation and membrane translocation of cytosolic subunits. We demonstrate that SH-SY5Y cells express p47phox and that the stimulation of Formyl-Peptide Receptor 1 (FPR1) by N-fMLP induces p47phox phosphorylation and NOX-dependent superoxide generation. FPR1 is a member of the G protein-coupled receptor (GPCR) family and is able to transphosphorylate several tyrosine kinase receptors (RTKs). This mechanism requires ROS as signalling intermediates and is necessary to share information within the cell. We show that N-fMLP stimulation induces the phosphorylation of cytosolic Y490, Y751, and Y785 residues of the neurotrophin receptor TrkA. These phosphotyrosines provide docking sites for signalling molecules which, in turn, activate Ras/MAPK, PI3K/Akt, and PLC-γ1/PKC intracellular cascades. N-fMLP-induced ROS generation plays a critical role in FPR1-mediated TrkA transactivation. In fact, the blockade of NOX2 functions prevents Y490, Y751, and Y785 phosphorylation, as well as the triggering of downstream signalling cascades. Moreover, we observed that FPR1 stimulation by N-fMLP also improves proliferation, cellular migration, and neurite outgrowth of SH-SY5Y cells.
Collapse
|
8
|
Weise-Cross L, Resta TC, Jernigan NL. Redox Regulation of Ion Channels and Receptors in Pulmonary Hypertension. Antioxid Redox Signal 2019; 31:898-915. [PMID: 30569735 PMCID: PMC7061297 DOI: 10.1089/ars.2018.7699] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023]
Abstract
Significance: Pulmonary hypertension (PH) is characterized by elevated vascular resistance due to vasoconstriction and remodeling of the normally low-pressure pulmonary vasculature. Redox stress contributes to the pathophysiology of this disease by altering the regulation and activity of membrane receptors, K+ channels, and intracellular Ca2+ homeostasis. Recent Advances: Antioxidant therapies have had limited success in treating PH, leading to a growing appreciation that reductive stress, in addition to oxidative stress, plays a role in metabolic and cell signaling dysfunction in pulmonary vascular cells. Reactive oxygen species generation from mitochondria and NADPH oxidases has substantial effects on K+ conductance and membrane potential, and both receptor-operated and store-operated Ca2+ entry. Critical Issues: Some specific redox changes resulting from oxidation, S-nitrosylation, and S-glutathionylation are known to modulate membrane receptor and ion channel activity in PH. However, many sites of regulation that have been elucidated in nonpulmonary cell types have not been tested in the pulmonary vasculature, and context-specific molecular mechanisms are lacking. Future Directions: Here, we review what is known about redox regulation of membrane receptors and ion channels in PH. Further investigation of the mechanisms involved is needed to better understand the etiology of PH and develop better targeted treatment strategies.
Collapse
Affiliation(s)
- Laura Weise-Cross
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C. Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L. Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
9
|
Figueiredo CA, Düsedau HP, Steffen J, Gupta N, Dunay MP, Toth GK, Reglodi D, Heimesaat MM, Dunay IR. Immunomodulatory Effects of the Neuropeptide Pituitary Adenylate Cyclase-Activating Polypeptide in Acute Toxoplasmosis. Front Cell Infect Microbiol 2019; 9:154. [PMID: 31192159 PMCID: PMC6546896 DOI: 10.3389/fcimb.2019.00154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is an endogenous neuropeptide with distinct functions including the regulation of inflammatory processes. PACAP is able to modify the immune response by directly regulating macrophages and monocytes inhibiting the production of inflammatory cytokines, chemokines and free radicals. Here, we analyzed the effect of exogenous PACAP on peripheral immune cell subsets upon acute infection with the parasite Toxoplasma gondii (T. gondii). PACAP administration was followed by diminished innate immune cell recruitment to the peritoneal cavity of T. gondii-infected mice. PACAP did not directly interfere with parasite replication, instead, indirectly reduced parasite burden in mononuclear cell populations by enhancing their phagocytic capacity. Although proinflammatory cytokine levels were attenuated in the periphery upon PACAP treatment, interleukin (IL)-10 and Transforming growth factor beta (TGF-β) remained stable. While PACAP modulated VPAC1 and VPAC2 receptors in immune cells upon binding, it also increased their expression of brain-derived neurotrophic factor (BDNF). In addition, the expression of p75 neurotrophin receptor (p75NTR) on Ly6Chi inflammatory monocytes was diminished upon PACAP administration. Our findings highlight the immunomodulatory effect of PACAP on peripheral immune cell subsets during acute Toxoplasmosis, providing new insights about host-pathogen interaction and the effects of neuropeptides during inflammation.
Collapse
Affiliation(s)
- Caio Andreeta Figueiredo
- Medical Faculty, Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Henning Peter Düsedau
- Medical Faculty, Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Johannes Steffen
- Medical Faculty, Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Nishith Gupta
- Faculty of Life Sciences, Institute of Biology, Humboldt University, Berlin, Germany
| | - Miklos Pal Dunay
- Department and Clinic of Surgery and Ophthalmology, University of Veterinary Medicine, Budapest, Hungary
| | - Gabor K Toth
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Pecs, Hungary
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Ildiko Rita Dunay
- Medical Faculty, Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences - CBBS, Magdeburg, Germany
| |
Collapse
|
10
|
Abstract
Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease. We further argue that there is a need for quantitative, thermodynamic studies that probe the strengths of the interactions between RTKs and their ligands and between different RTKs.
Collapse
Affiliation(s)
- Michael D. Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
11
|
Role of Epidermal Growth Factor Receptor (EGFR) and Its Ligands in Kidney Inflammation and Damage. Mediators Inflamm 2018; 2018:8739473. [PMID: 30670929 PMCID: PMC6323488 DOI: 10.1155/2018/8739473] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 12/29/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by persistent inflammation and progressive fibrosis, ultimately leading to end-stage renal disease. Although many studies have investigated the factors involved in the progressive deterioration of renal function, current therapeutic strategies only delay disease progression, leaving an unmet need for effective therapeutic interventions that target the cause behind the inflammatory process and could slow down or reverse the development and progression of CKD. Epidermal growth factor receptor (EGFR) (ERBB1), a membrane tyrosine kinase receptor expressed in the kidney, is activated after renal damage, and preclinical studies have evidenced its potential as a therapeutic target in CKD therapy. To date, seven official EGFR ligands have been described, including epidermal growth factor (EGF) (canonical ligand), transforming growth factor-α, heparin-binding epidermal growth factor, amphiregulin, betacellulin, epiregulin, and epigen. Recently, the connective tissue growth factor (CTGF/CCN2) has been described as a novel EGFR ligand. The direct activation of EGFR by its ligands can exert different cellular responses, depending on the specific ligand, tissue, and pathological condition. Among all EGFR ligands, CTGF/CCN2 is of special relevance in CKD. This growth factor, by binding to EGFR and downstream signaling pathway activation, regulates renal inflammation, cell growth, and fibrosis. EGFR can also be “transactivated” by extracellular stimuli, including several key factors involved in renal disease, such as angiotensin II, transforming growth factor beta (TGFB), and other cytokines, including members of the tumor necrosis factor superfamily, showing another important mechanism involved in renal pathology. The aim of this review is to summarize the contribution of EGFR pathway activation in experimental kidney damage, with special attention to the regulation of the inflammatory response and the role of some EGFR ligands in this process. Better insights in EGFR signaling in renal disease could improve our current knowledge of renal pathology contributing to therapeutic strategies for CKD development and progression.
Collapse
|
12
|
Yan W, Lakkaniga NR, Carlomagno F, Santoro M, McDonald NQ, Lv F, Gunaganti N, Frett B, Li HY. Insights into Current Tropomyosin Receptor Kinase (TRK) Inhibitors: Development and Clinical Application. J Med Chem 2018; 62:1731-1760. [PMID: 30188734 DOI: 10.1021/acs.jmedchem.8b01092] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of kinase-directed precision medicine has been heavily pursued since the discovery and development of imatinib. Annually, it is estimated that around ∼20 000 new cases of tropomyosin receptor kinase (TRK) cancers are diagnosed, with the majority of cases exhibiting a TRK genomic rearrangement. In this Perspective, we discuss current development and clinical applications for TRK precision medicine by providing the following: (1) the biological background and significance of the TRK kinase family, (2) a compilation of known TRK inhibitors and analysis of their cocrystal structures, (3) an overview of TRK clinical trials, and (4) future perspectives for drug discovery and development of TRK inhibitors.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Francesca Carlomagno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy.,Istituto di Endocrinologia e Oncologia Sperimentale del CNR , Via S Pansini 5 , 80131 Naples , Italy
| | - Massimo Santoro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy
| | - Neil Q McDonald
- Signaling and Structural Biology Laboratory , The Francis Crick Institute , London NW1 1AT , U.K.,Institute of Structural and Molecular Biology, Department of Biological Sciences , Birkbeck College , Malet Street , London WC1E 7HX , U.K
| | - Fengping Lv
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naresh Gunaganti
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| |
Collapse
|
13
|
Zibara K, Zeidan A, Mallah K, Kassem N, Awad A, Mazurier F, Badran B, El-Zein N. Signaling pathways activated by PACAP in MCF-7 breast cancer cells. Cell Signal 2018; 50:37-47. [PMID: 29935235 DOI: 10.1016/j.cellsig.2018.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 01/12/2023]
Abstract
PACAP has opposing roles ranging from activation to inhibition of tumor growth and PACAP agonists/antagonists could be used in tumor therapy. In this study, the effect of PACAP stimulation on signaling pathways was investigated in MCF-7 human adenocarcinoma breast cancer cells. Results showed that MCF-7 cells express VPAC1 and VPAC2, but not PAC1, receptors. In addition, PACAP increased the phosphorylation levels of STAT1, Src and Raf within seconds, confirming their involvement in early stages of PACAP signaling whereas maximal phosphorylation of AKT, ERK and p38 was reached 10 to 20 min later. Moreover, selective inhibition of Src or PI3K resulted in a significant decrease in the phosphorylation of ERK and AKT, but not p38, demonstrating that PACAP signaling follows Src/Raf/ERK and PI3K/AKT pathways. On the other hand, selective inhibition of PLC or PKA resulted in a significant decrease in the phosphorylation of p38, but not AKT or ERK, indicating that PACAP signaling also follows the PLC and PKA/cAMP pathways. Furthermore, PACAP induced ROS through H₂O₂ production whereas pretreatment with NAC inhibitor decreased AKT and ERK phosphorylation, but not p38. Selective NOX2 inhibition affected Src/Raf/Erk and PI3K/Akt pathways, without affecting the p38/PLC/PKA pathway whereas other inhibitors (ML171, VAS2870) had no effect on PACAP induced ROS generation. On the other hand, PACAP induced calcium release, which was decreased by pretreatment with PLC inhibitor. Finally, PACAP stimulation promoted apoptosis by increasing Bax and decreasing Bcl2 expression. In conclusion, we demonstrated that PACAP signaling in MCF-7 cells follows the Src/Raf/ERK and PI3K/AKT pathways and is VPAC1 dependent in a ROS dependent manner, whereas it follows PLC and PKA/cAMP pathways and is VPAC2 dependent through p38 MAP kinase activation involving calcium.
Collapse
Affiliation(s)
- Kazem Zibara
- PRASE, DSST, Lebanese University, Beirut, Lebanon; Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon; Laboratory of Cancer Immunology and Cell Signaling (LCICS), Lebanese University, Faculty of Sciences, Beirut, Lebanon.
| | - Asad Zeidan
- College of Medicine, Department of Basic Medical Sciences, Qatar university, Qatar
| | | | - Nouhad Kassem
- PRASE, DSST, Lebanese University, Beirut, Lebanon; Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Ali Awad
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | | | - Bassam Badran
- Laboratory of Cancer Immunology and Cell Signaling (LCICS), Lebanese University, Faculty of Sciences, Beirut, Lebanon
| | - Nabil El-Zein
- PRASE, DSST, Lebanese University, Beirut, Lebanon; Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon; Laboratory of Cancer Immunology and Cell Signaling (LCICS), Lebanese University, Faculty of Sciences, Beirut, Lebanon.
| |
Collapse
|
14
|
fMLP-dependent activation of Akt and ERK1/2 through ROS/Rho A pathways is mediated through restricted activation of the FPRL1 (FPR2) receptor. Inflamm Res 2018; 67:711-722. [PMID: 29922854 DOI: 10.1007/s00011-018-1163-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 05/02/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE AND DESIGN The objective of this study is to uncover the signal transduction pathways of N-formyl methionyl-leucyl-phenylalanine (fMLP) in monocyte. MATERIALS OR SUBJECTS Freshly isolated human peripheral blood monocytes (PBMC) were used for in vitro assessment of signal transduction pathways activated by fMLP. TREATMENT Time-course and dose-response experiments were used to evaluate the effect of fMLP along with the specific inhibitors/stimulators on the activation of downstream signaling kinases. METHODS Freshly isolated human PBMC were stimulated with fMLP for the desired time. Western blot and siRNA analysis were used to evaluate the activated intracellular signaling kinases, and flow analysis was performed to assess the levels of CD11b. Furthermore, luminescence spectrometry was performed to measure the levels of released hydrogen peroxide in the media. RESULTS fMLP strongly stimulated the activation of AKT and ERK1/2 through a RhoA-GTPase-dependent manner and also induced H2O2 release by monocytes. Furthermore, fMLP mediated its effects through restricted activation of formylpeptide receptor-like 1 (FPRL1/FPR2), but independently of either EGFR transactivation or intracellular calcium release. In addition, NAC reversed fMLP- and H2O2-induced activation of Akt and RhoA-GTPase. CONCLUSION Collectively, these data suggested that fMLP-activated ERK1/2 and Akt pathways through specific activation of the FPRL1/ROS/RoA-GTPase pathway.
Collapse
|
15
|
He L, Fu Y, Deng J, Shen Y, Wang Y, Yu F, Xie N, Chen Z, Hong T, Peng X, Li Q, Zhou J, Han J, Wang Y, Xi J, Kong W. Deficiency of FAM3D (Family With Sequence Similarity 3, Member D), A Novel Chemokine, Attenuates Neutrophil Recruitment and Ameliorates Abdominal Aortic Aneurysm Development. Arterioscler Thromb Vasc Biol 2018; 38:1616-1631. [PMID: 29853563 PMCID: PMC6039426 DOI: 10.1161/atvbaha.118.311289] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/16/2018] [Indexed: 01/13/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— Chemokine-mediated neutrophil recruitment contributes to the pathogenesis of abdominal aortic aneurysm (AAA) and may serve as a promising therapeutic target. FAM3D (family with sequence similarity 3, member D) is a recently identified novel chemokine. Here, we aimed to explore the role of FAM3D in neutrophil recruitment and AAA development. Approach and Results— FAM3D was markedly upregulated in human AAA tissues, as well as both elastase- and CaPO4-induced mouse aneurysmal aortas. FAM3D deficiency significantly attenuated the development of AAA in both mouse models. Flow cytometry analysis indicated that FAM3D−/− mice exhibited decreased neutrophil infiltration in the aorta during the early stage of AAA formation compared with their wild-type littermates. Moreover, application of FAM3D-neutralizing antibody 6D7 through intraperitoneal injection markedly ameliorated elastase-induced AAA formation and neutrophil infiltration. Further, in vitro coculture experiments with FAM3D-neutralizing antibody 6D7 and in vivo intravital microscopic analysis indicated that endothelial cell–derived FAM3D induced neutrophil recruitment. Mechanistically, FAM3D upregulated and activated Mac-1 (macrophage-1 antigen) in neutrophils, whereas inhibition of FPR1 (formyl peptide receptor 1) or FPR2 significantly blocked FAM3D-induced Mac-1 activation, indicating that the effect of FAM3D was dependent on both FPRs. Moreover, specific inhibitors of FPR signaling related to Gi protein or β-arrestin inhibited FAM3D-activated Mac-1 in vitro, whereas FAM3D deficiency decreased the activation of both FPR-Gi protein and β-arrestin signaling in neutrophils in vivo. Conclusions— FAM3D, as a dual agonist of FPR1 and FPR2, induced Mac-1-mediated neutrophil recruitment and aggravated AAA development through FPR-related Gi protein and β-arrestin signaling.
Collapse
Affiliation(s)
- Li He
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Yi Fu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Jingna Deng
- Tasly Microcirculation Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China (J.D., J.H.)
| | - Yicong Shen
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Yingbao Wang
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Fang Yu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Nan Xie
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Zhongjiang Chen
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, People's Republic of China (T.H.)
| | - Xinjian Peng
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing, People's Republic of China (X.P., Q.L., Ying Wang)
| | - Qingqing Li
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing, People's Republic of China (X.P., Q.L., Ying Wang)
| | - Jing Zhou
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Jingyan Han
- Tasly Microcirculation Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China (J.D., J.H.)
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing, People's Republic of China (X.P., Q.L., Ying Wang)
| | - Jianzhong Xi
- Department of Biomedicine, College of Engineering, Peking University, Beijing, People's Republic of China (J.X.).
| | - Wei Kong
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| |
Collapse
|
16
|
Wang W, Qiao Y, Li Z. New Insights into Modes of GPCR Activation. Trends Pharmacol Sci 2018; 39:367-386. [DOI: 10.1016/j.tips.2018.01.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
|
17
|
Park HJ, Kim S, Li W. Model-based analysis of competing-endogenous pathways (MACPath) in human cancers. PLoS Comput Biol 2018; 14:e1006074. [PMID: 29565967 PMCID: PMC5882149 DOI: 10.1371/journal.pcbi.1006074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 04/03/2018] [Accepted: 03/06/2018] [Indexed: 01/24/2023] Open
Abstract
Competing endogenous RNA (ceRNA) has emerged as an important post-transcriptional mechanism that simultaneously alters expressions of thousands genes in cancers. However, only a few ceRNA genes have been studied for their functions to date. To understand the major biological functions of thousands ceRNA genes as a whole, we designed Model-based Analysis of Competing-endogenous Pathways (MACPath) to infer pathways co-regulated through ceRNA mechanism (cePathways). Our analysis on breast tumors suggested that NGF (nerve growth factor)-induced tumor cell proliferation might be associated with tumor-related growth factor pathways through ceRNA. MACPath also identified indirect cePathways, whose ceRNA relationship is mediated by mediating ceRNAs. Finally, MACPath identified mediating ceRNAs that connect the indirect cePathways based on efficient integer linear programming technique. Mediating ceRNAs are unexpectedly enriched in tumor suppressor genes, whose down-regulation is suspected to disrupt indirect cePathways, such as between DNA replication and WNT signaling pathways. Altogether, MACPath is the first computational method to comprehensively understand functions of thousands ceRNA genes, both direct and indirect, at the pathway level.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (HJP); (WL)
| | - Soyeon Kim
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Wei Li
- Division of Biostatistics, Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (HJP); (WL)
| |
Collapse
|
18
|
Crispoltoni L, Stabile AM, Pistilli A, Venturelli M, Cerulli G, Fonte C, Smania N, Schena F, Rende M. Changes in Plasma β-NGF and Its Receptors Expression on Peripheral Blood Monocytes During Alzheimer's Disease Progression. J Alzheimers Dis 2018; 55:1005-1017. [PMID: 27802234 DOI: 10.3233/jad-160625] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is characterized by the deposition of extracellular amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles, and by neuroinflammation. During the pathogenesis of AD, monocyte-macrophage lineage cells become increasingly ineffective in clearing Aβ deposits, less able to differentiate, and shift toward pro-inflammatory processes. Beta-nerve growth factor (β-NGF) and its receptors, TrKA and p75NTR, produce several biological responses, including cell apoptosis and survival, and inflammation. In the central nervous system, the involvement of these receptors in several critical hallmarks of AD is well known, but their role in circulating monocytes during the progression of dementia is unclear. We investigated the relationship between plasma β-NGF concentration and TrkA/p75NTR receptor expression in monocytes of patients with mild cognitive impairment (MCI), mild AD, and severe AD. We observed that plasma β-NGF concentration was increased with a higher expression of TrKA, but not of p75NTR, in monocytes from patients with MCI and mild AD, whereas β-NGF concentration and TrKA expression were decreased and p75NTR expression was increased, associated with caspase 3-mediated apoptosis, in patients with severe AD. In our study, we show evidence of variation in plasmatic β-NGF and monocytic TrkA/p75NTR receptor expression during the progression of dementia. These novel findings add evidence to support the hypothesis for the involvement of β-NGF and its receptors on monocytes during AD progression.
Collapse
Affiliation(s)
- Lucia Crispoltoni
- Section of Human, Clinical and Forensic Anatomy, Department of Surgery and Biomedical Sciences, School of Medicine, University of Perugia, Italy
| | - Anna Maria Stabile
- Section of Human, Clinical and Forensic Anatomy, Department of Surgery and Biomedical Sciences, School of Medicine, University of Perugia, Italy
| | - Alessandra Pistilli
- Section of Human, Clinical and Forensic Anatomy, Department of Surgery and Biomedical Sciences, School of Medicine, University of Perugia, Italy
| | - Massimo Venturelli
- Section of Movement Sciences, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giuliano Cerulli
- The Nicola Cerulli Institute of Translational Research for the Musculoskeletal System - LPMRI, Biology and Degenerative Medicine Division, Arezzo, Italy.,Istituto di Clinica Ortopedica e Traumatologica, Università Cattolica del Sacro Cuore-Policlinico Universitario Agostino Gemelli, Roma, Italy
| | - Cristina Fonte
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicola Smania
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Schena
- Section of Movement Sciences, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mario Rende
- Section of Human, Clinical and Forensic Anatomy, Department of Surgery and Biomedical Sciences, School of Medicine, University of Perugia, Italy
| |
Collapse
|
19
|
Can EGCG Alleviate Symptoms of Down Syndrome by Altering Proteolytic Activity? Int J Mol Sci 2018; 19:ijms19010248. [PMID: 29342922 PMCID: PMC5796196 DOI: 10.3390/ijms19010248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
Down syndrome (DS), also known as "trisomy 21", is a genetic disorder caused by the presence of all or part of a third copy of chromosome 21. Silencing these extra genes is beyond existing technology and seems to be impractical. A number of pharmacologic options have been proposed to change the quality of life and lifespan of individuals with DS. It was reported that treatment with epigallocatechin gallate (EGCG) improves cognitive performance in animal models and in humans, suggesting that EGCG may alleviate symptoms of DS. Traditionally, EGCG has been associated with the ability to reduce dual specificity tyrosine phosphorylation regulated kinase 1A activity, which is overexpressed in trisomy 21. Based on the data available in the literature, we propose an additional way in which EGCG might affect trisomy 21-namely by modifying the proteolytic activity of the enzymes involved. It is known that, in Down syndrome, the nerve growth factor (NGF) metabolic pathway is altered: first by downregulating tissue plasminogen activator (tPA) that activates plasminogen to plasmin, an enzyme converting proNGF to mature NGF; secondly, overexpression of metalloproteinase 9 (MMP-9) further degrades NGF, lowering the amount of mature NGF. EGCG inhibits MMP-9, thus protecting NGF. Urokinase (uPA) and tPA are activators of plasminogen, and uPA is inhibited by EGCG, but regardless of their structural similarity tPA is not inhibited. In this review, we describe mechanisms of proteolytic enzymes (MMP-9 and plasminogen activation system), their role in Down syndrome, their inhibition by EGCG, possible degradation of this polyphenol and the ability of EGCG and its degradation products to cross the blood-brain barrier. We conclude that known data accumulated so far provide promising evidence of MMP-9 inhibition by EGCG in the brain, which could slow down the abnormal degradation of NGF.
Collapse
|
20
|
Rayego-Mateos S, Morgado-Pascual JL, Rodrigues-Diez RR, Rodrigues-Diez R, Falke LL, Mezzano S, Ortiz A, Egido J, Goldschmeding R, Ruiz-Ortega M. Connective tissue growth factor induces renal fibrosis via epidermal growth factor receptor activation. J Pathol 2018; 244:227-241. [PMID: 29160908 DOI: 10.1002/path.5007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/20/2017] [Accepted: 11/14/2017] [Indexed: 01/04/2023]
Abstract
Connective tissue growth factor (CCN2/CTGF) is a matricellular protein that is overexpressed in progressive human renal diseases, mainly in fibrotic areas. In vitro studies have demonstrated that CCN2 regulates the production of extracellular matrix (ECM) proteins and epithelial-mesenchymal transition (EMT), and could therefore contribute to renal fibrosis. CCN2 blockade ameliorates experimental renal damage, including diminution of ECM accumulation. We have reported that CCN2 and its C-terminal degradation product CCN2(IV) bind to epidermal growth factor receptor (EGFR) to modulate renal inflammation. However, the receptor involved in CCN2 profibrotic actions has not been described so far. Using a murine model of systemic administration of CCN2(IV), we have unveiled a fibrotic response in the kidney that was diminished by EGFR blockade. Additionally, in conditional CCN2 knockout mice, renal fibrosis elicited by folic acid-induced renal damage was prevented, and this was linked to inhibition of EGFR pathway activation. Our in vitro studies demonstrated a direct effect of CCN2 via the EGFR pathway on ECM production by fibroblasts and the induction of EMT in tubular epithelial cells. Our studies clearly show that the EGFR regulates CCN2 fibrotic signalling in the kidney, and suggest that EGFR pathway blockade could be a potential therapeutic option to block CCN2-mediated profibrotic effects in renal diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory. School of Medicine, Universidad Autónoma Madrid, Madrid, Spain
| | - José Luis Morgado-Pascual
- Cellular Biology in Renal Diseases Laboratory. School of Medicine, Universidad Autónoma Madrid, Madrid, Spain
| | | | - Raquel Rodrigues-Diez
- Cellular Biology in Renal Diseases Laboratory. School of Medicine, Universidad Autónoma Madrid, Madrid, Spain
| | - Lucas L Falke
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz-UAM, School of Medicine, UAM, Madrid, Spain
| | - Jesús Egido
- IIS-Fundación Jiménez Díaz-UAM, School of Medicine, UAM, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory. School of Medicine, Universidad Autónoma Madrid, Madrid, Spain
| |
Collapse
|
21
|
Hahnel S, Wheeler N, Lu Z, Wangwiwatsin A, McVeigh P, Maule A, Berriman M, Day T, Ribeiro P, Grevelding CG. Tissue-specific transcriptome analyses provide new insights into GPCR signalling in adult Schistosoma mansoni. PLoS Pathog 2018; 14:e1006718. [PMID: 29346437 PMCID: PMC5773224 DOI: 10.1371/journal.ppat.1006718] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Schistosomes are blood-dwelling trematodes with global impact on human and animal health. Because medical treatment is currently based on a single drug, praziquantel, there is urgent need for the development of alternative control strategies. The Schistosoma mansoni genome project provides a platform to study and connect the genetic repertoire of schistosomes to specific biological functions essential for successful parasitism. G protein-coupled receptors (GPCRs) form the largest superfamily of transmembrane receptors throughout the Eumetazoan phyla, including platyhelminths. Due to their involvement in diverse biological processes, their pharmacological importance, and proven druggability, GPCRs are promising targets for new anthelmintics. However, to identify candidate receptors, a more detailed understanding of the roles of GPCR signalling in schistosome biology is essential. An updated phylogenetic analysis of the S. mansoni GPCR genome (GPCRome) is presented, facilitated by updated genome data that allowed a more precise annotation of GPCRs. Additionally, we review the current knowledge on GPCR signalling in this parasite and provide new insights into the potential roles of GPCRs in schistosome reproduction based on the findings of a recent tissue-specific transcriptomic study in paired and unpaired S. mansoni. According to the current analysis, GPCRs contribute to gonad-specific functions but also to nongonad, pairing-dependent processes. The latter may regulate gonad-unrelated functions during the multifaceted male-female interaction. Finally, we compare the schistosome GPCRome to that of another parasitic trematode, Fasciola, and discuss the importance of GPCRs to basic and applied research. Phylogenetic analyses display GPCR diversity in free-living and parasitic platyhelminths and suggest diverse functions in schistosomes. Although their roles need to be substantiated by functional studies in the future, the data support the selection of GPCR candidates for basic and applied studies, invigorating the exploitation of this important receptor class for drug discovery against schistosomes but also other trematodes.
Collapse
Affiliation(s)
- Steffen Hahnel
- Institute of Parasitology, BFS, Justus Liebig University, Giessen, Germany
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Nic Wheeler
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Zhigang Lu
- Institute of Parasitology, BFS, Justus Liebig University, Giessen, Germany
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Arporn Wangwiwatsin
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Paul McVeigh
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast, United Kingdom
| | - Aaron Maule
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Timothy Day
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Montreal, Canada
| | | |
Collapse
|
22
|
Vacas E, Muñoz-Moreno L, Valenzuela PL, Prieto JC, Schally AV, Carmena MJ, Bajo AM. Growth hormone-releasing hormone induced transactivation of epidermal growth factor receptor in human triple-negative breast cancer cells. Peptides 2016; 86:153-161. [PMID: 27816751 DOI: 10.1016/j.peptides.2016.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/20/2016] [Accepted: 11/01/2016] [Indexed: 01/01/2023]
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancers which is negative for expression of estrogen and progesterone receptors and human epidermal growth factor receptor-2 (HER2). Chemotherapy is currently the only form of treatment for women with TNBC. Growth hormone-releasing hormone (GHRH) and epidermal growth factor (EGF) are autocrine/paracrine growth factors in breast cancer and a substantial proportion of TNBC expresses receptors for GHRH and EGF. The aim of this study was to evaluate the interrelationship between both these signaling pathways in MDA-MB-468 human TNBC cells. We evaluated by Western blot assays the effect of GHRH on transactivation of EGF receptor (EGFR) as well as the elements implicated. We assessed the effect of GHRH on migration capability of MDA-MB-468 cells as well as the involvement of EGFR in this process by means of wound-healing assays. Our findings demonstrate that in MDA-MB-468 cells the stimulatory activity of GHRH on tyrosine phosphorylation of EGFR is exerted by two different molecular mechanisms: i) through GHRH receptors, GHRH stimulates a ligand-independent activation of EGFR involving at least cAMP/PKA and Src family signaling pathways; ii) GHRH also stimulates a ligand-dependent activation of EGFR implicating an extracellular pathway with an important role for metalloproteinases. The cross-talk between EGFR and GHRHR may be impeded by combining drugs acting upon GHRH receptors and EGFR family members. This combination of GHRH receptors antagonists with inhibitors of EGFR signalling could enhance the efficacy of both types of agents as well as reduce their doses increasing therapeutic benefits in management of human breast cancer.
Collapse
Affiliation(s)
- Eva Vacas
- Department of Systems of Biology, University of Alcala, Alcala de Henares, Spain
| | - Laura Muñoz-Moreno
- Department of Systems of Biology, University of Alcala, Alcala de Henares, Spain
| | - Pedro L Valenzuela
- Obstetrics and Gynaecology Department, Principe de Asturias Hospital, Alcalá de Henares University, Alcalá de Henares, Madrid, Spain
| | - Juan C Prieto
- Department of Systems of Biology, University of Alcala, Alcala de Henares, Spain
| | - Andrew V Schally
- Veterans Administration Medical Center and Departments of Pathology and Medicine, Division of Oncology and Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL, USA
| | - María J Carmena
- Department of Systems of Biology, University of Alcala, Alcala de Henares, Spain
| | - Ana M Bajo
- Department of Systems of Biology, University of Alcala, Alcala de Henares, Spain.
| |
Collapse
|
23
|
Somarriva C, Fernández A, Candia J, Campos J, Albers D, Briceño J. Dysregulation and detection methods of EGFR in oral cancer. A narrative review. JOURNAL OF ORAL RESEARCH 2016. [DOI: 10.17126/joralres.2016.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
24
|
Nan L, Wei J, Jacko AM, Culley MK, Zhao J, Natarajan V, Ma H, Zhao Y. Cross-talk between lysophosphatidic acid receptor 1 and tropomyosin receptor kinase A promotes lung epithelial cell migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:229-35. [PMID: 26597701 DOI: 10.1016/j.bbamcr.2015.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/28/2015] [Accepted: 11/16/2015] [Indexed: 02/02/2023]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid, which plays a crucial role in the regulation of cell proliferation, migration, and differentiation. LPA exerts its biological effects mainly through binding to cell-surface LPA receptors (LPA1-6), which belong to the G protein-coupled receptor (GPCR) family. Recent studies suggest that cross-talk between receptor tyrosine kinases (RTKs) and GPCRs modulates GPCRs-mediated signaling. Tropomyosin receptor kinase A (TrkA) is a RTK, which mediates nerve growth factor (NGF)-induced biological functions including cell migration in neuronal and non-neuronal cells. Here, we show LPA1 transactivation of TrkA in murine lung epithelial cells (MLE12). LPA induced tyrosine phosphorylation of TrkA in both time- and dose-dependent manners. Down-regulation of LPA1 by siRNA transfection attenuated LPA-induced phosphorylation of TrkA, suggesting a cross-talk between LPA1 and TrkA. To investigate the molecular regulation of the cross-talk, we focused on the interaction between LPA1 and TrkA. We found that LPA induced interaction between LPA1 and TrkA. The LPA1/TrkA complex was localized on the plasma membrane and in the cytoplasm. The C-terminus of LPA1 was identified as the binding site for TrkA. Inhibition of TrkA attenuated LPA-induced phosphorylation of TrkA and LPA1 internalization, as well as lung epithelial cell migration. These studies provide a molecular mechanism for the transactivation of TrkA by LPA, and suggest that the cross-talk between LPA1 and TrkA regulates LPA-induced receptor internalization and lung epithelial cell migration.
Collapse
Affiliation(s)
- Ling Nan
- Department of Anesthesia, First Hospital of Jilin University, Changchun, China; Department of Medicine, Acute Lung Injury Center of Excellence, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jianxin Wei
- Department of Medicine, Acute Lung Injury Center of Excellence, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anastasia M Jacko
- Department of Medicine, Acute Lung Injury Center of Excellence, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Miranda K Culley
- Department of Medicine, Acute Lung Injury Center of Excellence, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jing Zhao
- Department of Medicine, Acute Lung Injury Center of Excellence, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Haichun Ma
- Department of Anesthesia, First Hospital of Jilin University, Changchun, China
| | - Yutong Zhao
- Department of Medicine, Acute Lung Injury Center of Excellence, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
25
|
Lin CC, Lin WN, Hou WC, Hsiao LD, Yang CM. Endothelin-1 induces VCAM-1 expression-mediated inflammation via receptor tyrosine kinases and Elk/p300 in human tracheal smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2015; 309:L211-25. [PMID: 26071554 DOI: 10.1152/ajplung.00232.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 05/14/2015] [Indexed: 11/22/2022] Open
Abstract
The elevated level of endothelin-1 (ET-1) has been detected in the bronchoalveolar lavage of patients with severe asthma, acute lung injury, acute respiratory distress syndrome, and sepsis. ET-1 may affect vessel tone together with lung physiology and pathology. Vascular cell adhesion molecule-1 (VCAM-1) is one kind of adhesion molecules participating in the process of polymorphonuclear leukocyte transmigration and regulating the occurrence and amplification of tissue inflammation. However, the molecular mechanisms underlying ET-1-mediated expression of VCAM-1 on human tracheal smooth muscle cells (HTSMCs) were largely unknown. Here we reported that ET-1 stimulated expression of VCAM-1 gene on HTSMCs, which was blocked by pretreatment with the inhibitors of ET receptors, Src, matrix metalloproteinases (MMPs), epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), phosphatidylinositol 3-kinase (PI3K), AKT, MEK1/2, and p300, suggesting the participation of these signaling components in ET-1-regulated HTSMC responses. Furthermore, transfection with small-interfering RNA (siRNA) of Src, AKT, p42 mitogen-activated protein kinase (MAPK), or p300 downregulated the respective proteins and significantly attenuated ET-1-induced VCAM-1 expression. ET-1 also stimulated phosphorylation of Src, EGFR, PDGFR, AKT, p42/p44 MAPK, and Elk-1 and acetylation of histone H4 on HTSMCs. Immunoprecipitation assay showed the association between Elk-1 and p300 in the nucleus. Adhesion assay revealed that the adhesion of THP-1 to HTSMCs challenged with ET-1 was increased, which was attenuated by the inhibitors of ET receptors, Src, MMPs, EGFR, PDGFR, PI3K, AKT, p42/p44 MAPK, and p300. Taken together, these data suggested that ET-1 promotes occurrence and amplification of pathology-related airway inflammation via enhancing VCAM-1 expression in an ET receptor/Src/MMP/EGFR, PDGFR/PI3K/AKT/p42/p44 MAPK/Elk-1/p300 pathway in HTSMCs.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital and Chang Gung University, Tao-Yuan, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; and
| | - Wei-Chen Hou
- Department of Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital and Chang Gung University, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
26
|
Savikko J, Rintala JM, Rintala S, Koskinen P. Epidermal growth factor receptor inhibition by erlotinib prevents vascular smooth muscle cell and monocyte–macrophage function in vitro. Transpl Immunol 2015; 32:175-8. [DOI: 10.1016/j.trim.2015.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
|
27
|
Vargas-Caraveo A, Pérez-Ishiwara DG, Martínez-Martínez A. Chronic Psychological Distress as an Inducer of Microglial Activation and Leukocyte Recruitment into the Area Postrema. Neuroimmunomodulation 2015; 22:311-21. [PMID: 25765708 DOI: 10.1159/000369350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/27/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chronic psychological distress can cause neuroinflammation, but the involvement of leukocytes in this inflammatory response remains unclear. The area postrema (AP) is considered a neural-immune interface because it lacks a blood-brain barrier and a site for leukocyte recruitment in neuroinflammatory conditions induced by immunological insults, but its role in chronic psychological distress has not been explored. OBJECTIVE To determine leukocyte recruitment to the AP after chronic psychological distress. METHODS Rats were exposed to cat odor for 5 consecutive days to induce distress, and, on the 6th day, their brains were dissected to perform immunohistofluorescence studies of the AP. Immune cells were identified and quantified with CD45 and CD11b markers. The distribution of neurons and immune cells was determined using TrkA and CD45 markers, respectively. RESULTS Distress induced a significant increase in CD45(+) and CD11b(+) cells in the AP. Three immunophenotypes were determined in the control and distress groups: CD45(+)/CD11b(-), CD45(+)/CD11b(+) and CD45(-)/CD11b(+). CD expression, morphology and fluorescence intensity enabled the identification of different immune cell types: starting from longitudinal ramified microglia (mainly in the control group) to amoeboid microglia, monocytes and lymphocytes (mostly in the distressed group). TrkA and CD45 expression in the AP revealed the proximity between soma neurons and leukocytes. Interestingly, some CD45(+) cells expressed TrkA, with increased expression in the distressed group. CONCLUSIONS The identification of microglial activation, leukocyte recruitment and the close proximity between neurons and leukocytes in the AP after chronic psychological distress exposure suggests the AP as a site for distress-induced immune responses and engraftment of leukocytes infiltrating the CNS.
Collapse
Affiliation(s)
- Alejandra Vargas-Caraveo
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, and Centro de Investigación en Biotecnologia Aplicada del IPN, México, México
| | | | | |
Collapse
|
28
|
Cattaneo F, Guerra G, Parisi M, De Marinis M, Tafuri D, Cinelli M, Ammendola R. Cell-surface receptors transactivation mediated by g protein-coupled receptors. Int J Mol Sci 2014; 15:19700-28. [PMID: 25356505 PMCID: PMC4264134 DOI: 10.3390/ijms151119700] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 12/17/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK) occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS) are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC) isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors. Herein, we discuss the main mechanisms of GPCR-mediated cell-surface receptors transactivation and the pathways involved in intracellular responses induced by GPCR agonists. These studies may suggest the design of novel strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, Campobasso 86100, Italy.
| | - Melania Parisi
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Marta De Marinis
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Domenico Tafuri
- Department of Sport Science and Wellness, University of Naples Parthenope, Naples 80133, Italy.
| | - Mariapia Cinelli
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| |
Collapse
|
29
|
Growth hormone-releasing hormone antagonists abolish the transactivation of human epidermal growth factor receptors in advanced prostate cancer models. Invest New Drugs 2014; 32:871-82. [DOI: 10.1007/s10637-014-0131-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/23/2014] [Indexed: 02/04/2023]
|
30
|
The urokinase receptor takes control of cell migration by recruiting integrins and FPR1 on the cell surface. PLoS One 2014; 9:e86352. [PMID: 24466048 PMCID: PMC3897705 DOI: 10.1371/journal.pone.0086352] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/09/2013] [Indexed: 12/05/2022] Open
Abstract
The receptor (uPAR) of the urokinase-type plasminogen activator (uPA) is crucial in cell migration since it concentrates uPA proteolytic activity at the cell surface, binds vitronectin and associates to integrins. uPAR cross-talk with receptors for the formylated peptide fMLF (fMLF-Rs) has been reported; however, cell-surface uPAR association to fMLF-Rs on the cell membrane has never been explored in detail. We now show that uPAR co-localizes at the cell-surface and co-immunoprecipitates with the high-affinity fMLF-R, FPR1, in uPAR-transfected HEK-293 (uPAR-293) cells. uPAR/β1 integrin and FPR1/β1 integrin co-localization was also observed. Serum or the WKYMVm peptide (W Pep), a FPR1 ligand, strongly increased all observed co-localizations in uPAR-293 cells, including FPR1/β1 integrin co-localization. By contrast, a low FPR1/β1 integrin co-localization was observed in uPAR-negative vector-transfected HEK-293 (V-293) cells, that was not increased by serum or W Pep stimulations. The role of uPAR interactions in cell migration was then explored. Both uPAR-293 and V-293 control cells efficiently migrated toward serum or purified EGF. However, cell treatments impairing uPAR interactions with fMLF-Rs or integrins, or inhibiting specific cell-signaling mediators abrogated uPAR-293 cell migration, without exerting any effect on V-293 control cells. Accordingly, uPAR depletion by a uPAR-targeting siRNA or uPAR blocking with an anti-uPAR polyclonal antibody in cells constitutively expressing high uPAR levels totally impaired their migration toward serum. Altogether, these results suggest that both uPAR-positive and uPAR-negative cells are able to migrate toward serum; however, uPAR expression renders cell migration totally and irreversibly uPAR-dependent, since it is completely inhibited by uPAR blocking. We propose that uPAR takes control of cell migration by recruiting fMLF-Rs and β1 integrins, thus promoting their co-localization at the cell-surface and driving pro-migratory signaling pathways.
Collapse
|
31
|
Rayego-Mateos S, Rodrigues-Díez R, Morgado-Pascual JL, Rodrigues Díez RR, Mas S, Lavoz C, Alique M, Pato J, Keri G, Ortiz A, Egido J, Ruiz-Ortega M. Connective tissue growth factor is a new ligand of epidermal growth factor receptor. J Mol Cell Biol 2013; 5:323-35. [PMID: 23929714 DOI: 10.1093/jmcb/mjt030] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic kidney disease is reaching epidemic proportions worldwide and there is no effective treatment. Connective tissue growth factor (CCN2) has been suggested as a risk biomarker and a potential therapeutic target for renal diseases, but its specific receptor has not been identified. Epidermal growth factor receptor (EGFR) participates in kidney damage, but whether CCN2 activates the EGFR pathway is unknown. Here, we show that CCN2 is a novel EGFR ligand. CCN2 binding to EGFR extracellular domain was demonstrated by surface plasmon resonance. CCN2 contains four distinct structural modules. The carboxyl-terminal module (CCN2(IV)) showed a clear interaction with soluble EGFR, suggesting that EGFR-binding site is located in this module. Injection of CCN2(IV) in mice increased EGFR phosphorylation in the kidney, mainly in tubular epithelial cells. EGFR kinase inhibition decreased CCN2(IV)-induced renal changes (ERK activation and inflammation). Studies in cultured tubular epithelial cells showed that CCN2(IV) binds to EGFR leading to ERK activation and proinflammatory factors overexpression. CCN2 interacts with the neurotrophin receptor TrkA, and EGFR/TrkA receptor crosstalk was found in response to CCN2(IV) stimulation. Moreover, endogenous CCN2 blockade inhibited TGF-β-induced EGFR activation. These findings indicate that CCN2 is a novel EGFR ligand that contributes to renal damage through EGFR signalling.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chan G, Nogalski MT, Stevenson EV, Yurochko AD. Human cytomegalovirus induction of a unique signalsome during viral entry into monocytes mediates distinct functional changes: a strategy for viral dissemination. J Leukoc Biol 2012; 92:743-52. [PMID: 22715139 DOI: 10.1189/jlb.0112040] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
HCMV pathogenesis is a direct consequence of the hematogenous dissemination of the virus to multiple host organ sites. The presence of infected monocytes in the peripheral blood and organs of individuals exhibiting primary HCMV infection have long suggested that these blood sentinels are responsible for mediating viral spread. Despite monocytes being "at the right place at the right time", their short lifespan and the lack of productive viral infection in these cells complicate this scenario of a monocyte-driven approach to viral dissemination by HCMV. However, our laboratory has provided evidence that HCMV infection is able to induce a highly controlled polarization of monocytes toward a unique and long-lived proinflammatory macrophage, which we have demonstrated to be permissive for viral replication. These observations suggest that HCMV has evolved as a distinct mechanism to induce select proinflammatory characteristics that provide infected monocytes with the necessary tools to mediate viral spread following a primary infection. In the absence of viral gene products during the early stages of infection, the process by which HCMV "tunes" the inflammatory response in infected monocytes to promote viral spread and subsequently, viral persistence remains unclear. In this current review, we focus on the viral entry process of HCMV and the potential role of receptor-ligand interactions in modulating monocyte biology. Specifically, we examine the signaling pathways initiated by the distinct combination of cellular receptors simultaneously engaged and activated by HCMV during viral entry and how the acquisition of this distinct signalsome results in a nontraditional activation of monocytes leading to the induction of the unique, functional attributes observed in monocytes following HCMV infection.
Collapse
Affiliation(s)
- Gary Chan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | | | | |
Collapse
|
33
|
Ley S, Weigert A, Weichand B, Henke N, Mille-Baker B, Janssen RAJ, Brüne B. The role of TRKA signaling in IL-10 production by apoptotic tumor cell-activated macrophages. Oncogene 2012; 32:631-40. [PMID: 22410777 DOI: 10.1038/onc.2012.77] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tumor-associated macrophages (TAMs) are a major supportive component within neoplasms. Mechanisms of macrophage (MΦ) attraction and differentiation to a tumor-promoting phenotype, which is characterized by pronounced interleukin (IL)-10 production, are under investigation. We report that supernatants of dying cancer cells induced substantial IL-10 release from primary human MΦs, dependent on signaling through tyrosine kinase receptor A (TRKA or neurotrophic tyrosine kinase receptor type 1 (NTRK1)). Mechanistically, sphingosine-1-phosphate (S1P) release from apoptotic cancer cells triggered src-dependent shuttling of cytosolic TRKA to the plasma membrane via S1P receptor signaling. Plasma membrane-associated TRKA, which was activated by constitutively autocrine secreted nerve growth factor, used phosphatidylinositol 3-kinase (PI3K)/AKT and p38 mitogen-activated protein kinase (MAPK) signaling to induce IL-10. Interestingly, TRKA-dependent signaling was required for cytokine production by TAMs isolated from primary murine breast cancer tissue. Besides IL-10, this pathway initiated secretion of IL-6, tumor necrosis factor-α (TNF-α) and monocyte chemotactic protein-1 (MCP-1), indicating relevance in cancer-associated inflammation. Our findings highlight a fine-tuned regulatory system including S1P-dependent TRKA trafficking for executing TAM-like cell function in vitro as well as in vivo.
Collapse
Affiliation(s)
- S Ley
- Institute of Biochemistry I/ZAFES, Goethe-University Frankfurt, Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Karacsonyi C, Lee JH, Shanmugam N, Kagan E. Epidermal Growth Factor Receptor Signaling Mediates Vesicant-Induced Airway Epithelial Secretion of Interleukin-6 and Production of Mucin. Am J Respir Cell Mol Biol 2012; 46:157-64. [DOI: 10.1165/rcmb.2010-0440oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
35
|
Lappano R, Santolla MF, Pupo M, Sinicropi MS, Caruso A, Rosano C, Maggiolini M. MIBE acts as antagonist ligand of both estrogen receptor α and GPER in breast cancer cells. Breast Cancer Res 2012; 14:R12. [PMID: 22251451 PMCID: PMC3496129 DOI: 10.1186/bcr3096] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/18/2011] [Accepted: 01/17/2012] [Indexed: 12/17/2022] Open
Abstract
Introduction The multiple biological responses to estrogens are mainly mediated by the classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors. ERα exerts a main role in the development of breast cancer; therefore, the ER antagonist tamoxifen has been widely used although its effectiveness is limited by de novo and acquired resistance. Recently, GPR30/GPER, a member of the seven-transmembrane G protein-coupled receptor family, has been implicated in mediating the effects of estrogens in various normal and cancer cells. In particular, GPER triggered gene expression and proliferative responses induced by estrogens and even ER antagonists in hormone-sensitive tumor cells. Likewise, additional ER ligands showed the ability to bind to GPER eliciting promiscuous and, in some cases, opposite actions through the two receptors. We synthesized a novel compound (ethyl 3-[5-(2-ethoxycarbonyl-1-methylvinyloxy)-1-methyl-1H-indol-3-yl]but-2-enoate), referred to as MIBE, and investigated its properties elicited through ERα and GPER in breast cancer cells. Methods Molecular modeling, binding experiments and functional assays were performed in order to evaluate the biological action exerted by MIBE through ERα and GPER in MCF7 and SkBr3 breast cancer cells. Results MIBE displayed the ability to act as an antagonist ligand for ERα and GPER as it elicited inhibitory effects on gene transcription and growth effects by binding to both receptors in breast cancer cells. Moreover, GPER was required for epidermal growth factor receptor (EGFR) and ERK activation by EGF as ascertained by using MIBE and performing gene silencing experiments. Conclusions Our findings provide novel insights on the functional cross-talk between GPER and EGFR signaling. Furthermore, the exclusive antagonistic activity exerted by MIBE on ERα and GPER could represent an innovative pharmacological approach targeting breast carcinomas which express one or both receptors at the beginning and/or during tumor progression. Hence, the simultaneous inhibition of both ERα and GPER may guarantee major therapeutic benefits in respect to the use of a selective estrogen receptor antagonist.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Dipartimento Farmaco-Biologico, Università della Calabria, via Bucci, 87036 Rende, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Fujioka N, Nguyen J, Chen C, Li Y, Pasrija T, Niehans G, Johnson KN, Gupta V, Kratzke RA, Gupta K. Morphine-induced epidermal growth factor pathway activation in non-small cell lung cancer. Anesth Analg 2011; 113:1353-64. [PMID: 22003224 DOI: 10.1213/ane.0b013e318232b35a] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) is coactivated by the μ-opioid receptor (MOR), expressed on non-small cell lung cancer (NSCLC) cells and human lung cancer. We hypothesized that clinically used opioid analgesics that are MOR agonists coactivate EGFR, resulting in growth- and survival-promoting signaling. METHODS We used H2009, a human adenocarcinoma NSCLC cell line, with constitutive EGFR phosphorylation, which showed increased expression of MOR and the δ-opioid receptor by reverse transcriptase polymerase chain reaction. We used Western immunoblotting, magnetic bead-based Bio-Plex cytokine assay, immunofluorescent staining, BrdU incorporation enzyme-linked immunosorbent assay, and BioCoat™ Matrigel™ invasion assay to examine cell signaling, cytokine expression, colocalization of MOR and EGFR in human lung cancer, and cell proliferation and invasion, respectively. RESULTS Similar to epidermal growth factor (EGF), morphine stimulated phosphorylation of EGFR, Akt/protein kinase B (Akt), and mitogen-activated protein kinase/extracellular signal regulated kinase (MAPK/ERK) signaling in H2009 cells. Opioid receptor (OR) antagonist, naloxone, EGFR tyrosine kinase inhibitor, erlotinib, and silencing of MOR and δ-opioid receptor abrogated morphine- and EGF-induced phosphorylation of signaling, suggestive of OR-mediated coactivation of EGFR. H2009 cells secreted significantly higher levels of cytokines compared with control Beas2B epithelial cells. H2009-conditioned medium stimulated MOR expression in Beas2B cells, suggesting that cytokines secreted by H2009 may be associated with increased OR expression in H2009. We observed colocalization of EGFR and MOR, in human NSCLC tissue. Functionally, morphine- and EGF-induced proliferation and invasion of H2009 cells was ameliorated by naloxone as well as erlotinib. CONCLUSION Morphine-induced phosphorylation of EGFR occurs via ORs, leading to downstream MAPK/ERK, Akt phosphorylation, cell proliferation, and increased invasion. Notably, ORs are also associated with EGF-induced phosphorylation of EGFR. Increased coexpression of MOR and EGFR in human lung cancer suggests that morphine may have a growth-promoting effect in lung cancer.
Collapse
Affiliation(s)
- Naomi Fujioka
- Department of Medicine, Division of Hematology, Oncology, Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|