1
|
Martins M, Veiga F, Paiva-Santos AC, Pires PC. Drug Repurposing and Nanotechnology for Topical Skin Cancer Treatment: Redirecting toward Targeted and Synergistic Antitumor Effects. ACS Pharmacol Transl Sci 2025; 8:308-338. [PMID: 39974652 PMCID: PMC11833728 DOI: 10.1021/acsptsci.4c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
Skin cancer represents a major health concern due to its rising incidence and limited treatment options. Current treatments (surgery, chemotherapy, radiotherapy, immunotherapy, and targeted therapy) often entail high costs, patient inconvenience, significant adverse effects, and limited therapeutic efficacy. The search for novel treatment options is also marked by the high capital investment and extensive development involved in the drug discovery process. In response to these challenges, repurposing existing drugs for topical application and optimizing their delivery through nanotechnology could be the answer. This innovative strategy aims to combine the advantages of the known pharmacological background of commonly used drugs to expedite therapeutic development, with nanosystem-based formulations, which among other advantages allow for improved skin permeation and retention and overall higher therapeutic efficacy and safety. The present review provides a critical analysis of repurposed drugs such as doxycycline, itraconazole, niclosamide, simvastatin, leflunomide, metformin, and celecoxib, formulated into different nanosystems, namely, nanoemulsions and nanoemulgels, nanodispersions, solid lipid nanoparticles, nanostructured lipid carriers, polymeric nanoparticles, hybrid lipid-polymer nanoparticles, hybrid electrospun nanofibrous scaffolds, liposomes and liposomal gels, ethosomes and ethosomal gels, and aspasomes, for improved outcomes in the battle against skin cancer. Enhanced antitumor effects on melanoma and nonmelanoma research models are highlighted, with some nanoparticles even showing intrinsic anticancer properties, leading to synergistic effects. The explored research findings highly evidence the potential of these approaches to complement the currently available therapeutic strategies in the hope that these treatments might one day reach the pharmaceutical market.
Collapse
Affiliation(s)
- Maria Martins
- Department
of Pharmaceutical Technology, Faculty of
Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Department
of Pharmaceutical Technology, Faculty of
Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV,
Group of Pharmaceutical Technology, Faculty
of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department
of Pharmaceutical Technology, Faculty of
Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV,
Group of Pharmaceutical Technology, Faculty
of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Department
of Pharmaceutical Technology, Faculty of
Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV,
Group of Pharmaceutical Technology, Faculty
of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- RISE-Health,
Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
2
|
Jin S, Liu X, Cai L, Yan J, Li L, Dong H, Gao Y, Zhu X, Zhang C, Xu X. Itraconazole promotes melanoma cells apoptosis via inhibiting hedgehog signaling pathway-mediated autophagy. Front Pharmacol 2025; 16:1545243. [PMID: 39917616 PMCID: PMC11798931 DOI: 10.3389/fphar.2025.1545243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Background Itraconazole, a widely used antifungal medication, has shown potential in inhibiting tumor growth and reducing angiogenesis. However, its role in melanoma tumor growth remains insufficiently explored. This study investigates the inductive effect of itraconazole on autophagy-mediated apoptosis in melanoma cells. Method Potential drug targets were identified using the PMF machine learning algorithm. Apoptosis and cell cycle in melanoma cell lines A375 and A2058 were assessed via flow cytometry. Western blot analysis was performed to examine autophagy and associated signaling proteins, while autophagy flux and autophagosome formation were visualized using fluorescence microscopy. A melanoma cell xenograft mouse model was established to evaluate the inhibitory mechanisms of itraconazole on tumor cell proliferation. Result Using the PMF machine learning algorithm, SQSTM1 was identified as the primary target of itraconazole. Itraconazole inhibited melanoma cell proliferation by inducing G1 phase arrest and autophagy-mediated apoptosis in A375 and A2058 cells. Furthermore, itraconazole suppressed Hedgehog signaling and counteracted the activation of the Hedgehog agonist recombinant human Sonic Hedgehog (rhShh). In vivo, itraconazole significantly reduced tumor growth in A375 and A2058 xenograft models. Conclusion Itraconazole induces autophagy-mediated apoptosis in melanoma cells by inhibiting Hedgehog signaling, underscoring its potential as a therapeutic option for melanoma treatment.
Collapse
Affiliation(s)
- Shunqiao Jin
- Department of Dermatology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Dermatology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiaojiao Liu
- Department of Dermatology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Dermatology, Chengdu Badachu Medical Aesthetics Hospital, Chengdu, China
| | - Lingqin Cai
- Department of Dermatology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Dermatology, Taizhou Rehabilitation Hospital, Taizhou Enze Medical Center (Group), Taizhou, China
| | - Jiayu Yan
- Department of Dermatology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ling Li
- Department of Dermatology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Hongjun Dong
- Department of Dermatology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuxue Gao
- Department of Dermatology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xicong Zhu
- Department of Dermatology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Cong Zhang
- Department of Preventive Medicine, Dalian Medical University, Dalian, China
| | - Xuezhu Xu
- Department of Dermatology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Zambrano-Román M, Padilla-Gutiérrez JR, Valle Y, Muñoz-Valle JF, Guevara-Gutiérrez E, López-Olmos PA, Sepúlveda-Loza LC, Bautista-Herrera LA, Valdés-Alvarado E. PTCH1 Gene Variants, mRNA Expression, and Bioinformatics Insights in Mexican Cutaneous Squamous Cell Carcinoma Patients. BIOLOGY 2024; 13:191. [PMID: 38534460 DOI: 10.3390/biology13030191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Skin cancer is one of the most frequent types of cancer, and cutaneous squamous cell carcinoma (cSCC) constitutes 20% of non-melanoma skin cancer (NMSC) cases. PTCH1, a tumor suppressor gene involved in the Sonic hedgehog signaling pathway, plays a crucial role in neoplastic processes. METHODS An analytical cross-sectional study, encompassing 211 cSCC patients and 290 individuals in a control group (CG), was performed. A subgroup of samples was considered for the relative expression analysis, and the results were obtained using quantitative real-time PCR (qPCR) with TaqMan® probes. The functional, splicing, and disease-causing effects of the proposed variants were explored via bioinformatics. RESULTS cSCC was predominant in men, especially in sun-exposed areas such as the head and neck. No statistically significant differences were found regarding the rs357564, rs2236405, rs2297086, and rs41313327 variants of PTCH1, or in the risk of cSCC, nor in the mRNA expression between the cSCC group and CG. A functional effect of rs357564 and a disease-causing relation to rs41313327 was identified. CONCLUSION The proposed variants were not associated with cSCC risk in this Mexican population, but we recognize the need for analyzing larger population groups to elucidate the disease-causing role of rare variants.
Collapse
Affiliation(s)
- Marianela Zambrano-Román
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Jorge R Padilla-Gutiérrez
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Yeminia Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Elizabeth Guevara-Gutiérrez
- Departamento de Dermatología, Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Secretaría de Salud Jalisco, Zapopan 45190, Mexico
| | - Patricia Aidé López-Olmos
- Departamento de Dermatología, Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Secretaría de Salud Jalisco, Zapopan 45190, Mexico
| | | | | | - Emmanuel Valdés-Alvarado
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
4
|
Yang C, Lei J, Kang X, Zhang P, Zheng S, Li Q, Zhang J. A Yeast Cell Wall Derived Hybrid Hydrogel with Photothermal and Immune Combined Modality Therapy for Enhanced Anti-Melanoma Efficacy. Int J Nanomedicine 2023; 18:5423-5440. [PMID: 37767196 PMCID: PMC10520258 DOI: 10.2147/ijn.s409674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction The effect of traditional treatment for melanoma is quite limited, especially for its recurrence. As the major components of yeast cell wall, chitin and β-glucan exhibit good immune activation effect and are promising candidates for adjuvant. Therefore, melanoma cell membrane (CM) and indocyanine green (ICG) was loaded in a chitin and β-glucan hybrid hydrogel to achieve an enhanced anti-melanoma therapy. Methods The novel hybrid hydrogel was prepared, and its physicochemical properties were examined. Its effect towards melanoma prevention and treatment was evaluated via a melanoma-bearing mice model. Results The CM-ICG-hybrid hydrogel was successfully prepared with excellent injectability, self-healing, drug loading, rheological, in vitro and in vivo photothermal stability, and retention properties. It also exhibited good cellular and in vivo safety profiles. In the primary melanoma mice model, it quickly ablated the in-situ melanoma, effectively inhibited the tumor growth, increased the survival rate of melanoma-bearing mice, and increased the level of IFN-γ and TNF-α. In the distal secondary melanoma model, it efficiently prevented the reoccurrence of melanoma and activated the memory T cells. In both models, a synergistic effect of photothermal therapy and immune therapy was found. The hydrogel effectively recruited CD3+ CD4+ T cells and CD3+ CD8+ T cells, inhibited the proliferation of melanoma cells, and induced the apoptosis of melanoma cells. Conclusion The hybrid hydrogel was successfully prepared, and it showed excellent efficacy towards melanoma prevention and treatment due to its efficient tumor ablation and immune activation capability.
Collapse
Affiliation(s)
- Chen Yang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Jiaxing Lei
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Ximeng Kang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Peipei Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Shaohua Zheng
- The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Qingqing Li
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
5
|
Goruppi S, Clocchiatti A, Bottoni G, Di Cicco E, Ma M, Tassone B, Neel V, Demehri S, Simon C, Paolo Dotto G. The ULK3 kinase is a determinant of keratinocyte self-renewal and tumorigenesis targeting the arginine methylome. Nat Commun 2023; 14:887. [PMID: 36797248 PMCID: PMC9935893 DOI: 10.1038/s41467-023-36410-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Epigenetic mechanisms oversee epidermal homeostasis and oncogenesis. The identification of kinases controlling these processes has direct therapeutic implications. We show that ULK3 is a nuclear kinase with elevated expression levels in squamous cell carcinomas (SCCs) arising in multiple body sites, including skin and Head/Neck. ULK3 loss by gene silencing or deletion reduces proliferation and clonogenicity of human keratinocytes and SCC-derived cells and affects transcription impinging on stem cell-related and metabolism programs. Mechanistically, ULK3 directly binds and regulates the activity of two histone arginine methyltransferases, PRMT1 and PRMT5 (PRMT1/5), with ULK3 loss compromising PRMT1/5 chromatin association to specific genes and overall methylation of histone H4, a shared target of these enzymes. These findings are of translational significance, as downmodulating ULK3 by RNA interference or locked antisense nucleic acids (LNAs) blunts the proliferation and tumorigenic potential of SCC cells and promotes differentiation in two orthotopic models of skin cancer.
Collapse
Affiliation(s)
- Sandro Goruppi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA.
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA.
| | - Andrea Clocchiatti
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Giulia Bottoni
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Emery Di Cicco
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Min Ma
- Personalized Cancer Prevention Research Unit and Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, 1066, Switzerland
| | - Beatrice Tassone
- Personalized Cancer Prevention Research Unit and Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, 1066, Switzerland
| | - Victor Neel
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Shadhmer Demehri
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Christian Simon
- Personalized Cancer Prevention Research Unit and Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, 1066, Switzerland
- International Cancer Prevention Institute, Epalinges, 1066, Switzerland
| | - G Paolo Dotto
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA.
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA.
- Personalized Cancer Prevention Research Unit and Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland.
- Department of Immunobiology, University of Lausanne, Epalinges, 1066, Switzerland.
- International Cancer Prevention Institute, Epalinges, 1066, Switzerland.
| |
Collapse
|
6
|
Zeng L, Gowda BHJ, Ahmed MG, Abourehab MAS, Chen ZS, Zhang C, Li J, Kesharwani P. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 2023; 22:10. [PMID: 36635761 PMCID: PMC9835394 DOI: 10.1186/s12943-022-01708-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Skin cancer has emerged as the fifth most commonly reported cancer in the world, causing a burden on global health and the economy. The enormously rising environmental changes, industrialization, and genetic modification have further exacerbated skin cancer statistics. Current treatment modalities such as surgery, radiotherapy, conventional chemotherapy, targeted therapy, and immunotherapy are facing several issues related to cost, toxicity, and bioavailability thereby leading to declined anti-skin cancer therapeutic efficacy and poor patient compliance. In the context of overcoming this limitation, several nanotechnological advancements have been witnessed so far. Among various nanomaterials, nanoparticles have endowed exorbitant advantages by acting as both therapeutic agents and drug carriers for the remarkable treatment of skin cancer. The small size and large surface area to volume ratio of nanoparticles escalate the skin tumor uptake through their leaky vasculature resulting in enhanced therapeutic efficacy. In this context, the present review provides up to date information about different types and pathology of skin cancer, followed by their current treatment modalities and associated drawbacks. Furthermore, it meticulously discusses the role of numerous inorganic, polymer, and lipid-based nanoparticles in skin cancer therapy with subsequent descriptions of their patents and clinical trials.
Collapse
Affiliation(s)
- Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Jamaica, NY, 11439, USA
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Jia Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| |
Collapse
|
7
|
|
8
|
Rodriguez-Acevedo AJ, Antonsson A, Liyanage UE, Hughes MC, Gordon S, van der Pols J, Green AC. Associations of keratinocyte cancers with snp variants in the sonic hedgehog pathway. BMC Cancer 2022; 22:490. [PMID: 35505292 PMCID: PMC9063108 DOI: 10.1186/s12885-022-09565-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sonic Hedgehog (SHH) pathway dysregulation is implicated in basal cell carcinoma (BCC) development. To evaluate the possible wider role of SHH gene variants in skin carcinogenesis, we assessed associations of genes in the SHH pathway with lifetime development of any keratinocyte cancer (KC), and with developing either BCCs or squamous cell carcinomas (SCCs) exclusively, in a 25-year prospective, population-based study of 1,621 Australians. METHODS We genotyped 795 unrelated adults with available blood samples: 311 cases with any KC (186 developing BCCs-only, 55 SCCs-only, 70 BCCs and SCCs) and 484 controls. We compared allele frequencies of 158 independent SNPs across 43 SHH genes between cases and controls, and performed a gene-based analysis. RESULTS We found associations between SNP rs4848627 (GLI2) (related to DNA synthesis in keratinocytes) and development of any KC (OR = 1.53; 95% CI = 1.06-2.13, P < 0.01) and SCCs exclusively (OR = 2.12; 95%CI = 1.39-3.23, P < 0.01). SNP rs3217882 located in CCND2 was associated with exclusive BCC development (OR = 1.43, CI = 1.12-1.82, P < 0.01). The gene-based analysis suggested an association of PRKACG (protein kinase cAMP-activated catalytic subunit gamma) with any KC (P = 0.013). CONCLUSION We conclude that variants located in genes in the SHH pathway may are involved in SCC as well as BCC development.
Collapse
Affiliation(s)
- Astrid J Rodriguez-Acevedo
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | - Annika Antonsson
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Locked Bag 2000, Brisbane, QLD, 4006, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Upekha E Liyanage
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Locked Bag 2000, Brisbane, QLD, 4006, Australia
| | - Maria Celia Hughes
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Locked Bag 2000, Brisbane, QLD, 4006, Australia
| | - Scott Gordon
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Locked Bag 2000, Brisbane, QLD, 4006, Australia
| | - Jolieke van der Pols
- Faculty of Health, School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - Adele C Green
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Locked Bag 2000, Brisbane, QLD, 4006, Australia. .,CRUK Manchester Institute and Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
9
|
Khan NH, Mir M, Qian L, Baloch M, Ali Khan MF, Rehman AU, Ngowi EE, Wu DD, Ji XY. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. J Adv Res 2022; 36:223-247. [PMID: 35127174 PMCID: PMC8799916 DOI: 10.1016/j.jare.2021.06.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background Skin cancer has been the leading type of cancer worldwide. Melanoma and non-melanoma skin cancers are now the most common types of skin cancer that have been reached to epidemic proportion. Based on the rapid prevalence of skin cancers, and lack of efficient drug delivery systems, it is essential to surge the possible ways to prevent or cure the disease. Aim of review Although surgical modalities and therapies have been made great progress in recent years, however, there is still an urgent need to alleviate its increased burden. Hence, understanding the precise pathophysiological signaling mechanisms and all other factors of such skin insults will be beneficial for the development of more efficient therapies. Key scientific concepts of review In this review, we explained new understandings about onset and development of skin cancer and described its management via polymeric micro/nano carriers-based therapies, highlighting the current key bottlenecks and future prospective in this field. In therapeutic drug/gene delivery approaches, polymeric carriers-based system is the most promising strategy. This review discusses that how polymers have successfully been exploited for development of micro/nanosized systems for efficient delivery of anticancer genes and drugs overcoming all the barriers and limitations associated with available conventional therapies. In addition to drug/gene delivery, intelligent polymeric nanocarriers platforms have also been established for combination anticancer therapies including photodynamic and photothermal, and for theranostic applications. This portfolio of latest approaches could promote the blooming growth of research and their clinical availability.
Collapse
Key Words
- 5-ALA, 5-aminolevulinic acid
- 5-FU, 5-fluorouracil
- AIDS, Acquired immune deficiency syndrome
- BCC, Basal cell carcinoma
- BCCs, Basal cell carcinomas
- Basal cell carcinoma
- CREB, response element-binding protein
- DDS, Drug delivery system
- DIM-D, Di indolyl methane derivative
- Drug delivery
- GNR-PEG-MN, PEGylated gold nanorod microneedle
- Gd, Gadolinium
- Gene delivery
- HH, Hedgehog
- HPMC, Hydroxypropyl methylcellulose
- IPM, Isopropyl myristate
- MCIR, Melanocortin-1 receptor
- MNPs, Magnetic nanoparticle
- MNs, Microneedles
- MRI, Magnetic Resonance Imaging
- MSC, Melanoma skin cancer
- Microneedles
- Mn, Manganese
- NMSC, Non melanoma skin cancer
- NPs, Nano Particles
- OTR, Organ transplant recipients
- PAMAM, Poly-amidoamines
- PAN, Polyacrylonitrile
- PATCH1, Patch
- PCL, Poly (ε-caprolactone)
- PDT, Photodynamic therapy
- PEG, Polyethylene glycol
- PLA, Poly lactic acid
- PLA-HPG, Poly (d-l-lactic acid)-hyperbranched polyglycerol
- PLGA, Poly (lactide-co-glycolide) copolymers
- PLL, Poly (L-lysine)
- Polymeric nanocarriers
- QDs, Quantum dots
- SC, Skin cancer
- SCC, Squamous cell Carcinoma
- SMO, Smoothen
- SPIO, Superparamagnetic iron oxide
- Squamous cell carcinoma
- UV, Ultra Violet
- cAMP, Cyclic adenosine monophosphate
- dPG, Dendritic polyglycerol
- hTERT, Human telomerase reverse transcriptase
Collapse
Affiliation(s)
- Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences. Henan University, Kaifeng, Henan 475004, China
| | - Maria Mir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Lei Qian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mahnoor Baloch
- School of Natural Sciences, National University of Science and Technology, Islamabad 44000, Pakistan
| | - Muhammad Farhan Ali Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asim-ur- Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Sciences, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
10
|
Lai X, Zhou J, Wessely A, Heppt M, Maier A, Berking C, Vera J, Zhang L. A disease network-based deep learning approach for characterizing melanoma. Int J Cancer 2021; 150:1029-1044. [PMID: 34716589 DOI: 10.1002/ijc.33860] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Multiple types of genomic variations are present in cutaneous melanoma and some of the genomic features may have an impact on the prognosis of the disease. The access to genomics data via public repositories such as The Cancer Genome Atlas (TCGA) allows for a better understanding of melanoma at the molecular level, therefore making characterization of substantial heterogeneity in melanoma patients possible. Here, we proposed an approach that integrates genomics data, a disease network, and a deep learning model to classify melanoma patients for prognosis, assess the impact of genomic features on the classification and provide interpretation to the impactful features. We integrated genomics data into a melanoma network and applied an autoencoder model to identify subgroups in TCGA melanoma patients. The model utilizes communities identified in the network to effectively reduce the dimensionality of genomics data into a patient score profile. Based on the score profile, we identified three patient subtypes that show different survival times. Furthermore, we quantified and ranked the impact of genomic features on the patient score profile using a machine-learning technique. Follow-up analysis of the top-ranking features provided us with the biological interpretation of them at both pathway and molecular levels, such as their mutation and interactome profiles in melanoma and their involvement in pathways associated with signaling transduction, immune system and cell cycle. Taken together, we demonstrated the ability of the approach to identify disease subgroups using a deep learning model that captures the most relevant information of genomics data in the melanoma network.
Collapse
Affiliation(s)
- Xin Lai
- Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany.,Comprehensive Cancer Center Erlangen, Erlangen, Germany
| | - Jinfei Zhou
- College of Computer Science, Sichuan University, Chengdu, China
| | - Anja Wessely
- Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany.,Comprehensive Cancer Center Erlangen, Erlangen, Germany
| | - Markus Heppt
- Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany.,Comprehensive Cancer Center Erlangen, Erlangen, Germany
| | - Andreas Maier
- Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany.,Comprehensive Cancer Center Erlangen, Erlangen, Germany
| | - Julio Vera
- Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany.,Comprehensive Cancer Center Erlangen, Erlangen, Germany
| | - Le Zhang
- College of Computer Science, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Li L, Ji Y, Zhang L, Cai H, Ji Z, Gu L, Yang S. Wogonin inhibits the growth of HT144 melanoma via regulating hedgehog signaling-mediated inflammation and glycolysis. Int Immunopharmacol 2021; 101:108222. [PMID: 34688155 DOI: 10.1016/j.intimp.2021.108222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022]
Abstract
Hedgehog (Hh) signaling has been proved to be closely associated with the occurrence of melanoma. Wogonin is one of the active components of flavonoids that extracts from Scutellariae radix. Previous studies showed that wogonin could inhibit the invasion and migration of B16F10 cells, and suppress the synthesis of melanin in A375 melanoma cells. However, the regulatory effects of Hh signaling in wogonin against melanoma and its potential mechanisms remain largely unknown. The present study aimed to investigate the effect of wogonin on the growth of HT144 melanoma, and to elucidate the role of Hh signaling in wogonin-induced antitumor effects by focusing on inflammation and glycolysis regulation. Wogonin inhibited the proliferation, colony formation and tumor growth of HT144 melanoma cells. Wogonin showed strong anti-inflammatory effect in HT144 melanoma, as shown by the decreased levels of pro-inflammatory factors, the increased level of anti-inflammatory factor and the decreased expression of inflammatory cytokines. Wogonin decreased the glucose consumption and the production of lactic acid and ATP, and decreased the activities of hexokinase (HK), phosphofructokinase(PFK) and pyruvate kinase (PK), and further inhibited the expression of monocarboxylate transporter 1 (MCT-1), MCT-4 and glucosecotransporter-1 (GLUT1), showing potent anti-glycolysis effect against HT144 melanoma. Wogonin inhibited the patched and Smo expression while increased Hhip expression in HT144 cells, suggesting that wogonin blocked the Hh signaling in HT144 cells. The Hh signaling inhibitor cyclopamine, like wogonin, inhibited the colony formation of HT144 cells, however, the inhibitory effect of wogonin on colony formation of HT144 cells was abrogated by the Hh signaling agonist SAG. In addition, SAG abrogated the inhibitory effect of wogonin on the secretion of inflammatory factors and the expression of inflammatory cytokines. Furthermore, SAG abrogated the inhibitory effect of wogonin on several key molecules controlling glycolysis. Overall, these findings suggested that the anti-tumor effect of wogonin can be attributed to the inhibition of Hh signaling-mediated regulation of inflammation and glycolysis in HT144 melanoma.
Collapse
Affiliation(s)
- Ling Li
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China; Yancheng No.1 People's Hospital, Yancheng 224001, China
| | - Yanting Ji
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Lili Zhang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Hengji Cai
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhoujing Ji
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Lixiong Gu
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
12
|
Gambichler T, Hartenstein I, Dreißigacker M, Stockfleth E, Stücker M, Schaller J, Schulze HJ, Becker JC, Käfferlein HU, Brüning T, Lang K. Expression of Hedgehog signalling molecules in microcystic adnexal carcinoma. Clin Exp Dermatol 2021; 46:1052-1057. [PMID: 33714217 DOI: 10.1111/ced.14634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/05/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Microcystic adnexal carcinoma (MAC) is a rare skin neoplasm that has not been characterized on a molecular basis. AIM To assess expression profiles of Hedgehog (HH) signalling molecules in MAC and control tumours. METHODS Immunohistochemistry was performed for Sonic Hedgehog (SHH), Indian Hedgehog (IHH), Patched 1 (PTCH1) and Smoothened (SMO) on patient MAC tissue (n = 26) and control tumour tissue, including syringoma (SyG; n = 11), trichoepithelioma (TE; n = 11) and basal cell carcinoma (BCC; n = 12) tissues. RESULTS Patched 1 and SMO immunoreactivity was significantly higher in BCC than in SyG, TE or MAC (P < 0.001 and P < 0.03, respectively). The highest IHH expression was observed in BCC and TE compared with SyG and MAC (P < 0.04). Notably, the highest SHH protein expression was observed in SyG compared with MAC, TE and even BCC (P < 0.001). In patients with MAC, SMO immunoreactivity significantly (r = 0.51; P < 0.01) correlated with PTCH1 expression. Further correlation studies did not show significant associations between the HH expression markers assessed (P > 0.05). CONCLUSION Our results indicate that alterations of the HH signalling are unlikely to play a major role in the pathogenesis of MAC, which is in contrast to the morphologically similar BCC and TE. Our observation provides additional information to the limited molecular pathology knowledge on this rare tumour.
Collapse
Affiliation(s)
- T Gambichler
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - I Hartenstein
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - M Dreißigacker
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - E Stockfleth
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - M Stücker
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - J Schaller
- Dermatopathology Duisburg, Duisburg, Germany
| | - H-J Schulze
- Fachklinik Hornheide, Skin Cancer Center, Department of Dermatology and Dermato-Histo-Pathology, Münster, Germany
| | - J C Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Department of Dermatology, University Duisburg-Essen, Essen, Germany.,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - H U Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurances, Ruhr-University Bochum (IPA), Bochum, Germany
| | - T Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurances, Ruhr-University Bochum (IPA), Bochum, Germany
| | - K Lang
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurances, Ruhr-University Bochum (IPA), Bochum, Germany
| |
Collapse
|
13
|
Han J, Jung Y, Jun Y, Park S, Lee S. Elucidating molecular mechanisms of acquired resistance to BRAF inhibitors in melanoma using a microfluidic device and deep sequencing. Genomics Inform 2021; 19:e2. [PMID: 33840166 PMCID: PMC8042304 DOI: 10.5808/gi.20074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 12/01/2022] Open
Abstract
BRAF inhibitors (e.g., vemurafenib) are widely used to treat metastatic melanoma with the BRAF V600E mutation. The initial response is often dramatic, but treatment resistance leads to disease progression in the majority of cases. Although secondary mutations in the mitogen-activated protein kinase signaling pathway are known to be responsible for this phenomenon, the molecular mechanisms governing acquired resistance are not known in more than half of patients. Here we report a genome- and transcriptome-wide study investigating the molecular mechanisms of acquired resistance to BRAF inhibitors. A microfluidic chip with a concentration gradient of vemurafenib was utilized to rapidly obtain therapy-resistant clones from two melanoma cell lines with the BRAF V600E mutation (A375 and SK-MEL-28). Exome and transcriptome data were produced from 13 resistant clones and analyzed to identify secondary mutations and gene expression changes. Various mechanisms, including phenotype switching and metabolic reprogramming, have been determined to contribute to resistance development differently for each clone. The roles of microphthalmia-associated transcription factor, the master transcription factor in melanocyte differentiation/dedifferentiation, were highlighted in terms of phenotype switching. Our study provides an omics-based comprehensive overview of the molecular mechanisms governing acquired resistance to BRAF inhibitor therapy.
Collapse
Affiliation(s)
- Jiyeon Han
- Department of Bio-information Science, Ewha Womans University, Seoul 03760, Korea
| | - Yeonjoo Jung
- Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul 03760, Korea
| | - Yukyung Jun
- Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul 03760, Korea
| | - Sungsu Park
- Center for Supercomputing Application, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon 34141, Korea
| | - Sanghyuk Lee
- Department of Bio-information Science, Ewha Womans University, Seoul 03760, Korea
- Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
14
|
Gambichler T, Dreißigacker M, Kasakovski D, Skrygan M, Wieland U, Silling S, Gravemeyer J, Melior A, Cherouny A, Stücker M, Stockfleth E, Sand M, Becker JC. Patched 1 expression in Merkel cell carcinoma. J Dermatol 2020; 48:64-74. [PMID: 33180347 DOI: 10.1111/1346-8138.15611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
The relevance of Hedgehog signaling in Merkel cell carcinoma has only been addressed by a few studies with conflicting results. Thus, we aimed to establish the expression of Hedgehog signaling molecules in Merkel cell carcinoma to characterize causes of aberrant expression and to correlate these findings with the clinical course of the patients. Immunohistochemistry was performed for Sonic, Indian, Patched 1 (PTCH1) and Smoothened on patients' tumor tissue. Respective mRNA expression was analyzed in 10 Merkel cell carcinoma cell lines using quantitative real-time polymerase chain reaction. PTCH1 sequencing and DNA methylation microarray analyses were carried out on tumor tissues as well as cell lines. PTCH1 immunoreactivity in Merkel cell carcinoma was similar to that of basal cell carcinomas, which both significantly differed from PTCH1 immunoreactivity in healthy skin. Most PTCH1 mutations found were synonymous or without known functional impact. However, on average, the promoter regions of both PTCH1 were hypomethylated independently from PTCH1 gene expression or Merkel cell polyomavirus status. PTCH1 and GLI1/2/3 genes were differently expressed in different cell lines; notably, there was a significant correlation between GLI2 and PTCH1 mRNA expression. Similar to PTCH1 protein expression in patient tissues, PTCH1 gene expression in Merkel cell carcinoma cell lines is highly variable, but due to the similar methylation pattern across Merkel cell carcinoma cell lines, effects other than methylation seem to be the reason for the differential expression and PTCH1 appears to be upregulated by GLI as a classical Hedgehog target gene.
Collapse
Affiliation(s)
- Thilo Gambichler
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Max Dreißigacker
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Dimitri Kasakovski
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Marina Skrygan
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Ulrike Wieland
- National Reference Center for Papilloma- and Polyomaviruses, Institute of Virology, University of Cologne, Cologne, Germany
| | - Steffi Silling
- National Reference Center for Papilloma- and Polyomaviruses, Institute of Virology, University of Cologne, Cologne, Germany
| | - Jan Gravemeyer
- Department of Dermatology, Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, University Duisburg-Essen, Essen, Germany
| | - Anita Melior
- Department of Dermatology, Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, University Duisburg-Essen, Essen, Germany
| | - Angela Cherouny
- Department of Dermatology, Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, University Duisburg-Essen, Essen, Germany
| | - Markus Stücker
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Eggert Stockfleth
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Michael Sand
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Jürgen C Becker
- Department of Dermatology, Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, University Duisburg-Essen, Essen, Germany.,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Recent Advances in Signaling Pathways Comprehension as Carcinogenesis Triggers in Basal Cell Carcinoma. J Clin Med 2020; 9:jcm9093010. [PMID: 32961989 PMCID: PMC7565128 DOI: 10.3390/jcm9093010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common malignant skin tumor. BCC displays a different behavior compared with other neoplasms, has a slow evolution, and metastasizes very rarely, but sometimes it causes an important local destruction. Chronic ultraviolet exposure along with genetic factors are the most important risk factors involved in BCC development. Mutations in the PTCH1 gene are associated with Gorlin syndrome, an autosomal dominant disorder characterized by the occurrence of multiple BCCs, but are also the most frequent mutations observed in sporadic BCCs. PTCH1 encodes for PTCH1 protein, the most important negative regulator of the Hedgehog (Hh) pathway. There are numerous studies confirming Hh pathway involvement in BCC pathogenesis. Although Hh pathway has been intensively investigated, it remains incompletely elucidated. Recent studies on BCC tumorigenesis have shown that in addition to Hh pathway, there are other signaling pathways involved in BCC development. In this review, we present recent advances in BCC carcinogenesis.
Collapse
|
16
|
Charazac A, Fayyad N, Beal D, Bourgoin-Voillard S, Seve M, Sauvaigo S, Lamartine J, Soularue P, Moratille S, Martin MT, Ravanat JL, Douki T, Rachidi W. Impairment of Base Excision Repair in Dermal Fibroblasts Isolated From Nevoid Basal Cell Carcinoma Patients. Front Oncol 2020; 10:1551. [PMID: 32850458 PMCID: PMC7427476 DOI: 10.3389/fonc.2020.01551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/20/2020] [Indexed: 12/04/2022] Open
Abstract
The nevoid basal cell carcinoma syndrome (NBCCS), also called Gorlin syndrome is an autosomal dominant disorder whose incidence is estimated at about 1 per 55,600–256,000 individuals. It is characterized by several developmental abnormalities and an increased predisposition to the development of basal cell carcinomas (BCCs). Cutaneous fibroblasts from Gorlin patients have been shown to exhibit an increased sensitivity to ionizing radiations. Mutations in the tumor suppressor gene PTCH1, which is part of the Sonic Hedgehog (SHH) signaling pathway, are responsible for these clinical manifestations. As several genetic mutations in the DNA repair genes are responsible of photo or radiosensitivity and high predisposition to cancers, we hypothesized that these effects in Gorlin syndrome might be due to a defect in the DNA damage response (DDR) and/or the DNA repair capacities. Therefore, the objective of this work was to investigate the sensitivity of skin fibroblasts from NBCCS patients to different DNA damaging agents and to determine the ability of these agents to modulate the DNA repair capacities. Gorlin fibroblasts showed high radiosensitivity and also less resistance to oxidative stress-inducing agents when compared to control fibroblasts obtained from healthy individuals. Gorlin fibroblasts harboring PTCH1 mutations were more sensitive to the exposure to ionizing radiation and to UVA. However, no difference in cell viability was shown after exposure to UVB or bleomycin. As BER is responsible for the repair of oxidative DNA damage, we decided to assess the BER pathway efficacy in Gorlin fibroblasts. Interestingly, a concomitant decrease of both BER gene expression and BER protein activity was observed in Gorlin fibroblasts when compared to control. Our results suggest that low levels of DNA repair within Gorlin cells may lead to an accumulation of oxidative DNA damage that could participate and partly explain the radiosensitivity and the BCC-prone phenotype in Gorlin syndrome.
Collapse
Affiliation(s)
- Aurélie Charazac
- SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Univ. Grenoble Alpes, Grenoble, France
| | - Nour Fayyad
- SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Univ. Grenoble Alpes, Grenoble, France
| | - David Beal
- SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Univ. Grenoble Alpes, Grenoble, France
| | - Sandrine Bourgoin-Voillard
- LBFA and BEeSy, PROMETHEE Proteomic Platform, Université Grenoble Alpes, Grenoble, France.,Inserm, U1055, PROMETHEE Proteomic Platform, Saint-Martin-d'Heres, France.,CHU Grenoble Alpes, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform, La Tronche, France
| | - Michel Seve
- LBFA and BEeSy, PROMETHEE Proteomic Platform, Université Grenoble Alpes, Grenoble, France.,Inserm, U1055, PROMETHEE Proteomic Platform, Saint-Martin-d'Heres, France.,CHU Grenoble Alpes, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform, La Tronche, France
| | | | - Jérôme Lamartine
- CNRS UMR 5305, Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Lyon, France
| | - Pascal Soularue
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Université Paris-Saclay, Evry, France
| | - Sandra Moratille
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Université Paris-Saclay, Evry, France
| | - Michèle T Martin
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Université Paris-Saclay, Evry, France
| | - Jean-Luc Ravanat
- SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Univ. Grenoble Alpes, Grenoble, France
| | - Thierry Douki
- SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Univ. Grenoble Alpes, Grenoble, France
| | - Walid Rachidi
- SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Univ. Grenoble Alpes, Grenoble, France
| |
Collapse
|
17
|
Saddozai UAK, Wang F, Cheng Y, Lu Z, Akbar MU, Zhu W, Li Y, Ji X, Guo X. Gene expression profile identifies distinct molecular subtypes and potential therapeutic genes in Merkel cell carcinoma. Transl Oncol 2020; 13:100816. [PMID: 32771971 PMCID: PMC7412862 DOI: 10.1016/j.tranon.2020.100816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare primary cutaneous neoplasm of neuroendocrine carcinoma of the skin. About 80% of the MCC occurs due to Merkel cell polyomavirus (MCPyV) and 20% of the tumors usually occur due to severe UV exposure which is a more aggressive type of MCC. It tends to have an increased incidence rate among elderly and immunosuppressed individuals. On therapeutic level, sub-classification of MCC through molecular subtyping has emerged as a promising technique for MCC prognosis. In current study, two consistent distinct molecular subtypes of MCCs were identified using gene expression profiling data. Subtypes I MCCs were associated with spliceosome, DNA replication and cellular pathways. On the other hand, genes overexpressed in subtype II were found active in TNF signalling pathway and MAPK signalling pathway. We proposed different therapeutic targets based on subtype specificity, such as PTCH1, CDKN2A, AURKA in case of subtype I and MCL1, FGFR2 for subtype II. Such findings may provide fruitful knowledge to understand the intrinsic subtypes of MCCs and the pathways involved in distinct subtype oncogenesis, and will further advance the knowledge in developing a specific therapeutic strategy for these MCC subtypes. Merkel cell carcinoma (MCC) a rare and highly aggressive neuroendocrine carcinoma of the skin Sub-classification of MCC through molecular subtyping Identification of two distinct molecular subtypes of MCCs using gene expression profiling data Classification of different therapeutic targets based on subtype specificity
Collapse
Affiliation(s)
- Umair Ali Khan Saddozai
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Fengling Wang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yu Cheng
- Pharmacy Department, Luoyang maternal and Child Health Hospital, Luoyang 471023, China
| | - Zhang Lu
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Muhammad Usman Akbar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Wan Zhu
- Department of Anesthesia, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Yongqiang Li
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xinying Ji
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
18
|
Cives M, Mannavola F, Lospalluti L, Sergi MC, Cazzato G, Filoni E, Cavallo F, Giudice G, Stucci LS, Porta C, Tucci M. Non-Melanoma Skin Cancers: Biological and Clinical Features. Int J Mol Sci 2020; 21:E5394. [PMID: 32751327 PMCID: PMC7432795 DOI: 10.3390/ijms21155394] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Non-melanoma skin cancers (NMSCs) include basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and Merkel cell carcinoma (MCC). These neoplasms are highly diverse in their clinical presentation, as well as in their biological evolution. While the deregulation of the Hedgehog pathway is commonly observed in BCC, SCC and MCC are characterized by a strikingly elevated mutational and neoantigen burden. As result of our improved understanding of the biology of non-melanoma skin cancers, innovative treatment options including inhibitors of the Hedgehog pathway and immunotherapeutic agents have been recently investigated against these malignancies, leading to their approval by regulatory authorities. Herein, we review the most relevant biological and clinical features of NMSC, focusing on innovative treatment approaches.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Carcinoma, Basal Cell/drug therapy
- Carcinoma, Basal Cell/genetics
- Carcinoma, Basal Cell/pathology
- Carcinoma, Basal Cell/surgery
- Carcinoma, Merkel Cell/drug therapy
- Carcinoma, Merkel Cell/genetics
- Carcinoma, Merkel Cell/pathology
- Carcinoma, Merkel Cell/surgery
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/surgery
- Clinical Trials as Topic
- Gene Expression Regulation, Neoplastic
- Hedgehog Proteins/antagonists & inhibitors
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Humans
- Immunotherapy/methods
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/metabolism
- Signal Transduction
- Skin Neoplasms/drug therapy
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Skin Neoplasms/surgery
Collapse
Affiliation(s)
- Mauro Cives
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
- National Cancer Center, Tumori Institute Giovanni Paolo II, 70121 Bari, Italy
| | - Francesco Mannavola
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
| | - Lucia Lospalluti
- Section of Dermatology, Azienda Ospedaliero-Universitaria Policlinico di Bari, 70121 Bari, Italy;
| | - Maria Chiara Sergi
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
| | - Gerardo Cazzato
- Section of Pathology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy;
| | - Elisabetta Filoni
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
| | - Federica Cavallo
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
| | - Giuseppe Giudice
- Section of Plastic and Reconstructive Surgery, Department of Emergency and Organ Transplantation (DETO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy;
| | - Luigia Stefania Stucci
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
| | - Camillo Porta
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
| | - Marco Tucci
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
- National Cancer Center, Tumori Institute Giovanni Paolo II, 70121 Bari, Italy
| |
Collapse
|
19
|
Magnetic/Superparamagnetic Hyperthermia as an Effective Noninvasive Alternative Method for Therapy of Malignant Tumors. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Réda J, Vachtenheim J, Vlčková K, Horák P, Vachtenheim J, Ondrušová L. Widespread Expression of Hedgehog Pathway Components in a Large Panel of Human Tumor Cells and Inhibition of Tumor Growth by GANT61: Implications for Cancer Therapy. Int J Mol Sci 2018; 19:ijms19092682. [PMID: 30201866 PMCID: PMC6163708 DOI: 10.3390/ijms19092682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
The sonic Hedgehog/GLI signaling pathway (HH) is critical for maintaining tissue polarity in development and contributes to tumor stemness. Transcription factors GLI1–3 are the downstream effectors of HH and activate oncogenic targets. To explore the completeness of the expression of HH components in tumor cells, we performed a screen for all HH proteins in a wide spectrum of 56 tumor cell lines of various origin using Western blot analysis. Generally, all HH proteins were expressed. Important factors GLI1 and GLI2 were always expressed, only exceptionally one of them was lowered, suggesting the functionality of HH in all tumors tested. We determined the effect of a GLI inhibitor GANT61 on proliferation in 16 chosen cell lines. More than half of tumor cells were sensitive to GANT61 to various extents. GANT61 killed the sensitive cells through apoptosis. The inhibition of reporter activity containing 12xGLI consensus sites by GANT61 and cyclopamine roughly correlated with cell proliferation influenced by GANT61. Our results recognize the sensitivity of tumor cell types to GANT61 in cell culture and support a critical role for GLI factors in tumor progression through restraining apoptosis. The use of GANT61 in combined targeted therapy of sensitive tumors, such as melanomas, seems to be immensely helpful.
Collapse
Affiliation(s)
- Jiri Réda
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University Prague, 12108 Prague, Czech Republic.
| | - Jiri Vachtenheim
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University Prague, 12108 Prague, Czech Republic.
| | - Kateřina Vlčková
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University Prague, 12108 Prague, Czech Republic.
| | - Pavel Horák
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University Prague, 12108 Prague, Czech Republic.
| | - Jiri Vachtenheim
- Third Department of Surgery, First Faculty of Medicine, Charles University Prague and University Hospital Motol, 15006 Prague, Czech Republic.
| | - Lubica Ondrušová
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University Prague, 12108 Prague, Czech Republic.
| |
Collapse
|
21
|
Park EK, Lee HJ, Lee H, Kim JH, Hwang J, Koo JI, Kim SH. The Anti-Wrinkle Mechanism of Melatonin in UVB Treated HaCaT Keratinocytes and Hairless Mice via Inhibition of ROS and Sonic Hedgehog Mediated Inflammatory Proteins. Int J Mol Sci 2018; 19:ijms19071995. [PMID: 29986551 PMCID: PMC6073225 DOI: 10.3390/ijms19071995] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/05/2022] Open
Abstract
Though melatonin is known to improve ultraviolet B (UVB)-induced oxidative damage and inflammatory conditions via the blockade of the nuclear factor (NF)-κB, interleukin (IL)-6, there is no report on the anti-wrinkle effect of melatonin to date. Hence in the present study, the anti-wrinkle mechanism of melatonin was elucidated in UVB treated HaCaT keratinocytes and hairless mice. Herein melatonin protected against a radical initiator tert-Butyl hydroperoxide (t-BOOH) induced reactive oxygen species (ROS) production, matrix metalloprotease 1 (MMP-1), pro-collagen and cytotoxicity in HaCaT keratinocytes. Additionally, melatonin suppressed the expression of sonic hedgehog (SHH) and GLI1 for hedgehog signaling and p-NF-κB, cyclooxygenase (COX-2), phospho-extracellular signal-regulated kinase-1 (p-ERK) for inflammatory responses in UVB treated HaCaT keratinocytes. Furthermore, melatonin protected skin from wrinkle formation, transdermal water loss in hairless mice irradiated by UVB for 8 weeks. Notably, melatonin prevented against epidermal thickness and dermal collagen degradation in UVB irradiated hairless mice by Hematoxylin and Eosin and Masson’s trichrome staining. Taken together, these findings suggest that melatonin reduces wrinkle formation via inhibition of ROS/SHH and inflammatory proteins such as NF-κB/COX-2/ERK/MMP1.
Collapse
Affiliation(s)
- Eun Kyung Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Hyemin Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Ju-Ha Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Jisung Hwang
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Ja Il Koo
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
22
|
Migden MR, Chang ALS, Dirix L, Stratigos AJ, Lear JT. Emerging trends in the treatment of advanced basal cell carcinoma. Cancer Treat Rev 2018; 64:1-10. [DOI: 10.1016/j.ctrv.2017.12.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022]
|
23
|
Anticancer drugs and the regulation of Hedgehog genes GLI1 and PTCH1, a comparative study in nonmelanoma skin cancer cell lines. Anticancer Drugs 2017; 28:1106-1117. [DOI: 10.1097/cad.0000000000000551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
D'Arcangelo D, Tinaburri L, Dellambra E. The Role of p16 INK4a Pathway in Human Epidermal Stem Cell Self-Renewal, Aging and Cancer. Int J Mol Sci 2017; 18:ijms18071591. [PMID: 28737694 PMCID: PMC5536078 DOI: 10.3390/ijms18071591] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 12/31/2022] Open
Abstract
The epidermis is a self-renewing tissue. The balance between proliferation and differentiation processes is tightly regulated to ensure the maintenance of the stem cell (SC) population in the epidermis during life. Aging and cancer may be considered related endpoints of accumulating damages within epidermal self-renewing compartment. p16INK4a is a potent inhibitor of the G1/S-phase transition of the cell cycle. p16INK4a governs the processes of SC self-renewal in several tissues and its deregulation may result in aging or tumor development. Keratinocytes are equipped with several epigenetic enzymes and transcription factors that shape the gene expression signatures of different epidermal layers and allow dynamic and coordinated expression changes to finely balance keratinocyte self-renewal and differentiation. These factors converge their activity in the basal layer to repress p16INK4a expression, protecting cells from senescence, and preserving epidermal homeostasis and regeneration. Several stress stimuli may activate p16INK4a expression that orchestrates cell cycle exit and senescence response. In the present review, we discuss the role of p16INK4a regulators in human epidermal SC self-renewal, aging and cancer.
Collapse
Affiliation(s)
- Daniela D'Arcangelo
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| | - Lavinia Tinaburri
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| | - Elena Dellambra
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|
25
|
Association of expression of the hedgehog signal with Merkel cell polyomavirus infection and prognosis of Merkel cell carcinoma. Hum Pathol 2017; 69:8-14. [PMID: 28551328 DOI: 10.1016/j.humpath.2017.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/26/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer that mostly occurs in the elderly. Merkel cell polyomavirus (MCPyV) is detected in approximately 80% of MCCs and is associated with carcinogenesis. Hedgehog signaling pathway plays a role in human embryogenesis and organogenesis. In addition, reactivation of this pathway later in life can cause tumors. Twenty-nineMCPyV-positive and 21 MCPyV-negative MCCs were immunohistochemically stained with primary antibodies for hedgehog signaling (SHH, IHH, PTCH1, SMO, GLI1, GLI2, and GLI3) and evaluated using H-score. Polymerase chain reaction and sequence analysis for SHH and GLI1 exons were also performed. Expression of SHH was higher in MCPyV-positive MCCs than in MCPyV-negative MCCs (P<.001). Higher expression of GLI1, MCPyV infection, male sex, and Japanese ethnicity were associated with better overall survival (P=.034, P=.001, P=.042, and P=.036, respectively). Higher expression of SHH and MCPyV infection were associated with improved MCC-specific survival (P=.037 and P=.002, respectively). The mutation analysis of prognosis-related GLI1 and SHH genes in our study revealed a low frequency of mutations in the 10 exons examined, except GLI1 exon 5 (18/22 cases), all having the same silent mutation of c.576G>A. Only 2 mutations with amino acid changes were detected in MCPyV-negative MCCs only: 1 missense mutation in GLI1 exon 4 and 1 nonsense mutation in SHH-3B. Expression of SHH and GLI1 may be useful prognostic markers of MCC because increased expression was associated with better prognosis. The high rate of c.576G>A silent mutation in GLI1 exon 5 was a feature of MCC.
Collapse
|
26
|
Penny MK, Finco I, Hammer GD. Cell signaling pathways in the adrenal cortex: Links to stem/progenitor biology and neoplasia. Mol Cell Endocrinol 2017; 445:42-54. [PMID: 27940298 PMCID: PMC5508551 DOI: 10.1016/j.mce.2016.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/17/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
The adrenal cortex is a dynamic tissue responsible for the synthesis of steroid hormones, including mineralocorticoids, glucocorticoids, and androgens in humans. Advances have been made in understanding the role of adrenocortical stem/progenitor cell populations in cortex homeostasis and self-renewal. Recently, large molecular profiling studies of adrenocortical carcinoma (ACC) have given insights into proteins and signaling pathways involved in normal tissue homeostasis that become dysregulated in cancer. These data provide an impetus to examine the cellular pathways implicated in adrenocortical disease and study connections, or lack thereof, between adrenal homeostasis and tumorigenesis, with a particular focus on stem and progenitor cell pathways. In this review, we discuss evidence for stem/progenitor cells in the adrenal cortex, proteins and signaling pathways that may regulate these cells, and the role these proteins play in pathologic and neoplastic conditions. In turn, we also examine common perturbations in adrenocortical tumors (ACT) and how these proteins and pathways may be involved in adrenal homeostasis.
Collapse
Affiliation(s)
- Morgan K Penny
- Cancer Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Isabella Finco
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gary D Hammer
- Cancer Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan Health System, 109 Zina Pitcher Place, 1528 BSRB, Ann Arbor, MI 48109, USA.
| |
Collapse
|
27
|
Sand M, Hessam S, Amur S, Skrygan M, Bromba M, Stockfleth E, Gambichler T, Bechara FG. Expression of oncogenic miR-17-92 and tumor suppressive miR-143-145 clusters in basal cell carcinoma and cutaneous squamous cell carcinoma. J Dermatol Sci 2017; 86:142-148. [PMID: 28187958 DOI: 10.1016/j.jdermsci.2017.01.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/05/2016] [Accepted: 01/30/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND A variety of cancers are associated with the expression of the oncogenic miR-17-92 cluster (Oncomir-1) and tumor suppressor miR-143-5p/miR-145-5p. Epidermal skin cancer has not been investigated for the expression of miR-17-92 and miR-143-145 clusters, despite being extensively studied regarding global microRNA profiles. The goal of this study was to investigate the expression and possible correlation of expression of miR17-92 and miR-143-145 cluster members in epidermal skin cancer. METHODS We evaluated punch biopsies from patients with cutaneous squamous cell carcinoma (cSCC, n=15) and basal cell carcinoma (BCC, n=16), along with control specimens from non-lesional epidermal skin (n=16). Expression levels of the miR17-92 cluster (including miR-17-5p, miR-17-3p, miR-18a-3p, miR-18a-5p, miR-19a-3p, miR-19a-5p, miR-19b-3p, miR-19b-1-5p, miR-20a-3p, miR-20a-5p, miR-92a-3p, and miR-92a-5p) and the tumor-suppressive cluster miR-143-145 (including miR-143-5p and miR-145-5p) were detected by quantitative real-time reverse transcriptase polymerase chain reaction. RESULTS We noted a highly significant increased expression of the miR-17-92 members miR-17-5p, miR-18a-5p, miR19a-3p, and miR-19b-3p and tumor suppressor miR-143-5p (p<0.01) in cSCC. miR-145-5p had a significantly decreased expression (p<0.05) for in BCC. A correlation analysis revealed multiple correlating miRNA-pairs within and between the investigated clusters. CONCLUSION This study marks the first evidence for the participation of members of the miR-17-92 cluster in cSCC and miR-143-145 cluster in BCC.
Collapse
Affiliation(s)
- Michael Sand
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany; Department of Plastic Surgery, St. Josef Hospital, Catholic Clinics of the Ruhr Peninsula, 45257 Essen, Germany.
| | - Schapoor Hessam
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Susanne Amur
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany; Department of Plastic Surgery, St. Josef Hospital, Catholic Clinics of the Ruhr Peninsula, 45257 Essen, Germany
| | - Marina Skrygan
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Michael Bromba
- Department of Plastic Surgery, St. Josef Hospital, Catholic Clinics of the Ruhr Peninsula, 45257 Essen, Germany
| | - Eggert Stockfleth
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Thilo Gambichler
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Falk G Bechara
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| |
Collapse
|
28
|
Carroll TM, Williams JS, Daily K, Rogers T, Gelb T, Coxon A, Wang SQ, Crago AM, Busam KJ, Brownell I. Hedgehog Signaling Inhibitors Fail to Reduce Merkel Cell Carcinoma Viability. J Invest Dermatol 2017; 137:1187-1190. [PMID: 28130073 DOI: 10.1016/j.jid.2017.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Thomas M Carroll
- Dermatology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Kenneth Daily
- Dermatology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Tova Rogers
- Dermatology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Tara Gelb
- Dermatology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Amy Coxon
- Dermatology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Steven Q Wang
- Dermatology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Aimee M Crago
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Klaus J Busam
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Isaac Brownell
- Dermatology Branch, National Cancer Institute, Bethesda, Maryland, USA.
| |
Collapse
|
29
|
Forearm hair density and risk of keratinocyte cancers in Australian adults. Arch Dermatol Res 2016; 308:617-624. [DOI: 10.1007/s00403-016-1680-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/01/2016] [Accepted: 08/30/2016] [Indexed: 01/22/2023]
|
30
|
de Santana Santos T, Vajgel A, Martins-Filho PRS, de Albuquerque Maranhao Filho AW, De Holanda Vasconcellos RJ, Frota R, Filho JRL. Nevoid Basal Cell Carcinoma Syndrome: A Long-Term Study in a Family. Craniomaxillofac Trauma Reconstr 2015; 9:94-104. [PMID: 26889355 DOI: 10.1055/s-0035-1558454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 02/22/2015] [Indexed: 12/11/2022] Open
Abstract
We present a family case series with 10 individuals having nevoid basal cell carcinoma syndrome (NBCCS) with a 10-year follow-up. All articles published in the literature between 1967 and 2011 on familial Gorlin-Goltz syndrome in any language were surveyed to determine the mapping of cases per country of occurrence of this disease. All patients in the present series were presented with calcification of the falx cerebri, mild hypertelorism, and frontal bossing. Odontogenic keratocystic tumors, palmar and plantar pits, and multiple basal cell carcinomas occurred in 90, 40, and 20%, respectively, of the patients. One of the patients died of skin cancer. Diagnosis of odontogenic keratocyst tumors was confirmed by histopathological examination. NBCCS is a rare autosomal dominant cancer predisposition syndrome; it is important to recognize it when a patient has multiple odontogenic keratocyst tumors because life-long monitoring is essential for patient management.
Collapse
Affiliation(s)
- Thiago de Santana Santos
- Hospital Universitário, Universidade Federal de Sergipe, Rua Claudio Batista, Aracaju, Sergipe, Brazil
| | - André Vajgel
- Department of Oral and Maxillofacial Surgery, Pernambuco School of Dentistry, Camaragibe, Pernambuco, Brazil
| | | | | | | | - Riedel Frota
- Department of Oral and Maxillofacial Surgery, Pernambuco School of Dentistry, Camaragibe, Pernambuco, Brazil
| | | |
Collapse
|
31
|
Mohan SV, Chang ALS. Management of Cutaneous and Extracutaneous Side Effects of Smoothened Inhibitor Therapy for Advanced Basal Cell Carcinoma. Clin Cancer Res 2015; 21:2677-83. [DOI: 10.1158/1078-0432.ccr-14-3180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/03/2015] [Indexed: 11/16/2022]
|
32
|
Amberg N, Holcmann M, Glitzner E, Novoszel P, Stulnig G, Sibilia M. Mouse models of nonmelanoma skin cancer. Methods Mol Biol 2015; 1267:217-50. [PMID: 25636471 DOI: 10.1007/978-1-4939-2297-0_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The skin is the largest organ of the mammalian body, made up of multiple layers, which include the epidermis, dermis, and subcutis (Alam and Ratner, N Engl J Med 344(13):975-983, 2001). The human interfollicular epidermis can be subdivided into five different layers: (1) stratum basale, (2) stratum spinosum, (3) stratum granulosum, (4) stratum lucidum, and (5) stratum corneum, all originating from basal keratinocytes by differentiation (Hameetman et al., BMC cancer 13:58, 2013; Ramirez et al., Differentiation 58(1):53-64, 1994). The epidermis is also able to generate different appendages: hair follicles (HF) and their associated sebaceous glands (Sibilia et al., Cell 102(2):211-220, 2000) as well as sweat glands (Luetteke et al., Genes Dev 8(4):399-413, 1994). The skin has important functions in several biological processes like environmental barrier, tissue regeneration, hair cycling, and wound repair. During these processes, stem cells from the interfollicular epidermis and from the hair follicle bulge are activated to renew the epidermis or hair. The epidermis and hair undergo continuous homeostatic regeneration and mutations, upon mutations which disturb the balance of homeostatic regeneration of epidermis and hair and lead to enhanced proliferation of keratinocytes, development of skin cancer is developed. Tumors that arise in the skin are mainly of three types: malignant melanoma, arising from melanocytes, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC), the latter two both arising from keratinocytes or hair follicle cells. In this chapter, we will describe some genetically engineered mouse models (GEMM) that aim at modeling human BCC and SCC and their respective precancerous lesions. We will describe the experimental approaches used in our laboratory to analyze tumor-bearing mice focusing on methods necessary for the induction of tumor growth as well as for the molecular and histological analysis of tumor tissue.
Collapse
Affiliation(s)
- Nicole Amberg
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
33
|
Liu H, Jian Q, Xue K, Ma C, Xie F, Wang R, Liao W, Liu Y, Chi S, Li C. The MEK/ERK signalling cascade is required for sonic hedgehog signalling pathway-mediated enhancement of proliferation and inhibition of apoptosis in normal keratinocytes. Exp Dermatol 2014; 23:896-901. [PMID: 25256290 DOI: 10.1111/exd.12556] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Haiyan Liu
- Department of Dermatology; Xijing Hospital; the Fourth Military Medical University; Xi'an China
- Department of Dermatology; Lanzhou General Hospital, Lanzhou Military District; Lanzhou China
| | - Qiang Jian
- Department of Dermatology; Xijing Hospital; the Fourth Military Medical University; Xi'an China
| | - Ke Xue
- Department of Dermatology; Xijing Hospital; the Fourth Military Medical University; Xi'an China
| | - Cuiling Ma
- Department of Dermatology; Xijing Hospital; the Fourth Military Medical University; Xi'an China
| | - Fang Xie
- Department of Dermatology; Chinese People's Liberation Army General Hospital; Beijing China
| | - Rui Wang
- Department of Dermatology; Chinese People's Liberation Army General Hospital; Beijing China
| | - Wenjun Liao
- Department of Dermatology; Xijing Hospital; the Fourth Military Medical University; Xi'an China
| | - Yufeng Liu
- Department of Dermatology; Xijing Hospital; the Fourth Military Medical University; Xi'an China
| | - Sumin Chi
- Department of Physiology; the Fourth Military Medical University; Xi'an China
| | - Chengxin Li
- Department of Dermatology; Xijing Hospital; the Fourth Military Medical University; Xi'an China
- Department of Dermatology; Chinese People's Liberation Army General Hospital; Beijing China
| |
Collapse
|
34
|
Bakry OA, Samaka RM, Shoeib MAM, Megahed DM. Immunolocalization of glioma-associated oncogene homolog 1 in non melanoma skin cancer. Ultrastruct Pathol 2014; 39:135-46. [PMID: 25350271 DOI: 10.3109/01913123.2014.970723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glioma-associated oncogene homolog (GLI)1 is involved in controlling cell proliferation and angiogenesis. The aim of this work was to explore its possible role in non-melanoma skin cancer pathogenesis through its immunohistochemical (IHC) expression in skin biopsies of these diseases and correlating this expression with the clinico-pathological parameters of the studied cases. Seventy-six cutaneous specimens were studied; 30 cases with basal cell carcinoma (BCC), 30 cases with squamous cell carcinoma (SCC) and 16 normal skin samples, from age- and gender-matched subjects, as a control group. GLI1 was expressed in all BCC cases and in 60% of SCC cases. All SCC cases showed cytoplasmic, while 70% of BCC cases showed nucleocytoplasmic immunoreactivity. It was over expressed in BCC and SCC compared to normal skin (p = 0.01 and 0.0006, respectively). Higher Histo (H) score in BCC cases was significantly associated with female gender (p = 0.04), multiple lesions, desmoplastic stromal reaction and stromal angiogenesis (p < 0.001 for all). Higher H score in SCC cases was significantly associated with scalp location, nodular type, recurrent lesions, high tumor grade, lymphovascular invasion (p = 0.004 for all), inflammatory stromal reaction (p = 0.01), lymph node involvement and absence of calcification (p = 0.001 for both). In conclusion, GLI1 may play a role in BCC pathogenesis through its role in cell proliferation, migration, and angiogenesis. Its upregulation and cytoplasmic localization in SCC may suggest that its role in tumor pathogenesis is through mechanisms other than Hedgehog pathway activation. Further studies are needed to clarify the exact molecular basis of its oncogenic action.
Collapse
Affiliation(s)
- Ola Ahmed Bakry
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University , Shibeen El Kom , Egypt and
| | | | | | | |
Collapse
|
35
|
Stamatelli A, Vlachou C, Aroni K, Papassideri I, Patsouris E, Saetta AA. Epigenetic alterations in sporadic basal cell carcinomas. Arch Dermatol Res 2014; 306:561-9. [PMID: 24573469 DOI: 10.1007/s00403-014-1454-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/14/2014] [Accepted: 02/03/2014] [Indexed: 12/11/2022]
Abstract
Basal cell carcinoma (BCC) is the most common malignant human neoplasm characterized by slow growth and virtual absence of metastases. Recently, it has become evident that along with genetic mutations epigenetic alterations play a key role in the pathogenesis of human cancer. We searched for promoter methylation of hMLH1, RASSF1A, DAPK, APC, DCR1 and DCR2 genes and BRAF mutations in BCCs in association with the clinicopathological parameters and the histological subtypes of the tumours. Fifty-two BCCs, 17 FFPE along with 35 fresh tissue samples with matching normal tissues for 26 cases were analyzed by methylation-specific PCR to assess the methylation status of hMLH1, RASSF1A, DAPK, APC, DCR1 and DCR2 genes after sodium bisulfite treatment of the tumour and normal DNA. hMLH1 and DCR1 gene expression was investigated by immunohistochemistry. BRAF mutations were studied by high resolution melting analysis. Methylation was detected at a variable frequency of 44, 33, 32.5, 32 and 14 % of DCR2, APC, DCR1, RASSF1 and DAPK promoters, respectively, whereas methylation of hMLH1 promoter was absent. No BRAF mutations were found. There was no correlation between the frequency of the promoter methylation of the above-mentioned genes and the clinicopathological features or the histological subtypes of the tumours. The relatively high frequency of RASSF1A, DCR1, DCR2 and APC promoter methylation may imply that methylation constitutes an important pathway in the tumourigenesis of BCC that could provide new opportunities in developing epigenetic therapies for BCC patients. Nevertheless, further studies are needed to establish the above-mentioned hypothesis.
Collapse
Affiliation(s)
- Angeliki Stamatelli
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, 11527, Athens, Greece,
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The recent past has witnessed unprecedented clinical progress in the treatment of advanced malignant melanoma through targeting of mutant BRAF in approximately 50% of patients and immune check point blockade in all patients. As has been well documented, responses to targeted therapy are of limited duration, and rates of clinical benefit to immunotherapy are modest. Given these factors, palliation of patients with chemotherapy remains an essential aspect of melanoma oncology. Many chemotherapeutics (and combinations with other agents, such as immunotherapy) have been evaluated in melanoma, although no chemotherapy regimen has been documented to provide an overall survival benefit in a prospective, randomized, well-controlled phase III study. We provide an overview of the development of the most common chemotherapy regimens for melanoma, discuss the clinical trial evidence supporting and contrasting them, and highlight appropriate clinical situations in which they might be used. We also discuss the future of chemotherapy for melanoma, noting the potential for combinations of chemotherapy with either targeted or immunotherapeutic agents.
Collapse
Affiliation(s)
- Jason J Luke
- Department of Medicine, Melanoma and Sarcoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
37
|
O’Reilly KE, Vega-Saenz de Miera E, Segura MF, Friedman E, Poliseno L, Han SW, Zhong J, Zavadil J, Pavlick A, Hernando E, Osman I. Hedgehog pathway blockade inhibits melanoma cell growth in vitro and in vivo. Pharmaceuticals (Basel) 2013; 6:1429-50. [PMID: 24287465 PMCID: PMC3854019 DOI: 10.3390/ph6111429] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/24/2013] [Accepted: 10/31/2013] [Indexed: 12/12/2022] Open
Abstract
Previous reports have demonstrated a role for hedgehog signaling in melanoma progression, prompting us to explore the therapeutic benefit of targeting this pathway in melanoma. We profiled a panel of human melanoma cell lines and control melanocytes for altered expression of hedgehog pathway members and determined the consequences of both genetic and pharmacological inhibition of the hedgehog pathway activator Smoothened (SMO) in melanoma, both in vitro and in vivo. We also examined the relationship between altered expression of hedgehog pathway mediators and survival in a well-characterized cohort of metastatic melanoma patients with prospectively collected follow up information. Studies revealed that over 40% of the melanoma cell lines examined harbored significantly elevated levels of the hedgehog pathway mediators SMO, GLI2, and PTCH1 compared to melanocytes (p < 0.05). SMO inhibition using siRNA and the small molecule inhibitor, NVP-LDE-225, suppressed melanoma growth in vitro, particularly in those cell lines with moderate SMO and GLI2 expression. NVP-LDE-225 also induced apoptosis in vitro and inhibited melanoma growth in a xenograft model. Gene expression data also revealed evidence of compensatory up-regulation of two other developmental pathways, Notch and WNT, in response to hedgehog pathway inhibition. Pharmacological and genetic SMO inhibition also downregulated genes involved in human embryonic stem cell pluripotency. Finally, increased SMO expression and decreased expression of the hedgehog pathway repressor GLI3 correlated with shorter post recurrence survival in metastatic melanoma patients. Our data demonstrate that hedgehog pathway inhibition might be a promising targeted therapy in appropriately selected metastatic melanoma patients.
Collapse
Affiliation(s)
- Kathryn E. O’Reilly
- Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA; E-Mails: (K.E.O.); (E.V.-s.M.)
| | - Eleazar Vega-Saenz de Miera
- Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA; E-Mails: (K.E.O.); (E.V.-s.M.)
| | - Miguel F. Segura
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; E-Mails: (M.F.S.); (J.Z.); (E.H.)
- Laboratory of Translational Research in Childhood Cancer, Vall d’Hebron Research Institute, Barcelona 08035, Spain
| | - Erica Friedman
- Department of Surgery, New York University School of Medicine, New York, NY 10016, USA; E-Mail:
| | - Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori, Pisa 56124, Italy; E-Mail:
| | - Sung Won Han
- Department of Population Health, New York University School of Medicine, New York, NY 10016, USA; E-Mails: (S.W.H.); (J.Z.)
| | - Judy Zhong
- Department of Population Health, New York University School of Medicine, New York, NY 10016, USA; E-Mails: (S.W.H.); (J.Z.)
| | - Jiri Zavadil
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; E-Mails: (M.F.S.); (J.Z.); (E.H.)
- NYU Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY 10016, USA
- International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Anna Pavlick
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA; E-Mail:
| | - Eva Hernando
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; E-Mails: (M.F.S.); (J.Z.); (E.H.)
| | - Iman Osman
- Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA; E-Mails: (K.E.O.); (E.V.-s.M.)
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-212-263-9076; Fax: +1-212-263-9090
| |
Collapse
|
38
|
Xie J, Bartels CM, Barton SW, Gu D. Targeting hedgehog signaling in cancer: research and clinical developments. Onco Targets Ther 2013; 6:1425-35. [PMID: 24143114 PMCID: PMC3797650 DOI: 10.2147/ott.s34678] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Since its first description in Drosophila by Drs Nusslein-Volhard and Wieschaus in 1980, hedgehog (Hh) signaling has been implicated in regulation of cell differentiation, proliferation, tissue polarity, stem cell maintenance, and carcinogenesis. The first link of Hh signaling to cancer was established through studies of Gorlin syndrome in 1996 by two independent teams. Later, it was shown that Hh signaling may be involved in many types of cancer, including skin, leukemia, lung, brain, and gastrointestinal cancers. In early 2012, the US Food and Drug Administration approved the clinical use of Hh inhibitor Erivedge/vismodegib for treatment of locally advanced and metastatic basal cell carcinomas. With further investigation, it is possible to see more clinical applications of Hh signaling inhibitors. In this review, we will summarize major advances in the last 3 years in our understanding of Hh signaling activation in human cancer, and recent developments in preclinical and clinical studies using Hh signaling inhibitors.
Collapse
Affiliation(s)
- Jingwu Xie
- Wells Center for Pediatric Research, Division of Hematology and Oncology, Department of Pediatrics, Indiana University Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | | | | | | |
Collapse
|
39
|
DNA methylation and MeCP2 regulation of PTCH1 expression during rats hepatic fibrosis. Cell Signal 2013; 25:1202-11. [PMID: 23333245 DOI: 10.1016/j.cellsig.2013.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/08/2013] [Indexed: 12/11/2022]
Abstract
Hepatic stellate cell (HSC) activation plays an important role in liver fibrogenesis. Transdifferentiation of quiescent hepatic stellate cells into myofibroblastic-HSCs is a key event in liver fibrosis. The methyl-CpG-binding protein MeCP2 which promotes repressed chromatin structure is selectively detected in myofibroblasts of diseased liver. MeCP2 binds to methylated CpG dinucleotides, which are abundant in the promoters of many genes. Treatment of HSCs with DNA methylation inhibitor 5-aza-2'- deoxycytidine (5-azadC) prevented proliferation and activation. Treatment with 5-azadC prevented loss of Patched (PTCH1) expression that occurred during HSCs activation. In a search for underlying molecular medchanisms, we investigated whether the targeting of epigenetic silencing mechanisms could be useful in the treatment of PTCH1-associated fibrogenesis. It was indicated that hypermethylation of PTCH1 is associated with the perpetuation of fibroblast activation and fibrosis in the liver. siRNA knockdown of MeCP2 increased the expressions of PTCH1 mRNA and protein in hepatic myofibroblasts. These data suggest that DNA methylation and MeCP2 may provide molecular mechanisms for silencing of PTCH1.
Collapse
|
40
|
Abstract
It is estimated that 5-10% of all cutaneous malignancies involve the periocular region and management of periocular skin cancers account for a significant proportion of the oculoplastic surgeon's workload. Epithelial tumours are most frequently encountered, including basal cell carcinoma, squamous cell carcinoma, and sebaceous gland carcinoma, in decreasing order of frequency. Non-epithelial tumours, such as cutaneous melanoma and Merkel cell carcinoma, rarely involve the ocular adnexae. Although non-surgical treatments for periocular malignancies are gaining in popularity, surgery remains the main treatment modality and has as its main aims tumour clearance, restoration of the eyelid function, protection of the ocular surface, and achieving a good cosmetic outcome. The purpose of this article is to review the management of malignant periocular tumours, with particular emphasis on surgical management.
Collapse
Affiliation(s)
- C Rene
- Department of Ophthalmology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
41
|
Kar S, Deb M, Sengupta D, Shilpi A, Bhutia SK, Patra SK. Intricacies of hedgehog signaling pathways: A perspective in tumorigenesis. Exp Cell Res 2012; 318:1959-72. [DOI: 10.1016/j.yexcr.2012.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/25/2012] [Accepted: 05/16/2012] [Indexed: 12/27/2022]
|
42
|
Sand M, Skrygan M, Georgas D, Sand D, Hahn SA, Gambichler T, Altmeyer P, Bechara FG. Microarray analysis of microRNA expression in cutaneous squamous cell carcinoma. J Dermatol Sci 2012; 68:119-26. [PMID: 23026055 DOI: 10.1016/j.jdermsci.2012.09.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are a novel class of short RNAs that are capable epigenetically regulating gene expression in eukaryotes. MicroRNAs have been shown to be dysregulated in a variety of cancers. The data on miRNA expression in cutaneous squamous cell carcinoma (cSCC) are very limited, and microarray-based miRNA expression profiles of cSCC have not yet been determined. OBJECTIVE To describe differentially expressed miRNAs in cSCC. METHODS Seven patients with cSCC were enrolled in the present study. Tumor biopsies (n=7) were taken from the center of each tumor. Adjacent healthy skin (n=7) was biopsied as a control (intraindividual control). miRNA expression profiles of all specimens were detected by microarray miRNA expression profiling based on miRBAse 16 scanning for 1205 potential human miRNA target sequences. The microarray results were confirmed by TaqMan quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Non-stringent filtering with a non-adjusted p ≤ 0.05 revealed thirteen up-regulated and eighteen down-regulated miRNAs. Non-stringent filtering with a non-adjusted p ≤ 0.01 revealed three up-regulated (hsa-miR-135b, hsa-miR-424 and hsa-miR-766) and six down-regulated (hsa-miR-30a*, hsa-miR-378, hsa-miR-145, hsa-miR-140-3p, hsa-miR-30a and hsa-miR-26a) miRNAs in cSCC. CONCLUSION This study reveals differentially expressed miRNAs that may play a role in the molecular pathogenesis of cSCC and that are excellent candidates for further validation and functional analysis.
Collapse
Affiliation(s)
- Michael Sand
- Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
This review is focusing on a critical mediator of embryonic and postnatal development with multiple implications in inflammation, neoplasia, and other pathological situations in brain and peripheral tissues. These morphogenetic guidance and dependence processes are involved in several malignancies targeting the epithelial and immune systems including the progression of human colorectal cancers. We consider the most important findings and their impact on basic, translational, and clinical cancer research. Expected information can bring new cues for innovative, efficient, and safe strategies of personalized medicine based on molecular markers, protagonists, signaling networks, and effectors inherent to the Netrin axis in pathophysiological states.
Collapse
|
44
|
Eckert RL, Adhikary G, Balasubramanian S, Rorke EA, Vemuri MC, Boucher SE, Bickenbach JR, Kerr C. Biochemistry of epidermal stem cells. Biochim Biophys Acta Gen Subj 2012; 1830:2427-34. [PMID: 22820019 DOI: 10.1016/j.bbagen.2012.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/10/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. SCOPE OF REVIEW A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. MAJOR CONCLUSIONS An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. GENERAL SIGNIFICANCE Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Boehnke K, Falkowska-Hansen B, Stark HJ, Boukamp P. Stem cells of the human epidermis and their niche: composition and function in epidermal regeneration and carcinogenesis. Carcinogenesis 2012; 33:1247-58. [PMID: 22461521 DOI: 10.1093/carcin/bgs136] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Skin, as the largest organ, has long been subject of excellent and pioneering studies on stem cells and their role in tissue regulation and tumor formation. In particular, intensive research on mouse skin, and here especially the hair follicle, has largely extended our knowledge. Surprisingly, human skin, although the most easily accessible tissue in man, is far less conceived with regard to its stem cells and their specific environment (the niche). In consequence, these features are as yet only insufficiently defined and it still has to be elucidated how insights in cutaneous stem cell biology gained in mice can be extrapolated to humans. In the last few years, human model systems such as humanized mice or in vitro organotypic cultures that support maintenance or reconstruction of human skin and long-term epidermal regeneration have been developed. These models allow lineage tracing experiments and can be modified by adopting genetically manipulated cell types. Accordingly, they represent proper tools for human stem cell research and will clearly help to improve our still incomplete understanding. Like normal skin, the non-melanoma skin cancers and their respective tumors have gained considerable interest in basic as well as in clinical research. Being the most frequent human tumors globally, basal cell carcinomas and cutaneous squamous cell carcinomas (SCCs) continue to increase in incidence and specifically SCCs predominate in immunosuppressed transplant recipients. This review intends to compile the present knowledge on keratinocyte stem cells and their niches in normal skin and skin carcinomas with a special focus on the human situation. In particular, the role of the microenvironment, the niche, is emphasized, promoting our view of the decisive importance of the niche as a key regulatory element for controlling position, fate and regenerative potential of the stem cell population both in healthy skin and in carcinomas.
Collapse
Affiliation(s)
- Karsten Boehnke
- Division of Genetics of Skin Carcinogenesis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
46
|
Tumor Suppressor Function of CYLD in Nonmelanoma Skin Cancer. J Skin Cancer 2011; 2011:614097. [PMID: 22235375 PMCID: PMC3246786 DOI: 10.1155/2011/614097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/15/2011] [Accepted: 09/21/2011] [Indexed: 11/18/2022] Open
Abstract
Ubiquitin and ubiquitin-related proteins posttranslationally modify substrates, and thereby alter the functions of their targets. The ubiquitination process is involved in various physiological responses, and dysregulation of components of the ubiquitin system has been linked to many diseases including skin cancer. The ubiquitin pathways activated among skin cancers are highly diverse and may reflect the various characteristics of the cancer type. Basal cell carcinoma and squamous cell carcinoma, the most common types of human skin cancer, are instances where the involvement of the deubiquitination enzyme CYLD has been recently highlighted. In basal cell carcinoma, the tumor suppressor protein CYLD is repressed at the transcriptional levels through hedgehog signaling pathway. Downregulation of CYLD in basal cell carcinoma was also shown to interfere with TrkC expression and signaling, thereby promoting cancer progression. By contrast, the level of CYLD is unchanged in squamous cell carcinoma, instead, catalytic inactivation of CYLD in the skin has been linked to the development of squamous cell carcinoma. This paper will focus on the current knowledge that links CYLD to nonmelanoma skin cancers and will explore recent insights regarding CYLD regulation of NF-κB and hedgehog signaling during the development and progression of these types of human tumors.
Collapse
|
47
|
Redmond EM, Guha S, Walls D, Cahill PA. Investigational Notch and Hedgehog inhibitors--therapies for cardiovascular disease. Expert Opin Investig Drugs 2011; 20:1649-64. [PMID: 22007748 DOI: 10.1517/13543784.2011.628658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION During the past decade, a variety of Notch and Hedgehog pathway inhibitors have been developed for the treatment of several cancers. An emerging paradigm suggests that these same gene regulatory networks are often recapitulated in the context of cardiovascular disease and may now offer an attractive target for therapeutic intervention. AREAS COVERED This article briefly reviews the profile of Notch and Hedgehog inhibitors that have reached the preclinic and clinic for cancer treatment and discusses the clinical issues surrounding targeted use of these inhibitors in the treatment of vascular disorders. EXPERT OPINION Preclinical and clinical data using pan-Notch inhibitors (γ-secretase inhibitors) and selective antibodies to preferentially target notch receptors and ligands have proven successful but concerns remain over normal organ homeostasis and significant pathology in multiple organs. By contrast, the Hedgehog-based drug pipeline is rich with more than a dozen Smoothened (SMO) inhibitors at various stages of development. Overall, refined strategies will be necessary to harness these pathways safely as a powerful tool to disrupt angiogenesis and vascular proliferative phenomena without causing prohibitive side effects already seen with cancer models and patients.
Collapse
Affiliation(s)
- Eileen M Redmond
- University of Rochester, Department of Surgery, 601 Elmwood Ave, Box SURG, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
48
|
Matsuo AL, Juliano MA, Figueiredo CR, Batista WL, Tanaka AS, Travassos LR. A New Phage-Display Tumor-Homing Peptide Fused to Antiangiogenic Peptide Generates a Novel Bioactive Molecule with Antimelanoma Activity. Mol Cancer Res 2011; 9:1471-8. [DOI: 10.1158/1541-7786.mcr-10-0501] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|